JPH09160042A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH09160042A
JPH09160042A JP32030095A JP32030095A JPH09160042A JP H09160042 A JPH09160042 A JP H09160042A JP 32030095 A JP32030095 A JP 32030095A JP 32030095 A JP32030095 A JP 32030095A JP H09160042 A JPH09160042 A JP H09160042A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
scalar
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32030095A
Other languages
Japanese (ja)
Inventor
Yuzo Hisatake
雄三 久武
Takeshi Oyama
毅 大山
Kiyoshi Shobara
潔 庄原
Hitoshi Hado
仁 羽藤
Makiko Satou
摩希子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32030095A priority Critical patent/JPH09160042A/en
Publication of JPH09160042A publication Critical patent/JPH09160042A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a display element having a wide visibility angle, high transmissivity, high speed response, and excellent color reproducibility SOLUTION: This element is composed of a liquid crystal cell formed by holding a liquid crystal layer 7 between two oppositely arranged substrates 1, 2 respectively having two polarizing plates 3, 4 and electrodes 5, 6 forming plural opposite pixels between the plates 3, 4. The electrodes 5, 6 of both the substrates 1, 2 are arranged in parallel so as to be formed by thin conductor parts 5-3 to 6-3 and non-conductor parts 5-2 to 6-2 formed between the conductor parts 5-2 to 6-2 in each pixel. When the width of the non-conductor parts 5-3 to 6-3 is set up wider than that of the conductor parts 5-2 to 6-2 and both the substrates 1, 2 are combined, the conductor parts of one electrode are opposed to the non-conductor parts of the other electrode and oblique electric fields are impressed to the layer 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,液晶表示素子に関
する。
TECHNICAL FIELD The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】近年、薄型軽量、低消費電力という大き
な利点を持つ液晶表示素子は、日本語ワ−ドプロセッサ
やディスクトップパ−ソナルコンピュ−タ−等のパ−ソ
ナルOA機器の表示装置として積極的に用いられてい
る。液晶表示素子(以下LCDと略称)の殆どは、ネマ
ティック液晶を用いており、表示方式としては、複屈折
モ−ドと旋光モ−ドの2つの方式に大別できる。 捩じ
れネマティック液晶を用いた複屈折モ−ドの表示方式の
LCDは、例えば、180゜以上捩じれた分子配列から
なるLCD(ST方式と呼ばれる)であり、急峻な電気
光学特性を持つため、各画素ごとにスイッチング素子
(薄膜トランジスタやダイオ−ド)が無くても時分割駆
動により容易に大容量表示が得られる。
2. Description of the Related Art In recent years, liquid crystal display elements having the great advantages of thinness, light weight, and low power consumption have been used as display devices for personal OA equipment such as Japanese word processors and disk top personal computers. It is actively used. Most of the liquid crystal display elements (hereinafter abbreviated as LCD) use nematic liquid crystal, and the display system can be roughly classified into two systems, a birefringence mode and an optical rotation mode. An LCD of a birefringence mode display method using a twisted nematic liquid crystal is, for example, an LCD (called an ST method) having a molecular arrangement twisted by 180 ° or more, and has steep electro-optical characteristics. Even if there is no switching element (thin film transistor or diode), a large capacity display can be easily obtained by time-division driving.

【0003】しかしながら前述したST方式は応答そく
どが数百ミリ秒と遅く、また視角特性も狭いので高い表
示性能を必要とする応用製品には適さない。
However, the above-mentioned ST method is not suitable for application products which require high display performance because the response throat is as slow as several hundred milliseconds and the viewing angle characteristics are narrow.

【0004】一方、旋光モ−ドのLCDは90゜捩じれ
た分子配列をもち(TN方式と呼ばれる)、高いコント
ラスト比を示すことから、時計や電卓、さらにはスイッ
チング素子を各画素ごとに設けることにより大表示容量
で高コントラストな高い表示性能を持ったLCD(たと
えばTFT−LCD)を実現することができる。
On the other hand, since the LCD of the optical rotation mode has a molecular arrangement twisted by 90 ° (called the TN system) and exhibits a high contrast ratio, a clock, a calculator and a switching element are provided for each pixel. Thus, it is possible to realize an LCD (for example, TFT-LCD) having a large display capacity and high contrast and high display performance.

【0005】近年、このTN方式のTFT−LCDは階
調表示を行っているが、斜めから観察した場合には表示
の反転や黒つぶれ、白抜けといった現象が生じる。よっ
て、視角特性は極めて狭い。 また、このTN方式のT
FT−LCDは高品位化に伴い、デスクトップモニタ等
大型でかつ極めて高精細な応用製品にも用いられるよう
になった。こうした分野や、高品位のTV用途に応用す
る場合、極めて早い応答速度が必要になるが、前記TN
方式は階調表示を行った場合、パタ−ン書き替えに要す
る応答時間は最大100ミリ秒と遅い。
In recent years, this TN type TFT-LCD performs gradation display, but when observed obliquely, such phenomena as display reversal, blackout, and blank areas occur. Therefore, the viewing angle characteristic is extremely narrow. In addition, the T of this TN method
FT-LCDs have come to be used for large-sized and extremely high-definition application products such as desktop monitors as the quality has been improved. When applied to such fields and high-definition TV applications, extremely fast response speed is required.
In the method, when gradation display is performed, the response time required for pattern rewriting is as slow as 100 milliseconds at maximum.

【0006】また、このTN方式は高いコントラスト特
性を得るには、動作電圧が4〜5v必要であり、消費電
力は高い。
Further, in order to obtain high contrast characteristics, this TN method requires an operating voltage of 4 to 5 V and consumes high power.

【0007】前述したTN方式の視角特性を改善する手
段として、一画素内に液晶分子の起き上がる方向(プレ
チルト方向)が180゜異なる二領域を設けた液晶表示
素子を用いて視角依存性を改善する方法(Two Domain
TN:TDTNと略称 例えば、特開昭64−8852
0)や、スプレイ配列を用い、TDTNと同様の効果を
得るDomain Divided TN(DDTNと略称 Y.Koike,e
t.al.,1992,SID,p798)などが提案されている。これら
は、前述した印加電圧−透過率特性の視角依存性が異な
る二領域を一画素として、前述した極値を事実上なくす
ことを目的としている。
As a means for improving the viewing angle characteristics of the above-mentioned TN method, the viewing angle dependence is improved by using a liquid crystal display element in which two regions in which one liquid crystal molecule rising direction (pretilt direction) is different by 180 ° are provided in one pixel. Method (Two Domain
TN: Abbreviated as TDTN For example, JP-A-64-8852
0) and Domain Divided TN (DDTN abbreviated as Y.Koike, e) that achieves the same effect as TDTN by using a spray arrangement.
t.al., 1992, SID, p798) and the like have been proposed. The purpose of these is to effectively eliminate the above-mentioned extreme value by defining two regions having different viewing angle dependences of the applied voltage-transmittance characteristic as one pixel.

【0008】しかしながら、これらの手法は、微細な領
域内でプレチルト方向を変えるためにレジストをパタ−
ニングしてラビングしたり、微細な領域内で2種の配向
膜(表面状態や材料)を形成するためにパタ−ニングや
マスク露光をしたり、と従来のTN方式の工程より工程
数が増え、著しくコスト高となるため、実用的でない。
However, in these methods, the resist is patterned in order to change the pretilt direction in a fine region.
The number of processes is increased compared to the conventional TN process, such as patterning and rubbing, patterning and mask exposure to form two kinds of alignment films (surface condition and material) in a fine area. It is not practical because the cost will be significantly high.

【0009】また、ある程度の視角範囲では前述した極
値をなくすことができるが、視角特性は視角依存性が異
なる二領域の個々の特性の平均の特性であり、視角方向
によっては極致をなくすことができない。また、コント
ラストについては、悪い特性と良い特性を平均化するの
で、平均的な特性となってしまい良い特性単体よりもコ
ントラストが低下してしまう。また、応答速度について
は従来のTN方式と変わりない。
Further, although the above-described extreme value can be eliminated in a certain viewing angle range, the viewing angle characteristic is an average characteristic of the individual characteristics of the two regions having different viewing angle dependences, and it should be eliminated depending on the viewing angle direction. I can't. As for the contrast, since the bad characteristic and the good characteristic are averaged, the average characteristic is obtained, and the contrast is lower than that of the good characteristic alone. The response speed is the same as that of the conventional TN method.

【0010】これに対し、ヤマグチ(Y.Yamagu
chi)らは、ツイストしていないスプレイ配列のネマ
ティック液晶層に電圧を印加して、ベント配列としてこ
のベント配列を維持する印加電圧範囲内で液晶分子のチ
ルト状態を印加電圧値により制御し、液晶層における位
相差を電圧により制御する複屈折効果型の液晶表示モ−
ド:OCBモ−ド(Optically Compen
sated Birefringence mode)
を提案している(Y.Yamaguchi,etal.
SID93 DIGEST,pp277−280)。ま
た、P.Bosらも同様の液晶表示モ−ドを提案してい
る(P.Bos,etal.SID´83 DIGES
T,pp30−31)。
On the other hand, Yamaguchi (Y. Yamagu)
chi) et al. apply a voltage to the nematic liquid crystal layer of the splay alignment that is not twisted, and control the tilt state of the liquid crystal molecules by the applied voltage value within the applied voltage range that maintains this bent alignment as a bent alignment. Birefringence effect type liquid crystal display mode in which phase difference in layers is controlled by voltage
De: OCB mode (Optically Compen
sated Birefringence mode)
(Y. Yamaguchi, et al.
SID93 DIGEST, pp 277-280). Also, P.I. Bos et al. Have also proposed a similar liquid crystal display mode (P. Bos, et al. SID'83 DIGES.
T, pp30-31).

【0011】このOCBモ−ドの基本的構成を図2に示
す。これらの表示モ−ドの液晶分子7−1の配列は、液
晶層7の上半分、下半分が常時対称なベント配列形状と
なっていることが特徴である。従って図2に示すX方位
(左右方位)に視角(観察角度)を傾けても、その視角
特性は対称となる。さらに、2軸の位相差板8を配置す
ることにより、ある電圧状態にて、前記液晶層7と前記
2軸の位相差板8の屈折率楕円体が球となり(つまり3
次元的に屈折率異方性が無い光学媒体となること)、こ
の状態からX方位に位相差を発生させることにより、種
々の視角において位相差が0から2分の1波長まで変化
する電圧制御が可能となり、前述した視角依存性が殆ど
ない表示モ−ドとなっている。
The basic structure of this OCB mode is shown in FIG. The arrangement of the liquid crystal molecules 7-1 in these display modes is characterized in that the upper half and the lower half of the liquid crystal layer 7 are always in a symmetrical bent arrangement. Therefore, even if the viewing angle (observation angle) is tilted to the X direction (horizontal direction) shown in FIG. 2, the viewing angle characteristic becomes symmetrical. Furthermore, by disposing the biaxial retardation plate 8, the refractive index ellipsoid of the liquid crystal layer 7 and the biaxial retardation plate 8 becomes a sphere (that is, 3
An optical medium having no dimensional anisotropy in refractive index), and a voltage control in which the phase difference changes from 0 to ½ wavelength at various viewing angles by generating a phase difference in the X direction from this state. The display mode has almost no dependence on the viewing angle described above.

【0012】このようにOCBモ−ドは、前述した階調
性能、コントラスト性能の視角特性の点では優れてい
る。しかしながら、前記OCBモ−ドは、液晶分子配列
をスプレイ配列(電圧無印加状態)から、電圧印加によ
りベント配列に転移させる必要があり、これには強いエ
ネルギ−が必要で、実際には(転移後の)駆動電圧以上
の電圧を印加する必要があった。大容量で高精細な表示
を行う場合、TFTが必要となるが、このTFT素子で
は印加できない電圧であり、前記OCBモ−ドは大容量
で高精細な表示には実用できなかった。また、転移に要
する時間は1分以上も掛り、ディスプレイを立ち上げて
から表示が出るまで、まるで真空管を用いたCRTディ
スプレイのように時間が掛る。
As described above, the OCB mode is excellent in terms of the viewing angle characteristics of the gradation performance and the contrast performance described above. However, in the OCB mode, it is necessary to transfer the liquid crystal molecule array from the splay array (no voltage applied state) to the bent array by applying a voltage, which requires strong energy, and in fact It was necessary to apply a voltage higher than the driving voltage (after). Although a TFT is required for high-capacity and high-definition display, the voltage cannot be applied by this TFT element, and the OCB mode cannot be used for high-capacity and high-definition display. In addition, the time required for the transfer takes one minute or more, and it takes time from when the display is started to when the display is displayed, like a CRT display using a vacuum tube.

【0013】また、前記OCBモ−ドは、ベント配列を
維持する(スプレイ配列への転移を防止する)必要があ
り、このためにはある程度の電圧を常時全変調部に印加
しておく必要がある。素子の駆動電圧を少しでも低くす
るためには、前記ベント配列を維持する電圧を駆動電圧
範囲の下限とする必要がある。この場合、この印加電圧
においてベント配列が安定して維持される必要がある。
しかしながら、ベント配列が安定して維持される印加電
圧は、およそ2.5Vと高く、結果的に駆動電圧は高い
ものとなっていた。
Further, the OCB mode needs to maintain the vent arrangement (prevents the transition to the spray arrangement), and for this purpose, it is necessary to constantly apply a certain voltage to all the modulation sections. is there. In order to lower the driving voltage of the device as much as possible, it is necessary to set the voltage for maintaining the vent arrangement as the lower limit of the driving voltage range. In this case, the bent arrangement needs to be stably maintained at this applied voltage.
However, the applied voltage with which the vent arrangement is stably maintained is as high as about 2.5 V, and as a result, the drive voltage is high.

【0014】また、十分なコントラストを得るには動作
電圧として5〜8vも必要であり、消費電力は極めて高
い。
Further, in order to obtain a sufficient contrast, an operating voltage of 5 to 8 V is required, and the power consumption is extremely high.

【0015】また、高温状態では液晶相のリタデ−ショ
ンが変化するので表示特性が悪化するといった温度特性
の問題もある。また、生産上、上下基板のプレチルト角
を感ぜんに対称に制御する必要があり、面内におけるプ
レチルト角むらのマ−ジンが狭い。よって歩留まりが低
いといった問題もある。
Further, there is also a problem of temperature characteristics that the retardation of the liquid crystal phase changes at high temperature and the display characteristics deteriorate. In addition, in production, it is necessary to control the pretilt angles of the upper and lower substrates in a symmetrical manner, and the margin of uneven pretilt angle in the plane is narrow. Therefore, there is also a problem that the yield is low.

【0016】これに対し、大江らは一方に基板に基板平
面方向に電界が印加できる電極を形成し、液晶分子の配
列方向を基板平面方向において変化させるIn−pla
neモ−ドを改良し、単純な電極構造からなるTFTア
レイ及びSSFLCのように45゜の分子配列変化とし
たTFT−LCDを提案した(M,Oh-e,et.al."Principle
s and Characteristics of Electro-Optical Behaviour
In-Plane SwitchingMode",ASIA DISPLAY '95 DIGEST P
APER p577-580,1995) :IPSモ−ド。
On the other hand, Oe et al. Formed an In-Pla on one side of which an electrode capable of applying an electric field in the substrate plane direction was formed to change the alignment direction of liquid crystal molecules in the substrate plane direction.
By improving the ne mode, we have proposed a TFT array consisting of a simple electrode structure and a TFT-LCD with a 45 ° molecular arrangement change like SSFLC (M, Oh-e, et.al. "Principle
s and Characteristics of Electro-Optical Behavior
In-Plane Switching Mode ", ASIA DISPLAY '95 DIGEST P
APER p577-580, 1995): IPS mode.

【0017】このIPSモ−ドは、SSFLC同様、基
板平面方向に液晶分子配列方向を変化させ、リタ−デ−
ションの生じる光軸を電界により制御するものなので前
述した階調表示性能やコントラスト性能の視角特性は極
めて広い。しかしながら、液晶分子の配向規制力(アン
カリング)の影響を強く受けるため応答速度は遅い。ま
た、動作電圧も7vと高く消費電力は極めて高い。ま
た、原理的に電極上の液晶分子を変化させることができ
ないので電極上の光偏重は不可能であり、電極は遮光性
のある金属を用いざる終えない。よってTFT−LCD
としては開口率が低くなり、表示輝度は極めて暗くな
る。
This IPS mode, like SSFLC, changes the alignment direction of liquid crystal molecules in the plane direction of the substrate, and the retarder
Since the optical axis causing the distortion is controlled by the electric field, the viewing angle characteristics of the gradation display performance and the contrast performance described above are extremely wide. However, the response speed is slow because it is strongly influenced by the alignment regulating force (anchoring) of the liquid crystal molecules. Moreover, the operating voltage is as high as 7 V and the power consumption is extremely high. Further, in principle, liquid crystal molecules on the electrodes cannot be changed, so that the light cannot be deviated on the electrodes, and the electrodes must be made of a light-shielding metal. Therefore, TFT-LCD
As a result, the aperture ratio becomes low and the display brightness becomes extremely dark.

【0018】[0018]

【発明が解決しようとする課題】前述したように、従来
の表示モ−ドは、視角特性、応答速度、駆動電圧(消費
電力)、表示輝度、温度特性等の問題があり、これらを
全て満足するLCDはなかった。
As described above, the conventional display mode has problems such as viewing angle characteristics, response speed, driving voltage (power consumption), display brightness, temperature characteristics, etc., all of which are satisfied. There was no LCD to do.

