JPH09162137A - Ion implantation - Google Patents

Ion implantation

Info

Publication number
JPH09162137A
JPH09162137A JP7346771A JP34677195A JPH09162137A JP H09162137 A JPH09162137 A JP H09162137A JP 7346771 A JP7346771 A JP 7346771A JP 34677195 A JP34677195 A JP 34677195A JP H09162137 A JPH09162137 A JP H09162137A
Authority
JP
Japan
Prior art keywords
ion implantation
photoresist layer
opening
mask pattern
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7346771A
Other languages
Japanese (ja)
Other versions
JP3867312B2 (en
Inventor
Atsushi Asai
淳 浅井
Yoichi Otsuka
洋一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP34677195A priority Critical patent/JP3867312B2/en
Publication of JPH09162137A publication Critical patent/JPH09162137A/en
Application granted granted Critical
Publication of JP3867312B2 publication Critical patent/JP3867312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an ion implanter in which the position and area of an ion implanting region can be regulated by subjecting a photoresist layer to a reflow heat treatment at the time of implanting ions using the photoresist layer as a mask thereby reducing the diameter of opening in a mask pattern on the fringe at the lower end thereof. SOLUTION: A p<-> -type overflow barrier layer 12 is formed on an Si substrate 11 by ion implantation and subjected to thermal oxidation thus obtaining an insulation film 13. A mask pattern having an opening is then formed by a photoresist layer 40 and a transfer barrier part 21 of p<-> -well is formed by ion implantation using the photoresist layer 40 as a mask. Subsequently, the photoresist layer 40 is subjected to reflow heat treatment so that the photoresist layer 40 is fluidized around the lower end part 44 of opening thus reducing the diameter of opening on the fringe 46 of lower end part 44. Finally, ion implantation for forming a vertical transfer part 22 is performed using the photoresist layer 40 having mask pattern of reduced opening diameter as a mask.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イオン注入方法に
関し、更に詳細にはイオン注入領域の位置及び面積を微
細に調整できるイオン注入方法、特にCCD撮像素子の
垂直転送部の形成に適したイオン注入方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implantation method, and more particularly to an ion implantation method capable of finely adjusting the position and area of an ion implantation region, and more particularly, an ion suitable for forming a vertical transfer portion of a CCD image pickup device. It concerns the injection method.

【0002】[0002]

【従来の技術】一般に、基板にイオンを注入してイオン
注入領域を形成する際、イオン注入は、ポリシリコン、
SiO2 などのデバイス構成材料やホトレジスト等で形
成されるマスクパターンの上から基板に向け施され、こ
れによりパターンで定められた開口の位置及び面積に合
致するようにイオン注入領域が形成されている。従っ
て、イオン注入領域を所定通りの位置及び面積で基板に
形成するためには、ホトリソグラフィ法等で形成するマ
スクパターンの精度を高める必要がある。ホトリソグラ
フィ法でマスクパターンを形成する際、マスクパターン
の精度を決める因子は、使用する光学装置の作動精度、
例えばフォトリソグラフィステッパーの作動精度であっ
て、特に、フォトリソグラフィステッパーのショット毎
に移動する機械的精度である。従来、マスクパターンの
開口の精度、従ってイオン注入領域の位置及び面積は、
フォトリソグラフィステッパーの作動精度の限界から、
0.1μm 以下の単位で微細に調整することは困難であ
った。
2. Description of the Related Art Generally, when forming an ion implantation region by implanting ions into a substrate, the ion implantation is polysilicon,
It is applied to the substrate from above a mask pattern formed of a device constituent material such as SiO 2 or photoresist, thereby forming an ion implantation region so as to match the position and area of the opening defined by the pattern. . Therefore, in order to form the ion implantation region on the substrate at a predetermined position and area, it is necessary to improve the accuracy of the mask pattern formed by the photolithography method or the like. When forming a mask pattern by photolithography, the factors that determine the accuracy of the mask pattern are the operating accuracy of the optical device used,
For example, the operation accuracy of the photolithography stepper, and in particular, the mechanical accuracy of movement of each photolithography stepper shot. Conventionally, the accuracy of the opening of the mask pattern, and hence the position and area of the ion implantation region, are
Due to the limit of operating accuracy of photolithography stepper,
It was difficult to finely adjust in units of 0.1 μm or less.

