JP2021134459A - High orientation unstretched yarn and manufacturing method thereof - Google Patents

High orientation unstretched yarn and manufacturing method thereof Download PDF

Info

Publication number
JP2021134459A
JP2021134459A JP2020033221A JP2020033221A JP2021134459A JP 2021134459 A JP2021134459 A JP 2021134459A JP 2020033221 A JP2020033221 A JP 2020033221A JP 2020033221 A JP2020033221 A JP 2020033221A JP 2021134459 A JP2021134459 A JP 2021134459A
Authority
JP
Japan
Prior art keywords
sea
island
component
yarn
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020033221A
Other languages
Japanese (ja)
Inventor
勇太 渡邉
Yuta Watanabe
勇太 渡邉
浩史 山本
Hiroshi Yamamoto
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020033221A priority Critical patent/JP2021134459A/en
Publication of JP2021134459A publication Critical patent/JP2021134459A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a sea-island type high orientation unstretched yarn having excellent operability in high level processing and giving a fabric after sea removal having excellent softness and tear strength, and moreover, to provide a sea-island composite high orientation unstretched yarn producing a value-added ultra fine fiber such as exhibiting natural moire feeling when applying ununiformity drawing processing.SOLUTION: A sea-island composite fiber is composed of an easy-dissolution polymer as a sea component and a hardly-dissolution polymer as an island component and simultaneously satisfy the following A to D; A) elongation 120-260%, B) strength 1.5 cN/dtex or more, C) static stress stretching area elongation 20-100%, D) area ratio of the sea component and the island component in the fiber cross section 10:90-60:40.SELECTED DRAWING: Figure 1

Description

本発明は、海島複合型の高配向未延伸糸およびその製造方法に関するものである。さらに詳しくは、脱海後の布帛がソフト性、引き裂き強力に優れ、不均一延伸した際には自然な杢感を発現する、高配向未延伸糸に関するものである。 The present invention relates to a sea-island composite type highly oriented undrawn yarn and a method for producing the same. More specifically, the present invention relates to a highly oriented undrawn yarn in which the fabric after desealing is excellent in softness and tear strength, and exhibits a natural heather feeling when non-uniformly stretched.

高配向未延伸糸(以下、POYと称する)は、延伸に用いることはもちろんのこと、そのまま延伸仮撚り加工にも供し得る利点を有しているため、工業的に重要な位置を占めている。仮撚り加工糸に関しては、このPOYを用いて延伸と仮撚りを同時に行う延伸仮撚り加工を採用することにより、旧来の延伸糸を仮撚りする加工方法に比べて大幅な生産性の向上が達成された。さらに、荷重−伸び曲線(以下、S−S曲線と称す)上で一定の応力で伸長される定応力伸長領域(以下、NDRと称する)を適度に持ったPOYは、自然延伸比以下の倍率で不均一延伸加工することで、繊維長手方向に太細を発現して染色した際に濃淡染色差による杢感を発現することから、婦人・紳士用アウターやカジュアルウエアなどの薄地織物用途にて高評価を得ている。このように、高配向未延伸糸は、糸加工を施すことで付加価値を付け、バリエーションに富んだ加工糸が得られる。 Highly oriented undrawn yarn (hereinafter referred to as POY) occupies an industrially important position because it has an advantage that it can be used not only for drawing but also for drawing false twisting as it is. .. With regard to the false twisted yarn, by adopting the drawn false twisting process in which drawing and false twisting are performed at the same time using this POY, a significant improvement in productivity is achieved as compared with the conventional method of false twisting the drawn yarn. Was done. Further, a POY having an appropriate constant stress elongation region (hereinafter referred to as NDR) that is elongated with a constant stress on a load-elongation curve (hereinafter referred to as an SS curve) has a magnification of a natural elongation ratio or less. By performing non-uniform stretching processing in Has received high praise. As described above, the highly oriented undrawn yarn is added value by subjecting the yarn processing, and a wide variety of processed yarns can be obtained.

一方、近年では、衣料品生地の柔らかさの向上や、人工皮革用途として単糸数μmオーダー以下の極細繊維の開発が盛んに進められている。極細繊維の生産方式としては、吐出孔を多ホール化するなどして単独糸として生産する直紡方式と、溶解速度差の大きい複合紡糸系で、難溶解ポリマを島成分、易溶解ポリマを海成分として紡糸した後、海成分を溶解除去(以下、脱海と称す)することによって極細繊維を得る海島方式があげられる。特に、海島方式では、直紡方式に比べてより単糸を極細化することが可能であり、極細繊維の生産方式として多数採用されている。 On the other hand, in recent years, improvement of the softness of clothing fabrics and development of ultrafine fibers having a single yarn number of μm or less for artificial leather have been actively promoted. As the production method of ultrafine fibers, there are a direct spinning method in which the discharge holes are made multi-holes to produce as a single yarn, and a composite spinning system in which the dissolution rate difference is large. An example is the Kaijima method in which ultrafine fibers are obtained by dissolving and removing the sea component (hereinafter referred to as desea) after spinning as a component. In particular, in the Kaijima method, it is possible to make the single yarn ultrafine compared to the direct spinning method, and it is widely used as an ultrafine fiber production method.

例えば特許文献1には、直紡方式において細繊度のPOYを紡糸し、単糸繊度1.2dtexのポリエステル極細マルチフィラメント糸を製造する方法が開示されている。本技術によると、極細マルチフィラメント加工糸が得られるが、海島方式から得られる極細繊維対比、単糸繊度が太く、布帛とした際のソフト性に課題があった。 For example, Patent Document 1 discloses a method for producing a polyester ultrafine multifilament yarn having a single yarn fineness of 1.2 dtex by spinning POY having a fine fineness in a direct spinning method. According to this technique, ultrafine multifilament processed yarn can be obtained, but there is a problem in softness when it is used as a fabric because the fineness of single yarn is thicker than that of ultrafine fibers obtained by the Kaijima method.

また、特許文献2、特許文献3には、易溶解ポリマを海成分、難溶解ポリマを島成分とする海島型複合繊維であって、海成分の溶融粘度が島成分の溶融粘度よりも高い極細繊維用海島型複合繊維ならびにその製造方法、易溶解性ポリマを脱海後に直径1.5μm以下となる極細繊維が開示されている。 Further, Patent Documents 2 and 3 describe a sea-island type composite fiber containing an easily soluble polymer as a sea component and a poorly soluble polymer as an island component, and the melt viscosity of the sea component is higher than the melt viscosity of the island component. A sea-island type composite fiber for fibers, a method for producing the same, and an ultrafine fiber having a diameter of 1.5 μm or less after desealing an easily soluble polymer are disclosed.

さらに、特許文献4には、S分率が0.3〜0.8重量%となるように金属スルホネート基を有するイソフタル酸またはその誘導体を共重合したポリエステルを海成分とし、残留伸度を60〜250%とした海島型ポリエステル半延伸糸が開示されている。なお、ここでいうS分率とは、該当するポリマ中の全エステル成分に対する硫黄原子(S成分)の重量比率を表す。 Further, in Patent Document 4, polyester obtained by copolymerizing isophthalic acid having a metal sulfonate group or a derivative thereof so as to have an S fraction of 0.3 to 0.8% by weight is used as a sea component, and the residual elongation is 60. A sea-island type polyester semi-drawn yarn having a thickness of ~ 250% is disclosed. The S fraction referred to here represents the weight ratio of the sulfur atom (S component) to all the ester components in the corresponding polymer.

特開2004−285518号公報Japanese Unexamined Patent Publication No. 2004-285518 特開2007−100253号公報Japanese Unexamined Patent Publication No. 2007-100253 特開2007−100243号公報Japanese Unexamined Patent Publication No. 2007-100243 特開2003−221736号公報Japanese Unexamined Patent Publication No. 2003-221736

しかしながら、特許文献2、特許文献3に記載の海島型複合繊維は、海成分の溶融粘度が島成分の溶融粘度対比高いことから、一般的なPOY条件を適用して製糸しても、海成分が島成分よりも早く固化することにより配向が進み、一方島成分は海成分の影響により配向が下がる為、一般的なPOYが示すS−S曲線挙動が得られず、低強度・高伸度となり、NDRも発現しないか著しく高いNDR伸度を発現し、極細繊維が得られる海島方式の高配向未延伸糸が得られなかった。 However, since the sea-island type composite fibers described in Patent Documents 2 and 3 have a higher melt viscosity of the sea component than the melt viscosity of the island component, even if the yarn is produced by applying general POY conditions, the sea component The orientation progresses as the island component solidifies faster than the island component, while the island component loses its orientation due to the influence of the sea component, so the SS curve behavior exhibited by general POY cannot be obtained, and low strength and high elongation As a result, NDR was not expressed or a remarkably high NDR elongation was exhibited, and a sea-island type highly oriented undrawn yarn from which ultrafine fibers could be obtained could not be obtained.

