JPH09162336A - Radiation sheet - Google Patents

Radiation sheet

Info

Publication number
JPH09162336A
JPH09162336A JP7321367A JP32136795A JPH09162336A JP H09162336 A JPH09162336 A JP H09162336A JP 7321367 A JP7321367 A JP 7321367A JP 32136795 A JP32136795 A JP 32136795A JP H09162336 A JPH09162336 A JP H09162336A
Authority
JP
Japan
Prior art keywords
heat
metal layer
porous metal
heat dissipation
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7321367A
Other languages
Japanese (ja)
Other versions
JP3166060B2 (en
Inventor
Toshiyuki Nagase
敏之 長瀬
Koji Hoshino
孝二 星野
Yoshio Kanda
義雄 神田
Akifumi Hatsuka
昌文 初鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP32136795A priority Critical patent/JP3166060B2/en
Publication of JPH09162336A publication Critical patent/JPH09162336A/en
Application granted granted Critical
Publication of JP3166060B2 publication Critical patent/JP3166060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To enable relatively easy manufacturing and smooth conduction of heat by a heating element to a heat sink without causing deformation of neighboring components. SOLUTION: A radiation sheet 11 is provided between a heating element 14 and a radiator 16. This radiation sheet 11 includes a plastic porous metal layer 12 having a number of pares, and a filler 13 filling a number of pores of the plastic porous metal layer 12 and having rubber elasticity and plasticity. It is preferred that the plastic porous metal layer 12 is a porous sintered body of Cu, Al or Ag having a porous ratio of 10-60%, and that the filler 13 is silicone rubber or polyolefin elastomer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は発熱体、例えば大量
の熱を発生する大電力半導体と、放熱体、例えば上記熱
を放散するフィンとの間に介装接着される放熱シートに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating sheet that is interposed and bonded between a heat generating element, for example, a high power semiconductor that generates a large amount of heat, and a heat radiating element, for example, a fin that dissipates the heat. .

【0002】[0002]

【従来の技術】従来、放熱体である筐体の内部に発熱体
である電子部品が収容され、この電子部品が発した熱を
放熱部材が上記筐体に伝達するように構成され、この放
熱部材が形状変化が可能な非塊性の金属材と、この金属
材の間に充満される気体と、上記金属材及び気体を封入
する熱良導性で絶縁性の柔軟な外袋とを備えた電子機器
用の放熱部材が開示されている(特開平6−26811
3)。上記放熱部材の金属材は繊維状に加工して絡めた
繊維状金属材であり、気体は不活性気体である。この放
熱部材では、基板の表面の半導体チップや抵抗等の発熱
性電子部品と筐体との間や、基板の裏面と筐体との間
に、放熱部材が配置される。電子部品が発した熱は、直
接又は基板を介して外袋に伝達され、更に繊維状金属材
及び外袋を介して筐体に伝達される。この結果、特別な
加工や積層等を行うことなく、電子部品や筐体等に対す
る高い密着性が得られ、効率的な熱伝導効果を得ること
ができるようになっている。
2. Description of the Related Art Conventionally, an electronic component, which is a heating element, is housed inside a casing that is a radiator, and a heat radiation member is configured to transfer the heat generated by the electronic component to the casing. The member is provided with a non-bulky metal material whose shape can be changed, a gas filled between the metal materials, and a heat-conductive and insulating flexible outer bag for enclosing the metal material and the gas. A heat dissipation member for electronic equipment is disclosed (Japanese Patent Laid-Open No. 6-26811).
3). The metal material of the heat dissipation member is a fibrous metal material that is processed into a fibrous shape and entangled, and the gas is an inert gas. In this heat dissipating member, the heat dissipating member is arranged between the heat generating electronic component such as a semiconductor chip or a resistor on the front surface of the substrate and the housing, or between the back surface of the substrate and the housing. The heat generated by the electronic component is transferred to the outer bag directly or through the substrate, and is further transferred to the housing through the fibrous metal material and the outer bag. As a result, it is possible to obtain high adhesion to an electronic component, a case, etc. without performing special processing or lamination, and to obtain an efficient heat conduction effect.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の電
子機器用の放熱部材では、繊維状金属材や不活性気体が
漏れないように外袋を構成しなければならず、外袋の材
質等の選定が難しく、また繊維状金属材及び不活性気体
の外袋への封入作業が比較的煩わしい不具合があった。
また、上記従来の電子機器用の放熱部材では、半導体等
と基板とを電気的に接続するワイヤが放熱部材により押
されて変形する恐れがあった。本発明の目的は、比較的
容易に製作でき、近接する部品を変形させることなく、
発熱体が発した熱をスムーズに放熱体に導くことができ
る放熱シートを提供することにある。
However, in the above conventional heat dissipation member for electronic equipment, the outer bag must be constructed so that the fibrous metal material and the inert gas do not leak, and the material of the outer bag, etc. Was difficult to select, and the work of enclosing the fibrous metal material and the inert gas in the outer bag was relatively troublesome.
Further, in the above-described conventional heat dissipation member for electronic equipment, the wire that electrically connects the semiconductor or the like and the substrate may be pressed by the heat dissipation member to be deformed. The object of the present invention is to manufacture relatively easily, without deforming adjacent parts,
An object of the present invention is to provide a heat dissipation sheet that can smoothly guide the heat generated by the heat generating element to the heat dissipation element.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように発熱体14と放熱体16との間に介装
された放熱シート11の改良である。その特徴ある構成
は、多数の気孔を有する可塑性多孔質金属層12と、可
塑性多孔質金属層12の多数の気孔に充填されゴム弾性
と塑性とを有する充填材13とを備えたところにある。
この放熱シート11では、発熱体14が発した熱の大部
分は可撓性多孔質金属層12を介して放熱体16に伝わ
り、残りの熱は発熱体14及び放熱体16に密着した充
填材13を介して放熱体16に伝わる。この結果、発熱
体14が発した熱はスムーズに放熱体16に導かれ、発
熱体14の温度上昇を低く抑えることができる。
The invention according to claim 1 is
This is an improvement of the heat dissipation sheet 11 interposed between the heat generating body 14 and the heat dissipating body 16 as shown in FIG. The characteristic structure is that it is provided with a plastic porous metal layer 12 having a large number of pores, and a filler 13 filled in a large number of pores of the plastic porous metal layer 12 and having rubber elasticity and plasticity.
In the heat dissipation sheet 11, most of the heat generated by the heat generating body 14 is transmitted to the heat dissipating body 16 via the flexible porous metal layer 12, and the remaining heat is filled with the heat dissipating body 14 and the heat dissipating body 16. It is transmitted to the radiator 16 via 13. As a result, the heat generated by the heat generating body 14 is smoothly guided to the heat radiating body 16, and the temperature rise of the heat generating body 14 can be suppressed low.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、可塑性多孔質金属層が気孔率10〜60%
のCu,Al又はAgの多孔質焼結体であることを特徴
とする。可塑性多孔質金属層の気孔率を10〜60%と
したのは、気孔率が60%を越えると熱抵抗が増大する
不具合があり、気孔率が10%未満では、気孔が極めて
小さいため充填材が気孔に十分に充填され難くなり、か
つ金属含有率の多い多孔質金属層の変形が容易でないた
め発熱体や放熱体との接触面積が小さくなって、発熱体
や放熱体との接触抵抗が増え、熱抵抗が大きくなる問題
点があるからである。
The invention according to claim 2 is the invention according to claim 1, wherein the plastic porous metal layer has a porosity of 10 to 60%.
Is a porous sintered body of Cu, Al or Ag. The porosity of the plastic porous metal layer is set to 10 to 60% because the thermal resistance increases when the porosity exceeds 60%, and when the porosity is less than 10%, the pores are extremely small, and thus the filler is very small. Is difficult to fill the pores sufficiently, and the porous metal layer with a high metal content is not easily deformed, so the contact area with the heating element or radiator is small, and the contact resistance with the heating element or radiator is small. This is because there is a problem that the number increases and the thermal resistance increases.

