JPH09143816A - Shock absorbing polyester fiber - Google Patents

Shock absorbing polyester fiber

Info

Publication number
JPH09143816A
JPH09143816A JP30275795A JP30275795A JPH09143816A JP H09143816 A JPH09143816 A JP H09143816A JP 30275795 A JP30275795 A JP 30275795A JP 30275795 A JP30275795 A JP 30275795A JP H09143816 A JPH09143816 A JP H09143816A
Authority
JP
Japan
Prior art keywords
strength
elongation
fiber
polyester
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30275795A
Other languages
Japanese (ja)
Inventor
Kiyoshi Maruo
潔 丸雄
Masayasu Nagao
正康 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP30275795A priority Critical patent/JPH09143816A/en
Publication of JPH09143816A publication Critical patent/JPH09143816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a shock absorbing polyester fiber, having specific physical properties, capable of reducing damage received by an impact load and suitable for a safety belt, a safety net, etc. SOLUTION: This shock absorbing polyester fiber is a fiber, comprising ethylene terephthalate as a main recurring unit, prepared by copolymerizing the third component in an amount of 5-18mol% based on terephthalic acid and having 0.7-1.2 intrinsic viscosity. The fiber simultaneously satisfies (a) strength ST (g/d): >=5.0 ST, (b) elongation EL (%): 25<=EL<=50, (c) initial modulus M (g/d): 40<=M<=90, (d) primary yield point strength SA (g/d): 0.7<=SA<=1.2 and (e) 10% elongation strength SB (g/d): 1.0<=SB<=1.7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度で且つ衝撃
吸収性に優れ、特に建設工事や電気工事など高所作業を
行う場合に使用される安全ベルト、安全ネット、あるい
は自動車用のシートベルト等に適したポリエステル繊維
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safety belt, a safety net, or a seat belt for an automobile, which has high strength and is excellent in shock absorption, and which is used particularly when performing aerial work such as construction work and electric work. For example, the present invention relates to a polyester fiber.

【0002】[0002]

【従来の技術】本来、高所作業用の安全ベルト、安全ネ
ット、あるいは自動車用のシートベルトに要求される最
大の特性は、落下時あるいは衝突時に作業者や乗員が受
ける衝撃力を吸収緩和すること、すなわち衝撃吸収時に
発生する衝撃力を低下させることである。かかる性能を
満足させるために、現在までにいくつかの提案がなされ
ている。
2. Description of the Related Art Originally, the greatest characteristic required for safety belts for safety work at high places, safety nets, or seat belts for automobiles is to absorb and relax the impact force received by a worker or an occupant at the time of a drop or a collision. That is, to reduce the impact force generated during impact absorption. Several proposals have been made to date in order to satisfy such performance.

【0003】例えば、特開平1−298209号公報に
は、固有粘度の高いポリエステルをランド長/孔径比の
大きい吐出孔から高温雰囲気中に吐出し、冷却固化後に
3000m/分以上の高速で引取って、得られるポリエ
ステル繊維の荷伸曲線の第1次降伏点と立上がり点との
間を5%以上30%未満となし、衝撃エネルギーを連続
的に且つ円滑に吸収することができるようにしたポリエ
ステル繊維の製造方法が提案されている。しかし、この
方法により得られる繊維はその破断強度が不充分で、例
えば安全ベルトとして用いる場合には、その要求される
破断強力1830Kg以上を満足させるために繊維の使
用量を多くせざるを得なくなり、取扱い性が低下するだ
けでなく落下防止時の最大衝撃荷重も逆に高くなるとい
った安全上の問題が発生することが判明した。
For example, in Japanese Unexamined Patent Publication No. 1-298209, polyester having a high intrinsic viscosity is discharged from a discharge hole having a large land length / pore diameter ratio into a high temperature atmosphere, and after solidification by cooling, it is collected at a high speed of 3000 m / min or more. And the impact yield energy of the obtained polyester fiber is set to be 5% or more and less than 30% between the first yield point and the rising point of the polyester so that impact energy can be continuously and smoothly absorbed. Fiber manufacturing methods have been proposed. However, the fiber obtained by this method has an insufficient breaking strength. For example, when it is used as a safety belt, the amount of fiber used must be increased in order to satisfy the required breaking strength of 1830 kg or more. However, it has been found that not only the handling property is lowered, but also the maximum impact load at the time of fall prevention is increased, which causes a safety problem.