【0019】本発明は、こうした従来の表示モ−ドの問
題点を解決し、極めて優れた品位をえる新規な表示モ−
ドの構成を提案することを目的とする。
The present invention solves the problems of the conventional display mode, and provides a novel display mode with an extremely high quality.
The purpose is to propose a configuration of code.

【0020】[0020]

【課題を解決するための手段】本発明は、2枚の偏光間
に複数の画素を形成する電極をそれぞれ有する2枚の基
板間に液晶層を挟持してなる液晶表示素子において、前
記両基板の電極が画素毎に、微細な領域を単位とした導
電体部と非導電体部からなり、前記両基板電極の素子法
線方向での断面形状を見た時、一方の基板のみに導電体
部を有する幅RE、及び他方の基板のみに導電体部を有
する幅FE、両基板とも非導電体部である幅SSが順
に、RE・SS・FE・SS・RE・SS・FE・SS
・……とSSを挟んでREとFEが交互に配置される断
面形状となっており、かつ少なくとも各画素毎にRE、
FEそれぞれが画素のどこかで電気的にひとつにつなが
った電極構造からなり、前記液晶層に斜め電界を印加で
きる構造としたことを特徴とする液晶表示素子である。
非導電体部とは、導電体部間の間隙または隣接部分また
は同間隙及び隣接部分に、図2に示すような周期的な斜
め電界が液晶層に印加でき、液晶層全体を厚み方向に対
しても、面内方向に対しても、また、電極上の液晶分子
に対しても容易に電界が印加される。
The present invention provides a liquid crystal display device comprising a liquid crystal layer sandwiched between two substrates each having electrodes for forming a plurality of pixels between two polarized lights. Electrode of each pixel is composed of a conductor portion and a non-conductor portion in a unit of a fine area, and when the cross-sectional shape of the both substrate electrodes in the element normal direction is seen, the conductor is formed only on one substrate. The width RE having a portion, the width FE having a conductor portion only on the other substrate, and the width SS which is a non-conductor portion on both substrates are in order RE, SS, FE, SS, RE, SS, FE, SS.
······ and SS and RE and FE are alternately arranged, and at least each pixel has RE,
A liquid crystal display device is characterized in that each FE has an electrode structure electrically connected to one another at somewhere in a pixel, and has a structure capable of applying an oblique electric field to the liquid crystal layer.
The non-conductor portion means that a periodic oblique electric field as shown in FIG. 2 can be applied to the liquid crystal layer in the gap between the conductor portions or in the adjacent portion or in the gap and the adjacent portion, and the entire liquid crystal layer with respect to the thickness direction. However, the electric field is easily applied to the in-plane direction and to the liquid crystal molecules on the electrodes.

【0021】2枚の偏光板間に前記液晶セルを挟持し、
前述した従来の表示モ−ド同様、偏光を制御し、入射し
た光の透過/吸収を制御するようにしているので直視型
の液晶表示素子となる。
The liquid crystal cell is sandwiched between two polarizing plates,
Similar to the conventional display mode described above, since the polarization is controlled and the transmission / absorption of the incident light is controlled, the liquid crystal display device is a direct-view type.

【0022】本発明に用いる液晶セルは特願平06−1
21634号に示される液晶表示素子同様斜め電界を印
加できる液晶セルを用いるものである。しかしながら、
特願平06−121634号に示される液晶表示素子は
セルに偏光を入射させる手段は有するものの、検光子は
設けていない。つまり、偏光板を2枚用いた構成でな
い。これに対し本発明は液晶セルを2枚の偏光板間に挟
持した構成としている。これは、前記特願平06−12
1634号に示される液晶表示素子は直視型ではなく投
影型用に液晶表示素子にて入射した光の透過/散乱を制
御するものであり、構成上も機能上も異なるものであ
る。また、本発明は前述したように入射した光の透過/
吸収を制御するものであり、本発明の目的に特に適した
諸条件は、後述するように前記特願平06−12163
4号とは異なっている。
The liquid crystal cell used in the present invention is Japanese Patent Application No. 06-1.
Like the liquid crystal display device shown in No. 21634, a liquid crystal cell capable of applying an oblique electric field is used. However,
The liquid crystal display element shown in Japanese Patent Application No. 06-121634 has a means for allowing polarized light to enter the cell, but does not have an analyzer. That is, it is not a configuration using two polarizing plates. On the other hand, in the present invention, the liquid crystal cell is sandwiched between two polarizing plates. This is the above-mentioned Japanese Patent Application No. 06-12
The liquid crystal display element shown in No. 1634 controls the transmission / scattering of light incident on the liquid crystal display element for the projection type, not the direct-viewing type, and has different configurations and functions. Further, the present invention, as described above, transmits / transmits incident light.
Various conditions that control absorption and are particularly suitable for the purpose of the present invention are described in the above-mentioned Japanese Patent Application No. 06-12163.
It is different from No. 4.

【0023】さらに前記電極の少なくとも一部がIT
O、SnOxなどからなる透明電極とすれば、電極上で
変化する液晶分子配列も表示に有効活用できるようにな
り、実用上の開口率は向上する。
Further, at least a part of the electrodes is IT.
If a transparent electrode made of O, SnOx, or the like is used, the liquid crystal molecule arrangement that changes on the electrode can be effectively used for display, and the practical aperture ratio is improved.

【0024】具体的な一つの実施形態として、前記液晶
層が正の誘電異方性からなるネマティック液晶組成物を
用い、前記ネマティック液晶組成物は、前記液晶表示素
子に電圧を印加しない状態において、液晶表示素子平面
と略平行かつ、液晶表示素子平面での方位が一様である
分子配列であり、隣接する前記FE,RE間に印加でき
る斜め電界の液晶表示素子平面での方位(スカラ−E)
と液晶分子の液晶表示素子平面での方位(スカラ−L
C)のなす角θが、45゜乃至90゜である液晶表示素
子とする。
As one specific embodiment, a nematic liquid crystal composition in which the liquid crystal layer has a positive dielectric anisotropy is used, and the nematic liquid crystal composition is used in a state where no voltage is applied to the liquid crystal display device. The molecular arrangement is substantially parallel to the plane of the liquid crystal display element and has a uniform orientation in the plane of the liquid crystal display element, and the orientation in the plane of the liquid crystal display element of the oblique electric field that can be applied between the adjacent FE and RE (scalar-E )
And the orientation of liquid crystal molecules on the liquid crystal display element plane (scalar-L
The liquid crystal display element has an angle θ formed by C) of 45 ° to 90 °.

【0025】また、前記スカラ−Eとスカラ−LCのな
す角θが、45゜乃至60゜であることを特徴とする液
晶表示素子。
Further, the liquid crystal display element is characterized in that an angle θ formed by the scalar E and the scalar LC is 45 ° to 60 °.

【0026】また、前記スカラ−Eとスカラ−LCのな
す角θが、80゜乃至90゜の時、前記液晶表示素子に
電圧を印加しない状態において前記液晶分子配列が、チ
ルトを有するユニフォ−ム配列であり、前記スカラ−E
とスカラ−LCのなす角θが、45゜乃至80゜未満の
時、前記液晶表示素子に電圧を印加しない状態において
前記液晶分子配列が、スプレイ配列もしくはチルトを有
さない(前記液晶表示素子平面に平行である)ユニフォ
−ム配列からなり、前記電極構造により得られる斜め電
界及び前記液晶分子配列により、前記液晶表示素子に電
圧を印加した状態における液晶分子の捩じれ方向が規定
された液晶表示素子である。
When the angle θ formed by the scalar E and the scalar LC is 80 ° to 90 °, the uniform alignment of the liquid crystal molecules has a tilt in a state where no voltage is applied to the liquid crystal display element. An array, the scalar-E
When the angle θ formed by the scalar SC and the LC is less than 45 ° to less than 80 °, the liquid crystal molecule alignment does not have a splay alignment or tilt in a state in which no voltage is applied to the liquid crystal display device (the liquid crystal display device plane). A liquid crystal display element in which the twist direction of the liquid crystal molecules in a state where a voltage is applied to the liquid crystal display element is defined by an oblique electric field and the liquid crystal molecule arrangement obtained by the electrode structure. Is.

【0027】また、前記液晶層が負の誘電異方性からな
るネマティック液晶組成物からなり、前記ネマティック
液晶組成物は、前記液晶表示素子に電圧を印加しない状
態において、液晶表示素子平面と略平行かつ、液晶表示
素子平面での方位が一様である分子配列であり、隣接す
る前記FE,RE間に印加できる斜め電界の液晶表示素
子平面での方位(スカラ−E)と液晶分子の液晶表示素
子平面での方位(スカラ−LC)のなす角θが、0゜乃
至45゜である液晶表示素子。
Further, the liquid crystal layer is made of a nematic liquid crystal composition having a negative dielectric anisotropy, and the nematic liquid crystal composition is substantially parallel to the plane of the liquid crystal display element when no voltage is applied to the liquid crystal display element. In addition, the orientation of molecules is such that the orientation is uniform in the plane of the liquid crystal display element, and the orientation (scalar E) in the plane of the liquid crystal display element of an oblique electric field that can be applied between the adjacent FE and RE and the liquid crystal display of the liquid crystal molecules A liquid crystal display device in which an angle θ formed by an azimuth (scalar-LC) on the device plane is 0 ° to 45 °.

【0028】また、前記スカラ−Eとスカラ−LCのな
す角θが、30゜乃至45゜である液晶表示素子。
A liquid crystal display device in which an angle θ formed by the scalar E and the scalar LC is 30 ° to 45 °.

【0029】さらには、前記スカラ−Eとスカラ−LC
のなす角θが、0゜乃至10゜未満の時、前記液晶表示
素子に電圧を印加しない状態において前記液晶分子配列
が、スプレイ配列もしくはチルトを有さない(前記液晶
表示素子平面に平行である)ユニフォ−ム配列からな
り、前記スカラ−Eとスカラ−LCのなす角θが、10
゜乃至45゜の時、前記液晶表示素子に電圧を印加しな
い状態において前記液晶分子配列が、チルトを有するユ
ニフォ−ム配列であり、前記電極構造により得られる斜
め電界及び前記液晶分子配列により、前記液晶表示素子
に電圧を印加した状態における液晶分子の捩じれ方向が
規定された液晶表示素子。
Furthermore, the above-mentioned SCARA-E and SCARA-LC
When the angle θ formed by is less than 0 ° to less than 10 °, the liquid crystal molecule alignment does not have a splay alignment or tilt (parallel to the plane of the liquid crystal display device) in a state where no voltage is applied to the liquid crystal display device. ) It is composed of a uniform array, and the angle θ formed by the scalar E and the scalar LC is 10
When the angle is between 45 ° and 45 °, the liquid crystal molecule array is a uniform array having a tilt in a state where no voltage is applied to the liquid crystal display element, and the oblique electric field and the liquid crystal molecule array obtained by the electrode structure cause A liquid crystal display device in which the twisting direction of liquid crystal molecules is defined when a voltage is applied to the liquid crystal display device.

【0030】前記FE,RE間に電圧を印加すれば、図
1に示すような斜め電界が形成され、液晶分子配列は液
晶表示素子平面において電界方位に並ぼうとするため、
電圧を印加しない状態と比較して液晶表示素子平面での
方位を45゜以上変化させることができる。前記液晶表
示素子の電圧を印加しない状態での位相差を0より大と
しておけば2枚の偏光器により入射した光の透過/吸収
を制御できる。
When a voltage is applied between the FE and RE, an oblique electric field as shown in FIG. 1 is formed, and the liquid crystal molecule array tends to be aligned with the electric field direction in the plane of the liquid crystal display element.
It is possible to change the azimuth on the plane of the liquid crystal display element by 45 ° or more as compared with the state in which no voltage is applied. If the phase difference of the liquid crystal display device in the state where no voltage is applied is set to be larger than 0, the transmission / absorption of the incident light can be controlled by the two polarizers.

【0031】図1(a)、(c)に示すように本発明の
液晶表示素子は液晶セル(液晶層7)を2枚の板状偏光
器3、4間に挟持した構成となっている。入射光側に設
けた偏光板3は偏光子の機能を果たし、セルに直線偏光
を入射する。本発明の液晶表示素子は位相差が生じる光
軸(例えば液晶層7の液晶分子配列方向であり、この方
向は液晶層7の光軸でもある。)が電界制御されるもの
であり、セルに入射した直線偏光の位相を液晶セルにて
制御できるものである。図1(b)は電圧無印加時の液
晶分子7−2と電圧印加時の液晶分子7−1の光軸の差
異を示している。さらに出射光側に設けた偏光板は検光
子としての機能を果たし、液晶セルにて制御された偏光
光を透過若しくは吸収する。
As shown in FIGS. 1A and 1C, the liquid crystal display device of the present invention has a structure in which a liquid crystal cell (liquid crystal layer 7) is sandwiched between two plate-shaped polarizers 3 and 4. . The polarizing plate 3 provided on the incident light side functions as a polarizer and makes linearly polarized light incident on the cell. In the liquid crystal display element of the present invention, an optical axis (for example, a liquid crystal molecule alignment direction of the liquid crystal layer 7 and this direction is also an optical axis of the liquid crystal layer 7) in which a phase difference is generated is controlled by an electric field, and a liquid crystal display element The phase of the incident linearly polarized light can be controlled by the liquid crystal cell. FIG. 1B shows a difference in optical axis between the liquid crystal molecule 7-2 when no voltage is applied and the liquid crystal molecule 7-1 when voltage is applied. Further, the polarizing plate provided on the outgoing light side functions as an analyzer and transmits or absorbs polarized light controlled by the liquid crystal cell.

【0032】液晶層7に印加される電界は液晶表示素子
平面で考えれば平面方位の電界であるが、電極は双方の
基板1、2の液晶層側に位置しており、印加される電界
は、液晶層厚方向全体に容易に印加される。よって、前
述したIPSのように一方の基板のみに電極を設けて平
面方位のみの電界によって液晶層全体を制御するものよ
り低い印加電圧で制御できる。
The electric field applied to the liquid crystal layer 7 is an electric field in a plane orientation when considered in the plane of the liquid crystal display element, but the electrodes are located on the liquid crystal layer side of both substrates 1 and 2, and the applied electric field is , Is easily applied in the entire thickness direction of the liquid crystal layer. Therefore, it is possible to perform the control with a lower applied voltage than that in the case of providing the electrode only on one substrate and controlling the entire liquid crystal layer by the electric field only in the plane direction as in the IPS described above.

【0033】図3は本発明の液晶表示素子の電界方位及
び液晶分子配列を説明した図である。図1(c)に示す
ように本発明の液晶表示素子は斜め方向の電界10を印
加できる電極構造となっている。図3(a)はその電気
力線11を示したものである。これを平面的にみると図
3(b)のようになる。本発明の液晶表示素子は前記液
晶表示素子の電極5、6に電圧を印加しない状態におい
て、液晶表示素子平面と略平行かつ、液晶表示素子平面
での方位が一様である分子配列としている。その分子配
列7−2の一例としては図3(c)に示す配列がある。
これらをセルの平面で観察した場合の分子配列のイメ−
ジを図3(d)に示す。図3(c)、(d)に示すよう
に液晶分子配列を液晶表示素子平面での方位が一様であ
る分子配列とした場合、その液晶分子長軸(光軸)には
液晶層厚dに応じたリタ−デ−ションR(=Δnd Δ
n:液晶組成物の屈折率異方性)を持つ。こうしたリタ
デ−ションを持つ層に偏光光を入射した場合、その偏光
光の偏光方位と前記液晶分子長軸(光軸)のなす角度
(=θ)に応じて、その偏光光の位相を変化させること
ができる。本発明の液晶表示素子は前記液晶分子配列の
平面方位を電界により制御できるので前記θを変化させ
ることができる。例えば偏光子と検光子を直交配置させ
た場合、セルに入射した偏光光の強度I0 に対し、検光
子を出射する光の強度Iは、 I=I0 ×sin2 (2θ)×sin2 (Rπ/λ)………(1) となる。Rの値を可視光波長の1/2倍とし、θの値を
π/4とすればI=I0となる。
FIG. 3 is a diagram for explaining the electric field orientation and liquid crystal molecule alignment of the liquid crystal display device of the present invention. As shown in FIG. 1C, the liquid crystal display element of the present invention has an electrode structure capable of applying an electric field 10 in an oblique direction. FIG. 3A shows the line of electric force 11. A plan view of this is as shown in FIG. The liquid crystal display element of the present invention has a molecular arrangement that is substantially parallel to the liquid crystal display element plane and has a uniform orientation in the liquid crystal display element plane when no voltage is applied to the electrodes 5 and 6 of the liquid crystal display element. An example of the molecular sequence 7-2 is the sequence shown in FIG. 3 (c).
The image of the molecular arrangement when these are observed in the plane of the cell.
Is shown in FIG. As shown in FIGS. 3 (c) and 3 (d), when the liquid crystal molecule arrangement is such that the orientation in the plane of the liquid crystal display element is uniform, the liquid crystal layer thickness d The retardation R (= Δnd Δ
n: having a refractive index anisotropy of the liquid crystal composition). When polarized light is incident on the layer having such retardation, the phase of the polarized light is changed according to the angle (= θ) formed by the polarization direction of the polarized light and the liquid crystal molecule long axis (optical axis). be able to. In the liquid crystal display element of the present invention, since the plane orientation of the liquid crystal molecule arrangement can be controlled by the electric field, the θ can be changed. For example, when the polarizer and the analyzer are arranged orthogonally to each other, the intensity I of the light emitted from the analyzer is I = I0 × sin 2 (2θ) × sin 2 (Rπ / Λ) ……… (1). If the value of R is 1/2 times the wavelength of visible light and the value of θ is π / 4, then I = I0.