特許文献4に記載の海島型ポリエステル半延伸糸も同様に、金属スルホネート基を有するイソフタル酸またはその誘導体のみを共重合したポリエステルは嵩高な官能基を有するため、海成分ポリマの伸長粘度が島成分ポリマより高くなることから、得られるS−S曲線は、一般的なPOYと比較して、低強度・高伸度・高NDR伸度で未延伸糸に近いS−S曲線しか得られない。 Similarly, in the sea-island type polyester semi-drawn yarn described in Patent Document 4, the polyester obtained by copolymerizing only isophthalic acid having a metal sulfonate group or a derivative thereof has a bulky functional group, so that the extensional viscosity of the sea component polymer is an island component. Since it is higher than the polymer, the obtained SS curve can only obtain an SS curve having low strength, high elongation, high NDR elongation and close to that of undrawn yarn, as compared with general POY.

これらの特許文献記載の繊維では、糸加工を施す際に加工条件に制約ができ付加価値が得られないか、得られてもその特徴が十分に発揮できていなかった。例えば、不均一延伸加工を施した場合、NDRが発現しないと杢感が得られない、NDR伸度が高いと濃淡のコントラストが強く不自然な杢感となり、不均一延伸加工糸の特徴である自然な杢感が得られない課題があった。また、低強度POYから得られる加工糸の強度も低く加工時に糸切れが多発し操業性が悪化するだけでなく、島成分は海成分に影響を受けて配向が進みにくいことから、脱海後の極細繊維、布帛の強度不足も課題である。 With the fibers described in these patent documents, the processing conditions are restricted when the yarn is processed, and added value cannot be obtained, or even if they are obtained, their characteristics cannot be fully exhibited. For example, when non-uniform drawing processing is performed, a heather feeling cannot be obtained unless NDR is expressed, and when the NDR elongation is high, the contrast between shades is strong and an unnatural heather feeling is obtained, which is a characteristic of the non-uniform drawing processed yarn. There was a problem that a natural heather feeling could not be obtained. In addition, the strength of the processed yarn obtained from the low-strength POY is also low, and not only the yarn breakage occurs frequently during processing and the operability deteriorates, but also the island component is affected by the sea component and the orientation is difficult to proceed. Insufficient strength of ultrafine fibers and fabrics is also an issue.

そこで本発明は、上述した問題点を解決し、糸加工に供した際の操業性に優れ、脱海後の布帛がソフト性、引き裂き強力に優れる、海島複合型の高配向未延伸糸を提供する。さらには、不均一延伸加工に供した際には、自然な杢感を発現するなど、付加価値のある極細繊維が得られる海島複合型の高配向未延伸糸を提供する。 Therefore, the present invention solves the above-mentioned problems, and provides a sea-island composite type highly oriented undrawn yarn which is excellent in operability when subjected to yarn processing, and is excellent in softness and tear strength after desealing. do. Further, the present invention provides a sea-island composite type highly oriented undrawn yarn capable of obtaining ultrafine fibers having added value such as exhibiting a natural heather feeling when subjected to non-uniform drawing processing.

上記課題を解決するため、本発明は次の構成からなる。
(1)海成分を易溶解ポリマ、島成分を難溶解ポリマとした海島複合型繊維であって、以下A〜Dを同時に満たす高配向未延伸糸。
A.伸度:120〜260%
B.強度:1.5cN/dtex以上
C.定応力伸長領域伸度が20〜100%
D.繊維横断面における海成分と島成分の面積比が10:90〜60:40
(2)海成分に易溶解ポリマ、島成分に該易溶解ポリマより溶融粘度の高い難溶解ポリマを配した海島複合型繊維を、紡糸速度2000〜4000m/分で引き取ることを特徴とする、前記(1)を満たす海島複合型高配向未延伸糸の製造方法。
In order to solve the above problems, the present invention has the following configuration.
(1) A highly oriented undrawn yarn that is a sea-island composite type fiber in which the sea component is an easily soluble polymer and the island component is a poorly soluble polymer, which simultaneously satisfies A to D below.
A. Elongation: 120-260%
B. Strength: 1.5 cN / dtex or more C.I. Constant stress extension region elongation is 20 to 100%
D. The area ratio of the sea component and the island component in the fiber cross section is 10:90 to 60:40.
(2) The sea-island composite fiber in which an easily soluble polymer is arranged as a sea component and a poorly soluble polymer having a higher melt viscosity than the easily soluble polymer is arranged as an island component is taken up at a spinning speed of 2000 to 4000 m / min. A method for producing a sea-island composite type highly oriented undrawn yarn satisfying (1).

本発明によれば、糸加工に供した際の操業性に優れ、脱海後の布帛がソフト性、引き裂き強力に優れる、海島複合型の高配向未延伸糸を提供する。さらには、不均一延伸加工に供した際には、自然な杢感を発現するなど、付加価値のある極細繊維が得られる海島複合型の高配向未延伸糸を提供することができる。 According to the present invention, there is provided a sea-island composite type highly oriented undrawn yarn which is excellent in operability when subjected to yarn processing, and the fabric after desealing is excellent in softness and tear strength. Furthermore, it is possible to provide a sea-island composite type highly oriented undrawn yarn capable of obtaining ultrafine fibers having added value such as exhibiting a natural heather feeling when subjected to non-uniform drawing processing.

本発明において好ましく用いられる海島複合型の高配向未延伸糸の単糸横断面の形状の一例を示す。An example of the shape of the single yarn cross section of the sea-island composite type highly oriented undrawn yarn preferably used in the present invention is shown. 定応力伸長領域(NDR)を説明するためのS−S曲線(A:NDR伸度、B:破断点伸度)SS curve (A: NDR elongation, B: breaking point elongation) for explaining the constant stress elongation region (NDR)

以下、本発明の高配向未延伸糸について詳述する。
本発明における海島複合型繊維は、極細繊維を得るために易溶解ポリマを海成分に、難溶解ポリマを島成分に配した海島複合型繊維である。
Hereinafter, the highly oriented undrawn yarn of the present invention will be described in detail.
The sea-island composite fiber in the present invention is a sea-island composite fiber in which an easily soluble polymer is arranged as a sea component and a poorly soluble polymer is arranged as an island component in order to obtain ultrafine fibers.

図1は本発明の海島複合型の高配向未延伸糸に好ましく使用される繊維横断面の一例である。
海島複合型繊維は、海成分と島成分の繊維横断面における面積比(海島複合比)が10:90〜60:40である。海成分が10%以上あることで、島成分の融着などが生じず海島複合断面を安定的に形成できるため、脱海した際に解繊不良が生じず狙いの極細繊維が得られる。海成分が10%未満の場合、紡糸の際に島成分同士の融着が生じやすく、脱海の際にバンドルを形成して解繊不良が生じて極細繊維が得られないため、脱海後の布帛のソフト性に劣る。また自然な杢が得られない。海成分が60%以下(すなわち島成分が40%以上)であることで島成分の配向抑制が最小限に抑えられるため、高強度、NDR伸度が得られる。また、脱海する際にも海成分ポリマの溶解除去を短時間で終了することができ、島成分の劣化が生じにくく布帛として使用する際の引き裂き強力に優れる。海成分が60%を超えると、紡糸過程において海成分による島成分の配向抑制が高まり、低強度、高伸度となる。その結果、糸加工に供した際の操業性は劣り、さらに脱海後の布帛の引き裂き強力も劣る。海成分が60%超えると(すなわち、島成分が40%未満)、島成分の連続相を繊維軸方向に安定的に形成することができず、脱海後に繊維の太さ斑に起因する染色斑や、布帛として使用する際には、引き裂き強力に著しく劣る。また、60%超える溶解除去することから、極細繊維としては著しく低収率となり、産業上の利用に適さない。さらに好ましくは、海成分と島成分の繊維横断面における面積比(海島複合比)が10:90〜50:50である。
FIG. 1 is an example of a fiber cross section preferably used for the sea-island composite type highly oriented undrawn yarn of the present invention.
The sea-island composite type fiber has an area ratio (sea-island composite ratio) of the sea component and the island component in the fiber cross section of 10:90 to 60:40. When the sea component is 10% or more, the island component is not fused and the sea-island composite cross section can be stably formed. If the sea component is less than 10%, fusion of the island components is likely to occur during spinning, and bundles are formed during desealing, resulting in poor defibration and ultrafine fibers cannot be obtained. The softness of the fabric is inferior. Moreover, a natural heather cannot be obtained. When the sea component is 60% or less (that is, the island component is 40% or more), the orientation suppression of the island component is minimized, so that high strength and NDR elongation can be obtained. In addition, the dissolution and removal of the sea component polymer can be completed in a short time even when the sea component is removed, and the island component is less likely to deteriorate, and the tearing strength when used as a cloth is excellent. When the sea component exceeds 60%, the orientation suppression of the island component by the sea component is enhanced in the spinning process, resulting in low strength and high elongation. As a result, the operability when subjected to yarn processing is inferior, and the tearing strength of the fabric after desealing is also inferior. When the sea component exceeds 60% (that is, the island component is less than 40%), the continuous phase of the island component cannot be stably formed in the fiber axis direction, and the dyeing caused by the thickness unevenness of the fiber after desealing. When used as spots or fabrics, it is significantly inferior in tear strength. In addition, since it dissolves and removes more than 60%, the yield is extremely low as an ultrafine fiber, which is not suitable for industrial use. More preferably, the area ratio (sea-island composite ratio) of the sea component and the island component in the fiber cross section is 10:90 to 50:50.