【0003】[0003]

【発明が解決しようとする課題】ところで、半導体デバ
イスの微細化に伴い、イオン注入領域の位置及び面積を
0.1μm 単位で制御する必要が生じて来ている。ここ
で、CCD撮像素子を例にしてイオン注入領域の位置及
び面積の調整の必要性を説明する。最近のCCD撮像素
子では、単セル分離部(画素分離部)幅や蓄積電荷読み
出し部幅が、マスク上で0.4〜0.7μm程度にまで
縮小されており、また転送部幅も1μm程度になってい
る。従って、CCD撮像素子において、蓄積・転送電荷
量を確保しつつ電場強度を緩和するためには、垂直転送
部を形成するイオン注入領域の位置及び面積を0.1μ
m単位で調整することが必要である。
By the way, with the miniaturization of semiconductor devices, it has become necessary to control the position and area of the ion implantation region in units of 0.1 μm. Here, the necessity of adjusting the position and area of the ion implantation region will be described by taking the CCD image pickup device as an example. In the recent CCD image pickup device, the width of the single cell separation portion (pixel separation portion) and the width of the accumulated charge reading portion are reduced to about 0.4 to 0.7 μm on the mask, and the width of the transfer portion is also about 1 μm. It has become. Therefore, in the CCD image pickup device, in order to reduce the electric field strength while securing the amount of accumulated / transferred charges, the position and area of the ion implantation region forming the vertical transfer portion are set to 0.1 μm.
It is necessary to adjust in m units.

【0004】図6から図8を参照しつつ、垂直転送部形
成のための従来のイオン注入方法を説明する。図6は、
垂直転送部形成のためのイオン注入が従来の方法で行わ
れたCCD撮像素子の有効画素の積層構造10を示す断
面図である。図6中、11はSi基板、12はp- 型の
オーバーフローバリア層、13は絶縁膜、21はp-
エルからなる転送バリア部、22はn型の垂直転送部、
23はp- 型の読み出しバリア部、24はn型の受光
部、25はp+ 型のホール蓄積部、26はチャネルスト
ップ、31はポリシリコンからなる転送電極、32はポ
リシリコン酸化膜からなる絶縁膜、33はPSG等のパ
ッシベーション膜及び34はAlからなる遮光膜であ
る。図6は、更に、基板表面の絶縁膜13の下側界面か
ら約0.2〜0.3μm深さに位置する水平方向断面3
5に沿ったポテンシャルの電位を示している。断面35
から下向きに+電位が取ってあり、電子にとっては上に
凸のポテンシャルがバリアとなる。
A conventional ion implantation method for forming a vertical transfer portion will be described with reference to FIGS. 6 to 8. FIG.
FIG. 11 is a cross-sectional view showing a laminated structure 10 of effective pixels of a CCD image pickup device in which ion implantation for forming a vertical transfer portion is performed by a conventional method. In FIG. 6, 11 is a Si substrate, 12 is a p type overflow barrier layer, 13 is an insulating film, 21 is a transfer barrier part formed of a p well, 22 is an n type vertical transfer part,
Reference numeral 23 is a p - type read barrier portion, 24 is an n-type light receiving portion, 25 is a p + type hole accumulation portion, 26 is a channel stop, 31 is a transfer electrode made of polysilicon, and 32 is a polysilicon oxide film. An insulating film, 33 is a passivation film such as PSG, and 34 is a light shielding film made of Al. FIG. 6 further shows a horizontal cross section 3 located at a depth of about 0.2 to 0.3 μm from the lower interface of the insulating film 13 on the substrate surface.
The potential of the potential along 5 is shown. Cross section 35
+ Potential is taken downward from, and the upward convex potential becomes a barrier for electrons.

【0005】従来、垂直転送部を形成するために、先
ず、基板11上に、図7に示すように、ホトレジスト層
40を成膜する。図7中、12はオーバーフローバリア
層12、及び13は酸化絶縁膜である。次いで、フォト
レジスト層40をg線,i線,エキシマレーザーなどの
光で露光し、現像して、所望のパターンを形成し、これ
をマスクとして第1次イオン注入及び第2次イオン注入
を連続して行い、続いて熱処理を施し、注入した不純物
イオンを拡散させている。第1次イオン注入により転送
バリア部21を、第2次イオン注入により垂直転送部2
2をそれぞれ形成している。イオン注入工程の後、引き
続き、転送電極31、ホール蓄積部25、受光部24及
びポリシリコン酸化膜32を形成し、図8に示すような
積層構造を得る。更に、PSG等のパッシベーション膜
33及びAlの遮光膜34を形成すると、図6に示すよ
うな積層構造10を備えたCCD撮像素子有効画素を得
ることができる。
Conventionally, in order to form a vertical transfer portion, first, a photoresist layer 40 is formed on the substrate 11 as shown in FIG. In FIG. 7, 12 is an overflow barrier layer 12 and 13 is an oxide insulating film. Then, the photoresist layer 40 is exposed to light such as g-line, i-line, and excimer laser, and developed to form a desired pattern. Using this as a mask, primary ion implantation and secondary ion implantation are continuously performed. Then, heat treatment is performed to diffuse the implanted impurity ions. The transfer barrier portion 21 is formed by the primary ion implantation, and the vertical transfer portion 2 is formed by the secondary ion implantation.
2 are formed respectively. After the ion implantation step, the transfer electrode 31, the hole accumulating portion 25, the light receiving portion 24 and the polysilicon oxide film 32 are continuously formed to obtain a laminated structure as shown in FIG. Further, by forming the passivation film 33 such as PSG and the light shielding film 34 of Al, it is possible to obtain a CCD image sensor effective pixel having the laminated structure 10 as shown in FIG.