【0004】一方、特開平5−321062号公報に
は、沸水収縮率が25%以上、熱応力値が0.2g/d
以上の高収縮性ポリエステル繊維を、繊維ロープに加工
した後に熱収縮させて、衝撃エネルギーを有効に吸収さ
せることのできる安全ロープの製造方法が提案されてい
る。しかしこの方法では、熱収縮時に収縮斑が発生しや
すいため得られるロープの破断強力は低下し、また荷伸
曲線の立上がり点伸度も大きくなって衝撃エネルギー吸
収のための伸度が過大になりすぎるといった問題があ
る。
On the other hand, in JP-A-5-321062, the boiling water shrinkage is 25% or more and the thermal stress value is 0.2 g / d.
There has been proposed a method for producing a safety rope which is capable of effectively absorbing impact energy by heat-shrinking the above-mentioned highly shrinkable polyester fiber into a fiber rope and then heat-shrinking the fiber rope. However, in this method, the breaking strength of the obtained rope is reduced because shrinkage unevenness is likely to occur during heat shrinkage, and the elongation at the rising point of the load elongation curve also becomes large and the elongation for impact energy absorption becomes excessive. There is a problem such as too much.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みなされたもので、その目的は、落下時あるいは衝
突時の衝撃エネルギーを吸収する際に発生する衝撃荷重
により受けるダメージを低減することができ、しかも破
断強度は良好で安全ベルト、安全ネット、シートベルト
等を得るに適した衝撃吸収性ポリエステル繊維を提供す
ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to reduce damage received by an impact load generated when absorbing impact energy at the time of dropping or collision. Another object of the present invention is to provide a shock-absorbing polyester fiber which is suitable for obtaining safety belts, safety nets, seat belts and the like, and which has good breaking strength.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は、以
下の構成により達成することができる。すなわち、「エ
チレンテレフタレートを主たる繰返し単位とするポリエ
ステルからなる繊維であって、下記(a)〜(e)を同
時に満足することを特徴とする衝撃吸収性ポリエステル
繊維。」である。 (a)強度ST(g/d):ST≧5.0 (b)伸度EL(%):25≦EL≦50 (c)初期モジュラスM(g/d):40≦M≦90 (d)第一次降伏点強度SA (g/d):0.7≦SA
≦1.2 (e)10%伸長強度SB (g/d):1.0≦SB
1.7
The above object of the present invention can be achieved by the following constitutions. That is, it is "a fiber made of polyester having ethylene terephthalate as a main repeating unit, which simultaneously satisfies the following (a) to (e)". (A) Strength ST (g / d): ST ≧ 5.0 (b) Elongation EL (%): 25 ≦ EL ≦ 50 (c) Initial modulus M (g / d): 40 ≦ M ≦ 90 (d ) Primary yield strength S A (g / d): 0.7 ≦ S A
≦ 1.2 (e) 10% elongation strength S B (g / d): 1.0 ≦ S B
1.7

【0007】[0007]

【発明の実施の形態】本発明におけるポリエステルは、
エチレンテレフタレートを主たる繰返し単位とするポリ
エステルを対象とするが、なかでもポリエチレンテレフ
タレートに第3成分を、テレフタル酸成分を基準として
5〜18モル%、特に10〜15モル%共重合したもの
は、容易に10%伸長強度SB を1.0〜1.7g/d
の範囲にすることができるので好ましい。共重合させる
第3成分としては、イソフタル酸、アジピン酸等の二官
能性カルボン酸、ネオペンチルグリコール、ジエチレン
グリコール等のジオール成分を例示することができ、特
にイソフタル酸又はネオペンチルグリコールが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The polyester in the present invention is
Polyesters containing ethylene terephthalate as the main repeating unit are targeted. Among them, polyethylene terephthalate with a third component copolymerized in a proportion of 5 to 18 mol%, particularly 10 to 15 mol% based on the terephthalic acid component is easily prepared. 10% elongation strength S B of 1.0 to 1.7 g / d
It is preferable because it can be within the range. Examples of the third component to be copolymerized include difunctional carboxylic acids such as isophthalic acid and adipic acid, and diol components such as neopentyl glycol and diethylene glycol, with isophthalic acid and neopentyl glycol being particularly preferred.

