JPH09143596A - High strength copper alloy with resistance to heat and wear, and its production - Google Patents

High strength copper alloy with resistance to heat and wear, and its production

Info

Publication number
JPH09143596A
JPH09143596A JP30137795A JP30137795A JPH09143596A JP H09143596 A JPH09143596 A JP H09143596A JP 30137795 A JP30137795 A JP 30137795A JP 30137795 A JP30137795 A JP 30137795A JP H09143596 A JPH09143596 A JP H09143596A
Authority
JP
Japan
Prior art keywords
alloy
wear resistance
hardness
wear
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30137795A
Other languages
Japanese (ja)
Inventor
Shigeru Kuramoto
繁 藏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO KK
Original Assignee
MIYOSHI GOKIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO KK filed Critical MIYOSHI GOKIN KOGYO KK
Priority to JP30137795A priority Critical patent/JPH09143596A/en
Publication of JPH09143596A publication Critical patent/JPH09143596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electric conductivity, hardness at high temp., and wear resistance without deteriorating mechanical strength by adding nickel in the amount nearly equal to the amount of aluminum to aluminum bronze and applying solution heat treatment and aging treatment. SOLUTION: Alloy, having a composition consisting of, by weight ratio, 3.5-5.0% Ni, 0.5-2.0% Si, 3.0-5.5% Al, 0.5-2.5% Fe, 0.5-1.5% Mn, and the balance Cu with inevitable impurities, is used. After this alloy is subjected to pressure die casting or this alloy is cast into ingot and then hot-forged, solution heat treatment and aging treatment are applied at 850-970 deg.C and at 600 deg.C, respectively, by which a fine structure in which nickel silicide is dispersedly precipitated is formed. By this method, the mechanical and physical properties, aiming at >=6.35N/mm<2> tensile strength, >=5% elongation, >=95HB hardness at ordinary temp., >=60HB hardness at 600 deg.C, >=10% IACS electric conductivity, and a wear resistance superior to that of ABB-2 material, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅合金として、耐熱、耐
摩耗性に優れ機械的強度が要求される、例えば自動車の
エンジン部品のバルブシートのような耐熱性と耐摩耗性
が要求される摺動材などに有用な銅合金に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a copper alloy which is required to have excellent heat resistance and wear resistance and mechanical strength, for example, heat resistance and wear resistance such as valve seats of automobile engine parts. The present invention relates to a copper alloy useful as a sliding material and the like.

【0002】[0002]

【従来の技術】従来、銅合金の中で機械的性質が良好で
耐摩耗性が良い材料として、アルミニウム青銅がある。
しかし、Alを9.4wt%以上含むものは、いわゆる
α+β相合金となる。このβ相が多くなる程、高温にお
ける硬さが低下する。
2. Description of the Related Art Conventionally, aluminum bronze has been known as a material having good mechanical properties and good wear resistance among copper alloys.
However, those containing 9.4 wt% or more of Al are so-called α + β phase alloys. As this β phase increases, the hardness at high temperature decreases.

【0003】そのため、機械的性質やコストなどの関係
でアルミニウム青銅を用いる場合は、α単相合金である
ABB−1材(JISC6161材)が用いられていて
る。しかし、α+β相合金であるABB−2材(JIS
C6191材)よりも、常温での機械的性質が悪くなる
という問題点がある。
Therefore, when aluminum bronze is used because of its mechanical properties and cost, the ABB-1 material (JISC6161 material), which is an α single phase alloy, is used. However, the ABB-2 material (JIS
There is a problem that the mechanical properties at room temperature are worse than those of C6191 material.

【0004】また、特公平5ー27698号公報には、
本発明品と添加元素が同じ銅合金が記載されている。し
かし、この公知例はAlを8.5〜10.5wt%含ん
だ、耐摩耗性を向上させたアルミニウム青銅である。
Japanese Patent Publication No. 5-27698 discloses that
A copper alloy having the same additive element as the product of the present invention is described. However, this known example is aluminum bronze containing 8.5 to 10.5 wt% of Al and having improved wear resistance.