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(a)発熱体 発熱体は基板に実装された半導体チップや抵抗体等であ
る。基板としては導体ペーストをスクリーン印刷したセ
ラミックグリーンシートを多数積層して850〜160
0℃前後の温度で焼成して作られるセラミック多層配線
基板や、セラミック基板の下面及び上面に金属薄板及び
回路基板がそれぞれ積層接着されたパワーモジュール用
基板等が挙げられる。
(a) Heating element The heating element is a semiconductor chip, a resistor, or the like mounted on the substrate. As the substrate, a large number of ceramic green sheets screen-printed with a conductor paste are laminated to form 850-160.
Examples thereof include a ceramic multilayer wiring board made by firing at a temperature of about 0 ° C., and a power module board in which a metal thin plate and a circuit board are laminated and adhered to the lower surface and the upper surface of the ceramic board.

【0007】(b)放熱体 放熱体はCu若しくはAlの押出し成形や射出成形等に
より、又はCu板若しくはAl板のプレス成形により形
成される。放熱体はろう材を介して可塑性多孔質金属層
に接着される基部と、この基部に所定の間隔をあけて突
設された多数のフィン部とを有する。基部及びフィン部
はCu又はAlにより一体的に成形される。また放熱体
として、フィン部のない基部のみにより形成されたプレ
ート状のものを用いることもできる。
(B) Heat Dissipator The heat dissipator is formed by extrusion molding or injection molding of Cu or Al, or by press molding of a Cu plate or Al plate. The heat radiator has a base portion bonded to the plastic porous metal layer via a brazing material, and a large number of fin portions projecting from the base portion at predetermined intervals. The base portion and the fin portion are integrally formed of Cu or Al. Further, as the radiator, it is possible to use a plate-shaped member formed only by the base portion without the fin portion.