【0034】(1)式を計算すると図4のようになる。
図から明らかなように、Rの値に対してもθの値に対し
てもIは極値を持つ。θを変化させる本発明の液晶表示
素子はRの値を可視光波長の1/2倍とすることにより
最も高い光強度を得る。θは0、及びπ/2で極小値0
を取り、π/4(+mπ/2 m:0,1,2,3…)
で極大値I0 ×sin2 (Rπ/λ)を取る。よって高
いコントラストを得るにはθの値が、少なくとも0から
π/4(π/4から0)以上の変化、例えば0からπ/
3、若しくはπ/4からπ/2(π/2からπ/4)以
上の変化をするように電界方位に対しての液晶分子配列
方位を定めれば良い。
The calculation of the equation (1) is as shown in FIG.
As is clear from the figure, I has an extreme value for both the value of R and the value of θ. The liquid crystal display element of the present invention in which θ is changed obtains the highest light intensity by setting the value of R to 1/2 times the visible light wavelength. θ is 0, and the minimum value is 0 at π / 2
, Π / 4 (+ mπ / 2 m: 0, 1, 2, 3 ...)
Takes the maximum value I 0 × sin 2 (Rπ / λ). Therefore, in order to obtain a high contrast, the value of θ changes by at least 0 to π / 4 (π / 4 to 0) or more, for example, 0 to π /
The liquid crystal molecule alignment direction may be determined with respect to the electric field direction so as to change 3 or from π / 4 to π / 2 (π / 2 to π / 4) or more.

【0035】本発明の液晶表示素子は図1、図3に示す
ように、十分な電界を印加した場合、誘電異方性Δεが
正のネマティック液晶の場合、液晶分子配列は電界方位
に平行な状態をとる。従って電圧を印加していない状態
での前記θの値を45゜乃至90゜とすれば、前述した
高いコントラストを得る必要条件を満たすこととなる。
また、誘電異方性Δεが負のネマティック液晶の場合、
液晶分子配列は電界方位と直交した方位に配列する。し
たがって、この状態でθの取り得る値の最小値はπ/2
である 。また、電圧を印加しない状態での液晶分子配
列から取り得るθの値の最小値は0であるから、高いコ
ントラストを得るためには、電圧を印加していない状態
での前記θの値を0゜以上45゜未満とすればよい。
In the liquid crystal display device of the present invention, as shown in FIGS. 1 and 3, when a sufficient electric field is applied, in the case of nematic liquid crystal having a positive dielectric anisotropy Δε, the liquid crystal molecule alignment is parallel to the electric field direction. Take a state. Therefore, if the value of θ is 45 ° to 90 ° when no voltage is applied, the above-mentioned necessary condition for obtaining high contrast is satisfied.
In the case of a nematic liquid crystal with a negative dielectric anisotropy Δε,
The liquid crystal molecules are arranged in a direction orthogonal to the electric field direction. Therefore, the minimum value that θ can take in this state is π / 2
Is. Further, the minimum value of θ that can be taken from the liquid crystal molecule alignment when no voltage is applied is 0. Therefore, in order to obtain high contrast, the value of θ is 0 when no voltage is applied. The angle may be ≧ ° and less than 45 °.

【0036】図5にθの値、Rの値を変えて作製した本
発明の液晶表示素子の電気光学特性の測定結果を示す。
いずれの液晶セルも液晶層厚d=5μmとし、電極幅F
E,REはともに5μm、電極ピッチPは上下基板とも
18μm、前記幅SSの値は4μmとしており、液晶分
子の配向処理はチルトを有さない(前記液晶表示素子平
面に平行である)ユニフォ−ム配列としている。
FIG. 5 shows the measurement results of the electro-optical characteristics of the liquid crystal display device of the present invention manufactured by changing the value of θ and the value of R.
In each liquid crystal cell, the liquid crystal layer thickness d = 5 μm, and the electrode width F
E and RE are both 5 μm, the electrode pitch P is 18 μm for both the upper and lower substrates, the width SS is 4 μm, and the alignment treatment of the liquid crystal molecules has no tilt (parallel to the plane of the liquid crystal display element). It is arranged as an array.

【0037】また、前記液晶表示素子平面における液晶
分子配列方位と入射光側に設けた偏光子の吸収軸を平行
に配置し、出射光側には、吸収軸が前記偏光子の吸収軸
と直交するよう検光子を配置し、各々のセルの上下基板
の電極間に60Hzの方形波の交流電圧を印加し、2枚
の平行配置偏光板の透過光強度I0 に対する透過光強度
I/I0 を波長550nmの短波長の光を入射させ、測
定したものである。いずれも液晶材料は正の誘電異方性
を示すネマティック液晶組成物である。
Further, the liquid crystal molecule alignment direction in the plane of the liquid crystal display element and the absorption axis of the polarizer provided on the incident light side are arranged in parallel, and the absorption axis is orthogonal to the absorption axis of the polarizer on the outgoing light side. The analyzer is arranged so that a square wave AC voltage of 60 Hz is applied between the electrodes of the upper and lower substrates of each cell, and the transmitted light intensity I / I 0 is different from the transmitted light intensity I 0 of the two parallel polarizing plates. It is measured by making light with a short wavelength of 550 nm incident. In each case, the liquid crystal material is a nematic liquid crystal composition showing a positive dielectric anisotropy.

【0038】図5(a)はθ=90゜,R=0.30μ
mとしたセルaの測定結果であり、図5(b)はθ=9
0゜,R=0.25μmとしたセルbの測定結果であ
り、図5(c)はθ=60゜,R=0.30μmとした
セルcの測定結果であり、図5(d)はθ=45゜,R
=0.30μmとしたセルdの測定結果であり、図5
(e)はθ=60゜,R=0.25μmとしたセルeの
測定結果である。
FIG. 5A shows θ = 90 ° and R = 0.30 μ.
5 is a measurement result of the cell a with m, and FIG.
5 (c) is the measurement result of the cell b with 0 ° and R = 0.25 μm, and FIG. 5 (c) is the measurement result of the cell c with θ = 60 ° and R = 0.30 μm. θ = 45 °, R
5 is the measurement result of the cell d when = 0.30 μm.
(E) is the measurement result of the cell e in which θ = 60 ° and R = 0.25 μm.

【0039】いずれの結果においても電圧を印加しない
場合のI/I0 は0.001程度であり、最大コントラ
スト比は1000:1程度あった。最大コントラストを
得る印加電圧値VCRはθに依存している。θが大である
ほどVCRは小さい。これは、液晶表示素子平面での液晶
分子配列方位の変化度合いが電圧を印加した状態でのθ
の値が大であればあるほど大きいからである。
In all the results, I / I0 when no voltage was applied was about 0.001 and the maximum contrast ratio was about 1000: 1. The applied voltage value VCR for obtaining the maximum contrast depends on θ. The larger θ is, the smaller VCR is. This is because the degree of change in the orientation of the liquid crystal molecules on the plane of the liquid crystal display element is θ when the voltage is applied.
This is because the larger the value of, the larger.

【0040】また、Rに対してはR=0.30μmとし
た場合、I/I0 は1を得るが、R=0.25μmの場
合これより小さい値となる。これは(1)式におけるs
in2(Rπ/λ)のRが、試作した液晶セルの電圧を
印加しない状態でのR値が入射光波長の1/2より、や
や大きい値にて丁度1/2になるためであり、実際に電
圧を印加した際の液晶セルは、電圧を印加しない状態で
R=0.30μmであるときにRが入射光波長(λ=5
50nm)の1/2となるためである。
With respect to R, I / I0 is 1 when R = 0.30 μm, but is smaller than this when R = 0.25 μm. This is s in equation (1)
This is because the R of in 2 (Rπ / λ) becomes just ½ when the R value of the prototyped liquid crystal cell in the state where no voltage is applied is slightly larger than ½ of the incident light wavelength. In the liquid crystal cell when voltage is actually applied, when R = 0.30 μm without voltage application, R is the incident light wavelength (λ = 5
This is because it is 1/2 of 50 nm).

【0041】前記電圧を印加しない状態でのθの値を4
5゜乃至60゜とすれば電気光学特性は、ほど良い急峻
性を示し、最大I/I0 を得る電圧のマ−ジンは広くな
り、容易に駆動できるようになる。
The value of θ when the voltage is not applied is 4
When the angle is 5 ° to 60 °, the electro-optical characteristics show a good steepness, the margin of the voltage for obtaining the maximum I / I0 is wide, and the driving becomes easy.

【0042】θの値が45゜未満だと、θの値を45゜
乃至60゜とした場合と比較して最大I/I0 の値が小
さくなることとなり、コントラストが低下する。
If the value of θ is less than 45 °, the maximum I / I0 value becomes smaller than that in the case where the value of θ is 45 ° to 60 °, and the contrast deteriorates.

【0043】また、θの値を60゜より大とすると電気
光学特性が急峻に成り過ぎる。
If the value of θ is larger than 60 °, the electro-optical characteristics become too steep.

【0044】特に偏光子と検光子を平行配置したり、偏
光子と検光子を直交配置し、電圧を印加しない状態での
液晶分子配列方位と偏光板の吸収軸とのなす角度を45
゜とした場合、表示はノ−マリ−ブラックとなる。
In particular, the polarizer and the analyzer are arranged in parallel, or the polarizer and the analyzer are arranged orthogonally, and the angle formed by the liquid crystal molecule alignment direction and the absorption axis of the polarizing plate is 45 when no voltage is applied.
When the angle is set to °, the display is normally black.

【0045】図7は偏光子と検光子を直交配置し、電圧
を印加しない状態での液晶分子配列方位と偏光板の吸収
軸とのなす角度を45゜とした場合のセルの電気光学特
性の測定結果である。
FIG. 7 shows the electro-optical characteristics of the cell when the polarizer and the analyzer are arranged orthogonally and the angle formed by the liquid crystal molecule alignment direction and the absorption axis of the polarizing plate is 45 ° when no voltage is applied. It is a measurement result.

【0046】セルa、b(図7(a)(b))と比較し
てセルc(図7(c))は電気光学特性が急峻でなく、
その分最小I/I0 の値をとる電圧値のマ−ジンが広
い。このノ−マリ−ブラック表示の構成とした場合、最
小I/I0 の値をとる電圧値のマ−ジンが狭いとセル厚
マ−ジン、温度特性等に多大に影響するため、好ましく
ない。よって、電圧を印加しない状態でのθの値を45
゜乃至60゜とすればより優れた性能えられることが解
る。
Compared with the cells a and b (FIGS. 7A and 7B), the cell c (FIG. 7C) does not have steep electro-optical characteristics.
The margin of the voltage value that takes the minimum I / I0 value is wide. In the case of this normally black display configuration, if the margin of the voltage value that takes the minimum I / I0 value is narrow, the cell thickness margin, temperature characteristics, etc. are greatly affected, which is not preferable. Therefore, the value of θ without voltage is 45
It will be understood that more excellent performance can be obtained by setting the angle to 60 °.

【0047】これらのことは液晶組成物が負の誘電異方
性を示すネマティック液晶を用いた場合、また、液晶分
子配列の安定性を考えてみる。本発明の液晶表示素子の
液晶分子配列は図3(c)(d)に示すような3つに分
類される。この内チルトを有するユニフォ−ム配列は液
晶表示素子平面に対して一様にチルト配向しているもの
であり、平面図を描けば図3(d)に示すように頭を描
くこととなる。
Considering these things, the stability of the liquid crystal molecule alignment when the liquid crystal composition uses a nematic liquid crystal exhibiting a negative dielectric anisotropy. The liquid crystal molecule array of the liquid crystal display element of the present invention is classified into three as shown in FIGS. The uniform alignment having the inner tilt is one in which the orientation is uniformly tilted with respect to the plane of the liquid crystal display element, and the head is drawn as shown in FIG. 3D when the plan view is drawn.

【0048】同様にチルトを有さないユニフォ−ム配列
やスプレイ配列は液晶分子の平均的傾きは液晶表示素子
平面に対して平行である。よって、図3(d)に示すよ
うに液晶分子の平面図を描くと頭のない絵となる。ちな
みに前述したθを示すと図3(e)のようになる。ま
た、本発明の液晶表示素子における印加電界を図示する
と図3(a)(b)のようになる。電界は斜め電界であ
り、液晶表示素子平面に対して傾きをもった電界であ
る。これを平面的にみて手前(頭)を大きく描いたのが
図3(b)である。以降、電界の液晶表示素子平面に対
する傾きを図3(b)のように描く。ここで液晶組成物
が正の誘電異方性を示すネマティック液晶を考えると、
液晶層に電界を印加した時、液晶分子は電界方向に向く
こととなる。それぞれの分子配列とθの値に対して液晶
分子の挙動を考えると図13のようになる。
Similarly, in the uniform arrangement or the splay arrangement having no tilt, the average inclination of the liquid crystal molecules is parallel to the plane of the liquid crystal display element. Therefore, when a plan view of the liquid crystal molecules is drawn as shown in FIG. Incidentally, the above-mentioned θ is shown in FIG. 3 (e). The applied electric field in the liquid crystal display device of the present invention is shown in FIGS. 3 (a) and 3 (b). The electric field is an oblique electric field and has an inclination with respect to the plane of the liquid crystal display element. FIG. 3 (b) is a large drawing of the front (head) when viewed in plan. After that, the inclination of the electric field with respect to the plane of the liquid crystal display element is drawn as shown in FIG. Considering a nematic liquid crystal in which the liquid crystal composition exhibits positive dielectric anisotropy,
When an electric field is applied to the liquid crystal layer, the liquid crystal molecules are oriented in the electric field direction. Considering the behavior of liquid crystal molecules with respect to each molecular arrangement and the value of θ, it becomes as shown in FIG.

【0049】図13(a)は液晶分子配列がチルトを有
するユニフォ−ム配列であり、θの値が90゜の場合の
分子配列挙動を示したものである。前記θの値は0乃至
90゜未満である。これは液晶分子が電界方向に対し配
列方向を変化させる際、当然液晶分子は交差角の小さい
方向に回転するからである。ただしθの値が90゜の場
合、回転方向は右回りとも左回りとも規定されない。
FIG. 13A shows the behavior of the molecular alignment when the liquid crystal molecular alignment is a uniform alignment having a tilt and the value of θ is 90 °. The value of θ is 0 to less than 90 °. This is because when the liquid crystal molecules change the alignment direction with respect to the electric field direction, the liquid crystal molecules naturally rotate in a direction with a small crossing angle. However, when the value of θ is 90 °, the rotation direction is not defined as clockwise or counterclockwise.

【0050】しかしながら、図示するように液晶分子配
列は一様なチルトを有しているので電界方向に傾きのあ
る本発明の液晶表示素子では、液晶分子の頭のほうが電
界方位の頭の方に回転しやすい。このほうが電圧印加前
後で液晶分子のチルト方位が変化しないからである。
(逆方向に回転するには電圧を印加しない状態でのチル
ト方向と逆の方向にチルトする必要があるため)。よっ
て、θの値が90゜であり、液晶分子配列がチルトを有
するユニフォ−ム配列の場合、液晶分子配列は常に安定
している。
However, since the liquid crystal molecule array has a uniform tilt as shown in the figure, in the liquid crystal display element of the present invention having a tilt in the direction of the electric field, the head of the liquid crystal molecule is closer to the head of the electric field direction. Easy to rotate. This is because the tilt direction of the liquid crystal molecules does not change before and after the voltage application.
(Because in order to rotate in the opposite direction, it is necessary to tilt in the opposite direction to the tilt direction when no voltage is applied). Therefore, when the value of θ is 90 ° and the alignment of the liquid crystal molecules is a uniform alignment, the alignment of the liquid crystal molecules is always stable.

【0051】同様のことをθが30゜の場合について考
えてみる。図13(c)は液晶分子配列がチルトを有す
るユニフォ−ム配列であり、θの値が30゜の場合の分
子配列挙動を示したものである。液晶分子が電界方向に
対し配列方向を変化させる際、液晶分子が交差角の小さ
い方向に回転することを考えると、図示するように一方
では液晶分子のチルト方位に準じて回転できるが、他方
では電圧を印加しない状態でのチルト方向と逆の方向に
チルトする必要が生じることとなる。こうした場合液晶
分子配列は不安定となり、一様な配列を維持できずディ
スクリネ−ションが生じたりする。
Consider the same thing when θ is 30 °. FIG. 13C shows the behavior of molecular alignment when the liquid crystal molecular alignment is a uniform alignment having a tilt and the value of θ is 30 °. Considering that the liquid crystal molecules rotate in a direction with a small crossing angle when the alignment direction of the liquid crystal molecules is changed with respect to the electric field direction, one side can rotate according to the tilt direction of the liquid crystal molecule as shown in the figure, but the other side can rotate. It becomes necessary to tilt in a direction opposite to the tilt direction in the state where no voltage is applied. In such a case, the alignment of liquid crystal molecules becomes unstable, and the uniform alignment cannot be maintained, resulting in disclination.