【0006】ところで、蓄積・転送電荷量を確保しつつ
電場強度を緩和するためには、垂直転送部下層21及び
垂直転送部上層22を形成する際に、垂直転送部22の
幅を転送バリア部21より僅かに小さくして、垂直転送
部22を転送バリア部21により包み込むような形にす
ることが有効である。しかし、従来の方法では、同じマ
スクパターンを使用して転送バリア部21及び垂直転送
部22を形成しているので、第2次イオン注入により形
成した垂直転送部の幅と第1次イオン注入により形成し
た転送バリア部の幅とは、図7に示すように、殆ど同じ
になる。
By the way, in order to reduce the electric field strength while securing the amount of accumulated / transferred charges, the width of the vertical transfer portion 22 is set to the width of the transfer barrier portion when the vertical transfer portion lower layer 21 and the vertical transfer portion upper layer 22 are formed. It is effective to make the vertical transfer section 22 slightly smaller than 21 so that the vertical transfer section 22 is surrounded by the transfer barrier section 21. However, in the conventional method, since the transfer barrier portion 21 and the vertical transfer portion 22 are formed using the same mask pattern, the width of the vertical transfer portion formed by the secondary ion implantation and the primary ion implantation are The width of the formed transfer barrier portion is almost the same as shown in FIG.

【0007】そこで、転送バリア部21を形成する第1
次イオン注入の際のマスクパターンの開口径より僅かに
小さい開口径のマスクパターンを形成して第2次イオン
注入を行って転送バリア部21の幅より狭い垂直転送部
22を形成しようとしても、上述したように、このよう
な高精度のマスク合わせを可能にするように、ホトリソ
グラフィ法で使用する装置の作動精度を高めることは難
しい。従って、ステッパーの位置合わせ精度の限界か
ら、通常、0.1μm程度のズレが発生するため、所望
のマスクパターンを得ることはできない。また、注入イ
オンの拡散を制御して垂直転送部の幅を調整しようとし
ても、それは技術的に難しく、注入する不純物元素の種
類により熱拡散係数が異なるため、垂直転送部22の幅
は、転送バリア部21の幅に対して僅かに異なるもの
の、イオン注入時に同一パターンを使用している限り、
基本的には深さ方向にしか自由度が無いことが判る。
Therefore, the first to form the transfer barrier portion 21
Even if an attempt is made to form a mask pattern having an opening diameter slightly smaller than the opening diameter of the mask pattern at the time of secondary ion implantation and perform secondary ion implantation to form a vertical transfer portion 22 narrower than the width of the transfer barrier portion 21, As described above, it is difficult to increase the operating accuracy of the apparatus used in the photolithography method so as to enable such highly accurate mask alignment. Therefore, due to the limit of the positioning accuracy of the stepper, a deviation of about 0.1 μm is usually generated, and a desired mask pattern cannot be obtained. Even if it is attempted to control the diffusion of implanted ions to adjust the width of the vertical transfer portion, it is technically difficult and the thermal diffusion coefficient varies depending on the type of the impurity element to be implanted. Although slightly different from the width of the barrier portion 21, as long as the same pattern is used during ion implantation,
It can be seen that there is basically only freedom in the depth direction.

【0008】以上、説明したように、従来の方法では、
イオン注入領域の位置及び面積を微細に調整できるよう
なマスクパターンを得ることは難しい。そこで、本発明
の目的は、イオン注入に際し、マスクパターンの開口の
位置及び面積を微細に調整する方法を提供することであ
る。
As described above, according to the conventional method,
It is difficult to obtain a mask pattern in which the position and area of the ion implantation region can be finely adjusted. Therefore, an object of the present invention is to provide a method for finely adjusting the position and area of the opening of the mask pattern during ion implantation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るイオン注入方法は、基板上にホトレジ
スト層からなるマスクパターンを形成し、ホトレジスト
層をマスクにしてイオン注入する際、ホトレジスト層に
リフロー熱処理を施して、マスクパターンの開口部の下
端縁の開口径を縮小させ、それによってイオン注入領域
の位置及び面積を調整することを特徴としている。
In order to achieve the above object, an ion implantation method according to the present invention comprises a step of forming a mask pattern made of a photoresist layer on a substrate and performing ion implantation using the photoresist layer as a mask. The photoresist layer is subjected to reflow heat treatment to reduce the opening diameter of the lower end edge of the opening of the mask pattern, thereby adjusting the position and area of the ion implantation region.

【0010】リフロー熱処理の条件は、縮小させる割
合、使用するホトレジストの種類、マスクパターンの開
口の大きさ等により異なり、実績、実験等により決定す
る。
The conditions of the reflow heat treatment differ depending on the reduction ratio, the type of photoresist used, the size of the opening of the mask pattern, etc., and are determined by actual results, experiments, etc.