【0008】またポリエステルの固有粘度は、低すぎる
と破断強力を達成することが困難となり、一方高すぎる
と溶融紡糸時に断糸が発生しやすくなるので、0.7〜
1.2、特に0.75〜1.0の範囲が好ましい。
If the intrinsic viscosity of the polyester is too low, it becomes difficult to achieve breaking strength, while if it is too high, yarn breakage tends to occur during melt spinning.
The range of 1.2, especially 0.75 to 1.0 is preferable.

【0009】上記のポリエステルからなる本発明のポリ
エステル繊維は、その破断強度ST(g/d)、破断伸
度EL(%)、初期モジュラスM(g/d)、第1次降
伏点強度SA (g/d)、及び10%伸長強度SB (g
/d)が下記(a)〜(e)を同時に満足することが大
切である。 (a)ST≧5.0 (b)25≦EL≦50 (c)40≦M≦90 (d)0.7≦SA ≦1.2 (e)1.0≦SB ≦1.7
The polyester fiber of the present invention made of the above polyester has a breaking strength ST (g / d), a breaking elongation EL (%), an initial modulus M (g / d), and a first yield strength S A. (G / d), and 10% elongation strength S B (g
It is important that / d) simultaneously satisfy the following (a) to (e). (A) ST ≧ 5.0 (b) 25 ≦ EL ≦ 50 (c) 40 ≦ M ≦ 90 (d) 0.7 ≦ S A ≦ 1.2 (e) 1.0 ≦ S B ≦ 1.7

【0010】ここで破断強度STが5.0g/d未満の
場合には、安全ベルト、安全ネット、シートベルト等に
した時の破断強力を満足できるレベルにするためにはそ
の繊維の使用量を多くせざるを得なくなり、その結果衝
撃吸収時に発生する衝撃応力(衝撃荷重)は逆に大きく
なるので好ましくない。
If the breaking strength ST is less than 5.0 g / d, the amount of the fiber used is set to a level that can satisfy the breaking strength when used as a safety belt, a safety net, a seat belt or the like. It is unavoidable that the amount must be increased and, as a result, the impact stress (impact load) generated at the time of impact absorption becomes large on the contrary.

【0011】また破断伸度が25%未満の場合には、1
0%伸長応力が1.7g/dを越えることとなり、衝撃
荷重が大きくなるため好ましくない。一方、50%を越
える場合には、破断強度のバラツキが大きくなって5.
0g/d以上のものを安定して得ることが困難となるの
で好ましくない。
If the breaking elongation is less than 25%, 1
The 0% elongation stress exceeds 1.7 g / d, and the impact load increases, which is not preferable. On the other hand, when it exceeds 50%, the variation in breaking strength becomes large, and
It is not preferable because it is difficult to stably obtain the one having a value of 0 g / d or more.

【0012】また初期モジュラスが40g/d未満の場
合には、低応力でも繊維の伸長が起こりやすくなるた
め、安全ベルト等にした時の形態保持性が低下し、衝撃
エネルギー吸収性能も低下する。一方90g/dを越え
る場合には、第1次降伏点以降の荷伸曲線の立上がりを
抑えることが困難となり、10%伸長応力が大きくなっ
て衝撃エネルギー吸収特性が低下する。
Further, when the initial modulus is less than 40 g / d, the fibers are likely to be stretched even under a low stress, so that the shape retaining property when used as a safety belt or the like is lowered and the impact energy absorption performance is also lowered. On the other hand, when it exceeds 90 g / d, it becomes difficult to suppress the rise of the load elongation curve after the first yield point, and the 10% elongation stress becomes large and the impact energy absorption characteristics deteriorate.