【0008】(c)可塑性多孔質金属層 可塑性多孔質金属層を単体で製造するときには下記の
方法により行われる。先ず平均粒径5〜100μmのC
u,Al又はAgの金属粉と、水溶性樹脂バインダと、
非水溶性炭化水素系有機溶剤と、界面活性剤と、水とを
混練した後、可塑剤を添加して更に混練して得られた金
属粉含有スラリーをドクタブレード法により成形体にす
る。次いでこの成形体を5〜100℃で0.25〜4時
間保持して上記成形体中の可塑剤を揮発させ発泡させた
後、50〜200℃で0.5〜1時間保持し乾燥して薄
板状多孔質成形体にする。次にこの多孔質成形体を所定
の雰囲気中で500〜1060℃で0.5〜4時間加熱
して保持し、スケルトン構造を有する気孔率90〜93
%、厚さ0.5〜5mmの薄板状多孔質焼結体にする。
更にこの多孔質焼結体を厚さ0.2〜3mmに圧延する
ことにより、気孔率が10〜60%の可塑性多孔質金属
層が得られる。
(C) Plastic Porous Metal Layer When the plastic porous metal layer is manufactured as a single body, it is carried out by the following method. First, C having an average particle size of 5 to 100 μm
u, Al or Ag metal powder, water-soluble resin binder,
A metal powder-containing slurry obtained by kneading a water-insoluble hydrocarbon organic solvent, a surfactant, and water, then adding a plasticizer and further kneading the mixture into a molded body by a doctor blade method. Next, this molded body is kept at 5 to 100 ° C. for 0.25 to 4 hours to volatilize the plasticizer in the molded body to foam, and then kept at 50 to 200 ° C. for 0.5 to 1 hour and dried. A thin plate-like porous molded body is formed. Next, this porous molded body is heated and held at 500 to 1060 ° C. for 0.5 to 4 hours in a predetermined atmosphere to have a porosity of 90 to 93 having a skeleton structure.
%, And a thin plate-like porous sintered body having a thickness of 0.5 to 5 mm.
Further, by rolling this porous sintered body to a thickness of 0.2 to 3 mm, a plastic porous metal layer having a porosity of 10 to 60% can be obtained.

【0009】Cuの可塑性多孔質金属層では金属粉とし
て平均粒径5〜100μmのCu粉が用いられ、Alの
可塑性多孔質金属層では金属粉として平均粒径5〜10
0μmのAl粉と平均粒径5〜100μmのCu粉の混
合物が用いられ、Agの可塑性多孔質金属層では金属粉
として平均粒径5〜100μmのAg粉が用いられる。
水溶性樹脂バインダとしてはメチルセルロース、ヒドロ
キシプロピルメチルセルロース、ヒドロキシエチルメチ
ルセルロース、カルボキシメチルセルロースアンモニウ
ム、エチルセルロース等が用いられ、非水溶性炭化水素
系有機溶剤としてはネオペンタン、ヘキサン、イソヘキ
サン、ヘプタン等が用いられる。また界面活性剤として
は市販の台所用中性合成洗剤(例えばアルキルグルコシ
ドとポリオキシエチレンアルキルエーテルの28%混合
水溶液)が用いられ、可塑剤としてはエチレングリコー
ル、ポリエチレングリコール、グリセリン等の多価アル
コールや、イワシ油、菜種油、オリーブ油等の油脂や、
石油エーテル等のエーテルや、フタル酸ジエチル、フタ
ル酸ジNブチル、フタル酸ジエチルヘキシル、フタル酸
ジNオクチル等のエステルが用いられる。
In the Cu plastic porous metal layer, Cu powder having an average particle diameter of 5 to 100 μm is used as the metal powder, and in the Al plastic porous metal layer, the metal particle having an average particle diameter of 5 to 10 μm.
A mixture of 0 μm Al powder and Cu powder having an average particle size of 5 to 100 μm is used, and Ag plastic powder having an average particle size of 5 to 100 μm is used as the metal powder in the Ag plastic porous metal layer.
Methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose ammonium, ethylcellulose and the like are used as the water-soluble resin binder, and neopentane, hexane, isohexane, heptane and the like are used as the water-insoluble hydrocarbon organic solvent. A commercially available kitchen neutral synthetic detergent (for example, a 28% mixed aqueous solution of alkyl glucoside and polyoxyethylene alkyl ether) is used as the surfactant, and a polyhydric alcohol such as ethylene glycol, polyethylene glycol or glycerin is used as the plasticizer. And oils and fats such as sardine oil, rapeseed oil and olive oil,
Ethers such as petroleum ether and esters such as diethyl phthalate, diN-butyl phthalate, diethylhexyl phthalate and diN-octyl phthalate are used.