【0011】本発明に係るイオン注入方法は、特にCC
D撮像素子の垂直転送部の形成に適している。本発明に
係るイオン注入方法は、CCD撮像素子の垂直転送部の
形成工程で、基板の絶縁膜上にホトレジスト層からなる
マスクパターンを形成し、ホトレジスト層をマスクにし
てイオン注入により転送バリア部を形成し、次いで別の
イオンを注入して垂直転送部を形成するに当たり、ホト
レジスト層にリフロー熱処理を施して、マスクパターン
の開口部の下端縁の開口径を縮小させ、それによって垂
直転送部を形成するイオン注入領域の位置及び面積を調
整することを特徴としている。
The ion implantation method according to the present invention is particularly applicable to CC
It is suitable for forming the vertical transfer portion of the D image pickup device. According to the ion implantation method of the present invention, a mask pattern made of a photoresist layer is formed on an insulating film of a substrate in a step of forming a vertical transfer portion of a CCD image sensor, and a transfer barrier portion is formed by ion implantation using the photoresist layer as a mask. In forming the vertical transfer part by forming another ion after forming the same, the photoresist layer is subjected to reflow heat treatment to reduce the opening diameter of the lower edge of the mask pattern opening, thereby forming the vertical transfer part. The feature is that the position and the area of the ion implantation region are adjusted.

【0012】[0012]

【発明の実施の形態】以下に、実施例を挙げ、添付図面
を参照して、本発明の実施の形態を具体的かつ詳細に説
明する。図1は本発明方法で形成したCCD撮像素子有
効画素の積層構造のH方向断面図、図2から図5は図1
の積層構造の形成に本発明方法を適用した場合のCCD
撮像素子有効画素の各工程毎のH方向断面図である。本
発明方法では、従来の方法と同様にして、先ず、イオン
注入によりSi基板11にp- 型のオーバーフローバリ
ア層12を形成し、次いで熱酸化により絶縁膜13を成
膜する。続いて、開口部42を有するマスクパターンを
ホトレジスト層40によってホトリソグラフィ法により
形成し、次いで、図2に示すように、ホトレジスト層4
0をマスクにしてイオン注入によりp- ウエルからなる
転送バリア部21を形成する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a sectional view in the H direction of a laminated structure of effective pixels of a CCD image pickup device formed by the method of the present invention, and FIGS.
CCD when the method of the present invention is applied to the formation of the laminated structure of
It is a H-direction sectional drawing in each process of an image sensor effective pixel. In the method of the present invention, similarly to the conventional method, first, the p type overflow barrier layer 12 is formed on the Si substrate 11 by ion implantation, and then the insulating film 13 is formed by thermal oxidation. Subsequently, a mask pattern having the opening 42 is formed by the photoresist layer 40 by the photolithography method, and then, as shown in FIG.
A transfer barrier portion 21 composed of a p - well is formed by ion implantation using 0 as a mask.

【0013】次に、ホトレジスト層40にリフロー熱処
理を施して、開口部42の下端部44周りのホトレジス
ト層40を流動化し、それにより、図3に示すように下
端部44の端縁46の開口径を縮小させる。リフロー熱
処理の条件は、使用するホトレジストの種類に異なる
が、例えばi線用ポジレジストを使用して、厚さを1〜
2μm のマスクパターンを形成する場合には、基板を1
〜10分の間100〜150℃の範囲の温度に維持する
ことによりリフロー熱処理を施すことが出来る。また、
適用パターンの開口幅は1μm程度が効果的である。
Next, the photoresist layer 40 is subjected to a reflow heat treatment to fluidize the photoresist layer 40 around the lower end 44 of the opening 42, thereby opening the edge 46 of the lower end 44 as shown in FIG. Reduce the caliber. The conditions of the reflow heat treatment differ depending on the type of photoresist used, but for example, a positive resist for i-line is used and the thickness is set to 1 to
When forming a 2 μm mask pattern, use 1
Reflow heat treatment can be performed by maintaining the temperature in the range of 100 to 150 ° C. for 10 minutes. Also,
It is effective that the opening width of the applied pattern is about 1 μm.

【0014】次に、開口径を縮小させたマスクパターン
を有するホトレジスト層40をマスクにして、垂直転送
部22を形成するためのイオン注入を行う。この結果、
図4に示すように、転送バリア部21より幅の狭い垂直
転送部22を形成することができる。引き続き、従来の
方法と同様にして、転送電極31、ホール蓄積部25、
受光部24及びポリシリコン酸化膜32を形成し、図4
に示すような積層構造を得る。更に、従来の方法と同様
にして、PSG等のパッシベーション膜33及びAlの
遮光膜34を形成すると、図1に示すような積層構造4
8を備えたCCD撮像素子有効画素を得ることができ
る。
Next, using the photoresist layer 40 having a mask pattern with a reduced opening diameter as a mask, ion implantation for forming the vertical transfer portion 22 is performed. As a result,
As shown in FIG. 4, it is possible to form the vertical transfer portion 22 having a width narrower than that of the transfer barrier portion 21. Subsequently, in the same manner as the conventional method, the transfer electrode 31, the hole accumulating portion 25,
The light receiving portion 24 and the polysilicon oxide film 32 are formed, and
A laminated structure as shown in is obtained. Further, when the passivation film 33 such as PSG and the light shielding film 34 of Al are formed in the same manner as the conventional method, the laminated structure 4 as shown in FIG.
It is possible to obtain effective pixels of the CCD image pickup device including the CCD 8.