【0013】また第1次降伏点応力が0.7g/d未満
の場合には、低応力下で繊維の伸長が進行するために衝
撃エネルギー吸収性が低下するだけでなく、寸法安定性
も不充分となるので好ましくない。一方1.2g/dを
越える場合には、衝撃エネルギー吸収能は大きくなるも
のの、衝撃荷重の最大値が大きくなって本発明の目的を
達成できなくなる。
When the primary yield point stress is less than 0.7 g / d, not only the impact energy absorption is deteriorated due to the progress of fiber elongation under low stress, but also the dimensional stability is unsatisfactory. It is not preferable because it will be sufficient. On the other hand, if it exceeds 1.2 g / d, the impact energy absorption capacity increases, but the maximum value of the impact load increases and the object of the present invention cannot be achieved.

【0014】さらに本発明においては、繊維の10%伸
長応力が前記の範囲にあることが必要であり、この応力
が1.0g/d未満の場合には、衝撃を受けて伸長変形
する際の伸長応力が低くなって衝撃エネルギー吸収性能
が低下する。一方1.7g/dを越える場合には、衝撃
エネルギーの吸収性は良好となるものの、伸長変形する
際の伸長応力が高くなりすぎて衝撃荷重は大きくなる。
Further, in the present invention, it is necessary that the 10% elongation stress of the fiber is within the above range, and when this stress is less than 1.0 g / d, the fiber is stretched and deformed under impact. The tensile stress is lowered and the impact energy absorption performance is lowered. On the other hand, when it exceeds 1.7 g / d, the impact energy absorbability becomes good, but the extension stress during extension deformation becomes too high and the impact load becomes large.

【0015】以上に述べた本発明のポリエステル繊維
は、例えば以下の方法により製造することができる。す
なわち、固有粘度が0.7以上のポリエステル、好まし
くは第3成分をテレフタル酸成分に対して5〜18モル
%共重合したポリエチレンテレフタレート系共重合ポリ
エステルを、通常の溶融紡糸装置を用いて温度260〜
310℃下、延伸後の単糸繊度が1〜20デニールとな
る割合で溶融吐出し、該吐出糸条をポリエステルの融点
以上の温度に保たれた加熱雰囲気中を通過させた後に冷
却風にて固化せしめ、次いで油剤を付与して未延伸糸を
得る。ここで未延伸糸の引取り速度は1500m/分以
下の速度が好ましく、これ以上にあっては、5.0g/
d以上の強度特性と他の諸特性を同時に満足する高強力
繊維を得ることは困難となる。
The polyester fiber of the present invention described above can be produced, for example, by the following method. That is, a polyester having an intrinsic viscosity of 0.7 or more, preferably a polyethylene terephthalate-based copolyester obtained by copolymerizing the third component with respect to the terephthalic acid component in an amount of 5 to 18 mol% is used at a temperature of 260 using an ordinary melt spinning apparatus. ~
At 310 ° C., the single yarn fineness after drawing is melt-discharged at a ratio of 1 to 20 denier, and the discharged yarn is passed through a heating atmosphere kept at a temperature equal to or higher than the melting point of polyester, followed by cooling air. It is solidified and then an oil agent is applied to obtain an undrawn yarn. Here, the take-up speed of the undrawn yarn is preferably 1500 m / min or less, and above 5.0 m / min.
It is difficult to obtain a high-strength fiber that simultaneously satisfies the strength characteristics of d or more and other characteristics.