【0005】[0005]

【発明が解決しようとする課題】しかしこの公知例は、
前記の通りAlの添加量が多いため、耐熱性が問題とな
る。また、一般的に銅合金は鉄系材料やニッケル基合金
と比較して、耐熱性が劣るが、電気伝導性、熱伝導性が
良く、特に鉄系材料との接触摩耗性が良好である。
However, this known example is
As described above, since the amount of Al added is large, heat resistance becomes a problem. In general, copper alloys are inferior in heat resistance to iron-based materials and nickel-based alloys, but have good electrical conductivity and thermal conductivity, and particularly good contact wear with iron-based materials.

【0006】そして、最近、自動車エンジン部品の高性
能化等にともない、レース用等特別仕様車に、チタン合
金のバルブが使用されているが、それと共に使用される
バルブシートは、耐熱性と耐摩耗性が要求され、従来の
銅合金では満足できないものとなっている。
Recently, as the performance of automobile engine parts has been improved, titanium alloy valves have been used in cars with special specifications such as for racing. The valve seat used with them has heat resistance and resistance. Abradability is required, and conventional copper alloys are not satisfactory.

【0007】また、銅合金の中で析出硬化型銅合金とし
て、機械的性質及び物理的性質が優れたものとして、B
eCu25合金に代表されるBeCu合金がある。しか
し、このBeCu合金は高価であることと、耐摩耗性に
やや難点がある。
Further, among the copper alloys, as a precipitation hardening type copper alloy, one having excellent mechanical properties and physical properties, B
There is a BeCu alloy represented by the eCu25 alloy. However, this BeCu alloy is expensive and has some difficulty in wear resistance.

【0008】そこでアルミニウム青銅並みの機械的性質
および耐摩耗性を有し、耐熱性も良好な銅合金の開発が
望まれる。このような目的から注目されている銅合金
に、コルソン合金がある。このコルソン合金は、Cu−
Ni−Si系のもので、実験してみた結果は、耐熱性は
かなり良く、銅合金の中では軟化温度が高いものとなっ
ている。しかし、この3元系だけでは機械的強度がJI
SC6191材のアルミニウム青銅より劣るものとなっ
ている。そこで、本発明に於いては、これに他元素を添
加して改良する事とした。
Therefore, it is desired to develop a copper alloy having mechanical properties and wear resistance comparable to those of aluminum bronze and having good heat resistance. Corson alloy is a copper alloy that has been attracting attention for such a purpose. This Corson alloy is Cu-
As a result of an experiment, it is a Ni—Si based material, which shows that the heat resistance is quite good and that the softening temperature is high among the copper alloys. However, this ternary system alone has a mechanical strength of JI
It is inferior to the aluminum bronze of SC6191 material. Therefore, in the present invention, it was decided to improve by adding other elements thereto.

【0009】そして、目標とする機械的性質および物理
的性質は以下の通りとした。 引張強さ(N/mm2) 635以上 伸び(%) 5以上 硬さ(HRB) 95以上 導電率(IACS%) 10以上 高温硬さ(HB10/500) 600℃にて 60以上 耐摩耗性(常温) 比較材としてABB−2材
より良好なこと
The target mechanical properties and physical properties are as follows. Tensile strength (N / mm 2 ) 635 or more Elongation (%) 5 or more Hardness (HRB) 95 or more Conductivity (IACS%) 10 or more High temperature hardness (HB10 / 500) 60 or more at 600 ℃ Wear resistance ( (At room temperature) Better than ABB-2 as a comparative material

【0010】[0010]

【課題を解決するための手段】本発明は上述の如き課題
を解決するため、第1の発明は、Ni3.5〜5.0w
t%,Si0.5〜2.0wt%,Al3.0〜5.5
wt%,Fe0.5〜2.5wt%,Mn0.5〜1.
5wt%及び残部が不可避的な不純物を除く銅よりなる
ものである。
In order to solve the above problems, the first invention is Ni3.5 to 5.0w.
t%, Si 0.5 to 2.0 wt%, Al 3.0 to 5.5
wt%, Fe 0.5 to 2.5 wt%, Mn 0.5 to 1.
5 wt% and the balance is copper excluding unavoidable impurities.