【0010】可塑性多孔質金属層を発熱体及び放熱体
と一体的に形成するときには下記の方法により行われ
る。基板の上面の導体又は金属薄膜の表面に上記多孔質
金属層となる金属粉含有スラリーを塗布し、この金属粉
含有スラリーの上面に放熱体を重ね、更にこの状態で金
属粉含有スラリーを発泡し焼成し圧延することにより、
多孔質金属層が形成される。上記金属粉含有スラリーは
平均粒径5〜100μmのCu,Al又はAgの金属粉
と、水溶性樹脂バインダと、非水溶性炭化水素系有機溶
剤と、界面活性剤と、水とを混練した後、可塑剤を添加
して更に混練して得られる。Cuの多孔質金属層では金
属粉として平均粒径5〜100μmのCu粉が用いら
れ、Alの多孔質金属層では金属粉として平均粒径5〜
100μmのAl粉と平均粒径5〜100μmのCu粉
の混合物が用いられ、Agの多孔質金属層では金属粉と
して平均粒径5〜100μmのAg粉が用いられる。水
溶性樹脂バインダ及び界面活性剤としては、上記に記
載したものと同様のものが用いられる。基板の上面に金
属粉末スラリーを介して放熱体を重ねた状態で、5〜1
00℃で0.25〜4時間保持して上記スラリー中の可
塑剤を揮発させ発泡させた後、50〜200℃で30〜
60分間保持し乾燥して上記スラリーを薄板状多孔質成
形体にする。次にこの多孔質成形体をセラミック基板及
び放熱体とともに所定の雰囲気中で500〜1060℃
で0.5〜4時間加熱して保持し、多孔質成形体をスケ
ルトン構造を有する気孔率90〜93%、厚さ0.5〜
5mmの薄板状多孔質焼結体にする。更にこの多孔質焼
結体を基板及び放熱体とともに圧延して多孔質焼結体の
厚さを0.2〜3mmにすることにより、金属粉含有ス
ラリーから気孔率10〜60%の多孔質金属層が成形さ
れる。
When the plastic porous metal layer is integrally formed with the heating element and the radiator, the following method is used. The metal powder-containing slurry to be the above-mentioned porous metal layer is applied to the surface of the conductor or the metal thin film on the upper surface of the substrate, the radiator is laid on the upper surface of this metal powder-containing slurry, and the metal powder-containing slurry is further foamed in this state. By firing and rolling,
A porous metal layer is formed. After the metal powder-containing slurry is kneaded with Cu, Al or Ag metal powder having an average particle size of 5 to 100 μm, a water-soluble resin binder, a non-water-soluble hydrocarbon organic solvent, a surfactant and water. It is obtained by adding a plasticizer and further kneading. In the Cu porous metal layer, Cu powder having an average particle size of 5 to 100 μm is used as the metal powder, and in the Al porous metal layer, the metal particle has an average particle size of 5 to 5 μm.
A mixture of 100 μm Al powder and Cu powder with an average particle size of 5 to 100 μm is used, and Ag powder with an average particle size of 5 to 100 μm is used as the metal powder in the Ag porous metal layer. As the water-soluble resin binder and the surfactant, the same ones as described above are used. In the state that the radiator is laid on the upper surface of the substrate through the metal powder slurry,
After holding at 00 ° C. for 0.25 to 4 hours to volatilize and foam the plasticizer in the slurry, 30 to 30 ° C. at 50 to 200 ° C.
The slurry is held for 60 minutes and dried to form a thin plate-like porous molded body. Next, this porous molded body together with the ceramic substrate and the radiator is heated in a predetermined atmosphere at 500 to 1060 ° C.
The porous molded body having a skeleton structure having a porosity of 90-93% and a thickness of 0.5-
A 5 mm thin plate-shaped porous sintered body is prepared. Further, by rolling this porous sintered body together with the substrate and the radiator to make the thickness of the porous sintered body 0.2 to 3 mm, a porous metal having a porosity of 10 to 60% is obtained from the slurry containing metal powder. The layers are molded.

【0011】(d)可塑性多孔質金属層への充填材の充填
方法 充填材はシリコーンゴム又はポリオレフィン系エラスト
マが用いられる。充填材としてシリコーンゴムを用いる
場合には、溶媒である1.1.1.トリクロロエタンに溶かし
たシリコーンゴムを多孔質金属層に含浸し、上記1.1.1.
トリクロロエタンを蒸発させることにより行われる。
(D) Method of Filling Filler into Plastic Porous Metal Layer Silicone rubber or polyolefin elastomer is used as the filler. When silicone rubber is used as the filler, the porous metal layer is impregnated with the silicone rubber dissolved in the solvent 1.1.1.trichloroethane, and the above 1.1.1.
This is done by evaporating the trichloroethane.

【0012】[0012]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。 <実施例1>図1に示すように、放熱シート11は可塑
性多孔質金属層12と充填材13とを備え、可塑性多孔
質金属層12をCuにより形成し、充填材13をシリコ
ーンゴムにより形成した。可塑性多孔質金属層12を以
下の方法によって製造した。先ず平均粒径40μmのC
u粉80gと、水溶性メチルセルロース樹脂バインダ
2.5gと、グリセリン5gと、界面活性剤0.5g
と、水20gとを30分間混練した後、ヘキサンを0.
1g添加して更に3分間混練して得られた金属粉含有ス
ラリーをドクタブレード法により成形体にした。次いで
この成形体を40℃に30分間保持して上記成形体中の
ヘキサンを揮発させ発泡させた後、90℃に40分間保
持し乾燥して薄板状多孔質成形体にした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. <Example 1> As shown in FIG. 1, a heat dissipation sheet 11 is provided with a plastic porous metal layer 12 and a filler 13, the plastic porous metal layer 12 is made of Cu, and the filler 13 is made of silicone rubber. did. The plastic porous metal layer 12 was manufactured by the following method. First, C with an average particle size of 40 μm
80 g of u powder, 2.5 g of water-soluble methyl cellulose resin binder, 5 g of glycerin, 0.5 g of surfactant
And 20 g of water were kneaded for 30 minutes, and hexane was added to 0.
The metal powder-containing slurry obtained by adding 1 g and kneading for 3 minutes was formed into a molded body by the doctor blade method. Next, this molded body was kept at 40 ° C. for 30 minutes to evaporate hexane in the molded body to foam, and then kept at 90 ° C. for 40 minutes and dried to obtain a thin plate-shaped porous molded body.