【0052】これに対し、液晶分子配列がチルトを有さ
ないユニフォ−ム配列やスプレイ配列の場合を考えてみ
る。図13(b)は液晶分子配列がチルトを有さないユ
ニフォ−ム配列若しくはスプレイ配列であり、θの値が
30゜の場合の分子配列挙動を示したものである。
On the other hand, let us consider a case where the liquid crystal molecule arrangement is a uniform arrangement or a spray arrangement having no tilt. FIG. 13B shows the molecular alignment behavior when the liquid crystal molecular alignment is a uniform alignment or a splay alignment having no tilt and the value of θ is 30 °.

【0053】電圧を印加しない状態での液晶分子は平均
的には液晶表示素子平面と平行であり、傾きは持ってい
ないと見なせる。よって、いずれの回転方向に対しても
逆方向にチルトするようなことはない。よって、θを指
す回転方向に回転する。つまり液晶分子と電界方位の交
差角の小さい方に回転する。
It can be considered that the liquid crystal molecules in the state in which no voltage is applied are parallel to the plane of the liquid crystal display element on average and have no inclination. Therefore, the tilt does not occur in the opposite direction with respect to either rotation direction. Therefore, it rotates in the rotation direction indicating θ. That is, the liquid crystal molecule rotates to the smaller crossing angle between the liquid crystal molecule and the electric field direction.

【0054】同様のことをθの値が90゜の場合につい
て考えてみる。図13(d)は液晶分子配列がチルトを
有さないユニフォ−ム配列若しくはスプレイ配列であ
り、θの値が90゜の場合の分子配列挙動を示したもの
である。この場合、図13(c)のように逆にチルトす
る必要はないが液晶分子の回転方向はθの値からも、分
子配列からも規定されない。液晶分子配列も前記交差角
も中性であるからである。よって、左回りにも右回りに
も回転することとなり、液晶分子配列は不安定となる。
Consider the same thing when the value of θ is 90 °. FIG. 13D shows the behavior of the molecular alignment when the liquid crystal molecular alignment is a uniform alignment or a splay alignment having no tilt, and the value of θ is 90 °. In this case, it is not necessary to reversely tilt as shown in FIG. 13C, but the rotation direction of the liquid crystal molecules is not defined by the value of θ or the molecular arrangement. This is because both the liquid crystal molecular alignment and the crossing angle are neutral. Therefore, the liquid crystal molecules are rotated both counterclockwise and clockwise, and the liquid crystal molecule alignment becomes unstable.

【0055】このように、θが90゜の場合のように、
液晶分子の回転方向が規定されない場合は、液晶分子配
列がチルトを有するユニフォ−ムとしておけば分子配列
と電界の傾きにより、回転方向は規定され液晶分子配列
は常に安定となる。このことはθの値が80゜乃至90
゜の場合に得られることを実験により確認している。逆
にθの値が80゜未満の場合、θの値により回転方向は
規定される。この場合、液晶分子が逆にチルトするこを
防止するには液晶分子配列を中性にしてやればよく、具
体的にはチルトを有さないユニフォ−ム配列若しくはス
プレイ配列とすれば液晶分子配列は常に安定することと
なる。
Thus, as in the case where θ is 90 °,
When the rotation direction of the liquid crystal molecules is not defined, if the liquid crystal molecule array is a uniform tilt, the rotation direction is defined by the tilt of the molecular array and the electric field, and the liquid crystal molecule array is always stable. This means that the value of θ is 80 ° to 90
It has been confirmed by experiments that it can be obtained in the case of °. On the contrary, when the value of θ is less than 80 °, the rotation direction is defined by the value of θ. In this case, in order to prevent the liquid crystal molecules from tilting in the opposite direction, the liquid crystal molecule arrangement may be neutralized. Specifically, if the liquid crystal molecule arrangement is a uniform arrangement or a spray arrangement having no tilt, the liquid crystal molecule arrangement is It will always be stable.

【0056】以上説明したように電極構造により得られ
る斜め電界及び液晶分子配列により、液晶分子の回転方
向が規定され、逆方向にチルトしない構造とすれば液晶
分子配列は常に安定する。
As described above, the oblique electric field and the liquid crystal molecule arrangement obtained by the electrode structure define the rotation direction of the liquid crystal molecules, and if the structure is such that the liquid crystal molecules are not tilted in the opposite direction, the liquid crystal molecule arrangement is always stable.

【0057】同様のことを負の誘電異方性を示すネマテ
ィック液晶について考えると、前記スカラ−Eとスカラ
−LCのなす角θが、0゜乃至10゜未満の時、前記液
晶表示素子に電圧を印加しない状態において前記液晶分
子配列が、スプレイ配列もしくはチルトを有さない(前
記液晶表示素子平面に平行である)ユニフォ−ム配列か
らなり、前記スカラ−Eとスカラ−LCのなす角θが、
10゜乃至45゜の時、前記液晶表示素子に電圧を印加
しない状態において前記液晶分子配列が、チルトを有す
るユニフォ−ム配列であるようにすればよいこととな
る。
Considering the same thing for a nematic liquid crystal showing negative dielectric anisotropy, when the angle θ formed by the scalar E and the scalar LC is 0 ° to less than 10 °, a voltage is applied to the liquid crystal display element. In the state where no voltage is applied, the liquid crystal molecule array is composed of a splay array or a uniform array having no tilt (parallel to the plane of the liquid crystal display element), and the angle θ formed by the scalar E and the scalar LC is ,
In the case of 10 ° to 45 °, the liquid crystal molecule arrangement may be a uniform arrangement having a tilt in a state where no voltage is applied to the liquid crystal display element.

【0058】また、チルトを有するユニフォ−ム配列で
あり、なおかつθの値が前述した回転方向が規定されな
い値としていても、(誘電異方性が正の場合、前記スカ
ラ−Eとスカラ−LCのなす角θが45゜乃至80゜未
満の時、誘電異方性が負の場合、液晶表示素子であり、
前記スカラ−Eとスカラ−LCのなす角θが0゜乃至1
0゜未満の時、)前記液晶分子のチルト方位が、前記斜
め電界の方位毎に異なるよう少なくとも2種の方位から
なる配向分割をなせば前述した逆方向へのチルトは防止
できることとなり、液晶分子配列は常に安定する。
Further, even in the case of a uniform array having a tilt and the value of θ is a value in which the above-mentioned rotation direction is not defined, (when the dielectric anisotropy is positive, the scalar E and the scalar LC are When the angle θ formed by is less than 45 ° to less than 80 ° and the dielectric anisotropy is negative, it is a liquid crystal display element,
The angle θ between the scalar E and the scalar LC is 0 ° to 1
If the tilt azimuth of the liquid crystal molecules is different at each tilt electric field azimuth (when the angle is less than 0 °), it is possible to prevent the above-described tilt in the opposite direction by performing alignment division of at least two kinds of azimuths. The array is always stable.

【0059】次に入射光の波長に対する依存性について
考える。図6は液晶層厚d=5μmとし、電極幅FE,
REはともに5μm、電極ピッチPは上下基板とも18
μm、前記SSの値は4μmであり、液晶分子の配向処
理はチルトを有さない(前記液晶表示素子平面に平行で
ある)ユニフォ−ム配列であり、θ=90゜,R=0.
30μm(λ=550nm)としたセルaの電気光学特
性を入射光波長を変化させて測定した結果である。入射
させた光はλ=440(図中B),550(図中G),
620(図中R)nmである。いずれの測定も、セルの
上下基板の電極間に60Hzの方形波の交流電圧を印加
し、2枚の平行配置偏光板の透過光強度I0 に対する透
過光強度I/I0 を測定したものである。
Next, the dependence of the incident light on the wavelength will be considered. In FIG. 6, the liquid crystal layer thickness d = 5 μm, the electrode width FE,
RE is 5 μm, and electrode pitch P is 18 for both upper and lower substrates.
.mu.m, the value of SS is 4 .mu.m, the alignment treatment of the liquid crystal molecules is a uniform arrangement having no tilt (parallel to the plane of the liquid crystal display element), .theta. = 90.degree., R = 0.
It is the result of measuring the electro-optical characteristics of the cell a with 30 μm (λ = 550 nm) by changing the incident light wavelength. The incident light is λ = 440 (B in the figure), 550 (G in the figure),
620 (R in the figure) nm. In each measurement, a square wave AC voltage of 60 Hz was applied between the electrodes on the upper and lower substrates of the cell, and the transmitted light intensity I / I 0 with respect to the transmitted light intensity I 0 of the two parallel polarizing plates was measured. .

【0060】図からあきらかなように電気光学特性には
波長依存性がある。これは、(1)式に示すように、本
発明の液晶表示素子が液晶セルによる位相の制御により
表示をしているからであり、その位相差はR/λにより
切るためである。一般的に液晶材料には屈折率異方性Δ
nがあるが、その値は波長分散特性をもつ。液晶層厚d
は波長によらず一定であるのでRの値は液晶材料の屈折
率異方性の波長分散特性により決まる。液晶材料の波長
分散特性は可視光波長に対しては波長が大であるほど屈
折率異方性Δnは小さい。よって、Rの値も波長が大で
あるほど小さい。従って、位相差はΔnより一層、波長
分散特性を持ち、波長が大であるほどR/λは小さくな
る。
As is clear from the figure, the electro-optical characteristics have wavelength dependence. This is because the liquid crystal display element of the present invention performs display by controlling the phase by the liquid crystal cell as shown in the equation (1), and the phase difference is cut by R / λ. Generally, for liquid crystal materials, the refractive index anisotropy Δ
There is n, but its value has chromatic dispersion characteristics. Liquid crystal layer thickness d
Is constant regardless of the wavelength, so the value of R is determined by the wavelength dispersion characteristics of the refractive index anisotropy of the liquid crystal material. Regarding the wavelength dispersion characteristic of the liquid crystal material, the refractive index anisotropy Δn is smaller as the wavelength is larger with respect to the visible light wavelength. Therefore, the value of R also decreases as the wavelength increases. Therefore, the phase difference has more wavelength dispersion characteristics than Δn, and the larger the wavelength, the smaller R / λ.

【0061】このことは、前記液晶層により生ずる位相
差の波長依存性を解消するように前記偏光板間に位相差
板、光学補償板もしくはこれらの機能を得る膜を加えた
構造とすれば解決される。
This is solved by adopting a structure in which a retardation plate, an optical compensation plate or a film for obtaining these functions is added between the polarizing plates so as to eliminate the wavelength dependence of the retardation caused by the liquid crystal layer. To be done.

【0062】例えば、図8(a)(b)に示すような波
長分散特性を持つ液晶材料を用いた場合、図1(a)に
示すような位相差板を液晶セル(液晶層7)と偏光板4
の間に、位相差板(光学補償板)の光軸8−1が液晶分
子配列方位7−2−1と直交するよう挟持すれば、ト−
タルの位相差は各々の位相差の差となり図8(c)のよ
うになる。よって波長によらず一定の位相差(R/λ)
が得られ波長分散特性は解消されることとなる。図8で
12−1が位相差板のR値、7−2液晶層のR値、13
−2がト−タルのR値である。また、実用上のコントラ
スト比を高め、温度特性を抑制し、生産上歩留まりを高
めるには、前記2枚の偏光板を、その吸収軸が直交する
よう配置し、前記液晶表示素子に電圧を印加しない状態
において前記液晶分子の液晶表示素子平面での配列方位
を、前記2枚の偏光板の一方の吸収軸と平行に配置すれ
ばよい。電圧を印加しない状態にて黒表示を得て、なお
かつ、この黒表示は液晶層の層厚や屈折率異方性に影響
されず位相差を持たない状態となる。よって液晶層厚む
らや温度変化による光学補償板、液晶層のリタ−デ−シ
ョン変化、むらに影響されず優れた黒表示を得る。ま
た、液晶層や光学補償板の光学特性が多少設計値とずれ
ても黒表示は優れたものとなる。
For example, when a liquid crystal material having wavelength dispersion characteristics as shown in FIGS. 8A and 8B is used, a retardation plate as shown in FIG. 1A is used as a liquid crystal cell (liquid crystal layer 7). Polarizing plate 4
If the optical axis 8-1 of the retardation plate (optical compensator) is sandwiched between the two so as to be orthogonal to the liquid crystal molecule alignment direction 7-2-1,
The phase difference of Tal is the difference between the phase differences, as shown in FIG. Therefore, a constant phase difference (R / λ) regardless of wavelength
Is obtained and the chromatic dispersion characteristic is eliminated. In FIG. 8, 12-1 is the R value of the retardation plate, 7-2 is the R value of the liquid crystal layer, 13
-2 is the total R value. Further, in order to increase the practical contrast ratio, suppress the temperature characteristics, and increase the production yield, the two polarizing plates are arranged so that their absorption axes are orthogonal to each other, and a voltage is applied to the liquid crystal display element. In such a state, the alignment direction of the liquid crystal molecules on the liquid crystal display element plane may be arranged in parallel with the absorption axis of one of the two polarizing plates. A black display is obtained without applying a voltage, and this black display is in a state of not having a phase difference without being influenced by the layer thickness of the liquid crystal layer and the refractive index anisotropy. Therefore, an excellent black display is obtained without being affected by the unevenness of the liquid crystal layer thickness, the optical compensation plate due to the temperature change, the retardation change of the liquid crystal layer, and the unevenness. Further, even if the optical characteristics of the liquid crystal layer or the optical compensator slightly deviate from the designed values, the black display becomes excellent.

【0063】これら本発明の液晶表示素子は液晶分子配
列方位を液晶表示素子平面で変化させるものであり、黒
表示から白表示に至るまで液晶分子は、ほぼ液晶表示素
子平面と平行に配列している。したがって視野角は極め
て広い。また、本発明の液晶表示素子は液晶層の層厚方
向における中央付近の液晶分子を支配的に制御するもの
なので応答速度が極めて速い。また、この応答速度は前
記液晶表示素子に電圧を印加しない状態において前記液
晶分子の液晶表示素子平面での配列方位を、電界方位に
対して45゜の角度(θ=45゜)に近ずければ近ずけ
るほど速くなる。
In these liquid crystal display devices of the present invention, the orientation of liquid crystal molecules is changed in the plane of the liquid crystal display device, and the liquid crystal molecules are arranged substantially parallel to the plane of the liquid crystal display device from black display to white display. There is. Therefore, the viewing angle is extremely wide. Further, since the liquid crystal display element of the present invention mainly controls the liquid crystal molecules near the center in the layer thickness direction of the liquid crystal layer, the response speed is extremely fast. Further, the response speed should be such that the alignment orientation of the liquid crystal molecules on the liquid crystal display element plane should be close to an angle of 45 ° (θ = 45 °) with respect to the electric field orientation in the state where no voltage is applied to the liquid crystal display element. The closer you are, the faster it gets.

【0064】また、少なくとも一方の基板がTFT,T
FD等のスイッチング素子を有するアクティブマトリク
ス基板を用いれば、極めて優れた表示性能のマトリクス
表示が実現する。また、電気光学特性が急峻でない設計
条件においても優れた表示性能を得ることができる。
At least one substrate is TFT, T
If an active matrix substrate having a switching element such as FD is used, matrix display with extremely excellent display performance can be realized. Further, excellent display performance can be obtained even under design conditions in which electro-optical characteristics are not steep.

【0065】また、少なくとも一方の基板にカラ−フィ
ルタ−を設ければ優れたカラ−表示が実現される。
If a color filter is provided on at least one of the substrates, excellent color display can be realized.

【0066】なお、本発明は問題を解決する手段として
具体的に、ネマティック液晶組成物を用い、た前記液晶
表示素子に電圧を印加しない状態において、液晶表示素
子平面と略平行かつ、液晶表示素子平面での方位が一様
である分子配列を用いているが、用いる液晶材料として
は、スメクティック液晶組成物、カイラルネマティック
液晶組成物、コレステリック液晶組成物、ディスコティ
ック液晶組成物、及びこれらの高分子液晶組成物、低分
子液晶組成物であっても良く、分子配列はハイブリッド
配列、ベンド配列、垂直配列及びこれらにツイスト変形
を加えた配列であっても、同様の原理や効果をえるもの
であれば前述した問題点を解決することができる。
As a means for solving the problem, the present invention specifically uses a nematic liquid crystal composition and is substantially parallel to the plane of the liquid crystal display element in a state where no voltage is applied to the liquid crystal display element. A liquid crystal material having a uniform orientation in a plane is used, and as the liquid crystal material to be used, a smectic liquid crystal composition, a chiral nematic liquid crystal composition, a cholesteric liquid crystal composition, a discotic liquid crystal composition, and polymers thereof are used. A liquid crystal composition or a low-molecular liquid crystal composition may be used, and the same principle or effect can be obtained even if the molecular arrangement is a hybrid arrangement, a bend arrangement, a vertical arrangement, or an arrangement in which twist deformation is added to these arrangements. For example, the above-mentioned problems can be solved.