【0011】また、第2の発明は、Ni3.5〜5.0
wt%,Si0.5〜2.0wt%,Al3.0〜5.
5wt%,Fe0.5〜2.5wt%,Mn0.5〜
1.5wt%及び残部が不可避的な不純物を除く銅より
なり、これらに金型圧力鋳造または、鋳塊に熱間塑性加
工を加え、その後850〜970℃にて溶体化処理し、
次に処理温度470〜600℃にて時効処理を行うこと
を特徴とするものである。
The second aspect of the present invention is Ni 3.5 to 5.0.
wt%, Si 0.5-2.0 wt%, Al 3.0-5.
5 wt%, Fe 0.5 to 2.5 wt%, Mn 0.5 to
1.5 wt% and the balance consisting of copper excluding unavoidable impurities, mold pressure casting or hot plastic working of the ingot, and then solution treatment at 850 to 970 ° C.,
Next, the aging treatment is performed at a treatment temperature of 470 to 600 ° C.

【0012】[0012]

【作用】上述のコルソン合金に関連した公知の材料とし
て、コルソン合金にAlを添加したものがあるが、本目
標の機械的強度を満足せず、高温硬さが物足りないもの
となっている。そこで本発明者等は前記課題を解決する
ため、種々実験を行った結果、コルソン合金相当にAl
のほかFe,Mnを加え、これに溶体化処理および時効
処理を加えることにより、上述の条件を満足させたもの
である。
As a known material related to the above-mentioned Corson alloy, there is a material in which Al is added to the Corson alloy, but it does not satisfy the target mechanical strength, and the high temperature hardness is insufficient. Therefore, as a result of various experiments conducted by the present inventors in order to solve the above-mentioned problems, as a result, Corson alloy is equivalent to Al.
In addition to Fe and Mn, the solution treatment and the aging treatment were added thereto to satisfy the above conditions.

【0013】次にCu以外の本合金の組成に関して説明
する。Niは、機械的強度を上げる目的で用いられると
共に、高温硬さを上げるのに効果がある。その含有量が
3.5wt%より少ないと、機械的強度や高温硬さを上
げる効果が少ない。また、5wt%よりも含有量が多い
と導電率が落ち、熱伝導率が悪くなる。
Next, the composition of the present alloy other than Cu will be described. Ni is used for the purpose of increasing the mechanical strength and is effective in increasing the high temperature hardness. When the content is less than 3.5 wt%, the effect of increasing mechanical strength and high temperature hardness is small. Further, if the content is more than 5 wt%, the electric conductivity decreases and the thermal conductivity deteriorates.

【0014】また、SiはNiと化合しニッケル珪化物
を作り、溶体化処理をすることにより過飽和固溶体が得
られる。その後、時効処理をすることにより微粒析出に
よって硬くなる性質をもっている。その結果導電性のあ
る熱伝導率の良い材料となる。そして、Siの一部はM
nと化合しマンガン珪化物を作り、耐摩耗性に寄与す
る。また、Siの含有量が0.5wt%より少ないと上
記の効果がなく、2wt%よりも多いと、機械的性質の
伸びを悪くする。
Further, Si combines with Ni to form nickel silicide, and a solution treatment is performed to obtain a supersaturated solid solution. After that, it has a property of being hardened by precipitation of fine particles by aging treatment. As a result, it becomes a material having conductivity and good thermal conductivity. And a part of Si is M
It combines with n to form manganese silicide and contributes to wear resistance. Further, if the Si content is less than 0.5 wt%, the above effect is not obtained, and if it is more than 2 wt%, the elongation of mechanical properties is deteriorated.

【0015】また、Alは、機械的性質の引張強さを上
げると共に、耐摩耗性を向上させる。そのため、含有量
が3.0wt%よりも少ないと目標の引張強さを出すこ
とができない。また、含有量が5.5wt%よりも多い
と、他の添加元素との関係もあって、機械的性質の伸び
が悪くなると同時に、耐熱性にも影響を及ぼして高温硬
さが悪くなる。
Further, Al raises the mechanical properties such as tensile strength and wear resistance. Therefore, if the content is less than 3.0 wt%, the target tensile strength cannot be obtained. On the other hand, if the content is more than 5.5 wt%, the elongation of mechanical properties is deteriorated due to the relationship with other additive elements, and at the same time, the heat resistance is affected and the high temperature hardness is deteriorated.