本発明の高配向未延伸糸は、伸度(破断点伸度B)が120〜260%、強度が1.5cN/dtex以上、定応力伸長領域伸度(NDR伸度A)が20〜100%である。図2に例示するS−S曲線が得られるものである。かかる範囲の伸度、強度、NDR伸度を実現した高配向未延伸糸とすることにより、糸加工に供した際の操業性に優れ、脱海後の布帛がソフト性、引き裂き強力に優れ、さらには、不均一延伸加工に供した際には、自然な杢感を発現することができる。 The highly oriented undrawn yarn of the present invention has an elongation (breaking point elongation B) of 120 to 260%, a strength of 1.5 cN / dtex or more, and a constant stress elongation region elongation (NDR elongation A) of 20 to 100. %. The SS curve illustrated in FIG. 2 can be obtained. By using a highly oriented undrawn yarn that achieves the elongation, strength, and NDR elongation in such a range, the operability when subjected to yarn processing is excellent, and the fabric after desealing is excellent in softness and tear strength. Furthermore, when subjected to non-uniform stretching processing, a natural heather feeling can be exhibited.

本発明の高配向未延伸糸の伸度は120〜260%である。伸度をかかる範囲とすることにより、糸加工にて適切な加工延伸倍率で加工することができるので安定した加工張力で生産可能となり優れた操業性となり、引き裂き強力が良好であり、不均一延伸加工による自然な杢感が得られる。好ましくは伸度150〜220%である。伸度を260%以下とすることにより、繊維構造が安定した高配向未延伸糸が得られ、強度も1.5cN/dtex以上となり、引き裂き強力が良好となる。また、糸加工に供した際の糸切れが少なく、操業性に優れる。 The elongation of the highly oriented undrawn yarn of the present invention is 120 to 260%. By setting the elongation within this range, it is possible to process at an appropriate processing and drawing ratio in yarn processing, so that it is possible to produce with a stable processing tension, excellent operability, good tear strength, and non-uniform drawing. A natural heather feeling can be obtained by processing. The elongation is preferably 150 to 220%. By setting the elongation to 260% or less, a highly oriented undrawn yarn having a stable fiber structure can be obtained, the strength is 1.5 cN / dtex or more, and the tear strength is good. In addition, there is little thread breakage when it is used for thread processing, and it is excellent in operability.

伸度が120%未満の場合、加工延伸倍率を低く設定せざるを得ず、加工張力変動が大きくなり、糸切れが発生し操業性が悪化するだけでなく、得られる加工糸はムラなどの品質異常を引き起こす。また、NDRが発現しにくく、不均一延伸加工による杢感が得られ難い。伸度が260%を超える場合、繊維構造が不安定で未延伸糸に近い状態となり、強度が低く、糸加工工程で糸切れが発生し操業性が悪化する。また島成分の配向が低くなり、脱海後の布帛の引き裂き強力は劣位となる。また経時による強・伸度変化が大きくなる為、得られる加工糸の強・伸度バラツキが発生して品質異常を引き起こす。 If the elongation is less than 120%, the machining draw ratio must be set low, the machining tension fluctuation becomes large, yarn breakage occurs and the operability deteriorates, and the obtained processed yarn is uneven. Causes quality abnormalities. In addition, NDR is less likely to occur, and it is difficult to obtain a heather feeling due to the non-uniform stretching process. When the elongation exceeds 260%, the fiber structure is unstable and the yarn is close to undrawn yarn, the strength is low, and yarn breakage occurs in the yarn processing process, resulting in poor operability. In addition, the orientation of the island components becomes low, and the tear strength of the fabric after desealing becomes inferior. In addition, since the change in strength and elongation with time becomes large, the strength and elongation of the obtained processed yarn vary, causing quality abnormalities.

本発明の高配向未延伸糸の強度は1.5cN/dtex以上である。強度をかかる範囲とすることにより、糸加工にて適切な加工延伸倍率で加工しても、優れた操業性が得られる。また、得られる加工糸の強度や脱海後の布帛は引き裂き強力に優れる。強度が1.5cN/dtex未満の場合、糸加工工程で糸切れが発生する。また、島成分の配向は低く、脱海後の布帛の引き裂き強力は劣位となる。好ましくは1.8cN/dtex以上である。強度は高い程好ましいが実用上の上限は3.0cN/dtexである。 The strength of the highly oriented undrawn yarn of the present invention is 1.5 cN / dtex or more. By setting the strength in such a range, excellent operability can be obtained even if the yarn is processed at an appropriate processing draw ratio. In addition, the strength of the obtained processed yarn and the fabric after desealing are excellent in tearing strength. If the strength is less than 1.5 cN / dtex, yarn breakage occurs in the yarn processing process. In addition, the orientation of the island components is low, and the tear strength of the fabric after desealing is inferior. It is preferably 1.8 cN / dtex or more. The higher the strength, the more preferable, but the practical upper limit is 3.0 cN / dtex.

本発明における高配向未延伸糸は、そのS−S曲線において20%以上、100%以下の定応力伸長領域伸度(NDR伸度A)を示す。本発明でいうNDR伸度Aとは、図2に示すS−S曲線において一定の応力で伸長される定応力伸長領域終点の伸度である。糸条の長手方向に太さ斑を形成する不均一延伸加工においては、NDRの範囲内で延伸することにより長手方向に不均一なネッキング延伸を生じさせ、長手方向で異なる断面積を持つ糸条を形成できる。NDR伸度をかかる範囲とすることにより、不均一延伸加工に供した際に脱海後の布帛は濃淡のコントラストが適度になり自然な杢感を発現することができる。NDR伸度が20%未満の場合、不均一延伸加工の延伸倍率を低く設定することとなり不均一延伸加工後の海島複合型繊維の太細断面の比は小さく、脱海後の布帛は濃淡のコントラストが小さく、杢感が得られない。一方NDR伸度が100%を超える場合、不均一延伸加工後の海島複合型繊維の太細断面の比は大きくなりすぎ、脱海後の布帛は濃淡のコントラストが大きく不自然な杢感となる。好ましいNDR伸度は30%以上、80%以下である。 The highly oriented undrawn yarn in the present invention exhibits a constant stress elongation region elongation (NDR elongation A) of 20% or more and 100% or less in its SS curve. The NDR elongation A referred to in the present invention is the elongation at the end point of the constant stress extension region that is extended with a constant stress in the SS curve shown in FIG. In the non-uniform stretching process that forms thickness spots in the longitudinal direction of the yarn, the yarn is stretched within the range of NDR to cause non-uniform necking stretching in the longitudinal direction, and the yarn has a different cross-sectional area in the longitudinal direction. Can be formed. By setting the NDR elongation within such a range, when the fabric is subjected to non-uniform stretching processing, the contrast of shades of the fabric after desealing becomes appropriate, and a natural heather feeling can be exhibited. When the NDR elongation is less than 20%, the draw ratio of the non-uniform drawing process is set low, the ratio of the thick and thin cross sections of the sea-island composite fiber after the non-uniform drawing process is small, and the fabric after desealing is shaded. The contrast is low and the feeling of heather cannot be obtained. On the other hand, when the NDR elongation exceeds 100%, the ratio of the thick and thin cross sections of the sea-island composite fiber after the non-uniform drawing process becomes too large, and the fabric after desealing has a large contrast of shades and gives an unnatural heather feeling. .. The preferred NDR elongation is 30% or more and 80% or less.

本発明の高配向未延伸糸は、公知の糸加工が施される。糸加工の方法は限定されるものではないが、例示すると、仮撚加工法、不均一延伸加工法、タスラン混繊等の複合加工等が挙げられる。例えば、仮撚り加工では捲縮、不均一延伸加工では杢感というように、加工法独特の特徴が付与できる。 The highly oriented undrawn yarn of the present invention is subjected to known yarn processing. The method of yarn processing is not limited, and examples thereof include a false twist processing method, a non-uniform drawing processing method, and a composite processing such as Taslan mixed fiber. For example, characteristics peculiar to the processing method can be imparted, such as crimping in false twisting processing and heather feeling in non-uniform stretching processing.