【0013】次にこの多孔質成形体を空気中で500℃
に0.5時間加熱して保持した後、水素中で1000℃
に1時間加熱して保持し、スケルトン構造を有する気孔
率92〜95%、厚さ3mmの薄板状多孔質焼結体にし
た。更にこの多孔質焼結体を縦及び横がそれぞれ20m
m及び15mmの長方形に切断したものを4枚作製して
それぞれ圧延し、厚さ及び気孔率が0.5mm及び10
〜12%、0.5mm及び18〜20%、0.5mm及
び30〜32%、0.5mm及び50〜60%の可塑性
多孔質金属層12を4枚得た。これらの多孔質金属層1
2に、1.1.1.トリクロロエタンに溶かしたシリコーンゴ
ム13を含浸させた後、1.1.1.トリクロロエタンを乾燥
させて、金属含有率がそれぞれ90、80、70及び4
5体積%の4種類の放熱シート11を得た。
Next, the porous molded body was heated in air at 500 ° C.
After heating and holding for 0.5 hours at 1000 ℃ in hydrogen
It was heated and held for 1 hour to obtain a thin plate-like porous sintered body having a skeleton structure and a porosity of 92 to 95% and a thickness of 3 mm. Further, this porous sintered body is 20 m in length and width.
4 pieces cut into rectangles of m and 15 mm were prepared and rolled to obtain thicknesses and porosities of 0.5 mm and 10
Four plastic porous metal layers 12 of -12%, 0.5 mm and 18-20%, 0.5 mm and 30-32%, 0.5 mm and 50-60% were obtained. These porous metal layers 1
2 was impregnated with silicone rubber 13 dissolved in 1.1.1. Trichloroethane, and then 1.1.1. Trichloroethane was dried to obtain metal contents of 90, 80, 70 and 4 respectively.
Four types of heat dissipation sheets 11 of 5% by volume were obtained.

【0014】発熱体14は発熱部14aと基部14bと
を有し、基部の縦及び横は50mm及び50mmであ
り、発熱部の縦及び横は20mm及び15mmであっ
た。また放熱体16はCuにより形成されかつ基部16
aとフィン部16bを有するヒートシンクであり、その
縦、横及び高さはそれぞれ50mm、50mm及び30
mmであった。発熱体14の基部14b上に、放熱シー
ト11及び放熱体16を重ね、ビス17を発熱体14の
基部14b及び放熱シート11に挿通して放熱体16の
基部16aに螺合することにより、放熱シート16を発
熱体14及び放熱体16に介装された状態で固定した。
The heating element 14 has a heating portion 14a and a base portion 14b. The length and width of the base portion are 50 mm and 50 mm, and the height and width of the heating portion are 20 mm and 15 mm. The radiator 16 is made of Cu and has a base 16
a and a fin portion 16b, the heat sink has a length, a width and a height of 50 mm, 50 mm and 30 respectively.
mm. By disposing the heat dissipation sheet 11 and the heat dissipation body 16 on the base part 14b of the heat generation body 14 and inserting the screw 17 into the base part 14b of the heat generation body 14 and the heat dissipation sheet 11 and screwing the screw 17 to the base part 16a of the heat dissipation body 16, The sheet 16 was fixed in a state of being interposed between the heat generating element 14 and the heat radiating element 16.

【0015】<比較例1及び2>実施例1の薄板状多孔
質焼結体を厚さ及び気孔率が0.5mm及び5〜7%と
なるように圧延したものを比較例1とし、上記焼結体を
厚さ及び気孔率が0.5mm及び80〜90%となるよ
うに圧延したものを比較例2とした。上記以外は実施例
1と同様に構成した。比較例1及び2の放熱シートの金
属含有率はそれぞれ95及び15体積%であった。
<Comparative Examples 1 and 2> The thin plate-shaped porous sintered body of Example 1 was rolled to a thickness and a porosity of 0.5 mm and 5 to 7%, which is referred to as Comparative Example 1 and the above. Comparative Example 2 was obtained by rolling the sintered body so that the thickness and the porosity were 0.5 mm and 80 to 90%. Except for the above, the configuration was the same as in Example 1. The metal contents of the heat dissipation sheets of Comparative Examples 1 and 2 were 95 and 15% by volume, respectively.

【0016】<実施例2>実施例1の平均粒径40μm
のCu粉80gに代えて、平均粒径40μmのAg粉1
00gを用いたことを除いて上記実施例1と同様に構成
し、厚さ及び気孔率が0.5mm及び10〜12%、
0.5mm及び18〜20%、0.5mm及び30〜3
2%、0.5mm及び50〜60%の4種類の可塑性多
孔質金属層にそれぞれシリコーンゴムを充填して、4種
類の放熱シートを得た。これら4種類の放熱シートの金
属含有率はそれぞれ90、80、70及び45体積%で
あった。 <比較例3>実施例2の薄板状多孔質焼結体を厚さ及び
気孔率が0.5mm及び80〜90%のもを比較例3と
した。上記以外は実施例2と同様に構成した。この放熱
シートの金属含有率は15体積%であった。
Example 2 Average particle size of Example 1 40 μm
Instead of 80 g of Cu powder, Ag powder 1 with an average particle size of 40 μm
The same structure as in Example 1 except that 100 g was used, and the thickness and porosity were 0.5 mm and 10 to 12%,
0.5 mm and 18-20%, 0.5 mm and 30-3
Silicone rubber was filled in each of the 4% plastic porous metal layers of 2%, 0.5 mm, and 50-60% to obtain 4 types of heat dissipation sheets. The metal contents of these four types of heat dissipation sheets were 90, 80, 70 and 45% by volume, respectively. Comparative Example 3 The thin plate-shaped porous sintered body of Example 2 having a thickness and a porosity of 0.5 mm and 80 to 90% was used as Comparative Example 3. Except for the above, the configuration was the same as in Example 2. The metal content of this heat dissipation sheet was 15% by volume.