【0067】また、本発明は解決手段として具体的に、
前記両基板の電極が画素毎に、微細な領域を単位とした
導電体部と非導電体部からなり、前記両基板電極の素子
法線方向での断面形状を見た時、一方の基板のみに導電
体部を有する幅RE、及び他方の基板のみに導電体部を
有する幅FE、両基板とも非導電体部である幅SSが順
に、RE・SS・FE・SS・RE・SS・FE・SS
・……とSSを挟んでREとFEが交互に配置される断
面形状となっており、かつ少なくとも各画素毎にRE、
FEそれぞれが画素のどこかで電気的に一つにつながっ
た電極構造を用いたが、斜め電界を得る電極構成であれ
ば、前述した問題点を解決することができる。
Further, the present invention is specifically as a solution means,
The electrodes of both substrates are made up of a conductive portion and a non-conductive portion in units of a fine region for each pixel, and when viewed in the cross-sectional shape of the substrate electrodes in the element normal direction, only one substrate is A width RE having a conductor portion on one side, a width FE having a conductor portion only on the other substrate, and a width SS which is a non-conductor portion on both substrates in order of RE, SS, FE, SS, RE, SS, FE.・ SS
······ and SS and RE and FE are alternately arranged, and at least each pixel has RE,
Although the electrode structure in which the FEs are electrically connected to each other somewhere in the pixel is used, the above-mentioned problems can be solved by an electrode structure in which an oblique electric field is obtained.

【0068】[0068]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)図9(c)、(d)に示すような構造
からなる上基板(出射光側基板)として、対向基板用I
TOストライプパタ−ンニングガラス基板を用いた。出
射光側基板のストライプ電極6は(c)に示すように、
1画素領域pの180μm×180μm内に梯子状の導
電体部を有している。すなわち、両側の導電体条6−
1、6−2間に幅5μmの複数の導電体部6−2を橋絡
させ、各導電体部間に13μmk間隙6−3を形成す
る。この間隙が非導電体部となる。
(Embodiment 1) As an upper substrate (outgoing light side substrate) having a structure as shown in FIGS.
A TO stripe patterning glass substrate was used. As shown in (c), the stripe electrode 6 on the outgoing light side substrate is
A ladder-shaped conductor portion is provided within 180 μm × 180 μm of one pixel region p. That is, the conductor strips 6 on both sides
A plurality of conductor portions 6-2 having a width of 5 μm are bridged between the first conductor 6 and the second conductor 6-2 to form a 13 μmk gap 6-3 between the conductor portions. This gap becomes the non-conductor part.

【0069】(d)は画面の有効表示領域に配置したス
トライプ電極6を示す。画素数はX方向に480画素、
Y方向に320画素である。
(D) shows the stripe electrodes 6 arranged in the effective display area of the screen. The number of pixels is 480 pixels in the X direction,
There are 320 pixels in the Y direction.

【0070】(a)は入力光側基板の画素電極5の1画
素領域を示しており、導電体条の枠5−1内に幅5μm
の複数の導電体部5−2をピッチ18μmで間隙をおい
て配置する。間隙の幅は13μmである。この間隙が非
導電体部5−3となる。枠5−1の隅にMIMスイッチ
ング素子18−1が形成され、アルミニウム膜でできた
信号線10に接続される。
(A) shows one pixel area of the pixel electrode 5 of the substrate on the input light side, and has a width of 5 μm in the frame 5-1 of the conductor strip.
The plurality of conductor portions 5-2 are arranged at a pitch of 18 μm with a gap. The width of the gap is 13 μm. This gap becomes the non-conductor section 5-3. The MIM switching element 18-1 is formed at the corner of the frame 5-1 and connected to the signal line 10 made of an aluminum film.

【0071】(b)は画面有効表示領域における電極5
のアレイ配置を示すものである。
(B) shows the electrode 5 in the screen effective display area.
FIG. 2 shows the array arrangement of FIG.

【0072】電極5の導電体部5−2と電極6の非導電
体部6−3が対向し、電極6の導電体部6−2と電極5
の非導電体部5−3がそれぞれ対向するように組み合わ
される。
The conductor portion 5-2 of the electrode 5 and the non-conductor portion 6-3 of the electrode 6 face each other, and the conductor portion 6-2 of the electrode 6 and the electrode 5
The non-conductor parts 5-3 are combined so as to face each other.

【0073】(a)(b)に示すように下基板としてM
IMからなるスイッチング素子18−1付きガラス基板
を用いた。このMIM基板における画素電極は入射光側
基板電極5であり、ITOを用いた。双方の基板の電極
5、6に透明なITOを用いることにより、実用上の開
口率を向上させ素子の透過率を高めた。ここで、MIM
素子の対極材料として用いたAlを対向基板のストライ
プ電極,及びMIM基板における画素電極として用いれ
ば、実用上の開口率は低下するもののアレイ形成工程が
用いる材料の種類低減、素子と同時に形成できる等の理
由から簡略化できこととなる。こうした基板を用いて、
配向膜(図1の9)として(株)日本合成ゴム製のAL
−1051(プレチルト角測定値1゜)を形成し、図に
矢印で示すように画素電極内の微細なストライプパタ−
ンと平行であり、上下基板を対向させたときに180゜
方位の異なる方向にラビング処理を施し、前述したθの
値が90゜であり、ネマティック液晶組成物が前記上下
基板間でチルトを有するユニフォ−ム配列となる配向処
理を施した。下基板側に基板間隙剤として液晶層厚が
5.0μmとなるよう(株)積水ファインケミカル製の
微粒子:ミクロパ−ル(粒径5.0μm)を分散密度1
00個/mm2 となるよう乾式散布法にて散布して、こ
れら基板間に誘電異方性が正の液晶材料として(株)メ
ルクジャパン製ZLI−2293(Δn=0.132:λ=5
90nm)を挟持して本液晶表示素子を得た。
As shown in (a) and (b), M is used as the lower substrate.
A glass substrate with a switching element 18-1 made of IM was used. The pixel electrode on this MIM substrate was the incident light side substrate electrode 5, and ITO was used. By using transparent ITO for the electrodes 5 and 6 of both substrates, the practical aperture ratio was improved and the transmittance of the device was increased. Where MIM
When Al used as the counter electrode material of the element is used as the stripe electrode of the counter substrate and the pixel electrode of the MIM substrate, although the aperture ratio is reduced in practice, the type of material used in the array formation process can be reduced, and the element can be formed simultaneously with the element, etc. Therefore, it can be simplified. With such a substrate,
AL made by Nippon Synthetic Rubber Co., Ltd. as an alignment film (9 in FIG. 1)
-1051 (pre-tilt angle measurement value 1 °) is formed, and as shown by the arrow in the figure, a fine stripe pattern in the pixel electrode is formed.
And the rubbing process is performed in different directions of 180 ° when the upper and lower substrates are opposed to each other, the value of θ is 90 °, and the nematic liquid crystal composition has a tilt between the upper and lower substrates. An orientation treatment was performed to obtain a uniform array. Dispersion density 1 of micro particles (particle size 5.0 μm) manufactured by Sekisui Fine Chemical Co., Ltd. was used as a substrate spacing agent on the lower substrate side so that the liquid crystal layer thickness would be 5.0 μm.
It was sprayed by a dry spraying method so as to have a density of 00 / mm 2, and a liquid crystal material having a positive dielectric anisotropy was used as a liquid crystal material between these substrates, ZLI-2293 (Δn = 0.132: λ = 5) manufactured by Merck Japan Ltd.
90 nm) was sandwiched to obtain the present liquid crystal display device.

【0074】しかる後、上基板外面にポリカ−ボネイト
からなる位相差板(R=360nm:λ=590nm)
(同1の8)を光軸が前記液晶分子配列方向と直交する
ようにはりあわせ、しかる後、その上に偏光板を吸収軸
が前記液晶分子配列方向と平行となるようはりあわせ、
また、下基板外面に、偏光板を吸収軸が前記液晶分子配
列方向と直交するようにはりあわせて、本液晶表示素子
に用いる液晶セルを得た。ここで、液晶層厚,液晶組成
物のΔnを前述した値とし、ポリカ−ボネイトからなる
位相差板をはりあわせたのは、液晶表示素子全体でのR
の値をλ/2強とするためであり、位相差板を用いて全
体での位相差を設定したのは、全体での位相差が可視光
波長全域に対し、一様な値となるようにするためであ
る。ここで、位相差板を用いず、液晶組成物のΔnを
0.065にする(例えば(株)メルクジャパン製ZL
I−1165を用いる)等して液晶表示素子を作成して
も本発明の液晶表示素子は得られる。この場合、波長分
散特性を解消するためには、入射光をカラ−フィルタ−
等を用いて分光し、各々の波長に対して駆動電圧を制御
すればよい。
Thereafter, a retardation plate made of polycarbonate is formed on the outer surface of the upper substrate (R = 360 nm: λ = 590 nm).
(8 of 1) is laminated so that the optical axis is perpendicular to the liquid crystal molecule alignment direction, and then a polarizing plate is laminated thereon so that the absorption axis is parallel to the liquid crystal molecule alignment direction.
Further, a polarizing plate was attached to the outer surface of the lower substrate so that the absorption axis was orthogonal to the liquid crystal molecule alignment direction to obtain a liquid crystal cell used in the present liquid crystal display device. Here, the thickness of the liquid crystal layer and Δn of the liquid crystal composition are set to the above-mentioned values, and the retardation plate made of polycarbonate is bonded to the liquid crystal display device.
The reason is that the value of is set to λ / 2 or more, and the phase difference of the whole is set by using the retardation plate so that the phase difference of the whole is a uniform value over the entire visible light wavelength range. This is because Here, Δn of the liquid crystal composition is set to 0.065 without using a retardation plate (for example, ZL manufactured by Merck Japan Co., Ltd.).
The liquid crystal display element of the present invention can be obtained even when a liquid crystal display element is prepared by using (for example, I-1165). In this case, in order to eliminate the chromatic dispersion characteristic, the incident light is colored by a color filter.
It is only necessary to disperse the light by using the above, and to control the drive voltage for each wavelength.

【0075】このようにして得られた本液晶表示素子に
TFDを介して電圧を印加して電気光学特性(透過率−
印加電圧曲線)を測定した。透過率−印加電圧曲線を求
めるために、液晶表示素子に3波長蛍光管のバックライ
ト光を入射させ、透過率を測定したところ図5(a)に
示す特性と同等の特性を得た。僅か3vの印加電圧にて
最大コントラストを得た。印加電圧1.5vと3v間に
おけるコントラスト比は400:1であった。
A voltage was applied to the thus obtained liquid crystal display device through the TFD to obtain electro-optical characteristics (transmittance-
The applied voltage curve) was measured. In order to obtain the transmittance-applied voltage curve, backlight light of a three-wavelength fluorescent tube was made incident on the liquid crystal display element, and the transmittance was measured. As a result, characteristics similar to those shown in FIG. 5 (a) were obtained. Maximum contrast was obtained with an applied voltage of only 3v. The contrast ratio between the applied voltage of 1.5v and 3v was 400: 1.

【0076】印加電圧1.5vと3v間において16階
調表示をした際の応答時間を各階調間において測定した
ところ、最も応答速度が遅い階調間で立上がり12m
s、立ち下がり23msと従来のTNやIPSモ−ドと
比較して極めて速い特性であった。また、前記TFDを
マルチプレックス駆動してTV表示やコンピュ−タグラ
フィック表示を行い、その階調表示性能や色再現性を観
察したところ素子正面標高のみならず、あらゆる視角方
向において階調表示の反転がなく、色再現性に優れた表
示であることが確認された。印加電圧1.5vと3v間
においてコントラスト比の視角特性を測定したところ、
視角60゜コ−ン内においてコントラスト比200:1
以上をえた。
When the response time when displaying 16 gradations between the applied voltage of 1.5 v and 3 v was measured between the gradations, the rise time was 12 m between the gradations with the slowest response speed.
s, the fall was 23 ms, which was an extremely fast characteristic as compared with the conventional TN and IPS modes. In addition, when the TFD is driven in multiplex for TV display or computer graphic display, and its gradation display performance and color reproducibility are observed, not only the element front elevation but also the gradation display inversion in every viewing angle direction. It was confirmed that the display was excellent in color reproducibility. When the viewing angle characteristics of the contrast ratio were measured between the applied voltage of 1.5v and 3v,
A contrast ratio of 200: 1 within a 60 ° viewing angle
I got the above.

【0077】(実施の形態2)図10に示すような電極
構造配置からなる上基板(出射光側基板)として、RG
Bからなるカラ−フィルタ−層を電極下に有するITO
ストライプパタ−ンニングガラス基板を用い、下基板と
してMIMからなるスイッチング素子付きガラス基板を
用いた。この電極構造は図9に示す実施の形態と同じ
で、1画素P内にRGB3色用の電極を配置したもので
ある。梯子幅が3/1になる他は図9と電極形状は変わ
らない。このMIM基板における画素電極はITOを用
いた。双方の基板の画素電極に透明なITOを用いるこ
とにより、実用上の開口率を向上させ素子の透過率を高
めた。こうした基板を用いて、配向膜として(株)日本
合成ゴム製のAL−1051(プレチルト角測定値1
゜)を形成し、図に示すように画素電極内の微細なスト
ライプパタ−ンと30゜の角度をなし、上下基板を対向
させたときに180゜方位の異なる方向にラビング処理
を施し、前述したθの値が60゜であり、ネマティック
液晶組成物が前記上下基板間でチルトを有するスプレイ
配列となる配向処理を施した。ここで液晶分子配列をθ
の値が60゜となるようにしたのは、液晶分子が電界に
より45゜以上回転するようにするためであり、また、
電界方位に対して45゜に近い角度に設定することによ
り、液晶層にかかるトルクを大きくして応答速度を速め
るためである。
(Embodiment 2) RG is used as an upper substrate (outgoing light side substrate) having an electrode structure arrangement as shown in FIG.
ITO having a color filter layer of B under the electrode
A striped pattern glass substrate was used, and a glass substrate with a switching element made of MIM was used as the lower substrate. This electrode structure is the same as that of the embodiment shown in FIG. 9, and electrodes for three colors of RGB are arranged in one pixel P. The electrode shape is the same as in FIG. 9 except that the ladder width is 3/1. ITO was used for the pixel electrode on this MIM substrate. By using transparent ITO for the pixel electrodes of both substrates, the practical aperture ratio was improved and the transmittance of the device was increased. Using such a substrate, as an alignment film, AL-1051 (pretilt angle measurement value 1 manufactured by Nippon Synthetic Rubber Co., Ltd.) was used.
) Is formed, an angle of 30 ° is formed with the fine stripe pattern in the pixel electrode as shown in the figure, and when the upper and lower substrates are opposed to each other, rubbing treatment is performed in different directions of 180 °. The value of θ was 60 °, and the nematic liquid crystal composition was subjected to an alignment treatment so as to form a splay alignment having a tilt between the upper and lower substrates. Where the liquid crystal molecular alignment is θ
The value of is set to 60 ° in order to rotate the liquid crystal molecules by 45 ° or more due to the electric field.
This is because the torque applied to the liquid crystal layer is increased and the response speed is increased by setting the angle close to 45 ° with respect to the electric field direction.

【0078】また、分子配列をスプレイ配列としたの
は、液晶分子配列を中性にして液晶分子配列を常に安定
化させるためである。この液晶分子配列を常に安定化さ
せる目的を実現する他の実施形態としては、チルトを有
さないユニフォ−ム配列がある。具体的には、配向膜に
微細な凹凸をパタ−ニング等により形成する手法や、配
向膜に偏光した紫外線を照射する方法や、斜方蒸着法、
高分子膜延伸法、DIP法膜付け、転写法、LB膜、光
異性化法、磁場配向法、流動配向法、温度勾配法、ずり
応力法ぎばなどがあげられる。また、チルトを有するユ
ニフォ−ム配列を用いても、前記電極構成により得られ
る斜め電界の傾きに応じてユニフォ−ム配列のチルト方
位を設定すれば、液晶分子配列は常に安定化する。これ
の具体的な実施形態としては前述したDDTNに用いら
れているような配向分割手法が適用できる。
Further, the reason why the molecular alignment is the splay alignment is that the liquid crystal molecular alignment is neutralized and the liquid crystal molecular alignment is always stabilized. Another embodiment for realizing the purpose of always stabilizing the liquid crystal molecule arrangement is a uniform arrangement having no tilt. Specifically, a method of forming fine unevenness on the alignment film by patterning or the like, a method of irradiating the alignment film with polarized ultraviolet rays, or an oblique vapor deposition method,
Polymer film stretching method, DIP method film attachment, transfer method, LB film, photoisomerization method, magnetic field orientation method, flow orientation method, temperature gradient method, shear stress method Giba and the like can be mentioned. Even when a uniform alignment having a tilt is used, the liquid crystal molecular alignment is always stabilized by setting the tilt azimuth of the uniform alignment according to the tilt of the oblique electric field obtained by the electrode configuration. As a concrete embodiment of this, the orientation division method as used in the above-mentioned DDTN can be applied.