本発明の高配向未延伸糸の島径は、海島複合比、島数、単糸繊度、糸加工の想定延伸倍率により任意設定でき、脱海後の布帛として使用する際にソフト性が発現すれば特に限定されない。加工糸の島径が5.0μm以下になるように設定することが、脱海後の布帛がソフト性に優れるため好ましい。延伸倍率1.0〜2.6倍の場合、高配向未延伸糸の島径は8μm以下であることが好ましい。 The island diameter of the highly oriented undrawn yarn of the present invention can be arbitrarily set by the sea-island composite ratio, the number of islands, the single yarn fineness, and the assumed draw ratio of yarn processing, and the softness is exhibited when used as a fabric after desealing. There is no particular limitation. It is preferable to set the island diameter of the processed yarn to be 5.0 μm or less because the fabric after desealing is excellent in softness. When the draw ratio is 1.0 to 2.6 times, the island diameter of the highly oriented undrawn yarn is preferably 8 μm or less.

本発明の高配向未延伸糸は、70℃、15分処理後の温熱収縮率が35%以上であることが好ましい。温水収縮率が35%以上であると、繊維構造が安定化しており、強・伸度の経時変化が小さいため好ましい。実用上の上限は80%である。 The highly oriented undrawn yarn of the present invention preferably has a thermal shrinkage rate of 35% or more after treatment at 70 ° C. for 15 minutes. When the hot water shrinkage rate is 35% or more, the fiber structure is stabilized and the change in strength and elongation with time is small, which is preferable. The practical upper limit is 80%.

本発明の高配向未延伸糸の製造方法を説明する。
本発明における高配向未延伸糸は、易溶解ポリマを海成分に、難溶解ポリマを島成分に配した海島複合型繊維であり、海成分の易溶解ポリマを溶解除去した後に極細繊維を得るのに適した高配向未延伸糸である。
The method for producing the highly oriented undrawn yarn of the present invention will be described.
The highly oriented undrawn yarn in the present invention is a sea-island composite type fiber in which an easily soluble polymer is arranged as a sea component and a poorly soluble polymer is arranged as an island component, and ultrafine fibers are obtained after dissolving and removing the easily soluble polymer of the sea component. It is a highly oriented undrawn yarn suitable for.

従って、構成するポリマとしては、溶解剤に対して溶解速度の異なる繊維形成性の良好なポリマを適宜選択し組み合わせればよい。この溶解速度比の範囲としては、島成分ポリマに対して海成分ポリマの溶解速度が10倍以上、もしくは島成分ポリマを溶解剤に対して全く溶解しないポリマを選択する。溶解速度比を10倍以上とすることで、脱海する際に溶解除去が短時間で終了することができ、島成分の劣化が生じにくく布帛としての引き裂き強力に優れる。また、海島単繊維の表面部/中心部それぞれに位置する島成分の、溶解剤に直接接触する時間差が小さくなるため、島径バラツキが小さい極細繊維が得られる。溶解速度比のより好ましい範囲は100倍以上である。 Therefore, as the constituent polymers, polymers having different dissolution rates and good fiber-forming properties with respect to the dissolving agent may be appropriately selected and combined. As the range of this dissolution rate ratio, a polymer having a dissolution rate of 10 times or more of the sea component polymer with respect to the island component polymer or a polymer in which the island component polymer is not dissolved at all in the dissolving agent is selected. By setting the dissolution rate ratio to 10 times or more, dissolution and removal can be completed in a short time when the sea is removed, and the island components are less likely to deteriorate and the fabric is excellent in tearing strength. Further, since the time difference between the island components located on the surface portion / the central portion of the sea island single fiber and the island components in direct contact with the dissolving agent is small, ultrafine fibers having a small variation in island diameter can be obtained. A more preferable range of the dissolution rate ratio is 100 times or more.

繊維を構成するポリマは、繊維形成性の観点からポリエステル、ポリアミド、ポリスチレン、ポリプロピレン、ポリエチレンなど種々の熱可塑性ポリマを好ましく用いることができる。溶解剤として苛性ソーダによるアルカリ溶解が工業的に広く行われている点より、海成分はポリエステルを主成分とすることが好ましい。 As the polymer constituting the fiber, various thermoplastic polymers such as polyester, polyamide, polystyrene, polypropylene and polyethylene can be preferably used from the viewpoint of fiber forming property. It is preferable that the sea component contains polyester as a main component because alkali dissolution with caustic soda as a dissolving agent is widely performed industrially.

島成分ポリマの紡糸温度における溶融粘度は、海成分ポリマの溶融粘度より高い必要がある。島成分ポリマに溶融粘度が高いポリマを使用することで、紡糸時にかかる応力が島成分に集中して島成分の配向が促進される。これにより所望のNDR伸度、強・伸度を有する高配向未延伸糸を得ることができる。また、島成分の配向が促進されることで、脱海後の布帛の引き裂き強力も優れる。島成分ポリマの溶融粘度が海成分ポリマの溶融粘度より低い場合、海成分ポリマの伸長粘度が島成分ポリマより高くなることから、紡糸時に島成分の配向が進まず低強度・高伸度糸となる。加えてNDRが発現しないか、もしくはNDR伸度が高すぎるため、不均一延伸加工後の海島型繊維の太細断面積の比が大きくなり、脱海後の布帛は濃淡のコントラストが大きくなり不自然な杢感となる。好ましくは3500poise≧島成分ポリマの溶融粘度>海成分ポリマの溶融粘度≧300poiseである。より好ましくは2500poise≧島成分ポリマの溶融粘度>海成分ポリマの溶融粘度≧300poiseである。島成分ポリマの溶融粘度が3500poise以下で、高速紡糸でも曳糸性が担保される。また、海成分ポリマの溶融粘度が300poise以上で、繊維構造形成性を発現して十分な曳糸性が得られる。 The melt viscosity of the island component polymer at the spinning temperature needs to be higher than the melt viscosity of the sea component polymer. By using a polymer having a high melt viscosity for the island component polymer, the stress applied during spinning is concentrated on the island component and the orientation of the island component is promoted. As a result, a highly oriented undrawn yarn having a desired NDR elongation and strength / elongation can be obtained. In addition, by promoting the orientation of the island components, the tearing strength of the fabric after desealing is also excellent. When the melt viscosity of the island component polymer is lower than the melt viscosity of the sea component polymer, the extensional viscosity of the sea component polymer is higher than that of the island component polymer. Become. In addition, since NDR is not expressed or the NDR elongation is too high, the ratio of the thick and fine cross-sectional areas of the sea-island type fibers after the non-uniform drawing process becomes large, and the fabric after desealing has a large contrast of light and shade, which is inconvenient. It gives a natural feeling of heather. Preferably, 3500 poise ≧ melt viscosity of the island component polymer> melt viscosity of the sea component polymer ≧ 300 poise. More preferably, 2500 poise ≧ melt viscosity of the island component polymer> melt viscosity of the sea component polymer ≧ 300 poise. The melt viscosity of the island component polymer is 3500 poise or less, and the spinnability is guaranteed even in high-speed spinning. Further, when the melt viscosity of the marine component polymer is 300 poise or more, the fiber structure forming property is exhibited and sufficient spinnability can be obtained.

さらに、海成分ポリマと島成分ポリマの溶融粘度の差は500poise以上1500poise以下であることが好ましい。海成分ポリマと島成分ポリマとの溶融粘度差が500poise以上であることで、海成分による島成分の配向抑制が小さく島成分の性能を最大限に発揮することができ、所望のNDR伸度、強・伸度が得られる。また、海成分ポリマと島成分ポリマの溶融粘度差が1500poise以下であることで、複合紡糸における断面形成性に優れ所望の海島複合比を得ることができる。 Further, the difference in melt viscosity between the sea component polymer and the island component polymer is preferably 500 poise or more and 1500 poise or less. When the difference in melt viscosity between the sea component polymer and the island component polymer is 500 poise or more, the orientation suppression of the island component by the sea component is small and the performance of the island component can be maximized, and the desired NDR elongation can be achieved. Strong and elongation can be obtained. Further, when the difference in melt viscosity between the sea component polymer and the island component polymer is 1500 poise or less, the cross-sectional formability in the composite spinning is excellent and a desired sea-island composite ratio can be obtained.