【0017】<実施例3>実施例1の平均粒径40μm
のCu粉80gに代えて、平均粒径25μmのAl粉5
0gと、平均粒径9μmのCu分1.2gとを用いたこ
とを除いて上記実施例1と略同様に構成し、厚さ及び気
孔率が0.5mm及び10〜12%、0.5mm及び1
8〜20%、0.5mm及び30〜32%、0.5mm
及び50〜60%の4種類の可塑性多孔質金属層にそれ
ぞれシリコーンゴムを充填して、4種類の放熱シートを
得た。これら4種類の放熱シートの金属含有率はそれぞ
れ90、80、70及び45体積%であった。 <比較例4>実施例3の薄板状多孔質焼結体を厚さ及び
気孔率が0.5mm及び80〜90%となるように圧延
したものを比較例4とした。上記以外は実施例3と同様
に構成した。この放熱シートの金属含有率は15体積%
であった。
<Example 3> Average particle size of Example 1 is 40 μm.
Al powder 5 having an average particle size of 25 μm instead of 80 g of Cu powder
0 g and 1.2 g of Cu having an average particle size of 9 μm were used, and the thickness and porosity were 0.5 mm, 10 to 12%, and 0.5 mm. And 1
8-20%, 0.5 mm and 30-32%, 0.5 mm
And 50 to 60% of 4 types of plastic porous metal layers were filled with silicone rubber to obtain 4 types of heat dissipation sheets. The metal contents of these four types of heat dissipation sheets were 90, 80, 70 and 45% by volume, respectively. Comparative Example 4 The thin plate-like porous sintered body of Example 3 was rolled to have a thickness and a porosity of 0.5 mm and 80 to 90%, which was referred to as Comparative Example 4. Except for the above, the configuration was the same as in Example 3. The metal content of this heat dissipation sheet is 15% by volume
Met.

【0018】<比較例5>図示しないがフィラーとして
粒径5〜100μmのCu粉を母材のシリコーンゴム中
に分散させて上記Cu粉の含有率が95、80、60及
び40体積%で厚さが0.5mmの4種類の放熱シート
を比較例5とした。上記以外は実施例1と同様に構成し
た。
<Comparative Example 5> Although not shown, Cu powder having a particle size of 5 to 100 μm is dispersed as filler in the base silicone rubber, and the Cu powder content is 95, 80, 60 and 40% by volume. Four types of heat dissipation sheets having a size of 0.5 mm were used as Comparative Example 5. Except for the above, the configuration was the same as in Example 1.

【0019】<比較試験及び評価>実施例1〜3及び比
較例1〜5の発熱体を発熱させて放熱シートの熱抵抗を
それぞれ求めた。発熱体を10W発熱させたときの発熱
体の温度Tj(℃)と放熱体の温度Tf(℃)とを測定
することにより、上記放熱シートの熱抵抗Rth(℃/
W)を式により求めた。 Rth=(Tj−Tf)/10 …… これらの結果を表1、表2及び図1に示す。
<Comparative Test and Evaluation> The heat resistance of the heat radiating sheet was obtained by heating the heating elements of Examples 1 to 3 and Comparative Examples 1 to 5, respectively. By measuring the temperature Tj (° C.) of the heat generating element and the temperature Tf (° C.) of the heat radiating element when the heat generating element heats 10 W, the thermal resistance R th (° C. /
W) was calculated by the equation. Rth = ( Tj - Tf ) / 10 ... These results are shown in Table 1, Table 2 and FIG.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表1及び図2から明らかなように、実施例
1〜3は比較例1〜5より熱抵抗が減少した。これは発
熱体が発した熱の大部分は可撓性多孔質金属層を介して
フィンに伝わるが、更に発熱体及び放熱体に密着した充
填材を介して放熱体に伝わったためであると考えられ
る。
As is clear from Table 1 and FIG. 2, Examples 1 to 3 had a lower thermal resistance than Comparative Examples 1 to 5. This is probably because most of the heat generated by the heating element is transferred to the fins through the flexible porous metal layer, and is further transferred to the radiator through the filler that is in close contact with the heating element and the radiator. To be

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、可
塑性多孔質金属層の多数の気孔にゴム弾性と塑性とを有
する充填材を充填したので、発熱体が発した熱の大部分
は可撓性多孔質金属層を介して放熱体に伝わり、残りの
熱は発熱体及び放熱体に密着した充填材を介して放熱体
に伝わる。この結果、発熱体が発した熱はスムーズに放
熱体に導かれ、発熱体の温度上昇は低く抑えることがで
きる。また、外袋の材質等の選定が難しく、繊維状金属
材及び不活性気体の外袋への封入作業が煩わしい従来の
電子機器用の放熱部材と比較して、本発明では放熱シー
トが可塑性多孔質金属層の多数の気孔に充填材を充填す
るという比較的簡単な作業で済むので、製造コストの押
上げは僅かで済む。更に、半導体等と基板とを電気的に
接続するワイヤが放熱部材により押されて変形する恐れ
があった従来電子機器用の放熱部材と比較して、本発明
では近接する部品を変形させることはない。
As described above, according to the present invention, since a large number of pores of the plastic porous metal layer are filled with the filler having rubber elasticity and plasticity, most of the heat generated by the heating element is filled. Is transferred to the radiator through the flexible porous metal layer, and the remaining heat is transferred to the radiator through the heating element and the filler closely attached to the radiator. As a result, the heat generated by the heating element is smoothly guided to the radiator, and the temperature rise of the heating element can be suppressed to a low level. In addition, in comparison with the conventional heat dissipation member for electronic devices, which is difficult to select the material of the outer bag, and the work of enclosing the fibrous metal material and the inert gas in the outer bag is troublesome, in the present invention, the heat dissipation sheet has a plastic porous structure. Since the relatively simple operation of filling a large number of pores of the metallic layer with the filler is sufficient, the manufacturing cost can be slightly increased. Furthermore, in comparison with a conventional heat dissipation member for electronic equipment, in which a wire that electrically connects a semiconductor or the like and a substrate may be pressed by the heat dissipation member and deformed, the present invention does not allow the adjacent parts to be deformed. Absent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明一実施形態の放熱シートを含む発熱体及
び放熱体の断面図。
FIG. 1 is a cross-sectional view of a heat generator and a heat radiator including a heat dissipation sheet according to an embodiment of the present invention.