【0016】また、Feは、この材料に関して重要な添
加元素で、組織を微細化し機械的強度を上げるととも
に、耐摩耗性を向上させる。そして、含有量が0.5w
t%より少ないと、組織を微細化したり、耐摩耗性を向
上させたり、機械的強度を上げる効果が少ないものとな
る。また。その含有量が2.5wt%より多いと、他の
添加元素との影響もあって、機械的性質の伸びが低下し
耐摩耗性が悪くなる。
Further, Fe is an important additional element for this material, and refines the structure to increase the mechanical strength and wear resistance. And the content is 0.5w
If it is less than t%, the effect of refining the structure, improving the wear resistance, and increasing the mechanical strength will be small. Also. If the content is more than 2.5 wt%, the elongation of mechanical properties is lowered due to the influence of other additive elements, and the wear resistance is deteriorated.

【0017】また、Mnは、素地を強化し機械的強度を
上げる効果がある。そして、Siと化合し珪化物を作
り、耐摩耗性を向上させると共に熱間加工性を良くす
る。そのため、Mnの含有量は厳密にすべきで、含有量
が0.5wt%より少ないと耐摩耗性を悪いものとす
る。また、含有量が1.5wt%よりも多いと耐熱性を
悪くすると共に、機械的性質の伸びも悪くする。
Further, Mn has the effect of strengthening the base material and increasing the mechanical strength. Then, it combines with Si to form a silicide, which improves wear resistance and improves hot workability. Therefore, the content of Mn should be strict, and if the content is less than 0.5 wt%, the wear resistance becomes poor. Further, if the content is more than 1.5 wt%, the heat resistance is deteriorated and the elongation of mechanical properties is also deteriorated.

【0018】以上のような配合で、鋳塊を作り熱間塑性
加工を施すか、または金型圧力鋳造により素材を作り、
更に本材質は熱処理により析出硬化させなければ、目標
の機械的強度および耐熱性、耐摩耗性を得ることができ
ない。そのため、溶体化処理温度および時効処理温度を
種々検討した結果、溶体化処理温度は850〜970℃
とし、時効処理温度は470〜600℃とすることによ
り、目標の機械的強度および耐熱性、耐摩耗性を得るこ
とに成功したものである。
With the above composition, an ingot is formed and hot plastic working is performed, or a material is formed by die pressure casting,
Furthermore, the target mechanical strength, heat resistance, and wear resistance cannot be obtained unless the material is precipitated and hardened by heat treatment. Therefore, as a result of various studies on the solution treatment temperature and the aging treatment temperature, the solution treatment temperature was 850 to 970 ° C.
By setting the aging treatment temperature to 470 to 600 ° C., the target mechanical strength, heat resistance, and wear resistance were successfully obtained.

【0019】[0019]

【実施例】表1の配合で各材料をそろえた供試材を、高
周波誘導炉にて黒鉛るつぼ中で所定のフラックスを用い
大気溶解させた後、この溶湯を金型圧力鋳造にてφ80
mm×200mmLの試料Aを得た。
EXAMPLE A test material prepared by preparing each material in the composition shown in Table 1 was melted in a graphite crucible in a high frequency induction furnace in the atmosphere with a predetermined flux, and then the melt was pressure-molded with a die to obtain φ80.
A sample A of mm × 200 mmL was obtained.

【0020】また、表1の配合で各材料をそろえた供試
材を、高周波誘導炉にて黒鉛るつぼ中で所定のフラック
スを用い大気溶解させた後、この溶湯を重力鋳造してφ
80mm×200mmLに注湯し試料Bの鋳塊を得た。
Further, a test material prepared by preparing each material with the composition shown in Table 1 was melted in a graphite crucible in a high frequency induction furnace in the atmosphere with a predetermined flux, and then this molten metal was gravity cast to obtain φ.
It poured in 80 mm x 200 mmL, and obtained the ingot of the sample B.

【0021】そして、上記の試料Aをアズキャスト材と
してφ21×200L及びφ25×200Lに切り出し
た。
Then, the above sample A was cut into φ21 × 200 L and φ25 × 200 L as an as cast material.