海成分としてポリエステルを用いる場合、海成分ポリマの固有粘度(以下、IVと称する)は0.50〜0.75であることが好ましい。IVが0.50以上であると安定した製糸性が得られる。一方IVが0.75以下であると断面形成性に優れる。また溶融紡糸中のCOOH量の増大を抑制できメルトフラクチャーが生じにくく、安定した製糸性が得られる。より好ましい海成分ポリマのIVは0.55〜0.70である。 When polyester is used as the sea component, the intrinsic viscosity (hereinafter referred to as IV) of the sea component polymer is preferably 0.50 to 0.75. When IV is 0.50 or more, stable silk reeling property can be obtained. On the other hand, when IV is 0.75 or less, the cross-sectional formability is excellent. In addition, an increase in the amount of COOH during melt spinning can be suppressed, melt fracture is less likely to occur, and stable silk reeling properties can be obtained. The IV of the more preferred marine polymer is 0.55 to 0.70.

島成分としてポリエステルを用いる場合は、島成分ポリマのIVが0.60〜0.80が好ましい。IVが0.60以上であると実用に耐え得る十分な強度が達成できる。また糸加工に供した際の操業性に優れ、脱海後の布帛の引き裂き強力が優れる。一方IVが0.80以下であると、溶融紡糸中のCOOH量の増大を抑制できメルトフラクチャーが生じにくく、安定した製糸性が得られる。また、糸加工に供した際の操業性に優れ、脱海後の布帛の引き裂き強力が優れる。より好ましい島成分ポリマのIVは0.65〜0.75である。 When polyester is used as the island component, the IV of the island component polymer is preferably 0.60 to 0.80. When IV is 0.60 or more, sufficient strength that can withstand practical use can be achieved. In addition, it is excellent in operability when subjected to thread processing, and is excellent in tearing strength of the fabric after desealing. On the other hand, when IV is 0.80 or less, an increase in the amount of COOH during melt spinning can be suppressed, melt fracture is less likely to occur, and stable silk reeling properties can be obtained. In addition, it is excellent in operability when subjected to thread processing, and is excellent in tearing strength of the fabric after desealing. The IV of the more preferred island component polymer is 0.65 to 0.75.

海成分としてポリエステルを用いる場合、アルカリ溶解剤に易溶解性を示す共重合ポリエステルやポリ乳酸が好ましい。さらに好ましくは、金属スルホネート基を有するイソフタル酸またはその誘導体とポリアルキレングリコールとを組み合わせた共重合ポリエステルが好適である。特に好ましくは、5−ナトリウムスルホイソフタル酸をS分率が0.9〜1.5重量%になるように、分子量500〜3000のポリエチレングリコールを4〜27モル%と組み合わせた共重合ポリエステルである。該特定成分の共重合ポリエステルは、紡糸工程において、海成分による島成分の配向抑制が最小限に抑えられ、所望のNDR伸度、強・伸度を有する高配向未延伸糸を得ることができる。アルカリ溶解で溶解除去する場合、島成分ポリマはポリエステル、ポリアミドが好ましい。より好ましくはホモポリエステルである。 When polyester is used as a sea component, copolymerized polyester or polylactic acid, which is easily soluble in an alkali dissolving agent, is preferable. More preferably, a copolymerized polyester in which isophthalic acid having a metal sulfonate group or a derivative thereof and polyalkylene glycol is combined is preferable. Particularly preferred is a copolymerized polyester in which 5-sodium sulfoisophthalic acid is combined with 4-27 mol% of polyethylene glycol having a molecular weight of 500 to 3000 so that the S fraction is 0.9 to 1.5% by weight. .. In the spinning process, the copolyester of the specific component can minimize the suppression of the orientation of the island component by the sea component, and can obtain a highly oriented undrawn yarn having a desired NDR elongation and strength / elongation. .. When dissolving and removing by alkali dissolution, polyester and polyamide are preferable as the island component polymer. More preferably, it is homopolyester.

本発明の目的を損なわない範囲において、海成分ポリマ、島成分ポリマのそれぞれに対して、上記以外の共重合成分を20モル%以下共重合してもよい。また、必要に応じて、艶消し剤として二酸化チタンなどの無機微粒子、滑剤としてシリカ微粒子などを添加してもよい。 A copolymerization component other than the above may be copolymerized in an amount of 20 mol% or less with respect to each of the sea component polymer and the island component polymer as long as the object of the present invention is not impaired. Further, if necessary, inorganic fine particles such as titanium dioxide may be added as a matting agent, and silica fine particles or the like may be added as a lubricant.

海島複合比は、繊維横断面の面積比(海島複合比)となるように、海成分ポリマと島成分ポリマの比重より重量比に換算して設定する。海成分ポリマと島成分ポリマが同一種の場合、重量比で海:島=10:90〜60:40となるように各ポリマを溶融した後、計量して吐出する。 The sea-island composite ratio is set by converting the specific gravity of the sea component polyma and the island component polyma into a weight ratio so as to be the area ratio of the fiber cross section (sea-island composite ratio). When the sea component polymer and the island component polymer are of the same type, each polymer is melted so that the weight ratio is sea: island = 10: 90 to 60:40, and then weighed and discharged.

本発明の高配向未延伸糸の製造方法に用いる口金は、既存の複合紡糸用口金を用いることができるが、特開2011−174215号公報に記載されている計量プレート、分配プレート、吐出プレートの大きく3種類の部材が積層された複合口金を用いることで海島複合繊維を安定して得ることができるため好ましい。 As the mouthpiece used in the method for producing a highly oriented undrawn yarn of the present invention, an existing mouthpiece for composite spinning can be used, but the measuring plate, distribution plate, and discharge plate described in Japanese Patent Application Laid-Open No. 2011-174215 It is preferable to use a composite base in which three types of members are laminated so that the sea-island composite fiber can be stably obtained.

ポリマ配管を覆う加熱容器の温度(紡糸温度)は、前述の溶融粘度の関係が満足されていれば特に限定されない。海成分ポリマと島成分ポリマがポリエステルの場合では280〜300℃が好ましい。このような紡糸温度を採用することにより紡糸ドラフトによる島成分の配向が進みやすく、所望のNDR伸度、強・伸度が得られる。また口金直下での急冷を緩和するため、口金下に加熱ヒーターを設けると強度が向上するため好ましい。 The temperature of the heating container (spinning temperature) that covers the polymer pipe is not particularly limited as long as the above-mentioned relationship of melt viscosity is satisfied. When the sea component polymer and the island component polymer are polyester, 280 to 300 ° C. is preferable. By adopting such a spinning temperature, the orientation of the island components by the spinning draft can be easily promoted, and the desired NDR elongation and strength / elongation can be obtained. Further, in order to alleviate the rapid cooling directly under the mouthpiece, it is preferable to provide a heater under the mouthpiece because the strength is improved.

溶融から吐出までの溶融通過時間、加熱時間は極力短くすることで、島成分ポリマ、海成分ポリマのそれぞれの分子量低下を抑制し、強度低下を抑制することができる。島成分ポリマ、海成分ポリマは、ともに別々に溶融され、加熱ゾーンを経て精密に吐出計量し、異物補足の濾過層を通過して、海島型となるよう複合口金を用いて吐出・糸条化・冷却される。この溶融から吐出までの溶融通過時間は30分以内である。海成分ポリマと島成分ポリマがポリエステルの場合では、IV低下が押さえられ、強度低下を抑制することができる。また繊維中のCOOH量の増加等の問題も抑制できるため、原糸の操業性が向上し、原糸毛羽が抑制される。また糸加工に供した際の操業性にも優れる。より好ましい溶融滞留時間は20分以下である。 By shortening the melting transit time and heating time from melting to discharging as much as possible, it is possible to suppress the decrease in molecular weight of each of the island component polymer and the sea component polymer, and to suppress the decrease in strength. Both the island component polyma and the sea component polyma are melted separately, precisely discharged and weighed through the heating zone, passed through the filtration layer that captures foreign matter, and discharged and threaded using a composite mouthpiece so as to form a sea island type.・ It is cooled. The melting passage time from melting to discharging is within 30 minutes. When the sea component polymer and the island component polymer are polyester, the decrease in IV can be suppressed and the decrease in strength can be suppressed. Further, since problems such as an increase in the amount of COOH in the fiber can be suppressed, the operability of the raw yarn is improved and the fluff of the raw yarn is suppressed. It also has excellent operability when used for thread processing. A more preferable melt residence time is 20 minutes or less.