【図2】実施例及び比較例の放熱シートの金属含有率を
変化させたときの放熱シートの熱抵抗の変化を示す図。
FIG. 2 is a diagram showing changes in thermal resistance of the heat dissipation sheet when the metal content of the heat dissipation sheet of the example and the comparative example is changed.

【符号の説明】[Explanation of symbols]

11 放熱シート 12 可塑性多孔質金属層 13 シリコーンゴム(充填材) 14 発熱体 16 放熱体 11 Heat Dissipating Sheet 12 Plastic Porous Metal Layer 13 Silicone Rubber (Filling Material) 14 Heating Element 16 Radiating Element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 初鹿 昌文 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masafumi Hatsuka 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発熱体(14)と放熱体(16)との間に介装さ
れた放熱シート(11)において、 多数の気孔を有する可塑性多孔質金属層(12)と、 前記可塑性多孔質金属層(12)の多数の気孔に充填されゴ
ム弾性と塑性とを有する充填材(13)とを備えたことを特
徴とする放熱シート。
1. A heat-dissipating sheet (11) interposed between a heat-generating body (14) and a heat-dissipating body (16), comprising a plastic porous metal layer (12) having a large number of pores, and the plastic porous material. A heat dissipation sheet characterized by comprising a filler (13) filled in a large number of pores of a metal layer (12) and having rubber elasticity and plasticity.
【請求項2】 可塑性多孔質金属層(12)が気孔率10〜
60%のCu,Al又はAgの多孔質焼結体である請求
項1記載の放熱シート。
2. The plastic porous metal layer (12) has a porosity of 10 to 10.
The heat-dissipating sheet according to claim 1, which is a porous sintered body of 60% Cu, Al or Ag.
【請求項3】 充填材(13)がシリコーンゴム又はポリオ
レフィン系エラストマである請求項1又は2記載の放熱
シート。
3. The heat dissipation sheet according to claim 1, wherein the filler (13) is a silicone rubber or a polyolefin elastomer.
JP32136795A 1995-12-11 1995-12-11 Heat dissipation sheet Expired - Lifetime JP3166060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32136795A JP3166060B2 (en) 1995-12-11 1995-12-11 Heat dissipation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32136795A JP3166060B2 (en) 1995-12-11 1995-12-11 Heat dissipation sheet

Publications (2)

Publication Number Publication Date
JPH09162336A true JPH09162336A (en) 1997-06-20
JP3166060B2 JP3166060B2 (en) 2001-05-14

Family

ID=18131782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32136795A Expired - Lifetime JP3166060B2 (en) 1995-12-11 1995-12-11 Heat dissipation sheet

Country Status (1)