【0015】ホール蓄積部25の蓄積電荷の読み出し特
性は、読み出し部23の幅、不純物濃度、並びに転送バ
リア部21、垂直転送部22、受光部24、及びホール
蓄積部25等のホール蓄積部25の周辺のポテンシャル
により決定される。本発明方法により形成した積層構造
48の基板表面の絶縁膜13の下側界面から約0.2〜
0.3μm深さに位置する水平方向断面35に沿ったポ
テンシャルは、図1に示す通りである。図1では、断面
35から下向きに+電位が取ってある。尚、図1の一点
鎖線は、図6の一点鎖線と一致する位置に延びている。
The read characteristics of the charges accumulated in the hole accumulating section 25 are as follows: width of the reading section 23, impurity concentration, and hole accumulating section 25 such as the transfer barrier section 21, the vertical transfer section 22, the light receiving section 24, and the hole accumulating section 25. It is determined by the potential around. From the lower interface of the insulating film 13 on the substrate surface of the laminated structure 48 formed by the method of the present invention, about 0.2 to
The potential along the horizontal cross section 35 located at a depth of 0.3 μm is as shown in FIG. In FIG. 1, the + potential is taken downward from the cross section 35. Note that the alternate long and short dash line in FIG. 1 extends to a position that coincides with the alternate long and short dash line in FIG.

【0016】本発明方法で作製した図1に示すCCD撮
像素子の積層構造48は、従来の方法で作製した図6に
示すCCD撮像素子の積層構造10と比較して、垂直転
送部21の水平方向(以下、H方向と略記)幅が小さ
く、p−ウェルからなる転送バリア部22によって包む
ように形成されている。しかも、転送バリア部22が読
み出し部23やチャンネルストップ26と連続している
ので、転送バリア部22は、読み出し部23を実効的に
幅広くかつ不純物濃度を高くし、更には同様にチャンネ
ルストップ26を幅広くかつ不純物濃度を高くするか、
濃度勾配を緩和するかすることができる。よって、本実
施例では、図1に示すように、読み出し部23およびチ
ャンネルストップ26のポテンシャルピーク位置が、従
来の方法により作製した図6に示す積層構造10に比べ
て、受光部24より垂直転送部22の近くに位置してい
る。それにより、ポテンシャルスロープが受光部24側
に長くなって、読み出し部23に入射した光が光電変換
して発生した電子は、容易に受光部24側へ移動するこ
とができるので、スミア量が減り、また感度が向上す
る。
The laminated structure 48 of the CCD image pickup device shown in FIG. 1 manufactured by the method of the present invention is more horizontal than the laminated structure 10 of the CCD image pickup device shown in FIG. 6 manufactured by the conventional method. The width in the direction (hereinafter, abbreviated as the H direction) is small, and is formed so as to be surrounded by the transfer barrier portion 22 formed of the p-well. Moreover, since the transfer barrier section 22 is continuous with the read section 23 and the channel stop 26, the transfer barrier section 22 effectively widens the read section 23 and increases the impurity concentration, and further, similarly, the channel stop 26 is removed. Wider and higher impurity concentration,
The concentration gradient can be relaxed. Therefore, in this embodiment, as shown in FIG. 1, the potential peak positions of the read section 23 and the channel stop 26 are more vertically transferred from the light receiving section 24 than in the laminated structure 10 shown in FIG. 6 manufactured by the conventional method. It is located near the section 22. As a result, the potential slope becomes longer on the side of the light receiving unit 24, and the electrons generated by photoelectric conversion of the light incident on the reading unit 23 can easily move to the side of the light receiving unit 24, reducing the amount of smear. Also, the sensitivity is improved.

【0017】また、垂直転送部22と読み出し部23と
の境界、垂直転送部22とチャンネルストップ26との
界面において、垂直転送部22の不純物濃度勾配が、従
来の方法により作製した図6に示す積層構造10に比べ
て、緩やかに出来るため、電場強度が低減され、熱励起
で湧き出す電子・ホールが減少するので、それが発生原
因となるノイズが低減され、また結晶欠陥が発生原因と
なる白線縦筋ノイズが低減される。
Further, the impurity concentration gradient of the vertical transfer portion 22 at the boundary between the vertical transfer portion 22 and the reading portion 23 and at the interface between the vertical transfer portion 22 and the channel stop 26 is shown in FIG. As compared with the laminated structure 10, since it can be made more gradual, the electric field strength is reduced, and the electrons and holes that spring out due to thermal excitation are reduced, so that the noise that causes it is reduced, and also crystal defects occur. White line vertical stripe noise is reduced.