【0016】得られた未延伸糸は、ポリエステルのガラ
ス転移点以上、好ましくは75〜95℃の温度で加熱
後、未延伸糸の引取り速度に応じた延伸倍率(DR1)
で2.5〜4.0倍に延伸した後、さらに150℃以
上、ポリエステルの結晶化温度−20℃以下の温度、好
ましくは160〜170℃の非接触型加熱装置で第2段
延伸する。ここで第2段目の延伸倍率(DR2)は全延
伸倍率の25〜45%の範囲内とすることが大切で、2
5%未満の場合には、強度が5.0g/d以上の高強力
繊維を得ることが困難となり、一方45%を越える場合
には、延伸時に断糸が発生しやすくなる。また第2段延
伸の加熱装置が接触型の場合には、延伸時に結晶化が起
りやすく、次ぎに施される弛緩収縮熱処理(リラックス
処理)が不充分となって伸度が低下しやすい。
The obtained undrawn yarn is heated at a temperature not lower than the glass transition point of polyester, preferably 75 to 95 ° C., and then drawn at a draw ratio (DR1) according to the take-up speed of the undrawn yarn.
After being stretched to 2.5 to 4.0 times, the film is further stretched in the second stage with a non-contact heating device at a temperature of 150 ° C. or higher and a polyester crystallization temperature of −20 ° C. or lower, preferably 160 to 170 ° C. Here, it is important to set the draw ratio (DR2) of the second stage within the range of 25 to 45% of the total draw ratio.
If it is less than 5%, it becomes difficult to obtain a high-strength fiber having a strength of 5.0 g / d or more. On the other hand, if it exceeds 45%, yarn breakage tends to occur during drawing. When the heating device for the second stage drawing is a contact type, crystallization is likely to occur during drawing, and the relaxation shrinkage heat treatment (relaxation process) to be performed next becomes insufficient, and the elongation is likely to decrease.

【0017】得られた延伸糸は、引続いて180〜28
0℃の熱セットバス中を通過させながら20〜30%の
弛緩収縮熱処理を施す。この際、走行糸条の張力は0.
005g/d以下となるようにすると共に、該糸条を熱
源体の表面上に接触させながら走行させること、及び糸
条の走行速度は500m/分以下にすることが、上記の
範囲で弛緩熱収縮させるためには好ましい。さらに熱源
体の糸条接触面を梨地にすると、糸条の走行安定性が向
上するので好ましい。
The drawn yarn obtained is subsequently 180-28.
While passing through a heat set bath at 0 ° C., a relaxation shrinkage heat treatment of 20 to 30% is performed. At this time, the tension of the running yarn is 0.
The relaxation heat in the above range should be 005 g / d or less, and the yarn should be run while being in contact with the surface of the heat source body, and the running speed of the yarn should be 500 m / min or less. Preferred for shrinking. Further, it is preferable to make the yarn contact surface of the heat source body satin because the running stability of the yarn is improved.

【0018】[0018]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。なお、実施例中の各特性は、下記の方法にした
がって測定した。 <固有粘度>フェノールとテトラクロルエタンとの等量
混合溶液中に繊維を溶解させ、温度30℃で測定した粘
度から求めた。 <引張強伸度曲線>JIS L1070に準じ、糸長を
20cmとし、引張試験機にて30cm/分の速度で引
張って求めた。 <衝撃荷重>JIS L2707−1992に規定され
た衝撃評価方法に準じ、75Kgの砂袋を測定製品試料
に固定して1.5mの高さから落下させたときにかかる
荷重の最大値を求めた。 <破断強力>作成したベルト試料を、株式会社東京試験
機製作所製の引張試験機を用いて測定した。
The present invention will be described in more detail with reference to the following examples. Each property in the examples was measured according to the following methods. <Intrinsic viscosity> Fiber was dissolved in an equal amount mixed solution of phenol and tetrachloroethane and the viscosity was measured at a temperature of 30 ° C. <Tensile Strength Elongation Curve> According to JIS L1070, the yarn length was set to 20 cm, and the tensile strength was measured by pulling at a speed of 30 cm / min with a tensile tester. <Impact load> According to the impact evaluation method defined in JIS L2707-1992, a maximum value of the load applied when a 75 kg sand bag was fixed to a measurement product sample and dropped from a height of 1.5 m was obtained. . <Breaking Strength> The prepared belt sample was measured using a tensile tester manufactured by Tokyo Test Machine Co., Ltd.

