JPH09138215A - Electrochemical hydrogen sensor - Google Patents

Electrochemical hydrogen sensor

Info

Publication number
JPH09138215A
JPH09138215A JP7319547A JP31954795A JPH09138215A JP H09138215 A JPH09138215 A JP H09138215A JP 7319547 A JP7319547 A JP 7319547A JP 31954795 A JP31954795 A JP 31954795A JP H09138215 A JPH09138215 A JP H09138215A
Authority
JP
Japan
Prior art keywords
electrode
diaphragm
hydrogen
sensor
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7319547A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okura
弘之 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7319547A priority Critical patent/JPH09138215A/en
Publication of JPH09138215A publication Critical patent/JPH09138215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To constitute an excellent hydrogen sensor whose linearity accuracy is good even under a high-concentration condition and whose drift As extremely small by a method wherein a catalytic electrode (a working electrode) which is composed mainly of platinum and which has a specific thickness is bonded integrally to one face of a diaphragm. SOLUTION: A catalytic electrode 1 which is composed of platinum is sputtered or vapor-deposited to the central part on one face of a diaphragm 4, and an integrally bonded body 11 is formed. The bonded body 11 is fixed, by using an O-ring 5, to one end of a container body 6, and the electrode 1 is brought into contact with a porous carbon collector 8 which is installed on the surface in the center of the body 6. When the thickness of the catalytic electrode 1 is set at 100 to 500Å, the drift of a hydrogen sensor is extremely small (about 1%/day), and its linearity accuracy becomes good (within about 1%). As a result, even when a hydrogen concentration is high, it can be measured precisely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学式水素セ
ンサ技術の分野に属するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the field of electrochemical hydrogen sensor technology.

【0002】[0002]

【従来技術】電気化学式水素センサは、常温常圧で作動
し、小型・軽量であって、しかも安価であることから、
半導体工場、化学工場、実験室などの水素ガス使用場所
でのガス漏れ監視やガス濃度計として使用されている。
2. Description of the Related Art Electrochemical hydrogen sensors operate at room temperature and pressure, are small and lightweight, and are inexpensive.
It is used as a gas leak monitor and a gas concentration meter in hydrogen gas usage places such as semiconductor factories, chemical factories, and laboratories.

【0003】この電気化学式水素センサは、一般に、電
気化学的酸化反応に有効な白金又は白金族触媒よりなる
水素検知用の作用極と、対極と、これらの電極に接触す
る電解液と、水素を選択的に透過する隔膜とを備えた二
極式と、これに参照極を具備した三極式の電気化学式水
素センサとがある。
This electrochemical hydrogen sensor generally detects a working electrode for detecting hydrogen, which is made of platinum or a platinum group catalyst effective for an electrochemical oxidation reaction, a counter electrode, an electrolytic solution in contact with these electrodes, and hydrogen. There are a bipolar type sensor having a selectively permeable diaphragm and a three-pole type electrochemical hydrogen sensor having a reference electrode.

【0004】測定原理としては、特に二極式について述
べるが、作用極と対極との間が常に一定の電位に保たれ
ており、隔膜を通過した水素が、隔膜と作用極との間に
形成される電解液中に溶解していき、作用極上において
酸化される。そして、電解液を介して対極との間で電気
化学反応が起こり、そのときに作用極と対極との間に流
れる電流が水素ガス濃度に比例することを利用して、電
流値より水素ガス濃度を知るものである。
The bipolar principle will be particularly described as the measurement principle. However, a constant potential is always maintained between the working electrode and the counter electrode, and hydrogen passing through the diaphragm is formed between the diaphragm and the working electrode. Is dissolved in the electrolytic solution and is oxidized on the working electrode. Then, an electrochemical reaction occurs between the counter electrode and the electrolytic solution, and the fact that the current flowing between the working electrode and the counter electrode at that time is proportional to the hydrogen gas concentration is used to calculate the hydrogen gas concentration from the current value. To know.