【0022】また、上記の試料Bの黒皮を面削して除い
た後、熱間鍛造にてφ30×Lに鍛伸した後、φ21×
200L及びφ25×200Lに切り出した。
Further, after removing the black skin of the above-mentioned sample B by chamfering, it was hot forged to φ30 × L and then φ21 ×
It was cut into 200 L and φ25 × 200 L.

【0023】そして、上記の切り出しを行った試料A及
び試料Bを、各々熱処理温度850〜970℃にて溶体
化処理し、その後470〜600℃で時効処理を施し
た。
Then, the sample A and the sample B cut out as described above were subjected to solution treatment at a heat treatment temperature of 850 to 970 ° C., respectively, and then subjected to an aging treatment at 470 to 600 ° C.

【0024】その後、各々の材料より、摩耗試験片5×
5×25mm、引張試験用JIS4号試験片、および高
温硬さ試験片としてφ25×20mmを用意した。
Then, wear test pieces 5 × were made from each material.
5 × 25 mm, JIS No. 4 test piece for tensile test, and φ25 × 20 mm were prepared as a high temperature hardness test piece.

【0025】また、表1乃至表6に於いて、No1〜N
o4は本発明合金の実施例である。また、表1乃至表6
に於いて、No5〜No11は比較例である。この比較
例に於いて、No5は機械的性質および高温硬さは良好
だが、摩耗試験においては乾式および湿式とも本発明品
より悪い。Mnを含有させていないので、マンガン珪化
物を形成していないためと考えられる。
Further, in Tables 1 to 6, No1 to N
o4 is an example of the alloy of the present invention. Further, Tables 1 to 6
In No. 5, No. 5 to No. 11 are comparative examples. In this comparative example, No. 5 has good mechanical properties and high-temperature hardness, but in the abrasion test, both dry and wet are worse than those of the present invention. It is considered that this is because manganese silicide is not formed because Mn is not contained.

【0026】また、比較例No6は、Feを無くしてZ
rを添加したが、アズキャスト材の機械的性質が悪く、
耐摩耗性が本発明実施例よりも悪い。ただし耐熱性は良
好である。
In Comparative Example No. 6, Fe was eliminated and Z
Although r was added, the mechanical properties of the as-cast material were poor,
The abrasion resistance is worse than that of the examples of the present invention. However, the heat resistance is good.

【0027】また、比較例No7は、比較例No6と同
じくFeを含有させずにZrを添加し、更にAlを増や
した例であるが、Alを増やした割にアズキャスト材で
の機械的性質が悪い。Zrが酸化しやすい元素である影
響と、Feを添加していないことによって、耐摩耗性も
悪くなっている。
Comparative Example No. 7 is an example in which Zr was added without containing Fe and Al was increased, as in Comparative Example No. 6, but the mechanical properties of the as-cast material were increased in spite of increasing Al. Is bad. Due to the effect that Zr is an element that is easily oxidized and the fact that Fe is not added, the wear resistance is also poor.

【0028】また、比較例No8は、Niを本願発明よ
りも増やし、Feも本願発明よりも多く添加した例であ
る。また、Alも上限近くに添加したため、機械的性質
の伸びが悪く、導電率も目標に到達していない。乾式で
の耐摩耗性は良いが湿式での耐摩耗性が少し悪い。
Comparative Example No. 8 is an example in which Ni is increased more than in the present invention and Fe is also added more than in the present invention. Further, since Al is added near the upper limit, the elongation of mechanical properties is poor and the electrical conductivity does not reach the target. The dry type has good wear resistance, but the wet type has slightly poor wear resistance.

【0029】また、比較例No9は、添加元素をNo1
〜No8よりも少なくし、Mnを含有させない例であ
る。当然機械的性質は悪く軟らかい材料となっている。
また、耐摩耗性は乾式では良いが湿式では少し悪くなっ
ている。
In Comparative Example No. 9, the additive element was No.
It is an example in which the amount is less than No. 8 and Mn is not contained. Naturally, it is a soft material with poor mechanical properties.
Also, the wear resistance is good in the dry type, but a little worse in the wet type.