【0079】しかる後、下基板側に基板間隙剤として液
晶層厚が5.0μmとなるよう(株)積水ファインケミ
カル製の微粒子:ミクロパ−ル(粒径5.0μm)を分
散密度100個/mm2 となるよう乾式散布法にて散布
して、これら基板間に誘電異方性が正の液晶材料として
(株)メルクジャパン製ZLI−2293(Δn=0.13
2:λ=590nm)を挟持して本発明の液晶表示素子を
得た。
Then, microparticles (particle size: 5.0 μm) manufactured by Sekisui Fine Chemical Co., Ltd., having a dispersion density of 100 particles / mm, were used as a substrate spacing agent on the lower substrate side so that the liquid crystal layer had a thickness of 5.0 μm. It was sprayed by a dry spraying method so as to be 2 and a liquid crystal material having positive dielectric anisotropy was used as a liquid crystal material between these substrates ZLI-2293 (Δn = 0.13 manufactured by Merck Japan Ltd.).
2: λ = 590 nm) was sandwiched to obtain a liquid crystal display device of the present invention.

【0080】しかる後、上基板外面にポリカ−ボネイト
からなる位相差板(R=360nm:λ=590nm)
を光軸が前記液晶分子配列方向と直交するようにはりあ
わせ、しかる後、その上に偏光板を吸収軸が前記液晶分
子配列方向と平行となるようはりあわせ、また、下基板
外面に、偏光板を吸収軸が前記液晶分子配列方向と直交
するようにはりあわせて、本発明の液晶表示素子に用い
る液晶セルを得た。
After that, a retardation plate made of polycarbonate (R = 360 nm: λ = 590 nm) is formed on the outer surface of the upper substrate.
Is aligned so that the optical axis is orthogonal to the liquid crystal molecule alignment direction, and then a polarizing plate is bonded thereon so that the absorption axis is parallel to the liquid crystal molecule alignment direction, and the polarization is applied to the outer surface of the lower substrate. The plates were laminated so that the absorption axis was perpendicular to the liquid crystal molecule alignment direction to obtain a liquid crystal cell used in the liquid crystal display device of the present invention.

【0081】このようにして得られた本発明の液晶表示
素子にTFDを介して電圧を印加して電気光学特性(透
過率−印加電圧曲線)を測定した。透過率−印加電圧曲
線を求めるために、液晶表示素子に3波長管のバックラ
イト光を入射させ、透過率を測定したところ図5(c)
に示す特性と同等の特性を得た。僅か4vの印加電圧に
て最大コントラストを得た。印加電圧1.5vと4v間
におけるコントラスト比は400:1であった。印加電
圧1.5vと4v間において16階調表示をした際の応
答時間を各階調間において測定したところ、最も応答速
度が遅い階調間で立上がり7ms、立ち下がり15ms
と従来のTNやIPSモ−ドと比較して極めて速い特性
であった。また、前述したθ=90゜のセルと比較し
て、より速いあたいであった。また、前記TFDをマル
チプレックス駆動してTV表示やコンピュ−タグラフィ
ック表示を行い、その階調表示性能や色再現性を観察し
たところ素子正面標高のみならず、あらゆる視角方向に
おいて階調表示の反転がなく、色再現性に優れた表示で
あることが確認された。印加電圧1.5vと4v間にお
いてコントラスト比の視角特性を測定したところ、視角
60゜コ−ン内においてコントラスト比200:1以上
をえた。
A voltage was applied to the thus obtained liquid crystal display device of the present invention via TFD, and the electro-optical characteristics (transmittance-applied voltage curve) were measured. In order to obtain a transmittance-applied voltage curve, backlight of a three-wavelength tube was made incident on the liquid crystal display element, and the transmittance was measured.
The characteristics equivalent to those shown in were obtained. Maximum contrast was obtained with an applied voltage of only 4v. The contrast ratio between the applied voltage of 1.5v and 4v was 400: 1. When the response time when displaying 16 gradations between the applied voltage of 1.5v and 4v was measured between the gradations, the rising time was 7ms and the falling time was 15ms between the gradations with the slowest response speed.
The characteristics were extremely fast as compared with the conventional TN and IPS modes. In addition, it was faster than the above-mentioned cell of θ = 90 °. In addition, when the TFD is driven in multiplex for TV display or computer graphic display, and its gradation display performance and color reproducibility are observed, not only the element front elevation but also the gradation display inversion in every viewing angle direction. It was confirmed that the display was excellent in color reproducibility. When the viewing angle characteristic of the contrast ratio was measured between the applied voltage of 1.5 v and 4 v, the contrast ratio was 200: 1 or more within the viewing angle of 60 °.

【0082】(実施の形態3)図12に示すような構造
からなる上基板(出射光側基板)として、RGBからな
るカラ−フィルタ−層を電極下に有するITOべた電極
つきガラス基板を用い、下基板としてTFTからなるス
イッチング素子付きガラス基板を用いた。すなわち図1
0に示す実施の形態2と変わるところはスイッチング素
子にTFT18−2を用いることであり、このため、対
抗する下基板すなわち光側基板の電極6は非導体部6−
3を複数個有するべた電極となる。のTFT基板におけ
る画素電極はITOを用いた。双方の基板の画素電極に
透明なITOを用いることにより、実用上の開口率を向
上させ素子の透過率を高めた。こうした基板を用いて、
配向膜として(株)日本合成ゴム製のAL−1051
(プレチルト角測定値1゜)を形成し、図に示すように
画素電極内の微細なストライプパタ−ンと60゜の角度
をなし、上下基板を対向させたときに180゜方位の異
なる方向にラビング処理を施し、前述したθの値が30
゜であり、ネマティック液晶組成物が前記上下基板間で
チルトを有するユニフォ−ム配列となる配向処理を施し
た。ここでは誘電異方性が負のネマティック液晶を用い
ており、ここで液晶分子配列をθの値が30゜となるよ
うにしたのは、液晶分子が電界により45゜以上回転す
るようにするためであり、また、電界方位に対して45
゜に近い角度に設定することにより、液晶層にかかるト
ルクを大きくして応答速度を速めるためである。また、
分子配列をユニフォ−ム配列としたのは、液晶分子配列
を常に安定化させるためである。
(Embodiment 3) A glass substrate with an ITO solid electrode having a color filter layer made of RGB under the electrode is used as an upper substrate (outgoing light side substrate) having a structure as shown in FIG. A glass substrate with a switching element made of TFT was used as the lower substrate. That is, FIG.
The difference from the second embodiment shown in FIG. 0 is that the TFT 18-2 is used as the switching element. Therefore, the electrode 6 of the lower substrate, ie, the light side substrate, which opposes the non-conductor portion 6-
It becomes a solid electrode having a plurality of 3. ITO was used for the pixel electrode on the TFT substrate. By using transparent ITO for the pixel electrodes of both substrates, the practical aperture ratio was improved and the transmittance of the device was increased. With such a substrate,
AL-1051 manufactured by Nippon Synthetic Rubber Co., Ltd. as an alignment film
(Measured value of pretilt angle 1 °) is formed, and it makes an angle of 60 ° with the fine stripe pattern in the pixel electrode as shown in the figure. After rubbing treatment, the value of θ is 30
And the nematic liquid crystal composition was subjected to an alignment treatment so that the nematic liquid crystal composition has a uniform alignment having a tilt between the upper and lower substrates. Here, a nematic liquid crystal having a negative dielectric anisotropy is used, and the liquid crystal molecule is arranged so that the value of θ is 30 ° in order to rotate the liquid crystal molecule by 45 ° or more by the electric field. And 45 with respect to the electric field direction.
This is because the torque applied to the liquid crystal layer is increased and the response speed is increased by setting the angle close to °. Also,
The reason why the molecular alignment is uniform is that the liquid crystal molecular alignment is always stabilized.

【0083】しかる後、下基板側に基板間隙剤として液
晶層厚が5.0μmとなるよう(株)積水ファインケミ
カル製の微粒子:ミクロパ−ル(粒径5.0μm)を分
散密度100個/mm2 となるよう乾式散布法にて散布
して、これら基板間に誘電異方性が負の液晶材料として
(株)メルクジャパン製ZLI−4330(Δn=0.14
7:λ=590nm)を挟持して本発明の液晶表示素子を
得た。
Thereafter, fine particles (microparticles: particle size: 5.0 μm) manufactured by Sekisui Fine Chemical Co., Ltd. having a dispersion density of 100 particles / mm were used as a substrate spacing agent on the lower substrate side so that the liquid crystal layer had a thickness of 5.0 μm. 2 by a dry spraying method, and ZLI-4330 (Δn = 0.14) manufactured by Merck Japan Ltd. as a liquid crystal material having a negative dielectric anisotropy between the substrates.
7: λ = 590 nm) was sandwiched to obtain a liquid crystal display device of the present invention.

【0084】しかる後、上基板外面にポリカ−ボネイト
からなる位相差板(R=360nm:λ=590nm)
を光軸が前記液晶分子配列方向と直交するようにはりあ
わせ、しかる後、その上に偏光板を吸収軸が前記液晶分
子配列方向と平行となるようはりあわせ、また、下基板
外面に、偏光板を吸収軸が前記液晶分子配列方向と直交
するようにはりあわせて、本発明の液晶表示素子に用い
る液晶セルを得た。
After that, a retardation plate made of polycarbonate on the outer surface of the upper substrate (R = 360 nm: λ = 590 nm)
Is aligned so that the optical axis is orthogonal to the liquid crystal molecule alignment direction, and then a polarizing plate is bonded thereon so that the absorption axis is parallel to the liquid crystal molecule alignment direction, and the polarization is applied to the outer surface of the lower substrate. The plates were laminated so that the absorption axis was perpendicular to the liquid crystal molecule alignment direction to obtain a liquid crystal cell used in the liquid crystal display device of the present invention.

【0085】このようにして得られた本発明の液晶表示
素子にTFDを介して電圧を印加して電気光学特性(透
過率−印加電圧曲線)を測定した。透過率−印加電圧曲
線を求めるために、液晶表示素子に3波長管のバックラ
イト光を入射させ、透過率を測定したところ図5(c)
にし酢特性と同等の特性を得た。僅か4vの印加電圧に
て最大コントラストを得た。印加電圧1.5vと4v間
におけるコントラスト比は400:1であった。印加電
圧1.5vと4v間において16階調表示をした際の応
答時間を各階調間において測定したところ、最も応答速
度が遅い階調間で立上がり7ms、立ち下がり15ms
と従来のTNやIPSモ−ドと比較して極めて速い特性
であった。また、前述したθ=90゜のセルと比較し
て、より速いあたいであった。また、前記TFTをTF
T駆動してTV表示やコンピュ−タグラフィック表示を
行い、その階調表示性能や色再現性を観察したところ素
子正面標高のみならず、あらゆる視角方向において階調
表示の反転がなく、色再現性に優れた表示であることが
確認された。印加電圧1.5vと4v間においてコント
ラスト比の視角特性を測定したところ、視角60゜コ−
ン内においてコントラスト比200:1以上をえた。
A voltage was applied to the thus obtained liquid crystal display device of the present invention through TFD to measure electro-optical characteristics (transmittance-applied voltage curve). In order to obtain a transmittance-applied voltage curve, backlight of a three-wavelength tube was made incident on the liquid crystal display element, and the transmittance was measured.
The same characteristics as the vinegar characteristics were obtained. Maximum contrast was obtained with an applied voltage of only 4v. The contrast ratio between the applied voltage of 1.5v and 4v was 400: 1. When the response time when displaying 16 gradations between the applied voltage of 1.5v and 4v was measured between the gradations, the rising time was 7ms and the falling time was 15ms between the gradations with the slowest response speed.
The characteristics were extremely fast as compared with the conventional TN and IPS modes. In addition, it was faster than the above-mentioned cell of θ = 90 °. In addition, the TFT is TF
When the T display is used for TV display or computer graphic display, and the gradation display performance and color reproducibility are observed, there is no reversal of the gradation display not only in the elevation elevation of the element but also in any viewing angle direction, and color reproducibility. It was confirmed that the display was excellent. When the viewing angle characteristics of the contrast ratio were measured between the applied voltage of 1.5v and 4v, the viewing angle was 60 °.
In contrast, a contrast ratio of 200: 1 or more was obtained.

【0086】(実施の形態4)図11に示すような構造
からなる上基板(出射光側基板)として、ITOべた電
極つきガラス基板を用い、下基板としてTFTからなる
スイッチング素子付きガラス基板を用いた。すなわち図
9、図示の実施の形態1と変わるところはスイッチング
素子にTFT18−2を用いることであり、このため対
抗する下基板すなわち光側基板の電極6は非導体部6−
3を複数個有するべた電極となる。このTFT基板にお
ける画素電極はITOを用いた。双方の基板の画素電極
に透明なITOを用いることにより、実用上の開口率を
向上させ素子の透過率を高めた。こうした基板を用い
て、配向膜として(株)日本合成ゴム製のAL−105
1(プレチルト角測定値1゜)を形成し、図に示すよう
に画素電極内の微細なストライプパタ−ンと85゜の角
度をなし、上下基板を対向させたときに180゜方位の
異なる方向にラビング処理を施し、前述したθの値が5
゜であり、ネマティック液晶組成物が前記上下基板間で
チルトを有するスプレイ配列となる配向処理を施した。
ここでは誘電異方性が負のネマティック液晶を用いてお
り、ここで液晶分子配列をθの値が5゜となるようにし
たのは、液晶分子が電界により45゜以上回転するよう
にするためであり、また、回転の度合いを高めることに
より駆動電圧を低減するためである。また、分子配列を
スプレイ配列としたのは、液晶分子配列を中性にして液
晶分子配列を常に安定化させるためである。
(Embodiment 4) A glass substrate with an ITO solid electrode is used as an upper substrate (emission light side substrate) having a structure as shown in FIG. 11, and a glass substrate with a switching element made of TFT is used as a lower substrate. I was there. That is, what is different from the first embodiment shown in FIG. 9 is that the TFT 18-2 is used as a switching element. Therefore, the electrode 6 of the lower substrate, ie, the light-side substrate, which opposes the non-conductor portion 6-.
It becomes a solid electrode having a plurality of 3. ITO was used for the pixel electrode on this TFT substrate. By using transparent ITO for the pixel electrodes of both substrates, the practical aperture ratio was improved and the transmittance of the device was increased. Using such a substrate, AL-105 manufactured by Nippon Synthetic Rubber Co., Ltd. is used as an alignment film.
1 (pre-tilt angle measurement value 1 °) is formed, and an angle of 85 ° is formed with the fine stripe pattern in the pixel electrode as shown in the figure, and when the upper and lower substrates are opposed to each other, 180 ° azimuth directions are different. Rubbing treatment is applied, and the above-mentioned value of θ is 5
And the nematic liquid crystal composition was subjected to an alignment treatment so that the nematic liquid crystal composition has a splay alignment having a tilt between the upper and lower substrates.
Here, a nematic liquid crystal having a negative dielectric anisotropy is used. Here, the liquid crystal molecule arrangement is made so that the value of θ is 5 ° in order to rotate the liquid crystal molecules by 45 ° or more by the electric field. This is also for reducing the drive voltage by increasing the degree of rotation. Further, the reason why the molecular alignment is the splay alignment is that the liquid crystal molecular alignment is neutralized and the liquid crystal molecular alignment is always stabilized.

【0087】しかる後、下基板側に基板間隙剤として液
晶層厚が5.0μmとなるよう(株)積水ファインケミ
カル製の微粒子:ミクロパ−ル(粒径5.0μm)を分
散密度100個/mm2 となるよう乾式散布法にて散布
して、これら基板間に誘電異方性が負の液晶材料として
(株)メルクジャパン製ZLI−4330(Δn=0.14
7:λ=590nm)を挟持して本発明の液晶表示素子を
得た。
Thereafter, fine particles (microparticles: particle size 5.0 μm) manufactured by Sekisui Fine Chemical Co., Ltd. having a liquid crystal layer thickness of 5.0 μm were dispersed on the lower substrate side so that the liquid crystal layer thickness was 5.0 μm. 2 by a dry spraying method, and ZLI-4330 (Δn = 0.14) manufactured by Merck Japan Ltd. as a liquid crystal material having a negative dielectric anisotropy between the substrates.
7: λ = 590 nm) was sandwiched to obtain a liquid crystal display device of the present invention.

【0088】しかる後、上基板外面にポリカ−ボネイト
からなる位相差板(R=360nm:λ=590nm)
を光軸が前記液晶分子配列方向と直交するようにはりあ
わせ、しかる後、その上に偏光板を吸収軸が前記液晶分
子配列方向と平行となるようはりあわせ、また、下基板
外面に、偏光板を吸収軸が前記液晶分子配列方向と直交
するようにはりあわせて、本発明の液晶表示素子に用い
る液晶セルを得た。
After that, a retardation plate made of polycarbonate (R = 360 nm: λ = 590 nm) is formed on the outer surface of the upper substrate.
Is aligned so that the optical axis is orthogonal to the liquid crystal molecule alignment direction, and then a polarizing plate is bonded thereon so that the absorption axis is parallel to the liquid crystal molecule alignment direction. The plates were laminated so that the absorption axis was perpendicular to the liquid crystal molecule alignment direction to obtain a liquid crystal cell used in the liquid crystal display device of the present invention.