本発明の高配向未延伸糸は、2000〜4000m/分で引き取る。2000m/分以上で引き取ることで、繊維構造が安定化し、強度1.5cN/dtex以上の高配向未延伸糸が得られる。2000m/分未満で引き取る場合、繊維構造が不安定で未延伸糸に近い状態となり強度が低くなる。4000m/分以下で引き取ることで、260%以下の伸度を保持し、100%以下のNDR伸度が得られる。4000m/分を超える速度で引き取る場合、伸度が低くなる。原糸の操業性が悪化し、原糸毛羽が発生しやすくなる。好ましい引き取り速度は2500〜3500m/分である。 The highly oriented undrawn yarn of the present invention is taken up at 2000 to 4000 m / min. By picking up at 2000 m / min or more, the fiber structure is stabilized and a highly oriented undrawn yarn having a strength of 1.5 cN / dtex or more can be obtained. When the yarn is picked up at less than 2000 m / min, the fiber structure is unstable and the yarn becomes close to undrawn yarn, resulting in low strength. By picking up at 4000 m / min or less, the elongation of 260% or less is maintained, and the NDR elongation of 100% or less can be obtained. If it is picked up at a speed exceeding 4000 m / min, the elongation will be low. The operability of the raw yarn deteriorates, and fluffing of the raw yarn is likely to occur. The preferred pick-up speed is 2500-3500 m / min.

以下、実施例を挙げて具体的に説明する。なお、実施例の主な測定値は以下の方法で測定した。 Hereinafter, examples will be specifically described. The main measured values of the examples were measured by the following methods.

(1)固有粘度(IV)測定
定義式のηrは、純度98%以上のO−クロロフェノール(OCP)10mL中に海成分ポリマおよび島成分ポリマで用いるポリマ試料を0.8g溶かし、25℃の温度にてオストワルド粘度計を用いて相対粘度ηrを下記の式により求め、固有粘度(IV)を算出した。
ηr=η/η0=(t×d)/(t0×d0)
固有粘度(IV)=0.0242ηr+0.2634
[η:ポリマ溶液の粘度、η0:OCPの粘度、t:溶液の落下時間(秒)、d:溶液の密度(g/cm)、t0:OCPの落下時間(秒)、d0:OCPの密度(g/cm)] 。
(1) Intrinsic viscosity (IV) measurement For the ηr of the definition formula, 0.8 g of the polymer sample used for the sea component polymer and the island component polymer is dissolved in 10 mL of O-chlorophenol (OCP) having a purity of 98% or more, and the temperature is 25 ° C. The relative viscosity ηr was calculated by the following formula using an Ostwald viscometer at temperature, and the intrinsic viscosity (IV) was calculated.
ηr = η / η0 = (t × d) / (t0 × d0)
Intrinsic viscosity (IV) = 0.0242ηr + 0.2634
[Η: viscosity of polymer solution, η0: viscosity of OCP, t: solution falling time (seconds), d: solution density (g / cm 3 ), t0: OCP falling time (seconds), d0: OCP Density (g / cm 3 )].

(2)溶解速度測定
海成分ポリマおよび島成分ポリマで用いるポリマを約2gそれぞれ用意して計量した後、90℃の1wt%水酸化ナトリウム水溶液にて10分間処理した時の減量率から以下の式にて溶解速度比を算出した。
海成分ポリマの減量率(%:S)=(((処理前重量)−(処理後重量))/(処理前重量))×100
島成分ポリマの減量率(%:I)=(((処理前重量)−(処理後重量))/(処理前重量))×100
溶解速度比=S/I 。
(2) Measurement of dissolution rate The following formula is used from the weight loss rate when about 2 g of the polyma used for the sea component polyma and the island component polyma are prepared and weighed, and then treated with a 1 wt% sodium hydroxide aqueous solution at 90 ° C. for 10 minutes. The dissolution rate ratio was calculated in.
Weight loss rate of marine polymer (%: S) = (((weight before treatment)-(weight after treatment)) / (weight before treatment)) x 100
Weight loss rate of island component polymer (%: I) = (((weight before treatment)-(weight after treatment)) / (weight before treatment)) x 100
Dissolution rate ratio = S / I.

(3)溶融粘度測定
チップ状のポリマを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフ1Bによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、実施例あるいは比較例には、1216s−1の溶融粘度を記載している。ちなみに、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。
(3) Melt Viscosity Measurement The chip-shaped polymer was dried with a vacuum dryer to a moisture content of 200 ppm or less, and the strain rate was changed stepwise with a Capillograph 1B manufactured by Toyo Seiki Co., Ltd. to measure the melt viscosity. The measurement temperature is the same as the spinning temperature, and the melt viscosity of 1216s -1 is described in Examples or Comparative Examples. By the way, it took 5 minutes from the time when the sample was put into the heating furnace to the start of the measurement, and the measurement was performed in a nitrogen atmosphere.

(4)海成分面積・島成分面積(面積比)
実施例および比較例により得られた海島複合型高配向未延伸糸の横断面をキーエンス(株)社マイクロスコープVHX−2000を用いて観察し、付属の画像解析ソフトにて海成分、島成分の面積を測定した後、各値を整数比で表した。
(4) Sea component area / island component area (area ratio)
The cross section of the sea-island composite type highly oriented undrawn yarn obtained in Examples and Comparative Examples was observed using a microscope VHX-2000 manufactured by KEYENCE CORPORATION, and the sea component and island component were observed using the attached image analysis software. After measuring the area, each value was expressed as an integer ratio.

(5)繊度、強度、伸度、NDR伸度
繊度、強度、伸度はJIS L1013(2010、化学繊維フィラメント糸試験方法)に従い測定した。NDR伸度は、引張り試験機で得た図2に示すチャート上のAの伸度を読み取った。NDR伸度についてはN=5の測定値の算術平均値で表した。
(5) Fineness, strength, elongation, NDR elongation Fineness, strength, and elongation were measured according to JIS L1013 (2010, chemical fiber filament yarn test method). For the NDR elongation, the elongation of A on the chart shown in FIG. 2 obtained by the tensile tester was read. The NDR elongation was expressed as the arithmetic mean of the measured values of N = 5.

(6)70℃温水収縮率
枠周1.0mの検尺機を用いて10回分のカセを作製し、以下の式に従い計算した。なお、原長、処理後長ともに測定時は荷重{(表示繊度(dtex)×2)g}をかけて測定した。収縮処理について15分間浸漬処理した。
収縮率(%)={(原長(L1)―処理後長(L2))/原長(L1)}×100 。
(6) 70 ° C. Hot water shrinkage rate A measuring machine with a frame circumference of 1.0 m was used to prepare skeins for 10 times, and the calculation was performed according to the following formula. Both the original length and the post-treatment length were measured by applying a load {(display fineness (dtex) × 2) g} at the time of measurement. The shrinkage treatment was carried out for 15 minutes.
Shrinkage rate (%) = {(original length (L1) -post-treatment length (L2)) / original length (L1)} × 100.

(7)平均島径
実施例および比較例において得られた海島複合型高配向未延伸糸、仮撚り加工糸の単糸を無作為に5本抽出し、横断面を(4)と同様に観察し、単糸あたりN=4の島について長径を測定し、N=20の島径の算術平均を平均島径とした。
仮撚り加工条件は、第1ヒーター温度170℃、第2ヒーター温度190℃で熱処理を施し、フリクション式仮撚り装置を用いて1.70倍に仮撚り延伸を行い、仮撚り加工糸を得た。
(7) Average island diameter Five single yarns of the sea-island composite type highly oriented undrawn yarn and false twisted yarn obtained in Examples and Comparative Examples were randomly extracted, and the cross section was observed in the same manner as in (4). Then, the major axis was measured for the islands with N = 4 per single yarn, and the arithmetic mean of the island diameters with N = 20 was taken as the average island diameter.
As for the false twisting processing conditions, heat treatment was performed at a first heater temperature of 170 ° C. and a second heater temperature of 190 ° C., and false twisting and stretching were performed 1.70 times using a friction type false twisting device to obtain false twisted yarn. ..

(8)仮撚り加工性
実施例および比較例において得られた海島複合型高配向未延伸糸を、第1ヒーター温度170℃、第2ヒーター温度190℃で熱処理を施し、フリクション式仮撚り装置を用いて1.70倍に仮撚り延伸を行い、仮撚り加工糸を得た。延伸・仮撚り加工した際、108錘、24時間当たりの糸切れ回数から操業性を判定した。○△を操業性良好とした。
〇:5回未満
△:5回以上、10回未満
×:10回以上。
(8) False Twisting Workability The sea-island composite type highly oriented undrawn yarns obtained in Examples and Comparative Examples are heat-treated at a first heater temperature of 170 ° C. and a second heater temperature of 190 ° C. to obtain a friction type false twisting apparatus. The yarn was false-twisted and stretched 1.70 times to obtain a false-twisted yarn. When the drawing / false twisting process was performed, the operability was judged from 108 weights and the number of yarn breaks per 24 hours. ○ △ was regarded as good operability.
〇: Less than 5 times Δ: 5 times or more and less than 10 times ×: 10 times or more.