【0030】また、比較例No10は、本願発明の基本
となった材料であり、公知のものである。この材質は元
々冷間圧延を施して機械的強度を出すもので、本実施例
のようにアズキャスト材や熱間塑性加工のみ行い使用す
るものではないため、機械的強度も満足されず、高温硬
さは常温硬さと比較すれば良いが、やや物足りないもの
となっている。ただし、耐摩耗性はこの試験方法では良
い結果が出ている。
Comparative Example No. 10 is a material which is the basis of the present invention and is a known material. This material is originally cold-rolled to provide mechanical strength, and as it is not used as an as-cast material or hot plastic working as in this example, mechanical strength is not satisfied, and high temperature The hardness is better than room temperature hardness, but it is somewhat unsatisfactory. However, wear resistance shows good results with this test method.

【0031】また、比較例No11は、JISC619
1材に相当するアルミニウム青銅である。耐摩耗性は一
般の銅合金と比較すれば優秀な材料であるが、高温硬さ
は本実施材の中で最も悪い。
Comparative Example No. 11 is JIS C619
Aluminum bronze corresponding to one material. Wear resistance is an excellent material compared with general copper alloys, but high temperature hardness is the worst among the materials of this embodiment.

【0032】表1は成分組成値(wt%)を示している。Table 1 shows component composition values (wt%).

【表1】 [Table 1]

【0033】表2は金型圧力鋳造した試料Aの溶体化処
理および時効処理後の機械的性質および導電率を示して
いる。
Table 2 shows the mechanical properties and electrical conductivity of the sample pressure-cast sample A after solution treatment and aging treatment.

【表2】 [Table 2]

【0034】上記表2に於ける試料Aの溶体化処理およ
び時効処理温度。 No1〜No9 溶体化処理(950℃)、時効処理(510℃)。 No10 〃 (900℃)、 〃 (500℃)。 No11 焼入処理 (630℃)。
Solution treatment and aging treatment temperatures of sample A in Table 2 above. No1 to No9 Solution treatment (950 ° C), aging treatment (510 ° C). No10 〃 (900 ℃), 〃 (500 ℃). No. 11 Quenching treatment (630 ° C).

【0035】表3は鋳塊の試料Bを熱間鍛造後に溶体化
処理および時効処理を行った後の機械的性質及び導電率
を示している。
Table 3 shows the mechanical properties and electrical conductivity of the ingot sample B after hot forging, solution treatment and aging treatment.

【表3】 [Table 3]

【0036】上記表3に於いて溶体化処理および時効処
理方法は表2と同じにした。
In Table 3 above, the solution treatment and aging treatment methods were the same as those in Table 2.

【0037】表4は高温硬さ(測定単位 常温〜700
℃ HB(10/500) 800℃HB(10/275)
を示している。
Table 4 shows high temperature hardness (measurement unit: room temperature to 700).
℃ HB (10/500) 800 ℃ HB (10/275)
Is shown.

【表4】 [Table 4]

【0038】上記表4に於いてNoの後のAは試料Aに
溶体化処理及び時効処理を行ったものであり、Bは試料
Bを熱間鍛造後に溶体化処理及び時効処理を行ったもの
である。
In Table 4 above, A after No is the sample A subjected to solution treatment and aging treatment, and B is the sample B subjected to solution treatment and aging treatment after hot forging. Is.

【0039】表5は乾式摩耗テスト(単位:mg/cm
2)を示している。
Table 5 shows a dry abrasion test (unit: mg / cm
2 ) is shown.

【表5】 [Table 5]

【0040】上記表5に於ける乾式摩耗テストは、摩耗
試験機を葉山式摩耗試験機により行った。 各々のテストピースを上記条件にて各3回テストした結
果の平均値を示したものである。また、上記の乾式摩耗
テストは試料Aに溶体化処理及び時効処理を行ったもの
についてのみ行い、試料Bを熱間鍛造後に溶体化処理及
び時効処理を行ったものに付いては行っていない。
The dry abrasion test in Table 5 above was carried out by using a Hayama abrasion tester as an abrasion tester. The average value of the results of testing each test piece three times under the above conditions is shown. Further, the above dry abrasion test was performed only on the sample A that was subjected to the solution treatment and the aging treatment, and was not performed on the sample B that was subjected to the solution treatment and the aging treatment after the hot forging.