【0089】このようにして得られた本発明の液晶表示
素子にTFDを介して電圧を印加して電気光学特性(透
過率−印加電圧曲線)を測定した。透過率−印加電圧曲
線を求めるために、液晶表示素子に3波長管のバックラ
イト光を入射させ、透過率を測定したところ図5(a)
にし酢特性と同等の特性を得た。僅か3vの印加電圧に
て最大コントラストを得た。印加電圧1.5vと4v間
におけるコントラスト比は400:1であった。印加電
圧1.5vと3v間において16階調表示をした際の応
答時間を各階調間において測定したところ、最も応答速
度が遅い階調間で立上がり7ms、立ち下がり15ms
と従来のTNやIPSモ−ドと比較して極めて速い特性
であった。また、前述したθ=90゜のセルと比較し
て、より速い値であった。
A voltage was applied to the thus obtained liquid crystal display device of the present invention through TFD to measure electro-optical characteristics (transmittance-applied voltage curve). In order to obtain the transmittance-applied voltage curve, the backlight of a three-wavelength tube was made incident on the liquid crystal display element, and the transmittance was measured.
The same characteristics as the vinegar characteristics were obtained. Maximum contrast was obtained with an applied voltage of only 3v. The contrast ratio between the applied voltage of 1.5v and 4v was 400: 1. When the response time when displaying 16 gradations between the applied voltage of 1.5v and 3v is measured between the gradations, the rising time is 7ms and the falling time is 15ms between the gradations with the slowest response speed.
The characteristics were extremely fast as compared with the conventional TN and IPS modes. The value was faster than that of the above-mentioned cell of θ = 90 °.

【0090】また、前記TFTをTFT駆動してTV表
示やコンピュ−タグラフィック表示を行い、その階調表
示性能や色再現性を観察したところ素子正面方向のみな
らず、あらゆる視角方向において階調表示の反転がな
く、色再現性に優れた表示であることが確認された。印
加電圧1.5vと3v間においてコントラスト比の視角
特性を測定したところ、視角60゜コ−ン内においてコ
ントラスト比200:1以上をえた。
Further, when the TFT is driven by TFT to perform TV display or computer graphic display, and the gradation display performance and color reproducibility thereof are observed, gradation display is performed not only in the front direction of the element but also in any viewing angle direction. It was confirmed that there was no inversion and the display was excellent in color reproducibility. When the viewing angle characteristic of the contrast ratio was measured between the applied voltage of 1.5 v and 3 v, the contrast ratio was 200: 1 or more within the viewing angle of 60 °.

【0091】なお、上記実施の形態で、特有の材料を用
い、特有の製法にて液晶表示素子を得ているが、本発明
の作用を得る材料及び条件であれば同様の効果を得るこ
とはいうまでも無く、また、スイイチング素子を用い
ず、スタティック駆動しても単純マトリクス駆動による
マルチプレックス駆動しても、同様の効果は得られる。
In the above embodiment, a liquid crystal display device is obtained by using a unique material and a unique manufacturing method. However, the same effect can be obtained as long as the material and conditions are such that the action of the present invention can be obtained. Needless to say, the same effect can be obtained by performing static drive or simple matrix drive multiplex drive without using a switching element.

【0092】[0092]

【発明の効果】本発明によれば視野角が広く、透過率が
高く、高速応答であり、色再現性に優れた液晶表示素子
が得られる。
According to the present invention, a liquid crystal display device having a wide viewing angle, high transmittance, high-speed response and excellent color reproducibility can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶表示素子の構成を説明するもの
で、(a)は光学構成の略図、(b)は平面図、(c)
は断面構成図、
1A and 1B are views for explaining the configuration of a liquid crystal display device of the present invention, where FIG. 1A is a schematic diagram of an optical configuration, FIG. 1B is a plan view, and FIG.
Is a cross-sectional diagram,

【図2】従来技術のOCBモ−ドの構成を説明する図、FIG. 2 is a diagram for explaining the configuration of an OCB mode of the prior art;

【図3】(a)乃至(e)は本発明の液晶表示素子の電
界、電気力線、液晶分子配列、θを説明する略図、
3A to 3E are schematic diagrams for explaining electric field, lines of electric force, liquid crystal molecule alignment, and θ of the liquid crystal display element of the present invention,

【図4】ECBモ−ドの透過光強度の計算結果を示す曲
線図、
FIG. 4 is a curve diagram showing a calculation result of transmitted light intensity of an ECB mode,

【図5】本発明の液晶表示素子の電気光学特性の測定結
果を示す曲線図、
FIG. 5 is a curve diagram showing measurement results of electro-optical characteristics of the liquid crystal display device of the present invention,

【図6】本発明の液晶表示素子の電気光学特性の波長分
散特性の測定結果の一例を示す曲線図、
FIG. 6 is a curve diagram showing an example of measurement results of wavelength dispersion characteristics of electro-optical characteristics of the liquid crystal display element of the present invention,

【図7】本発明の液晶表示素子の電気光学特性の測定結
果を示す曲線図、
FIG. 7 is a curve diagram showing measurement results of electro-optical characteristics of the liquid crystal display device of the present invention,

【図8】(a)乃至(c)は本発明の液晶表示素子の光
学層のリタ−デ−ション値と位相差R/λの波長分散特
性を説明する曲線図、
8A to 8C are curve diagrams illustrating wavelength dispersion characteristics of retardation value and phase difference R / λ of the optical layer of the liquid crystal display device of the present invention,

【図9】本発明の液晶表示素子の1実施の形態を説明す
るもので、(a)は上基板画素形状の平面図、(b)は
上基板の有効表示領域の平面図、(c)は下基板画素形
状の平面図、(d)は下基板の有効表示領域の平面図、
9A and 9B are views for explaining one embodiment of a liquid crystal display device of the present invention, where FIG. 9A is a plan view of an upper substrate pixel shape, FIG. 9B is a plan view of an effective display region of the upper substrate, and FIG. Is a plan view of the lower substrate pixel shape, (d) is a plan view of the effective display area of the lower substrate,

【図10】本発明の他の実施の形態を説明するもので、
(a)は上基板画素形状の平面図、(b)は上基板の有
効表示領域の平面図、(c)は下基板画素形状の平面
図、(d)は下基板の有効表示領域の平面図、
FIG. 10 illustrates another embodiment of the present invention.
(A) is a plan view of the upper substrate pixel shape, (b) is a plan view of the effective display area of the upper substrate, (c) is a plan view of the lower substrate pixel shape, and (d) is a plan view of the effective display area of the lower substrate. Figure,

【図11】本発明の他の実施の形態を説明するもので、
(a)は上基板画素形状の平面図、(b)は上基板の有
効表示領域の平面図、(c)は下基板画素形状の平面
図、(d)は下基板の有効表示領域の平面図、
FIG. 11 illustrates another embodiment of the present invention.
(A) is a plan view of the upper substrate pixel shape, (b) is a plan view of the effective display area of the upper substrate, (c) is a plan view of the lower substrate pixel shape, and (d) is a plan view of the effective display area of the lower substrate. Figure,

【図12】本発明の他の実施の形態を説明するもので、
(a)は上基板画素形状の平面図、(b)は上基板の有
効表示領域の平面図、(c)は下基板画素形状の平面
図、(d)は下基板の有効表示領域の平面図、
FIG. 12 illustrates another embodiment of the present invention.
(A) is a plan view of the upper substrate pixel shape, (b) is a plan view of the effective display area of the upper substrate, (c) is a plan view of the lower substrate pixel shape, and (d) is a plan view of the effective display area of the lower substrate. Figure,

【図13】(a)乃至(d)は本発明の作用を説明する
略図。
13 (a) to (d) are schematic diagrams for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1、2…基板 3、4…偏光板 5、6…電極 7…液晶層 8…位相差板 5−2、6−2…導電体部 5−3、6−3…非導電体部 1, 2 ... Substrate 3, 4 ... Polarizing plate 5, 6 ... Electrode 7 ... Liquid crystal layer 8 ... Retardation plate 5-2, 6-2 ... Conductor part 5-3, 6-3 ... Non-conductor part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 佐藤 摩希子 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Hato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company Toshiba Yokohama office (72) Inventor Makiko Sato 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Company Toshiba Yokohama Office

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 2枚の偏光板間に対向して複数の画素を
形成する電極をそれぞれ有する2枚の基板間に液晶層を
挟持してなる液晶表示素子において、前記両基板の電極
が画素毎に、微細な領域を単位とした導電体部と非導電
体部からなり、前記両基板電極の素子法線方向での断面
形状を見た時、一方の基板のみに導電体部を有する幅R
E、及び他方の基板のみに導電体部を有する幅FE、両
基板とも非導電体部である幅SSが順に、 RE・SS・FE・SS・RE・SS・FE・SS・…
…とSSを挟んでREとFEが交互に配置される断面形
状となっており、かつ少なくとも各画素毎にRE、FE
それぞれが画素のどこかで電気的に一つにつながった電
極構造からなり、前記液晶層に斜め電界を印加できる構
造としたことを特徴とする液晶表示素子。
1. A liquid crystal display device comprising a liquid crystal layer sandwiched between two substrates each having electrodes forming a plurality of pixels facing each other between two polarizing plates, wherein the electrodes on both substrates are pixels. Each of them consists of a conductor part and a non-conductor part in a unit of a fine region, and when the cross-sectional shape of the substrate electrodes in the element normal direction is seen, the width having the conductor part only on one substrate R
E, a width FE having a conductor portion only on the other substrate, and a width SS which is a non-conductor portion on both substrates in order are RE, SS, FE, SS, RE, SS, FE, SS, ...
And SS are sandwiched between RE and FE, and RE and FE are arranged at least for each pixel.
A liquid crystal display device, characterized in that each of them has an electrode structure electrically connected to one another somewhere in the pixel, and has a structure capable of applying an oblique electric field to the liquid crystal layer.
【請求項2】 前記電極の少なくとも一部がITO、S
nOxなどからなる透明電極であることを特徴とする請
求項1の液晶表示素子。
2. At least a part of the electrode is ITO, S
The liquid crystal display element according to claim 1, which is a transparent electrode made of nOx or the like.
【請求項3】 前記液晶層が正の誘電異方性からなるネ
マティック液晶組成物からなり、前記ネマティック液晶
組成物は、前記液晶表示素子に電圧を印加しない状態に
おいて、液晶表示素子平面と略平行かつ、液晶表示素子
平面での方位が一様である分子配列であり、隣接する前
記FE,RE間に印加できる斜め電界の液晶表示素子平
面での方位(スカラ−E)と液晶分子の液晶表示素子平
面での方位(スカラ−LC)のなす角θが、45゜乃至
90゜であることを特徴とする請求項1または2記載の
液晶表示素子。
3. The liquid crystal layer is composed of a nematic liquid crystal composition having a positive dielectric anisotropy, and the nematic liquid crystal composition is substantially parallel to the plane of the liquid crystal display element when no voltage is applied to the liquid crystal display element. In addition, the orientation of molecules is such that the orientation is uniform in the plane of the liquid crystal display element, and the orientation (scalar-E) in the plane of the liquid crystal display element of the oblique electric field that can be applied between the adjacent FE and RE and the liquid crystal display of the liquid crystal molecules. 3. The liquid crystal display device according to claim 1, wherein an angle [theta] formed by an azimuth (scalar-LC) on the device plane is 45 [deg.] To 90 [deg.].
【請求項4】 前記スカラ−Eとスカラ−LCのなす角
θが、45゜乃至60゜であることを特徴とする請求項
3記載の液晶表示素子。
4. The liquid crystal display device according to claim 3, wherein an angle θ formed by the scalar E and the scalar LC is 45 ° to 60 °.
【請求項5】 前記スカラ−Eとスカラ−LCのなす角
θが、80゜乃至90゜の時、前記液晶表示素子に電圧
を印加しない状態において前記液晶分子配列が、チルト
を有するユニフォ−ム配列であり、前記スカラ−Eとス
カラ−LCのなす角θが、45゜乃至80゜未満の時、
前記液晶表示素子に電圧を印加しない状態において前記
液晶分子配列が、スプレイ配列もしくはチルトを有さな
い(前記液晶表示素子平面に平行である)ユニフォ−ム
配列からなり、前記電極構造により得られる斜め電界及
び前記液晶分子配列により、前記液晶表示素子に電圧を
印加した状態における液晶分子の捩じれ方向が規定され
ことを特徴とする請求項4記載の液晶表示素子。
5. When the angle θ formed by the scalar E and the scalar LC is 80 ° to 90 °, the liquid crystal molecule array has a tilt in a uniform state when no voltage is applied to the liquid crystal display element. When the angle θ between the scalar E and the scalar LC is 45 ° to less than 80 °,
The liquid crystal molecule array in the state where no voltage is applied to the liquid crystal display element is a splay array or a uniform array having no tilt (parallel to the liquid crystal display element plane), 5. The liquid crystal display element according to claim 4, wherein the twisting direction of the liquid crystal molecules in a state where a voltage is applied to the liquid crystal display element is defined by the electric field and the alignment of the liquid crystal molecules.
【請求項6】 前記液晶層が負の誘電異方性からなるネ
マティック液晶組成物からなり、前記ネマティック液晶
組成物は、前記液晶表示素子に電圧を印加しない状態に
おいて、液晶表示素子平面と略平行かつ、液晶表示素子
平面での方位が一様である分子配列であり、隣接する前
記FE,RE間に印加できる斜め電界の液晶表示素子平
面での方位(スカラ−E)と液晶分子の液晶表示素子平
面での方位(スカラ−LC)のなす角θが、0゜乃至4
5゜であることを特徴とする請求項1または、2記載の
液晶表示素子。
6. The liquid crystal layer is made of a nematic liquid crystal composition having a negative dielectric anisotropy, and the nematic liquid crystal composition is substantially parallel to a plane of the liquid crystal display element when no voltage is applied to the liquid crystal display element. In addition, the orientation of molecules is such that the orientation is uniform in the plane of the liquid crystal display element, and the orientation (scalar E) in the plane of the liquid crystal display element of an oblique electric field that can be applied between the adjacent FE and RE and the liquid crystal display of the liquid crystal molecules The angle θ formed by the azimuth (scalar-LC) on the element plane is 0 ° to 4
The liquid crystal display device according to claim 1 or 2, wherein the liquid crystal display device has an angle of 5 °.
【請求項7】 前記スカラ−Eとスカラ−LCのなす角
θが、30゜乃至45゜であることを特徴とする請求項
6記載の液晶表示素子。
7. The liquid crystal display device according to claim 6, wherein an angle θ formed by the scalar E and the scalar LC is 30 ° to 45 °.
【請求項8】 前記スカラ−Eとスカラ−LCのなす角
θが、0゜乃至10゜未満の時、前記液晶表示素子に電
圧を印加しない状態において前記液晶分子配列が、スプ
レイ配列もしくはチルトを有さない(前記液晶表示素子
平面に平行である)ユニフォ−ム配列からなり、前記ス
カラ−Eとスカラ−LCのなす角θが、10゜乃至45
゜の時、前記液晶表示素子に電圧を印加しない状態にお
いて前記液晶分子配列が、チルトを有するユニフォ−ム
配列であり、前記電極構造により得られる斜め電界及び
前記液晶分子配列により、前記液晶表示素子に電圧を印
加した状態における液晶分子の捩じれ方向が規定されこ
とを特徴とする請求項1、2、6及び7記載の液晶表示
素子。
8. When the angle θ between the scalar-E and the scalar-LC is 0 ° to less than 10 °, the liquid crystal molecular alignment is splayed or tilted when no voltage is applied to the liquid crystal display element. It has a uniform array (not parallel to the plane of the liquid crystal display element), and the angle θ formed by the scalar E and the scalar LC is 10 ° to 45 °.
When the liquid crystal display element is at a temperature of 0 °, the liquid crystal molecule array is a uniform array having a tilt when no voltage is applied to the liquid crystal display element, and the liquid crystal display element is formed by the oblique electric field and the liquid crystal molecule array obtained by the electrode structure. 8. The liquid crystal display device according to claim 1, wherein the twisting direction of the liquid crystal molecules is defined in the state where a voltage is applied to the liquid crystal display device.
【請求項9】 前記スカラ−Eとスカラ−LCのなす角
θが45゜乃至80゜未満の時、 もしくは請求項6の液晶表示素子であり、前記スカラ−
Eとスカラ−LCのなす角θが0゜乃至10゜未満の
時、 前記液晶表示素子に電圧を印加しない状態において前記
液晶分子配列が、チルトを有するユニフォ−ム配列であ
り、 前記液晶分子のチルト方位が、前記斜め電界の方位毎に
異なるよう少なくとも2種の方位からなる配向分割がな
されていることを特徴とする請求項1、2、3、及び6
のいずれかに記載の液晶表示素子。
9. The liquid crystal display device according to claim 6, wherein the angle θ formed by the scalar E and the scalar LC is between 45 ° and less than 80 °.
When the angle θ formed by E and the scalar LC is 0 ° to less than 10 °, the liquid crystal molecule array is a uniform array having a tilt in a state where no voltage is applied to the liquid crystal display element. 7. The orientation division comprising at least two types of orientations is made so that the tilt orientation is different for each orientation of the oblique electric field.
5. The liquid crystal display device according to any one of 1.
【請求項10】 前記液晶層により生ずる位相差の波長
依存性を解消するように前記偏光板間に位相差板、光学
補償板もしくはこれらの機能を得る膜を加えた構造から
なることを特徴とした請求項1乃至9のいずれかに記載
の液晶表示素子。
10. A structure having a structure in which a retardation plate, an optical compensation plate, or a film having these functions is added between the polarizing plates so as to eliminate the wavelength dependence of the phase difference caused by the liquid crystal layer. 10. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is a liquid crystal display device.
【請求項11】 前記2枚の偏光板は、その吸収軸が直
交するよう配置されており、前記液晶表示素子に電圧を
印加しない状態において前記液晶分子の液晶表示素子平
面での配列方位が、前記2枚の偏光板の一方の吸収軸と
平行に配置されていることを特徴とした請求項1乃至1
0のいずれかに記載の液晶表示素子。
11. The two polarizing plates are arranged such that their absorption axes are orthogonal to each other, and the alignment orientation of the liquid crystal molecules in the liquid crystal display element plane in a state where no voltage is applied to the liquid crystal display element, The polarizing plate is arranged parallel to one absorption axis of the two polarizing plates.
0. The liquid crystal display element according to 0.
【請求項12】 少なくとも一方の基板がスイッチング
素子を有するアクティブマトリクス基板であることを特
徴とした請求項1乃至11のいずれかに記載の液晶表示
素子。
12. The liquid crystal display element according to claim 1, wherein at least one of the substrates is an active matrix substrate having a switching element.
【請求項13】 少なくとも一方の基板にカラ−フィル
タ−を有することを特徴とした請求項1乃至12のいず
れかに記載の液晶表示素子。
13. The liquid crystal display device according to claim 1, wherein at least one of the substrates has a color filter.
JP32030095A 1995-12-08 1995-12-08 Liquid crystal display element Pending JPH09160042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32030095A JPH09160042A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32030095A JPH09160042A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH09160042A true JPH09160042A (en) 1997-06-20