【0018】以上のように、本発明方法によれば、ホト
レジスト層をリフローさせて開口径を縮小させると言う
セルフアライメント手法により、イオン注入領域を微細
な面積、例えば0.1μm 単位で縮小できると評価でき
る。
As described above, according to the method of the present invention, the self-alignment technique of reflowing the photoresist layer to reduce the opening diameter can reduce the ion implantation region in a fine area, for example, in a unit of 0.1 μm. Can be evaluated.

【0019】以上の実施例では、CCD撮像素子の垂直
転送部の形成を例にして説明したが、MOSトランジス
タの製造方法で広く用いられるLDD法と同様の作用に
よって、開口縁の両端において不純物濃度勾配が緩やか
になる。よって、MOSトランジスタの製造方法にも適
用できる。特に、LDD型のMOSFETの製造の際の
イオン注入に当たり、イオン注入領域の位置及び面積を
微細に調整する時にも適用できる。
In the above-mentioned embodiments, the formation of the vertical transfer portion of the CCD image pickup device has been described as an example. However, by the same operation as the LDD method widely used in the manufacturing method of MOS transistors, the impurity concentration at both ends of the opening edge is increased. The slope becomes gentle. Therefore, it can be applied to a method of manufacturing a MOS transistor. In particular, it can be applied to finely adjust the position and area of the ion-implanted region in ion-implantation at the time of manufacturing an LDD type MOSFET.

【0020】[0020]

【発明の効果】本発明によれば、半導体素子の製造にお
いて、基板上にホトレジスト層からなるマスクパターン
を形成し、ホトレジスト層をマスクにしてイオン注入す
る際、ホトレジスト層にリフロー熱処理を施して、マス
クパターンの開口部の下端縁の開口径を縮小させ、それ
によって(1)第1次イオン注入及び第2次イオン注入
を連続して行う場合でも、後に注入する第2次イオン注
入のイオン注入領域の面積を先に注入する第1次イオン
注入のイオン注入領域の面積よりも小さくでき、また
(2)パターンの開口面積変更を自己整合を保持しつつ
行える。本発明方法では、フォトリソグラフィステッパ
ーの合わせずれが含まれないため、精度の高いパターン
開口の位置、面積の微細調整を行うことができる。ま
た、本発明方法をCCD撮像素子の垂直転送部の形成に
適用した場合、スミア量及びノイズを低減させることが
できる。
According to the present invention, in the manufacture of a semiconductor device, a mask pattern made of a photoresist layer is formed on a substrate, and when the photoresist layer is used as a mask for ion implantation, the photoresist layer is subjected to reflow heat treatment, The opening diameter of the lower edge of the opening of the mask pattern is reduced so that (1) even when the primary ion implantation and the secondary ion implantation are continuously performed, the ion implantation of the secondary ion implantation that is performed later is performed. The area of the region can be made smaller than the area of the ion-implanted region of the primary ion implantation that is first implanted, and (2) the opening area of the pattern can be changed while maintaining self-alignment. Since the method of the present invention does not include misalignment of the photolithography stepper, it is possible to perform fine adjustment of the position and area of the pattern opening with high accuracy. Further, when the method of the present invention is applied to the formation of the vertical transfer portion of the CCD image pickup device, the amount of smear and noise can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法により製造したCCD素子有効画素
の積層構造を示すH方向断面図である。
FIG. 1 is a sectional view in the H direction showing a laminated structure of effective pixels of a CCD element manufactured by the method of the present invention.

【図2】基板上にホトレジスト膜を成膜し、マスクパタ
ーンを形成し、第1次イオン注入を行って転送バリア部
を形成した状態での基板のH方向断面図である。
FIG. 2 is a cross-sectional view of the substrate in the H direction in the state where a photoresist film is formed on the substrate, a mask pattern is formed, and primary ion implantation is performed to form a transfer barrier portion.

【図3】ホトレジスト層をリフローさせた状態での基板
のH方向断面図である。
FIG. 3 is a cross-sectional view in the H direction of the substrate in a state where the photoresist layer has been reflowed.

【図4】第2次イオン注入を行って垂直転送部を形成し
た状態での基板のH方向断面図である。
FIG. 4 is a cross-sectional view of the substrate in the H direction in the state where the vertical transfer portion is formed by performing the secondary ion implantation.

【図5】図4に引き続く工程で得た積層構造を示す基板
のH方向断面図である。
5 is a cross-sectional view in the H direction of the substrate showing the laminated structure obtained in the process subsequent to FIG.

【図6】従来方法により製造したCCD素子有効画素の
積層構造を示すH方向断面図である。
FIG. 6 is a cross-sectional view in the H direction showing a laminated structure of a CCD element effective pixel manufactured by a conventional method.

【図7】従来方法により形成した転送バリア部及び垂直
転送部を示す基板のH方向断面図である。
FIG. 7 is a cross-sectional view in the H direction of a substrate showing a transfer barrier section and a vertical transfer section formed by a conventional method.