【0019】[実施例1〜4、比較例1〜2]ポリエチ
レンテレフタレートにイソフタル酸(IA)又はネオペ
ンチルグリコール(NPG)をテレフタル酸成分に対し
て表1記載の量共重合した、表1記載の固有粘度を有す
るポリエステルを280℃で溶融させた後、孔径が0.
50mm、孔数が250ホールの紡糸口金から、得られ
る延伸糸の総デニール数が約1000デニールとなる割
合で計量吐出した。吐出された糸条は、口金下に設けら
れた長さ300mm、温度270℃の加熱雰囲気を通過
させた後、長さ350mmにわたって冷却風を送風して
冷却固化させた。冷却固化した糸条はオイリングローラ
ーで油剤を付与した後、引取速度1000m/分にて一
旦未延伸糸パッケージとして巻き取った。
Examples 1 to 4 and Comparative Examples 1 to 2 Polyethylene terephthalate was copolymerized with isophthalic acid (IA) or neopentyl glycol (NPG) in the amount shown in Table 1 with respect to the terephthalic acid component. After melting the polyester having an intrinsic viscosity of 280 ° C. at 280 ° C., the pore size is 0.
From a spinneret having a hole diameter of 50 mm and a hole number of 250 holes, the drawn yarn obtained was metered and discharged at a rate such that the total denier number was about 1000 denier. The discharged yarn was passed through a heating atmosphere having a length of 300 mm and a temperature of 270 ° C. provided below the spinneret, and then cooling air was blown over the length of 350 mm to be cooled and solidified. The cooled and solidified yarn was applied with an oiling roller by an oiling roller, and then temporarily wound as an undrawn yarn package at a take-up speed of 1000 m / min.

【0020】得られた未延伸糸を、85℃に加熱した供
給ローラーで予熱した後に第1段延伸(延伸倍率:DR
1)を行い、次いで表1記載の温度に加熱した非接触型
ヒーターを通過させながら第2段延伸(延伸倍率:DR
2)を行った後、表1記載の温度に加熱された熱セット
バス中を表1記載の収縮率で弛緩収縮熱処理し、300
m/分の速度で巻き取った。引張強伸度曲線(実施例
1)を図1に示す。
The unstretched yarn obtained is preheated by a feeding roller heated to 85 ° C. and then first-stage stretched (stretching ratio: DR
1) and then the second stage stretching (stretching ratio: DR) while passing through a non-contact type heater heated to the temperature shown in Table 1.
After performing 2), the heat-shrink bath heated to the temperature shown in Table 1 was subjected to relaxation shrinkage heat treatment at the shrinkage ratio shown in Table 1, and 300
It was wound at a speed of m / min. The tensile strength / elongation curve (Example 1) is shown in FIG.