Family

ID=18119964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32030095A Pending JPH09160042A (en) 1995-12-08 1995-12-08 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH09160042A (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228016A (en) * 1997-02-13 1998-08-25 Nec Corp Active matrix liquid crystal display panel
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
US6642984B1 (en) 1998-12-08 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display apparatus having wide transparent electrode and stripe electrodes
US6842207B2 (en) 1996-10-29 2005-01-11 Nec Corporation Active matrix liquid crystal display panel
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
JP2013054300A (en) * 2011-09-06 2013-03-21 Japan Display Central Co Ltd Liquid crystal display device
JP2013054301A (en) * 2011-09-06 2013-03-21 Japan Display Central Co Ltd Liquid crystal display device
JP2013057790A (en) * 2011-09-08 2013-03-28 Japan Display Central Co Ltd Liquid crystal display device
JP2013064888A (en) * 2011-09-16 2013-04-11 Japan Display Central Co Ltd Liquid crystal display device
US8421976B2 (en) 2011-07-28 2013-04-16 Japan Display Central Inc. Liquid crystal display device
US8421977B2 (en) 2008-02-14 2013-04-16 Japan Display Central Inc. Liquid crystal display device with pixel electrode having trapezoidal shape
JP2013088555A (en) * 2011-10-17 2013-05-13 Japan Display Central Co Ltd Liquid crystal display device
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US8867006B2 (en) 2012-04-23 2014-10-21 Japan Display Inc. Liquid crystal display device
US8873010B2 (en) 2011-10-17 2014-10-28 Japan Display Inc. Liquid crystal display device
US8873009B2 (en) 2011-09-02 2014-10-28 Japan Display Inc. Liquid crystal display device
US8873008B2 (en) 2011-03-31 2014-10-28 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US8896795B2 (en) 2011-04-19 2014-11-25 Japan Display Inc. Liquid crystal display device
US8902391B2 (en) 2011-08-31 2014-12-02 Japan Display Inc. Liquid crystal display device and method of manufacturing liquid crystal display device
US8902390B2 (en) 2011-07-08 2014-12-02 Japan Display Inc. Liquid crystal display device having a cross-shaped pixel electrode
US8953130B2 (en) 2011-07-13 2015-02-10 Japan Display Inc. Liquid crystal display device
US9019439B2 (en) 2011-10-14 2015-04-28 Japan Display Inc. Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9030636B2 (en) 2011-08-26 2015-05-12 Japan Display Inc. Liquid crystal display apparatus
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9052552B2 (en) 2011-04-22 2015-06-09 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US9116402B2 (en) 2012-05-25 2015-08-25 Japan Display Inc. Liquid crystal display device
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9395586B2 (en) 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US9424786B2 (en) 2011-04-08 2016-08-23 Japan Display Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
US9791757B2 (en) 2014-09-09 2017-10-17 Japan Display Inc. Liquid crystal display device and display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405785B2 (en) 1996-10-29 2008-07-29 Nec Corporation Transverse electric field active matrix liquid crystal display panel having particular optical compensation layer
US6842207B2 (en) 1996-10-29 2005-01-11 Nec Corporation Active matrix liquid crystal display panel
US6965419B2 (en) 1996-10-29 2005-11-15 Nec Corporation Active matrix liquid crystal display panel
US7139054B2 (en) 1996-10-29 2006-11-21 Nec Corporation Active matrix liquid crystal display panel having particular optical compensation layer
JPH10228016A (en) * 1997-02-13 1998-08-25 Nec Corp Active matrix liquid crystal display panel
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 Liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
US7190429B2 (en) 1998-12-08 2007-03-13 Sharp Kabushiki Kaisha Liquid crystal display apparatus having wide transparent electrode and stripe electrodes
US6642984B1 (en) 1998-12-08 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display apparatus having wide transparent electrode and stripe electrodes
US8421977B2 (en) 2008-02-14 2013-04-16 Japan Display Central Inc. Liquid crystal display device with pixel electrode having trapezoidal shape
US8867007B2 (en) 2008-02-14 2014-10-21 Japan Display Inc. Liquid crystal display device having a strip-shaped electrode
US8497969B2 (en) 2008-02-14 2013-07-30 Japan Display Central Inc. Liquid crystal display device having particular electrodes
US8687134B2 (en) 2010-03-29 2014-04-01 Japan Display Inc. Liquid crystal display device
US8542329B2 (en) 2010-03-29 2013-09-24 Japan Display Central Inc. Liquid crystal display device
US9395586B2 (en) 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US8743332B2 (en) 2011-01-13 2014-06-03 Japan Display Inc. Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US9235094B2 (en) 2011-03-17 2016-01-12 Japan Display Inc. Liquid crystal display device
US8786790B2 (en) 2011-03-29 2014-07-22 Japan Display Inc. Liquid crystal display device
US9151985B2 (en) 2011-03-31 2015-10-06 Japan Display Inc. Liquid crystal display device
US8873008B2 (en) 2011-03-31 2014-10-28 Japan Display Inc. Liquid crystal display device
US9424786B2 (en) 2011-04-08 2016-08-23 Japan Display Inc. Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
US8896795B2 (en) 2011-04-19 2014-11-25 Japan Display Inc. Liquid crystal display device
US9207510B2 (en) 2011-04-19 2015-12-08 Japan Display Inc. Liquid crystal display device
US9298049B2 (en) 2011-04-22 2016-03-29 Japan Display Inc. Liquid crystal display device
US9052552B2 (en) 2011-04-22 2015-06-09 Japan Display Inc. Liquid crystal display device
US9046719B2 (en) 2011-04-25 2015-06-02 Japan Display Inc. Liquid crystal display device
US9817284B2 (en) 2011-04-25 2017-11-14 Japan Display Inc. Liquid crystal display device
US9341898B2 (en) 2011-07-08 2016-05-17 Japan Display Inc. Liquid crystal display device
US8902390B2 (en) 2011-07-08 2014-12-02 Japan Display Inc. Liquid crystal display device having a cross-shaped pixel electrode
US8953130B2 (en) 2011-07-13 2015-02-10 Japan Display Inc. Liquid crystal display device
US8421976B2 (en) 2011-07-28 2013-04-16 Japan Display Central Inc. Liquid crystal display device
US8879037B2 (en) 2011-07-28 2014-11-04 Japan Display Inc. Liquid crystal display device
US9244322B2 (en) 2011-08-05 2016-01-26 Japan Display Inc. Liquid crystal display device
US8797482B2 (en) 2011-08-05 2014-08-05 Japan Display Inc. Liquid crystal display device
US8780302B2 (en) 2011-08-08 2014-07-15 Japan Display Inc. Liquid crystal display device
US8605244B2 (en) 2011-08-08 2013-12-10 Japan Display Inc. Liquid crystal display device
US9274386B2 (en) 2011-08-09 2016-03-01 Japan Display Inc. Liquid crystal display apparatus
US10345654B2 (en) 2011-08-09 2019-07-09 Japan Display Inc. Liquid crystal display apparatus
US11106097B2 (en) 2011-08-09 2021-08-31 Japan Display Inc. Liquid crystal display apparatus
US9140943B2 (en) 2011-08-11 2015-09-22 Japan Display Inc. Liquid crystal display
US9810959B2 (en) 2011-08-11 2017-11-07 Japan Display Inc. Liquid crystal display including a mainpixel electrode
US9025101B2 (en) 2011-08-11 2015-05-05 Japan Display Inc. Liquid crystal display
US9291862B2 (en) 2011-08-12 2016-03-22 Japan Display Inc. Liquid crystal display apparatus with first and second spacers
US9291865B2 (en) 2011-08-23 2016-03-22 Japan Display Inc. Liquid crystal display device
US9341900B2 (en) 2011-08-25 2016-05-17 Japan Display Inc. Liquid crystal display device
US9030636B2 (en) 2011-08-26 2015-05-12 Japan Display Inc. Liquid crystal display apparatus
US8902391B2 (en) 2011-08-31 2014-12-02 Japan Display Inc. Liquid crystal display device and method of manufacturing liquid crystal display device
US9086602B2 (en) 2011-09-01 2015-07-21 Japan Display Inc. Liquid crystal display device
US8873009B2 (en) 2011-09-02 2014-10-28 Japan Display Inc. Liquid crystal display device
US9134579B2 (en) 2011-09-02 2015-09-15 Japan Display Inc. Liquid crystal display device
US9075271B2 (en) 2011-09-06 2015-07-07 Japan Display Inc. Liquid crystal display device
JP2013054301A (en) * 2011-09-06 2013-03-21 Japan Display Central Co Ltd Liquid crystal display device
JP2013054300A (en) * 2011-09-06 2013-03-21 Japan Display Central Co Ltd Liquid crystal display device
JP2013057790A (en) * 2011-09-08 2013-03-28 Japan Display Central Co Ltd Liquid crystal display device
US9250486B2 (en) 2011-09-08 2016-02-02 Japan Display Inc. Liquid crystal display device
US8724065B2 (en) 2011-09-12 2014-05-13 Japan Display Inc. Liquid crystal display device
US9372372B2 (en) 2011-09-16 2016-06-21 Japan Display Inc. Liquid crystal display device
US9841641B2 (en) 2011-09-16 2017-12-12 Japan Display Inc. Liquid crystal display device
JP2013064888A (en) * 2011-09-16 2013-04-11 Japan Display Central Co Ltd Liquid crystal display device
US8692947B2 (en) 2011-09-16 2014-04-08 Japan Display Inc. Liquid crystal display device
US9013663B2 (en) 2011-09-16 2015-04-21 Japan Display, Inc. Liquid crystal display device
US8830435B2 (en) 2011-09-16 2014-09-09 Japan Display Inc. Liquid crystal display device
US8786534B2 (en) 2011-09-27 2014-07-22 Japan Display Inc. Liquid crystal display device
US9182639B2 (en) 2011-09-28 2015-11-10 Japan Display Inc. Liquid crystal display device
US9880430B2 (en) 2011-09-28 2018-01-30 Japan Display Inc. Liquid crystal display device
US9081242B2 (en) 2011-09-28 2015-07-14 Japan Display Inc. Liquid crystal display device
US9268178B2 (en) 2011-10-11 2016-02-23 Japan Display Inc. Liquid crystal display device
US9019439B2 (en) 2011-10-14 2015-04-28 Japan Display Inc. Liquid crystal display device
US8873010B2 (en) 2011-10-17 2014-10-28 Japan Display Inc. Liquid crystal display device
JP2013088555A (en) * 2011-10-17 2013-05-13 Japan Display Central Co Ltd Liquid crystal display device
US9235086B2 (en) 2011-11-08 2016-01-12 Japan Display Inc. Liquid crystal display device
US9116568B2 (en) 2011-11-08 2015-08-25 Japan Display Inc. Liquid crystal display device
US8749726B2 (en) 2011-11-21 2014-06-10 Japan Display Inc. Liquid crystal display device
US9052555B2 (en) 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
US9110341B2 (en) 2012-03-14 2015-08-18 Japan Display Inc. Liquid crystal display device
US9164330B2 (en) 2012-03-19 2015-10-20 Japan Display Inc. Liquid crystal display with horizontal inter-electrode distance and dielectric constant anisotropy of a liquid crystal layer
US9122111B2 (en) 2012-03-28 2015-09-01 Japan Display Inc. Liquid crystal display device
US9341906B2 (en) 2012-03-28 2016-05-17 Japan Display Inc. Liquid crystal display device
US9140938B2 (en) 2012-04-06 2015-09-22 Japan Display Inc. Liquid crystal display device
US8867006B2 (en) 2012-04-23 2014-10-21 Japan Display Inc. Liquid crystal display device
US9470936B2 (en) 2012-04-23 2016-10-18 Japan Display, Inc. Liquid crystal display device
US9104075B2 (en) 2012-04-23 2015-08-11 Japan Display Inc. Liquid crystal display device
US9436042B2 (en) 2012-05-08 2016-09-06 Japan Display Inc. Liquid crystal display device including first to third wirings and a pixel electrode, and method of manufacturing the same
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device
US9459507B2 (en) 2012-05-22 2016-10-04 Japan Display Inc. Liquid crystal display device
US9075278B2 (en) 2012-05-22 2015-07-07 Japan Display Inc. Liquid crystal display device
US9810957B2 (en) 2012-05-25 2017-11-07 Japan Display Inc. Liquid crystal display device
US9116402B2 (en) 2012-05-25 2015-08-25 Japan Display Inc. Liquid crystal display device
US9097944B2 (en) 2012-05-29 2015-08-04 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9733533B2 (en) 2012-05-29 2017-08-15 Japan Display Inc. Liquid crystal display device
US9217904B2 (en) 2012-05-31 2015-12-22 Japan Display Inc. Liquid crystal display device with a lateral electric field
US9268179B2 (en) 2012-06-06 2016-02-23 Japan Display Inc. Liquid crystal display device utilizing a lateral electric field
US9310652B2 (en) 2012-07-13 2016-04-12 Japan Display Inc. Liquid crystal display device
US9135873B2 (en) 2012-09-04 2015-09-15 Japan Display Inc. Liquid crystal display device
US9146434B2 (en) 2012-10-30 2015-09-29 Japan Display Inc. Liquid crystal display device having particular electrodes structure
US9134576B2 (en) 2012-10-31 2015-09-15 Japan Display Inc. Liquid crystal display device
US9030393B2 (en) 2013-01-15 2015-05-12 Japan Display Inc. Liquid crystal display device
US9551911B2 (en) 2013-01-15 2017-01-24 Japan Display Inc. Liquid crystal display device
US9134578B2 (en) 2013-01-15 2015-09-15 Japan Display Inc. Liquid crystal display device
US9280016B2 (en) 2013-02-18 2016-03-08 Japan Display Inc. Liquid crystal display device
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
US9915840B2 (en) 2013-05-31 2018-03-13 Japan Display Inc. Liquid crystal display device
US9470938B2 (en) 2013-07-03 2016-10-18 Japan Display Inc. Liquid crystal display device
US9316872B2 (en) 2013-09-30 2016-04-19 Japan Display Inc. Liquid crystal display device that expands the transmissive area
US9791757B2 (en) 2014-09-09 2017-10-17 Japan Display Inc. Liquid crystal display device and display device
US10353259B2 (en) 2014-09-09 2019-07-16 Japan Display Inc. Liquid crystal display device and display device
US10007138B2 (en) 2014-10-24 2018-06-26 Japan Display Inc. Liquid crystal display device and substrate for display device
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
US10203568B2 (en) 2015-01-22 2019-02-12 Japan Display Inc. Liquid crystal display device
US10613395B2 (en) 2015-01-22 2020-04-07 Japan Display Inc. Liquid crystal display device

Similar Documents

Publication Publication Date Title
JPH09160042A (en) Liquid crystal display element
JP3322197B2 (en) Liquid crystal display
KR0148502B1 (en) Lcd device
JPH09160041A (en) Liquid crystal display element
JPH09160061A (en) Liquid crystal display element
JP3529434B2 (en) Liquid crystal display device
JP4041610B2 (en) Liquid crystal display
KR20000033252A (en) Ferroelectric lcd with homeotropic aligned helix deformation
JPH07333617A (en) Liquid crystal display element
JPH0829812A (en) Liquid crystal display device
JP3130682B2 (en) Liquid crystal display device
JPH09105957A (en) Liquid crystal display element
KR100412125B1 (en) Liquid crystal display device
JP3026901B2 (en) LCD panel
JPH07199205A (en) Liquid crystal display element
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JPH08136935A (en) Liquid crystal display device
JP3130686B2 (en) Liquid crystal display device
JPH09197429A (en) Liquid crystal display element
JPH11160716A (en) Liquid crystal display device
JPH0756148A (en) Liquid crystal display element
JPH0792458A (en) Liquid crystal display element
JPH05107534A (en) Liquid crystal display element
JP3635546B2 (en) LCD panel
JPH05289097A (en) Liquid crystal display element