Country Link
JP (1) JP3166060B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154971A (en) * 1997-08-06 1999-02-26 Kobe Nippon Denki Software Kk Cooling structure of electronic device
WO2001065603A1 (en) * 2000-02-29 2001-09-07 Siemens Aktiengesellschaft Heat-conducting adhesive compound and a method for producing a heat-conducting adhesive compound
WO2003041165A2 (en) * 2001-10-18 2003-05-15 Honeywell International, Inc. Electrically conductive thermal interface
US7083850B2 (en) 2001-10-18 2006-08-01 Honeywell International Inc. Electrically conductive thermal interface
WO2009116585A1 (en) * 2008-03-19 2009-09-24 トヨタ自動車株式会社 Power module
US8860210B2 (en) 2009-06-10 2014-10-14 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2014534645A (en) * 2012-10-24 2014-12-18 華為技術有限公司Huawei Technologies Co.,Ltd. Thermal pad, thermal pad manufacturing method, heat dissipation device, and electronic device
JP2014239176A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Cooling member and semiconductor device
JP2016503455A (en) * 2012-09-28 2016-02-04 ダウ グローバル テクノロジーズ エルエルシー Low density metallic components for wireless communication towers
JP2016081978A (en) * 2014-10-11 2016-05-16 国立大学法人京都大学 Heat dissipation structure
WO2019088285A1 (en) * 2017-11-06 2019-05-09 三菱マテリアル株式会社 Heat sink-equipped power module substrate and manufacturing method for heat sink-equipped power module substrate
KR102007807B1 (en) * 2018-09-18 2019-08-06 주학식 Silicon complex sheet and manufacturing method thereof
KR20210077981A (en) * 2019-12-18 2021-06-28 한국세라믹기술원 High heat-dissipating aluminum oxide-Elastomer composites and fabrication method therof
JP2021529255A (en) * 2018-06-29 2021-10-28 エルジー・ケム・リミテッド Composite material
US11355413B2 (en) 2018-12-28 2022-06-07 Samsung Electronics Co., Ltd. Adhesive film, semiconductor apparatus using the same, and semiconductor package including the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154971A (en) * 1997-08-06 1999-02-26 Kobe Nippon Denki Software Kk Cooling structure of electronic device
WO2001065603A1 (en) * 2000-02-29 2001-09-07 Siemens Aktiengesellschaft Heat-conducting adhesive compound and a method for producing a heat-conducting adhesive compound
US6823915B2 (en) 2000-02-29 2004-11-30 Siemens Aktiengesellschaft Heat-conducting adhesive joint with an adhesive-filled, porous heat conductor
KR100735933B1 (en) * 2000-02-29 2007-07-06 지멘스 악티엔게젤샤프트 Heat-conducting adhesive compound and a method for producing a heat-conducting adhesive compound
WO2003041165A2 (en) * 2001-10-18 2003-05-15 Honeywell International, Inc. Electrically conductive thermal interface
WO2003041165A3 (en) * 2001-10-18 2003-07-24 Honeywell Int Inc Electrically conductive thermal interface
US7083850B2 (en) 2001-10-18 2006-08-01 Honeywell International Inc. Electrically conductive thermal interface
CN1319162C (en) * 2001-10-18 2007-05-30 霍尼韦尔国际公司 Current conducting and heat conducting interface
KR100782235B1 (en) * 2001-10-18 2007-12-05 허니웰 인터내셔날 인코포레이티드 Sintered metal flakes
WO2009116585A1 (en) * 2008-03-19 2009-09-24 トヨタ自動車株式会社 Power module
US8860210B2 (en) 2009-06-10 2014-10-14 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2016503455A (en) * 2012-09-28 2016-02-04 ダウ グローバル テクノロジーズ エルエルシー Low density metallic components for wireless communication towers
JP2014534645A (en) * 2012-10-24 2014-12-18 華為技術有限公司Huawei Technologies Co.,Ltd. Thermal pad, thermal pad manufacturing method, heat dissipation device, and electronic device
JP2014239176A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Cooling member and semiconductor device
JP2016081978A (en) * 2014-10-11 2016-05-16 国立大学法人京都大学 Heat dissipation structure
WO2019088285A1 (en) * 2017-11-06 2019-05-09 三菱マテリアル株式会社 Heat sink-equipped power module substrate and manufacturing method for heat sink-equipped power module substrate
JP2019087607A (en) * 2017-11-06 2019-06-06 三菱マテリアル株式会社 Substrate for power module with heat sink and manufacturing method of substrate for power module with heat sink
US11257735B2 (en) 2017-11-06 2022-02-22 Mitsubishi Materials Corporation Heat sink-equipped power module substrate and manufacturing method for heat sink-equipped power module substrate
JP2021529255A (en) * 2018-06-29 2021-10-28 エルジー・ケム・リミテッド Composite material
KR102007807B1 (en) * 2018-09-18 2019-08-06 주학식 Silicon complex sheet and manufacturing method thereof
US11355413B2 (en) 2018-12-28 2022-06-07 Samsung Electronics Co., Ltd. Adhesive film, semiconductor apparatus using the same, and semiconductor package including the same
KR20210077981A (en) * 2019-12-18 2021-06-28 한국세라믹기술원 High heat-dissipating aluminum oxide-Elastomer composites and fabrication method therof

Also Published As

Publication number Publication date
JP3166060B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JPH09162336A (en) Radiation sheet
CN100345931C (en) Dry thermal interface material
JP3841633B2 (en) Semiconductor laser module
JP3180622B2 (en) Power module substrate and method of manufacturing the same
US20060266475A1 (en) Thermally conductive interface
JPH077027A (en) Superthickness thick film to obtain performance of heat control and current carrler in hybrid circuit
JPH08335782A (en) Multilayer board
JP5687345B2 (en) Wiring board and electronic device
JP5668216B2 (en) Electronic power module and method for manufacturing said module
EP3605604B1 (en) Power module and method for manufacturing power module
JP3230181B2 (en) Method for manufacturing power module substrate and power module substrate manufactured by the method
JP3180621B2 (en) Power module substrate
JP4202923B2 (en) Thermally conductive material, microelectronic device, method of forming thermally conductive material, and method of conducting and removing heat from a microchip
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JPH11154776A (en) Board
JP7024377B2 (en) Heat dissipation sheet and its manufacturing method and how to use the heat dissipation sheet
JP3166819B2 (en) Power module circuit board and method of manufacturing the same
JP2006060247A (en) Heat dissipation substrate and its manufacturing method
JP3860425B2 (en) Circuit board, manufacturing method thereof, and electronic circuit device for automobile
JP2004087927A (en) Ceramic substrate
JP3667130B2 (en) Wiring board module
KR101440212B1 (en) Heat transfer paste and method for preparing thereof
JP2004006993A (en) Multilayer substrate
JPH0951060A (en) Terminal structure of board for power module
JP2003068954A (en) Package for housing semiconductor element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

EXPY Cancellation because of completion of term