【0005】ところで、電気化学式センサにおいて、検
知ガスが反応を起こす部分、つまり隔膜及び作用極部分
の構造は、センサが良好な性能を有するか否かを決める
非常に重要な部分である。
By the way, in the electrochemical sensor, the structure where the detection gas reacts, that is, the structure of the diaphragm and the working electrode, is a very important part for determining whether or not the sensor has good performance.

【0006】この隔膜と触媒電極である作用極との構造
としては、隔膜と触媒電極である作用極とが単に機械的
な接触をしているだけのタイプ(例えば特開昭58−1
87846号)、両者が蒸着や圧着等の手段によって隔
膜に一体接合されているタイプ(例えば英国特許120
0696号)とに大別される。
The structure of the diaphragm and the working electrode, which is the catalyst electrode, is of a type in which the diaphragm and the working electrode, which is the catalyst electrode, are merely in mechanical contact (for example, JP-A-58-1).
No. 87846), both of which are integrally joined to the diaphragm by means such as vapor deposition or pressure bonding (for example, British Patent 120
No. 0696).

【0007】前者の場合、触媒電極は金属の円板もしく
は円柱形状に形成されており、検知ガスは、まず隔膜を
透過し、次に隔膜と触媒電極との間に形成される電解液
に溶解していき、電極上で反応する。このとき、常に隔
膜と触媒電極である作用極との接触状態を一定に保ち、
電解液膜の厚さが変わらないようにすることが必要とな
る。なぜなら、圧力や湿度が変化するような環境では、
この電解液膜の厚さが一定とならず、センサ出力が不安
定になるからである。
In the former case, the catalyst electrode is formed in the shape of a metal disk or column, and the detection gas first permeates through the diaphragm and then dissolves in the electrolytic solution formed between the diaphragm and the catalyst electrode. And then react on the electrodes. At this time, always keep the contact state between the diaphragm and the working electrode, which is the catalyst electrode, constant,
It is necessary to keep the thickness of the electrolyte membrane unchanged. Because in an environment where pressure and humidity change,
This is because the thickness of this electrolyte membrane is not constant and the sensor output becomes unstable.

【0008】一方、後者の場合、隔膜を透過してきたガ
スは、多孔性の触媒電極である作用極の孔中に浸透した
電解液と触媒電極である作用極との界面で反応する。こ
の場合、隔膜と触媒電極である作用極とは一体化されて
いるので、たとえ外圧が変化して隔膜が膨らんだりへこ
んだりしたとしても、センサ出力が不安定になることは
ない。
On the other hand, in the latter case, the gas that has permeated the diaphragm reacts at the interface between the electrolytic solution that has penetrated into the pores of the working electrode, which is a porous catalyst electrode, and the working electrode, which is the catalyst electrode. In this case, since the diaphragm and the working electrode, which is the catalyst electrode, are integrated, the sensor output will not become unstable even if the external pressure changes and the diaphragm swells or dents.

【0009】それゆえに、機械的接触のものに比べ、隔
膜と作用極とが一体化されたものの方がよりセンサ出力
が安定したものとなる。
Therefore, the sensor output is more stable in the case where the diaphragm and the working electrode are integrated as compared with the case where the diaphragm is in mechanical contact.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、隔膜と
触媒電極とを一体に接合した構造の電気化学式水素セン
サであっても、高濃度条件下でセンサ出力が低下した
り、不安定になったりすることがある。そのため、安全
上の問題からより高性能のセンサが望まれている。
However, even with an electrochemical hydrogen sensor having a structure in which a diaphragm and a catalyst electrode are integrally joined, the sensor output may drop or become unstable under high concentration conditions. Sometimes. Therefore, a higher performance sensor is desired due to safety concerns.

【0011】そこで、本発明は、高濃度条件下であって
もセンサの直線性精度がよく、かつドリフトが極めて少
ない優れた電気化学式酸素センサを提供することを目的
とする。
Therefore, it is an object of the present invention to provide an excellent electrochemical oxygen sensor which has a high linearity accuracy of the sensor even under a high concentration condition and has an extremely small drift.