【0041】表6は湿式摩耗テスト(単位:mg/cm
2)を示している。
Table 6 shows the wet wear test (unit: mg / cm
2 ) is shown.

【表6】 [Table 6]

【0042】上記表6に於いて湿式摩耗テストは、摩耗
試験機を葉山式摩耗試験機により行った。 テスト条件 60kg/cm2圧 走行距離10km 走行スピード 30m/秒 相手材 SCM435 潤滑油 テトラオイルNo.46 30cc/h供給 各々のテストピースを上記条件にて各3回以上テストし
た結果の平均値を示したものである。また、上記の湿式
摩耗テストは試料Aに溶体化処理及び時効処理を行った
ものについてのみ行い、試料Bを熱間鍛造後に溶体化処
理及び時効処理を行ったものに付いては行っていない。
In Table 6 above, the wet abrasion test was conducted by using a Hayama abrasion tester as an abrasion tester. Test conditions 60 kg / cm 2 pressure, traveling distance 10 km, traveling speed 30 m / sec, mating material SCM435, lubricating oil, tetra oil No. 46 30 cc / h supply This is an average value of the results of testing each test piece three times or more under the above conditions. Further, the above-mentioned wet wear test was performed only on the sample A that was subjected to the solution treatment and the aging treatment, and was not performed on the sample B that was subjected to the solution treatment and the aging treatment after hot forging.

【0043】[0043]

【発明の効果】本発明は上述の如く、アルミニウム青銅
並みの機械的性質を備えながら、導電率(IACS%)、
高温硬さ、耐摩耗性等に於いて優れた特性を得ることが
できるものである。
As described above, the present invention has the electrical properties (IACS%) while having the mechanical properties of aluminum bronze.
It is possible to obtain excellent properties such as high temperature hardness and wear resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni3.5〜5.0wt%,Si0.5
〜2.0wt%,Al3.0〜5.5wt%,Fe0.
5〜2.5wt%,Mn0.5〜1.5wt%及び残部
が不可避的な不純物を除く銅よりなる耐熱、耐摩耗性高
強度銅合金。
1. Ni3.5 to 5.0 wt%, Si0.5
.About.2.0 wt%, Al3.0 to 5.5 wt%, Fe0.
A heat- and wear-resistant high-strength copper alloy comprising 5 to 2.5 wt%, Mn 0.5 to 1.5 wt%, and the balance being copper excluding inevitable impurities.
【請求項2】 Ni3.5〜5.0wt%,Si0.5
〜2.0wt%,Al3.0〜5.5wt%,Fe0.
5〜2.5wt%,Mn0.5〜1.5wt%及び残部
が不可避的な不純物を除く銅よりなり、これらに金型圧
力鋳造または、鋳塊に熱間塑性加工を加え、その後85
0〜970℃にて溶体化処理し、次に処理温度470〜
600℃にて時効処理を行うことを特徴とする耐熱、耐
摩耗性高強度銅合金の製造方法。
2. Ni3.5 to 5.0 wt%, Si0.5
.About.2.0 wt%, Al3.0 to 5.5 wt%, Fe0.
5 to 2.5 wt%, Mn 0.5 to 1.5 wt%, and the balance being copper excluding unavoidable impurities, and die pressure casting or hot plastic working of the ingot, and then 85
Solution heat treatment at 0-970 ° C., then treatment temperature 470-
A method for producing a heat-resistant and wear-resistant high-strength copper alloy, which comprises performing an aging treatment at 600 ° C.
JP30137795A 1995-11-20 1995-11-20 High strength copper alloy with resistance to heat and wear, and its production Pending JPH09143596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30137795A JPH09143596A (en) 1995-11-20 1995-11-20 High strength copper alloy with resistance to heat and wear, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30137795A JPH09143596A (en) 1995-11-20 1995-11-20 High strength copper alloy with resistance to heat and wear, and its production

Publications (1)

Publication Number Publication Date
JPH09143596A true JPH09143596A (en) 1997-06-03