【0021】得られた延伸糸3本を合糸し、S撚200
回/mで撚糸し、これを経糸として表1記載の本数を使
用して、ベルト破断強力が2150Kg以上となるよう
に調整した。一方緯糸には強度が7.0g/d、伸度が
20%のポリエステルマルチフィラメント糸(500デ
ニール/72フィラメント)を用い、緯糸織密度は12
本/インチとしてベルト用織物を得た。得られた織物の
評価結果を表1に示す。なお、衝撃荷重は600Kg以
下であれば良いと判断した。
The three drawn yarns thus obtained are combined to form an S twist 200
Twisting was performed at a rate of 1 twist / m, and the number of yarns shown in Table 1 was used as the warp to adjust the belt breaking strength to 2150 kg or more. On the other hand, the weft is a polyester multifilament yarn (500 denier / 72 filaments) having a strength of 7.0 g / d and an elongation of 20%, and the weft density is 12
A woven fabric for a belt was obtained as a book / inch. Table 1 shows the evaluation results of the obtained woven fabric. The impact load was determined to be 600 Kg or less.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明の衝撃吸収性ポリエステル繊維
は、第1次降伏点伸度以上の伸度では伸度が増加しても
それ程応力が大きくならないので、衝突エネルギーを吸
収させる際に負荷される衝撃荷重はそれ程大きくならな
い。また破断強度は5.0g/d以上と充分高強度であ
るため、衝撃エネルギー吸収時に繊維の破断が発生する
こともない。したがって、本発明の繊維は、落下を阻止
して作業者の安全を確保するための安全ベルトや安全ネ
ット、また自動車用のシートベルトに特に有用である。
EFFECTS OF THE INVENTION The impact-absorbing polyester fiber of the present invention is not stressed so much even if the elongation is increased at the elongations higher than the primary yield point elongation, so that it is loaded when absorbing the collision energy. The impact load is not so large. In addition, the breaking strength is 5.0 g / d or more, which is sufficiently high, so that the fibers do not break when absorbing impact energy. Therefore, the fiber of the present invention is particularly useful for safety belts and safety nets for preventing falling and ensuring worker's safety, and seat belts for automobiles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた繊維の引張強伸度曲線。FIG. 1 is a tensile strength / elongation curve of the fiber obtained in Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エチレンテレフタレートを主たる繰返し
単位とするポリエステルからなる繊維であって、下記
(a)〜(e)を同時に満足することを特徴とする衝撃
吸収性ポリエステル繊維。 (a)強度ST(g/d):ST≧5.0 (b)伸度EL(%):25≦EL≦50 (c)初期モジュラスM(g/d):40≦M≦90 (d)第一次降伏点強度SA (g/d):0.7≦SA
≦1.2 (e)10%伸長強度SB (g/d):1.0≦SB
1.7
1. A shock-absorbing polyester fiber comprising a polyester mainly containing ethylene terephthalate as a repeating unit, which simultaneously satisfies the following requirements (a) to (e): (A) Strength ST (g / d): ST ≧ 5.0 (b) Elongation EL (%): 25 ≦ EL ≦ 50 (c) Initial modulus M (g / d): 40 ≦ M ≦ 90 (d ) Primary yield strength S A (g / d): 0.7 ≦ S A
≦ 1.2 (e) 10% elongation strength S B (g / d): 1.0 ≦ S B
1.7
【請求項2】 ポリエステルが、ポリエチレンテレフタ
レートに第3成分をテレフタル酸成分を基準として5〜
18モル%共重合したポリエステルであり、その固有粘
度が0.7〜1.2である請求項1記載の衝撃吸収性ポ
リエステル繊維。
2. The polyester comprises polyethylene terephthalate and a third component based on the terephthalic acid component of 5 to 5.
The impact-absorbing polyester fiber according to claim 1, which is a polyester copolymerized with 18 mol% and has an intrinsic viscosity of 0.7 to 1.2.
JP30275795A 1995-11-21 1995-11-21 Shock absorbing polyester fiber Pending JPH09143816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30275795A JPH09143816A (en) 1995-11-21 1995-11-21 Shock absorbing polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30275795A JPH09143816A (en) 1995-11-21 1995-11-21 Shock absorbing polyester fiber

Publications (1)

Publication Number Publication Date
JPH09143816A true JPH09143816A (en) 1997-06-03

Family

ID=17912785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30275795A Pending JPH09143816A (en) 1995-11-21 1995-11-21 Shock absorbing polyester fiber

Country Status (1)