【0012】[0012]

【課題を解決するための手段】本発明は、水素を電気化
学的に酸化する作用極と、水素透過性を有する隔膜とを
備えてなる電気化学式水素センサにおいて、該作用極
は、白金を主成分とする触媒電極であって、かつ隔膜の
片面に一体接合されており、該触媒電極の厚さが100
オングストロームから500オングストロームであるこ
とを特徴とする。
The present invention relates to an electrochemical hydrogen sensor comprising a working electrode for electrochemically oxidizing hydrogen and a diaphragm having hydrogen permeability, wherein the working electrode is mainly platinum. It is a catalyst electrode as a component and is integrally joined to one surface of the diaphragm, and the thickness of the catalyst electrode is 100
It is characterized in that it is from angstrom to 500 angstrom.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適な一実施の形
態について具体的に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be described in detail below.

【0014】図1は、本発明になる電気化学式水素セン
サの断面構造図である。
FIG. 1 is a sectional structural view of an electrochemical hydrogen sensor according to the present invention.

【0015】同図において、1は作用極である触媒電
極、2は対極、3は電解液、4は隔膜であり、厚さ50
μmのフッ素系高分子薄膜(4フッ化エチレン−6フッ
化プロピレン共重合体)である。
In the figure, 1 is a catalyst electrode which is a working electrode, 2 is a counter electrode, 3 is an electrolytic solution, 4 is a diaphragm, and a thickness is 50.
It is a fluorine-based polymer thin film (tetrafluoroethylene-6-fluoropropylene copolymer) of μm.

【0016】5はO−リング、6は円筒形の容器、7は
抵抗、8は集電体、11は隔膜4と触媒電極1との接合
体である。
Reference numeral 5 is an O-ring, 6 is a cylindrical container, 7 is a resistor, 8 is a current collector, and 11 is a joined body of the diaphragm 4 and the catalyst electrode 1.

【0017】隔膜4と作用極としての触媒電極1との一
体接合は、スパッタリングもしくは真空蒸着により、隔
膜4の片面に白金触媒薄層を形成させて行う。ここで
は、隔膜の中央に円形の薄層を形成させている。
The integral bonding of the diaphragm 4 and the catalyst electrode 1 as the working electrode is carried out by forming a platinum catalyst thin layer on one surface of the diaphragm 4 by sputtering or vacuum deposition. Here, a circular thin layer is formed in the center of the diaphragm.

【0018】この隔膜と触媒電極との接合体11をO−
リング5を用いて容器6の一端に固定保持し、触媒電極
と容器6の中央上面に設けた多孔性カーボンの集電体8
とが接するようにしている。この集電体8には、リード
が取り付けられ容器外のポテンショスタットに接続され
ている。
The bonded body 11 of the diaphragm and the catalyst electrode is formed by O-
A porous carbon current collector 8 fixedly held at one end of the container 6 using a ring 5 and provided on the upper surface of the center of the catalyst electrode and the container 6.
I try to make contact with. A lead is attached to the current collector 8 and is connected to a potentiostat outside the container.

【0019】対極2は、ベータ型二酸化鉛であり、参照
極としての機能も兼ねている。ここでは、容器内壁外周
面に設けられており、対極2に取り付けられたリードが
容器外で抵抗7の両端に接続されている。そして、その
一端がポテンショスタットに接続されている。 加え
て、作用極1と対極2との間に一定の電位が保たれてい
る。
The counter electrode 2 is beta-type lead dioxide and also functions as a reference electrode. Here, the lead provided on the outer peripheral surface of the inner wall of the container and attached to the counter electrode 2 is connected to both ends of the resistor 7 outside the container. And one end thereof is connected to the potentiostat. In addition, a constant potential is maintained between the working electrode 1 and the counter electrode 2.