Family

ID=17896148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30137795A Pending JPH09143596A (en) 1995-11-20 1995-11-20 High strength copper alloy with resistance to heat and wear, and its production

Country Status (1)

Country Link
JP (1) JPH09143596A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097886A1 (en) * 2002-05-17 2003-11-27 Metglas, Inc. Copper-nickel-silicon two phase quench substrate
US7291231B2 (en) 2002-05-17 2007-11-06 Metglas, Inc. Copper-nickel-silicon two phase quench substrate
WO2012081571A1 (en) * 2010-12-13 2012-06-21 日本精線株式会社 Copper alloy wire and copper alloy spring
CN103320731A (en) * 2013-06-18 2013-09-25 浙江朋诚科技有限公司 Heating processing technology of aluminum bronze alloy taper sleeve
CN103320643A (en) * 2013-06-18 2013-09-25 浙江朋诚科技有限公司 Aluminum bronze alloy taper sleeve

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097886A1 (en) * 2002-05-17 2003-11-27 Metglas, Inc. Copper-nickel-silicon two phase quench substrate
US6764556B2 (en) 2002-05-17 2004-07-20 Shinya Myojin Copper-nickel-silicon two phase quench substrate
US7291231B2 (en) 2002-05-17 2007-11-06 Metglas, Inc. Copper-nickel-silicon two phase quench substrate
WO2012081571A1 (en) * 2010-12-13 2012-06-21 日本精線株式会社 Copper alloy wire and copper alloy spring
CN103261460A (en) * 2010-12-13 2013-08-21 日本精线株式会社 Copper alloy wire and copper alloy spring
EP2653575A1 (en) * 2010-12-13 2013-10-23 Nippon Seisen Co., Ltd. Copper alloy wire and copper alloy spring
EP2653575A4 (en) * 2010-12-13 2014-09-03 Nippon Seisen Co Ltd Copper alloy wire and copper alloy spring
JP2014196564A (en) * 2010-12-13 2014-10-16 日本精線株式会社 High strength and high conductivity copper alloy fine wire, copper alloy spring and manufacturing method of copper alloy spring
JP5711764B2 (en) * 2010-12-13 2015-05-07 日本精線株式会社 Copper alloy wire and copper alloy spring
US9476474B2 (en) 2010-12-13 2016-10-25 Nippon Seisen Co., Ltd. Copper alloy wire and copper alloy spring
CN103320731A (en) * 2013-06-18 2013-09-25 浙江朋诚科技有限公司 Heating processing technology of aluminum bronze alloy taper sleeve
CN103320643A (en) * 2013-06-18 2013-09-25 浙江朋诚科技有限公司 Aluminum bronze alloy taper sleeve

Similar Documents

Publication Publication Date Title
US4016010A (en) Preparation of high strength copper base alloy
JP4914225B2 (en) Aluminum alloy material, its production method and its use
JP5145047B2 (en) Spherical cast alloy and method for producing cast parts from this spherical cast alloy
US8951371B2 (en) Copper alloy
US10260136B2 (en) Aluminum alloy for die casting and method of heat treating the same
JPH0372147B2 (en)
JP2009506215A (en) Cast aluminum alloy
JPH1112674A (en) Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
JPH09143596A (en) High strength copper alloy with resistance to heat and wear, and its production
JPH10110231A (en) Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JPS6151017B2 (en)
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JPH11189834A (en) High strength trolley wire and its manufacture
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
KR20070038185A (en) Heat treatment method of aluminum alloy parts using thixocasting method
JP2010031301A (en) Nickel-chromium-aluminum alloy base material
JPH07113133B2 (en) Cu alloy for continuous casting mold
JPH0759731B2 (en) Casting Al (Cu) -Mg high-strength aluminum alloy and method for producing the same
US1763303A (en) Trolley wheel
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JP4239792B2 (en) Aluminum alloy for casting with high electrical resistivity
JP3949557B2 (en) Wear-resistant aluminum alloy for casting and cast aluminum alloy
JP5105673B2 (en) Manufacturing method of alloy for sliding member
JP2001064741A (en) Use of copper-tin-iron alloy high in tin concentration