【図8】図7に引き続く工程で得た積層構造を示す基板
のH方向断面図である。
8 is a cross-sectional view in the H direction of a substrate showing a laminated structure obtained in the process following the process of FIG.

【符号の説明】[Explanation of symbols]

10 従来方法により得たCCD撮像素子の有効画素の
積層構造 11 Si基板 12 オーバーフローバリア 13 絶縁膜 21 転送バリア部 22 垂直転送部 23 読み出しバリア層 24 受光部 25 ホール蓄積部 26 チャネルストップ 31 転送電極 32 絶縁膜 33 PSG膜 34 遮光膜 35 水平断面 40 ホトレジスト層 42 開口部 44 下端部 46 端縁 48 本発明方法により得たCCD撮像素子の有効画素
の積層構造
10 Laminated Structure of Effective Pixels of CCD Image Sensor Obtained by Conventional Method 11 Si Substrate 12 Overflow Barrier 13 Insulating Film 21 Transfer Barrier Section 22 Vertical Transfer Section 23 Read Barrier Layer 24 Light Receiving Section 25 Hole Accumulating Section 26 Channel Stop 31 Transfer Electrode 32 Insulating film 33 PSG film 34 Light-shielding film 35 Horizontal section 40 Photoresist layer 42 Opening part 44 Lower end part 46 End edge 48 Laminated structure of effective pixels of CCD image pickup device obtained by the method of the present invention

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にホトレジスト層からなるマスク
パターンを形成し、ホトレジスト層をマスクにしてイオ
ン注入する際、 ホトレジスト層にリフロー熱処理を施して、マスクパタ
ーンの開口部の下端縁の開口径を縮小させ、それによっ
てイオン注入領域の位置及び面積を調整することを特徴
とするイオン注入方法。
1. A mask pattern made of a photoresist layer is formed on a substrate, and when ion implantation is performed using the photoresist layer as a mask, the photoresist layer is subjected to reflow heat treatment to reduce the opening diameter of the lower end edge of the opening of the mask pattern. An ion implantation method comprising reducing the size and adjusting the position and area of the ion implantation region.
【請求項2】 CCD撮像素子の垂直転送部の形成工程
で、基板の絶縁膜上にホトレジスト層からなるマスクパ
ターンを形成し、ホトレジスト層をマスクにしてイオン
注入により転送バリア部を形成し、次いで別のイオンを
注入して垂直転送部を形成するに当たり、 ホトレジスト層にリフロー熱処理を施して、マスクパタ
ーンの開口部の下端縁の開口径を縮小させ、それによっ
て垂直転送部を形成するイオン注入領域の位置及び面積
を調整することを特徴とするイオン注入方法。
2. A step of forming a vertical transfer portion of a CCD image pickup device, wherein a mask pattern made of a photoresist layer is formed on an insulating film of a substrate, a transfer barrier portion is formed by ion implantation using the photoresist layer as a mask, and then, In forming another vertical transfer part by implanting another ion, the photoresist layer is subjected to a reflow heat treatment to reduce the opening diameter of the lower end edge of the opening of the mask pattern, thereby forming the vertical transfer part. An ion implantation method, characterized in that the position and area of the ion are adjusted.
JP34677195A 1995-12-13 1995-12-13 Ion implantation method Expired - Fee Related JP3867312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34677195A JP3867312B2 (en) 1995-12-13 1995-12-13 Ion implantation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34677195A JP3867312B2 (en) 1995-12-13 1995-12-13 Ion implantation method

Publications (2)

Publication Number Publication Date
JPH09162137A true JPH09162137A (en) 1997-06-20
JP3867312B2 JP3867312B2 (en) 2007-01-10

Family

ID=18385714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34677195A Expired - Fee Related JP3867312B2 (en) 1995-12-13 1995-12-13 Ion implantation method

Country Status (1)