【0020】電解液3は、酢酸6モル/リットルと酢酸カリウ
ム3モル/リットルと酢酸鉛0.1モル/リットルとの混合液であ
り、容器内に満たされている。
The electrolytic solution 3 is a mixed solution of 6 mol / l of acetic acid, 3 mol / l of potassium acetate and 0.1 mol / l of lead acetate, and is filled in the container.

【0021】上述の構造のセンサであって、触媒電極1
の厚さを50、100、300、500、700、15
00ミクロンとしたセンサを作成し、100%水素雰囲
気中におけるセンサ出力の変化(ドリフト)及びセンサ
出力の水素濃度に対する直線性の精度について試験を行
った。
A sensor having the above structure, wherein the catalyst electrode 1
The thickness of 50, 100, 300, 500, 700, 15
A sensor having a size of 00 μm was prepared, and a change in the sensor output (drift) in a 100% hydrogen atmosphere and a linearity accuracy of the sensor output with respect to the hydrogen concentration were tested.

【0022】100%水素雰囲気中におけるセンサ出力
の変化は、100%水素雰囲気中に各センサを放置し、
その経時変化を追った。また、センサ出力の水素濃度に
対する直線性の精度については、水素濃度50、70お
よび90パーセントのガスを各センサで濃度測定したと
きの誤差を求めた。
The change of the sensor output in the 100% hydrogen atmosphere is caused by leaving each sensor in the 100% hydrogen atmosphere.
The change over time was followed. Regarding the accuracy of the linearity of the sensor output with respect to the hydrogen concentration, an error was obtained when the concentrations of gases having hydrogen concentrations of 50, 70 and 90% were measured by the respective sensors.

【0023】その結果を表1に示す。Table 1 shows the results.

【0024】尚、表中の直線性精度の値は、各濃度ガス
でほぼ同一の結果を示した。
The linearity accuracy values in the table show almost the same results for each concentration gas.

【0025】[0025]

【表1】 [Table 1]

【0026】表1より、No.2、3、4のセンサが各
特性において良好な値を示しており、触媒電極の厚さと
して、100から500オングストロームが適している
ことがわかる。さらに、白金を主成分とし、白金族との
二元系、三元系の作用極についても上記と同様の結果を
得た。
From Table 1, No. The sensors 2, 3 and 4 show good values in each characteristic, and it can be seen that the thickness of the catalyst electrode is preferably 100 to 500 Å. Furthermore, the same results as above were obtained for binary and ternary working electrodes containing platinum as a main component and platinum group.

【0027】尚、ここでは二極式について述べたが、三
極式のものであっても同様の効果が得られることは言う
までもない。
Although the two-pole type has been described here, it goes without saying that the same effect can be obtained even with the three-pole type.

【0028】[0028]

【発明の効果】本発明は、水素を電気化学的に酸化する
作用極と、水素透過性を有する隔膜とを備えてなる電気
化学式水素センサにおいて、該作用極は、白金を主成分
とする触媒電極であって、かつ隔膜の片面に一体接合さ
れており、該触媒電極の厚さが100オングストローム
から500オングストロームであることを特徴とする。
Industrial Applicability The present invention provides an electrochemical hydrogen sensor comprising a working electrode for electrochemically oxidizing hydrogen and a hydrogen permeable diaphragm, wherein the working electrode is a catalyst containing platinum as a main component. It is an electrode and integrally bonded to one side of the diaphragm, and the thickness of the catalyst electrode is 100 angstroms to 500 angstroms.

【0029】これにより、本発明になる電気化学式水素
センサは、ドリフトが少なく、また直線性精度が良好で
あるので、高濃度の水素濃度をも正確に測定できる。
As a result, the electrochemical hydrogen sensor according to the present invention has little drift and good linearity accuracy, so that a high concentration of hydrogen can be measured accurately.