(9)引き裂き強力
(8)で得られた仮撚り加工糸を経糸、緯糸に用いて、織密度タテ112本/インチ(2.54cm)×ヨコ108本/インチ(2.54cm)で織組織:平織で製織した。該布帛を90℃の1wt%水酸化ナトリウム水溶液にて、20分処理し、海成分を99%以上除去し、脱海後の布帛を得た。得られた脱海後の布帛について、JIS L 1096:2010(織物及び編物の生地試験方法)に準じて測定し、織物ヨコ糸引き裂き強さに基づいて判定した。○△を良好とした。
〇:10.0N以上
△:7.0N以上、10.0N未満
×:7.0N未満。
(9) Using the false twisted yarn obtained by the tear strength (8) as the warp and weft, the weave density is 112 vertical / inch (2.54 cm) x 108 horizontal / inch (2.54 cm) weave structure. : Weaved in plain weave. The cloth was treated with a 1 wt% sodium hydroxide aqueous solution at 90 ° C. for 20 minutes to remove 99% or more of sea components to obtain a cloth after desealing. The obtained cloth after desealing was measured according to JIS L 1096: 2010 (textile test method for woven fabrics and knitted fabrics), and was determined based on the woven weft yarn tear strength. ○ △ was regarded as good.
〇: 10.0N or more Δ: 7.0N or more and less than 10.0N ×: less than 7.0N.

(10)ソフト性
(8)で得られた脱海後の布帛について、ソフト感を熟練技術者、販売員より選ばれた6名により官能評価を実施し、以下の基準で点数をつけ、その平均点を、〇、△、×の3段階で判定した。○△を良好とした。
2点:手で触った際に非常に柔らかい。
1点:手で触った際にやや柔らかい。
0点:手で触った際に柔らかさを感じない。
○:平均点1.8点以上
△:平均点1.3点以上1.8点未満
×:平均点1.3点未満。
(10) Softness The fabric after desealing obtained in (8) was subjected to a sensory evaluation of the softness by 6 people selected by skilled technicians and sales staff, and scored according to the following criteria. The average score was judged in three stages of 〇, Δ, and ×. ○ △ was regarded as good.
2 points: Very soft to the touch.
1 point: Slightly soft to the touch.
0 points: I do not feel the softness when I touch it with my hands.
◯: Average score of 1.8 points or more Δ: Average score of 1.3 points or more and less than 1.8 points ×: Average score of less than 1.3 points.

(11)杢感
実施例および比較例において得られた海島複合型高配向未延伸糸を自然延伸比の0.8倍にて不均一延伸加工を施した。主な加工条件は、延伸倍率1.41倍で不均一延伸加工を行い、不均一延伸加工糸を得た。84dtex、36filの島成分と同一のポリマからなるポリエチレンテレフタレート糸を経糸に、得られた不均一延伸加工糸を緯糸に用いて、織密度タテ112本/インチ(2.54cm)×ヨコ108本/インチ(2.54cm)で織組織:平織で製織した。該布帛を90℃の1wt%水酸化ナトリウム水溶液にて、20分処理し、海成分を99wt%以上(緯糸換算)溶解除去、分散染料にて染色し、脱海後の布帛を得た。
(染色条件)
染 料 ;DinanixNavy S−2G200% 0.3%o.w.f.
染色助剤;Tetrosin PEC 5.0%o.w.f.
SunSalt 1.0%o.w.f.
浴 比 ;1:100
染 色 ;50℃×15分処理の後、1.6℃/分の速度で昇温し、98℃×20分処理する。
得られた脱海後の布帛について、熟練技術者、販売員より選ばれた6名により官能評価を実施し、以下の基準で点数をつけ、その平均点を、〇、△、×の3段階で判定した。○△を良好とした。
2点:濃淡のコントラストが適度で自然な杢感が認識できる。
1点:濃淡のコントラストがやや小さいが杢感が認識できる、もしくは濃淡のコントラストがやや大きいが杢感が認識できる。
0点:濃淡のコントラストが認識できず杢感が認識できない、もしくは濃淡のコントラストが大きすぎて不自然な杢感である。
○:平均点1.8点以上
△:平均点1.3点以上1.8点未満
×:平均点1.3点未満。
(11) Heather feeling The sea-island composite type highly oriented undrawn yarns obtained in Examples and Comparative Examples were subjected to non-uniform drawing processing at 0.8 times the natural drawing ratio. The main processing conditions were non-uniform drawing processing at a draw ratio of 1.41 times to obtain non-uniform drawing processed yarn. Using polyethylene terephthalate yarn made of the same polymer as the island component of 84dtex and 36fil as the warp and the obtained non-uniformly drawn yarn as the weft, weaving density vertical 112 yarns / inch (2.54 cm) x horizontal 108 yarns / Weaving structure in inches (2.54 cm): Weaved in plain weave. The cloth was treated with a 1 wt% sodium hydroxide aqueous solution at 90 ° C. for 20 minutes to dissolve and remove 99 wt% or more (weft equivalent) of sea components and dyed with a disperse dye to obtain a cloth after desealing.
(Dyeing conditions)
Dyeing; DinaixNavy S-2G 200% 0.3% o. w. f.
Dyeing aid; Tetrosin PEC 5.0% o. w. f.
SunSalt 1.0% o. w. f.
Bath ratio; 1: 100
Dyeing: After treatment at 50 ° C. for 15 minutes, the temperature is raised at a rate of 1.6 ° C./min and treatment is performed at 98 ° C. for 20 minutes.
The obtained cloth after de-sea is subjected to sensory evaluation by 6 people selected from skilled technicians and sales staff, and scores are given according to the following criteria, and the average score is given in 3 stages of 〇, △, and ×. Judged by. ○ △ was regarded as good.
2 points: The contrast of shades is moderate and a natural heather feeling can be recognized.
1 point: The contrast of light and shade is slightly small but the feeling of heather can be recognized, or the contrast of light and shade is slightly large but the feeling of heather can be recognized.
0 point: The contrast of light and shade cannot be recognized and the feeling of heather cannot be recognized, or the contrast of light and shade is too large and the feeling of heather is unnatural.
◯: Average score of 1.8 points or more Δ: Average score of 1.3 points or more and less than 1.8 points ×: Average score of less than 1.3 points.

(12)合否判定
(8)〜(11)の評価項目において、△が2個以下かつ×が0個である場合を合格とし、それ以外を不合格とした。
(12) In the evaluation items of the pass / fail judgments (8) to (11), the case where Δ is 2 or less and × is 0 is regarded as a pass, and the other cases are rejected.

[実施例1]
固有粘度が0.71、融点255℃であるポリエチレンテレフタレートに酸化チタン0.10重量%含有してなるポリエステル(島成分)と、ポリエチレンテレフタレートに5−ナトリウムスルホイソフタル酸をS分率が1.28重量%となるように、分子量1000のポリエチレングリコールを9.1モル%(1.0重量%)となるように共重合した、酸化チタンを含有しない、固有粘度が0.67、融点235℃である共重合ポリエステル(海成分)を292℃の紡糸温度にて、面積比が島80:海20となるように複合し、図1に示すとおり、単糸あたり8島の海島複合断面が得られるよう、36ホールの紡糸口金より吐出させた。この時、溶解速度比は900、単糸あたりの島成分、海成分の吐出量はそれぞれ24.5g/分、6.12g/分であった。溶融から吐出までの滞留時間は各ポリマともに15分であり、紡糸温度における溶融粘度は島成分ポリマが1600poise、海成分ポリマが850poiseであった。吐出した糸条を冷却固化させたのち、給油ガイドにて紡糸油剤を付着させ、交絡ノズルにて交絡を付与した後、2900m/分に設定した2個の引き取りロールを経て巻き取り張力10cNにて巻き取ることで、110dtex、36フィラメントの海島複合型高配向未延伸糸を得た。得られた高配向未延伸糸の物性測定結果は表1の通りである。
得られた高配向未延伸糸を用いて、延伸・仮撚り加工、不均一延伸加工を実施した。評価結果は表1の通りである。
[Example 1]
Polyester (island component) containing 0.10% by weight of titanium oxide in polyethylene terephthalate having an intrinsic viscosity of 0.71 and a melting point of 255 ° C. and 5-sodium sulfoisophthalic acid in polyethylene terephthalate having an S fraction of 1.28. Polyethylene glycol having a molecular weight of 1000 is copolymerized to a molecular weight of 9.1 mol% (1.0% by weight) so as to be% by weight, does not contain titanium oxide, has an intrinsic viscosity of 0.67, and has a melting point of 235 ° C. A certain copolymerized polyester (sea component) is composited at a spinning temperature of 292 ° C. so that the area ratio is island 80: sea 20, and as shown in FIG. 1, a sea-island composite cross section of 8 islands per single yarn can be obtained. It was discharged from the 36-hole spinneret. At this time, the dissolution rate ratio was 900, and the discharge amounts of the island component and the sea component per single yarn were 24.5 g / min and 6.12 g / min, respectively. The residence time from melting to discharging was 15 minutes for each polymer, and the melt viscosity at the spinning temperature was 1600 poise for the island component polymer and 850 poise for the sea component polymer. After the discharged yarn is cooled and solidified, a spinning oil is attached by a refueling guide, entanglement is applied by an entanglement nozzle, and then two take-up rolls set at 2900 m / min are passed through a take-up tension of 10 cN. By winding, a 110 dtex, 36 filament sea-island composite type highly oriented undrawn yarn was obtained. Table 1 shows the results of measuring the physical properties of the obtained highly oriented undrawn yarn.
Using the obtained highly oriented undrawn yarn, drawing / false twisting and non-uniform drawing were performed. The evaluation results are shown in Table 1.