Country Link
JP (1) JP3867312B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989333B2 (en) 2002-12-20 2006-01-24 Oki Electric Industry Co., Ltd. Process for forming a pattern
JP2006222444A (en) * 2006-03-27 2006-08-24 Toshiba Corp Manufacturing method of semiconductor device
JP2007194606A (en) * 2005-12-19 2007-08-02 Canon Inc Photovoltaic converter, method for fabrication thereof, imaging module, and imaging system
US8207007B2 (en) 2007-08-29 2012-06-26 Sony Corporation Method of producing semiconductor device, solid-state imaging device, method of producing electric apparatus, and electric apparatus
WO2012096010A1 (en) * 2011-01-14 2012-07-19 三菱電機株式会社 Method of manufacturing semiconductor device
WO2014159408A1 (en) * 2013-03-13 2014-10-02 Varian Semiconductor Equipment Associates, Inc. Techniques to mitigate straggle damage to sensitive structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267876A (en) * 1985-09-20 1987-03-27 Sony Corp Manufacture of semiconductor device
JPH04196439A (en) * 1990-11-28 1992-07-16 Seiko Epson Corp Manufacture of semiconductor device
JPH04286361A (en) * 1991-03-15 1992-10-12 Sony Corp Solid-state image sensing device
JPH05267206A (en) * 1992-03-19 1993-10-15 Sony Corp Formation of impurity implanted region having density gradient
JPH0653472A (en) * 1992-08-03 1994-02-25 Nec Corp Solid state image sensor and fabrication thereof
JPH08222719A (en) * 1995-02-09 1996-08-30 Sony Corp Charge-coupled solid-state image pickup element and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267876A (en) * 1985-09-20 1987-03-27 Sony Corp Manufacture of semiconductor device
JPH04196439A (en) * 1990-11-28 1992-07-16 Seiko Epson Corp Manufacture of semiconductor device
JPH04286361A (en) * 1991-03-15 1992-10-12 Sony Corp Solid-state image sensing device
JPH05267206A (en) * 1992-03-19 1993-10-15 Sony Corp Formation of impurity implanted region having density gradient
JPH0653472A (en) * 1992-08-03 1994-02-25 Nec Corp Solid state image sensor and fabrication thereof
JPH08222719A (en) * 1995-02-09 1996-08-30 Sony Corp Charge-coupled solid-state image pickup element and manufacture thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989333B2 (en) 2002-12-20 2006-01-24 Oki Electric Industry Co., Ltd. Process for forming a pattern
JP2007194606A (en) * 2005-12-19 2007-08-02 Canon Inc Photovoltaic converter, method for fabrication thereof, imaging module, and imaging system
JP2006222444A (en) * 2006-03-27 2006-08-24 Toshiba Corp Manufacturing method of semiconductor device
JP4580886B2 (en) * 2006-03-27 2010-11-17 株式会社東芝 Manufacturing method of semiconductor device
US8658457B2 (en) 2007-08-29 2014-02-25 Sony Corporation Method of producing semiconductor device, solid-state imaging device, method of producing electric apparatus, and electric apparatus
US8207007B2 (en) 2007-08-29 2012-06-26 Sony Corporation Method of producing semiconductor device, solid-state imaging device, method of producing electric apparatus, and electric apparatus
US8940575B2 (en) 2007-08-29 2015-01-27 Sony Corporation Method of producing semiconductor device, solid-state imaging device, method of producing electric apparatus, and electric apparatus
US9502599B2 (en) 2007-08-29 2016-11-22 Sony Semiconductor Solutions Corporation Semiconductor device, solid-state imaging device, and electric apparatus
WO2012096010A1 (en) * 2011-01-14 2012-07-19 三菱電機株式会社 Method of manufacturing semiconductor device
JP5479616B2 (en) * 2011-01-14 2014-04-23 三菱電機株式会社 Manufacturing method of semiconductor device
US9059086B2 (en) 2011-01-14 2015-06-16 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
WO2014159408A1 (en) * 2013-03-13 2014-10-02 Varian Semiconductor Equipment Associates, Inc. Techniques to mitigate straggle damage to sensitive structures
US9236257B2 (en) 2013-03-13 2016-01-12 Varian Semiconductor Equipment Associates, Inc. Techniques to mitigate straggle damage to sensitive structures

Also Published As

Publication number Publication date
JP3867312B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US7186595B2 (en) Solid picture element manufacturing method
US5888880A (en) Trench transistor with localized source/drain regions implanted through selectively grown oxide layer
US5100820A (en) MOSFET fabrication process with lightly-doped drain using local oxidation step to pattern gate electrode
JPH05206434A (en) Solid state image sensor and fabrication thereof
US5936277A (en) MOS transistor with impurity-implanted region
JPS61212057A (en) Manufacture of ccd
US4607429A (en) Method of making a charge-coupled device image sensor
JPH09162137A (en) Ion implantation
EP0915520A1 (en) Solid-state image pickup device, process for its manufacture, and method of driving the device
JP3322341B2 (en) Photoelectric conversion element, solid-state imaging device using the same, and method of manufacturing the same
JPH1140794A (en) Solid-state imaging device and manufacture thereof
JP2000012828A (en) Manufacture of ccd solid-state image pickup element
JP2964541B2 (en) Vertical overflow drain type solid-state imaging device
JP2526512B2 (en) Method of manufacturing solid-state imaging device
JP2000077647A (en) Solid-state image pickup device and its manufacture
JPH06169076A (en) Manufacture of semiconductor device
JPH0294568A (en) Manufacture of solid-state image sensing device
JPH08213601A (en) Semiconductor device and its manufacturing method
JP2521794B2 (en) Method of manufacturing solid-state image sensor
JPH0685233A (en) Manufacture of solid-state image sensing device
JP2002190587A (en) Method of manufacturing solid-state image pickup device
JPH04291965A (en) Solid-state image sensor and manufacture thereof
JPH0319239A (en) Manufacture of semiconductor device
JPH05121716A (en) Vertical type overflow drain structure solid-state image-pickup element
JPH03270139A (en) Semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

LAPS Cancellation because of no payment of annual fees