【0030】その工業的利用価値は大きい。Its industrial utility value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる電気化学式水素センサの断面構
造図である。
FIG. 1 is a sectional structural view of an electrochemical hydrogen sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 触媒電極 2 対極 3 電解液 4 隔膜 5 O−リング 6 容器本体 7 抵抗 8 集電体 11 接合体 DESCRIPTION OF SYMBOLS 1 catalyst electrode 2 counter electrode 3 electrolyte solution 4 diaphragm 5 O-ring 6 container body 7 resistance 8 current collector 11 bonded body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素を電気化学的に酸化する作用極と、
水素透過性を有する隔膜とを備えてなる電気化学式水素
センサにおいて、 該作用極は、白金を主成分とする触媒電極であって、か
つ隔膜の片面に一体接合されており、 該触媒電極の厚さが100から500オングストローム
であることを特徴とする電気化学式水素センサ。
1. A working electrode for electrochemically oxidizing hydrogen,
In an electrochemical hydrogen sensor comprising a hydrogen-permeable diaphragm, the working electrode is a catalyst electrode containing platinum as a main component, and is integrally joined to one side of the diaphragm, and the thickness of the catalyst electrode is An electrochemical hydrogen sensor having a size of 100 to 500 angstroms.
JP7319547A 1995-11-14 1995-11-14 Electrochemical hydrogen sensor Pending JPH09138215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7319547A JPH09138215A (en) 1995-11-14 1995-11-14 Electrochemical hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7319547A JPH09138215A (en) 1995-11-14 1995-11-14 Electrochemical hydrogen sensor

Publications (1)

Publication Number Publication Date
JPH09138215A true JPH09138215A (en) 1997-05-27

Family

ID=18111481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7319547A Pending JPH09138215A (en) 1995-11-14 1995-11-14 Electrochemical hydrogen sensor

Country Status (1)

Country Link
JP (1) JPH09138215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030027A (en) * 2004-07-16 2006-02-02 Dkk Toa Corp Sensitivity restoring method of diaphragm type sensor, measuring instrument and electrode regeneration device
US7179354B2 (en) 2002-05-21 2007-02-20 Tanita Corporation Electrochemical sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179354B2 (en) 2002-05-21 2007-02-20 Tanita Corporation Electrochemical sensor
JP2006030027A (en) * 2004-07-16 2006-02-02 Dkk Toa Corp Sensitivity restoring method of diaphragm type sensor, measuring instrument and electrode regeneration device

Similar Documents

Publication Publication Date Title
JPS59211853A (en) Electroanalytic method for measuring hydrogen and sensor
US5650054A (en) Low cost room temperature electrochemical carbon monoxide and toxic gas sensor with humidity compensation based on protonic conductive membranes
US5573648A (en) Gas sensor based on protonic conductive membranes
Sukeri et al. A facile electrochemical approach to fabricate a nanoporous gold film electrode and its electrocatalytic activity towards dissolved oxygen reduction
US20020033334A1 (en) Electrochemical gas sensor
US5128018A (en) Electrochemical measuring cell for detecting gas components in a fluid medium
JPH09138215A (en) Electrochemical hydrogen sensor
JPS6052759A (en) Oxygen sensor
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
JPH0640092B2 (en) Humidity measurement method
JPS6375655A (en) Enzyme electrode apparatus
JP2003149194A (en) Controlled potential electrolytic gas sensor and gas detector
JP2003075394A (en) Detector for oxidizing-gas
JP3307827B2 (en) Potentiometric electrolytic ammonia gas detector
JPWO2009102045A1 (en) Electrodes for electrochemical measuring devices and electrodes for biosensors
JP2001281204A (en) Diaphragm-type sensor
JP3089311B2 (en) Polaro-type flammable gas sensor
JPS60111952A (en) Galvanic cell type gas sensor
JPH0738848Y2 (en) Constant potential electrolytic hydrogen sensor
JP7477096B2 (en) Hydrogen sensor and hydrogen utilization device
JPS6332363A (en) Hydrogen peroxide electrode
JPH06308075A (en) Electrochemical gas sensor
JPH0334690Y2 (en)
JPH0972880A (en) Polarographic combustible gas sensor
JPH04215058A (en) Galvanic battery type combustible gas sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040621