[実施例2〜6、比較例1〜2]
紡糸速度を表1の通り変更して伸度、NDR伸度を変更した以外は、実施例1に準じて製糸し、海島複合型高配向未延伸糸を得た。評価結果は表1の通りである。
[Examples 2 to 6, Comparative Examples 1 to 2]
The spinning speed was changed as shown in Table 1 to change the elongation and the NDR elongation, and the yarn was spun according to Example 1 to obtain a sea-island composite type highly oriented undrawn yarn. The evaluation results are shown in Table 1.

Figure 2021134459
Figure 2021134459

[実施例7〜9、比較例3〜4]
島成分の吐出量を実施例1と同じ24.5g/分とした上で、海・島成分の面積比を表2の通り変更した以外は、実施例1に準じて製糸し、海島複合型高配向未延伸糸を得た。評価結果は表2の通りである。
[Examples 7 to 9, Comparative Examples 3 to 4]
The discharge rate of the island component was set to 24.5 g / min, which is the same as in Example 1, and the yarn was spun according to Example 1 except that the area ratio of the sea / island component was changed as shown in Table 2. Highly oriented undrawn yarn was obtained. The evaluation results are shown in Table 2.

[実施例10]
単糸あたりの島数が70島、ホール数が9ホールである紡糸口金を用いて、引き取り速度を3300m/分とした以外は、実施例1に準じて製糸し、海島複合型高配向未延伸糸を得た。評価結果は表2の通りである。
[Example 10]
Using a spinning cap with 70 islands per single yarn and 9 holes, the yarn was spun according to Example 1 except that the take-up speed was 3300 m / min, and the sea-island composite type high orientation unstretched. I got a thread. The evaluation results are shown in Table 2.

[実施例11〜12]
紡糸温度を表2の通り変更した以外は、実施例1に準じて製糸し、海島複合型高配向未延伸糸を得た。評価結果は表2の通りである。
[Examples 11-12]
The yarn was produced according to Example 1 except that the spinning temperature was changed as shown in Table 2, to obtain a sea-island composite type highly oriented undrawn yarn. The evaluation results are shown in Table 2.

Figure 2021134459
Figure 2021134459

[実施例13〜17]
海成分、島成分の各ポリマの重合度を調整し、表3に記載の溶融粘度としたポリマを使用し、紡糸温度を変更した以外は実施例1に準じて製糸した。評価結果は表3の通りである。
[Examples 13 to 17]
The degree of polymerization of each polymer of the sea component and the island component was adjusted, and the polymer having the melt viscosity shown in Table 3 was used, and the yarn was produced according to Example 1 except that the spinning temperature was changed. The evaluation results are shown in Table 3.

[比較例5]
島成分がIV0.62、融点255℃であるポリエチレンテレフタレートに酸化チタン0.30重量%含有してなるポリエステルを、海成分がポリエチレンテレフタレートに5−ナトリウムスルホイソフタル酸をS分率が0.80重量%となるように共重合した、酸化チタン0.30%を含有してなる、IV0.54、融点244℃である共重合ポリエステルを用いた以外は、実施例1に準じて製糸し、海島複合型高配向未延伸糸を得た。なお、溶解速度比40、紡糸温度292℃における溶融粘度は、島成分ポリマが1000poise、海成分ポリマが1200poiseであった。評価結果は表3の通りである。
[Comparative Example 5]
Polyester containing 0.30% by weight of titanium oxide in polyethylene terephthalate having an island component of IV0.62 and a melting point of 255 ° C., and 5-sodium sulfoisophthalic acid in polyethylene terephthalate having a sea component of 0.80% by weight. Sea-island composite A mold-highly oriented undrawn yarn was obtained. The melting viscosity at a melting rate ratio of 40 and a spinning temperature of 292 ° C. was 1000 poise for the island component polymer and 1200 poise for the sea component polymer. The evaluation results are shown in Table 3.

Figure 2021134459
Figure 2021134459

1:島成分
2:海成分
10:海島複合繊維
A:定応力伸長域伸度
B:破断伸度
1: Island component 2: Sea component 10: Sea island composite fiber A: Constant stress elongation region elongation B: Breaking elongation

Claims (2)

海成分を易溶解ポリマ、島成分を難溶解ポリマとした海島複合型繊維であって、以下(1)〜(4)を同時に満たす高配向未延伸糸。
(1)伸度:120〜260%
(2)強度:1.5cN/dtex以上
(3)定応力伸長領域伸度が20〜100%
(4)繊維横断面における海成分と島成分の面積比が10:90〜60:40
A highly oriented undrawn yarn that is a sea-island composite type fiber in which the sea component is an easily soluble polymer and the island component is a poorly soluble polymer, and the following (1) to (4) are simultaneously satisfied.
(1) Elongation: 120-260%
(2) Strength: 1.5 cN / dtex or more (3) Constant stress extension region elongation is 20 to 100%
(4) The area ratio of the sea component and the island component in the cross section of the fiber is 10:90 to 60:40.
海成分に易溶解ポリマ、島成分に該易溶解ポリマより溶融粘度の高い難溶解ポリマを配した海島複合型繊維を、2000〜4000m/分で引き取ることを特徴とする、請求項1記載の高配向未延伸糸の製造方法。 The high according to claim 1, wherein the sea-island composite fiber in which the easily-dissolved polymer is arranged as the sea component and the sparingly-dissolved polymer having a higher melt viscosity than the easily-dissolved polymer is arranged as the island component is taken up at 2000 to 4000 m / min. A method for producing an oriented undrawn yarn.
JP2020033221A 2020-02-28 2020-02-28 High orientation unstretched yarn and manufacturing method thereof Pending JP2021134459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020033221A JP2021134459A (en) 2020-02-28 2020-02-28 High orientation unstretched yarn and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020033221A JP2021134459A (en) 2020-02-28 2020-02-28 High orientation unstretched yarn and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2021134459A true JP2021134459A (en) 2021-09-13

Family

ID=77660444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020033221A Pending JP2021134459A (en) 2020-02-28 2020-02-28 High orientation unstretched yarn and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2021134459A (en)

Similar Documents

Publication Publication Date Title
KR100629813B1 (en) Soft Stretch Yarns and Process for the Preparation Thereof
CN110268109B (en) Heat-bondable core-sheath composite fiber and warp-knitted fabric
JP5141415B2 (en) Polyester crimped multifilament and method for producing the same
KR100695694B1 (en) Polyester yarn and method for production thereof
JP2009150022A (en) Sheath-core conjugate fiber and fiber fabric thereof
JP3463597B2 (en) Aliphatic polyester false twist yarn with excellent gloss
JP2016172945A (en) Ultrafine polyester fiber having convexoconcave surface, and sea-island type conjugate fiber
JP2021134459A (en) High orientation unstretched yarn and manufacturing method thereof
JP4995523B2 (en) False twisted yarn and method for producing the same
JP2000239921A (en) Production of polyester fiber
JP2021161559A (en) Polyester conjugate fiber
JP4346197B2 (en) Base for melt spinning
JPH11158724A (en) Polyester hollow fiber
JP4505960B2 (en) High stretch durability polyester composite fiber and manufacturing method
JPH10168663A (en) Divided type conjugate fiber comprising polyester and polyamide and its production
JP2609009B2 (en) Method for producing polyester ultrafine fiber
JP4710141B2 (en) Polyester composite yarn for high stretch woven and knitted fabric
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP5905717B2 (en) Fabric material for materials with excellent wear resistance
JPS6211085B2 (en)
JP3998667B2 (en) Polytrimethylene terephthalate modified yarn
JP4985358B2 (en) Shrinkage difference mixed yarn
JP3874529B2 (en) Pre-oriented polyester fiber and processed yarn therefrom
JP3725064B2 (en) Polyester monofilament for screens
JP2022113213A (en) Polyester-based composite combined filament finished yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305