Country Link
JP (1) JPH09143816A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061687A1 (en) * 1998-05-22 1999-12-02 Alliedsignal Inc. Process for making load limiting yarn
JP2003089937A (en) * 2001-09-14 2003-03-28 Unitica Fibers Ltd Polyester yarn for safety net and safety net using the same
JP2008114583A (en) * 2006-10-11 2008-05-22 Sekisui Chem Co Ltd Multilayer structure
JP2009249782A (en) * 2008-04-09 2009-10-29 Teijin Fibers Ltd Impact-absorbing rope, method for producing the impact-absorbing rope, and protector using the same
JP2010168685A (en) * 2009-01-22 2010-08-05 Asahi Kasei Fibers Corp Abrasion-resistant polyester fiber and method for producing the same
WO2010120107A3 (en) * 2009-04-14 2011-03-31 주식회사 코오롱 Polyester yarn for an airbag and method manufacturing for manufacturing same
WO2011074920A3 (en) * 2009-12-18 2011-11-24 Kolon Industries, Inc. Polyester fiber for airbag and preparation method thereof
WO2011122802A3 (en) * 2010-03-29 2012-03-15 코오롱인더스트리 주식회사 Polyester yarn and method for manufacturing same
WO2013048203A2 (en) * 2011-09-30 2013-04-04 Kolon Industries, Inc. Polyester fiber and rope including the same
JP2015063788A (en) * 2014-10-29 2015-04-09 旭化成せんい株式会社 Abrasion resistant polyester fiber and manufacturing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061687A1 (en) * 1998-05-22 1999-12-02 Alliedsignal Inc. Process for making load limiting yarn
US6228488B1 (en) 1998-05-22 2001-05-08 Alliedsignal Inc. Process for making load limiting yarn
US6340524B1 (en) 1998-05-22 2002-01-22 Alliedsignal Inc. Process for making load limiting yarn
US6613257B2 (en) 1998-05-22 2003-09-02 Alliedsignal Inc. Process for making load limiting yarn
JP2003089937A (en) * 2001-09-14 2003-03-28 Unitica Fibers Ltd Polyester yarn for safety net and safety net using the same
JP2008114583A (en) * 2006-10-11 2008-05-22 Sekisui Chem Co Ltd Multilayer structure
JP2009249782A (en) * 2008-04-09 2009-10-29 Teijin Fibers Ltd Impact-absorbing rope, method for producing the impact-absorbing rope, and protector using the same
JP2010168685A (en) * 2009-01-22 2010-08-05 Asahi Kasei Fibers Corp Abrasion-resistant polyester fiber and method for producing the same
WO2010120107A3 (en) * 2009-04-14 2011-03-31 주식회사 코오롱 Polyester yarn for an airbag and method manufacturing for manufacturing same
US9758903B2 (en) 2009-04-14 2017-09-12 Kolon Industries, Inc. Polyester fiber for airbag and preparation method thereof
WO2011074920A3 (en) * 2009-12-18 2011-11-24 Kolon Industries, Inc. Polyester fiber for airbag and preparation method thereof
US9617664B2 (en) 2009-12-18 2017-04-11 Kolon Industries, Inc. Polyester fiber for airbag and preparation method thereof
WO2011122802A3 (en) * 2010-03-29 2012-03-15 코오롱인더스트리 주식회사 Polyester yarn and method for manufacturing same
CN102918187A (en) * 2010-03-29 2013-02-06 可隆工业株式会社 Polyester yarn and method for manufacturing same
US9499928B2 (en) 2010-03-29 2016-11-22 Kolon Industries, Inc. Polyester fiber suitable for air bag and method for producing the polyester fiber
WO2013048203A2 (en) * 2011-09-30 2013-04-04 Kolon Industries, Inc. Polyester fiber and rope including the same
WO2013048203A3 (en) * 2011-09-30 2013-05-23 Kolon Industries, Inc. Polyester fiber and rope including the same
JP2015063788A (en) * 2014-10-29 2015-04-09 旭化成せんい株式会社 Abrasion resistant polyester fiber and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CA1314673C (en) High-tenacity conjugated fiber and process for preparation thereof
JP2013531143A (en) Polyester fiber and method for producing the same
US8173254B2 (en) Polyester fiber, woven knit fabric, car seat and process for producing polyester fiber
JPH09143816A (en) Shock absorbing polyester fiber
JPH06257062A (en) Webbing for seat belt
JPH0733610B2 (en) Manufacturing method of polyester tire cord
JP2001295153A (en) Method for producing webbing for seat belt and webbing for seat belt
JP3353412B2 (en) High strength polybutylene terephthalate fiber
JP3649215B2 (en) Method for producing high-strength polybutylene terephthalate fiber
JP2001294122A (en) Webbing for seat belt and its manufacturing method
JP2002029372A (en) Webbing for seat belt
JP3543468B2 (en) Method for producing non-breathable high-strength fabric for non-coated airbag and high-strength multifilament yarn for non-coated airbag
US9732447B2 (en) Method of preparing polyester fiber for seat belt
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
KR101953763B1 (en) Process of preparing polyester fiber for seatbelt
JPH09143817A (en) Polyester fiber for shock absorbing rope
JP3672810B2 (en) High density screen monofilament
JP2862745B2 (en) Method for producing polyalkylene naphthalate twisted cord
JP2004285497A (en) Method for producing low shrinkable polyester filament
JP4736274B2 (en) Energy absorbing polyester fiber
JP2002249926A (en) Polyester highly shrinkable fiber and method for producing the same
JP2004036061A (en) Impact-absorbing fibrous rope
JP2021134459A (en) High orientation unstretched yarn and manufacturing method thereof
KR910004458B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JP2007321273A (en) Polyester combined filament yarn