JPH09133721A - Correlation function measuring method and device - Google Patents

Correlation function measuring method and device

Info

Publication number
JPH09133721A
JPH09133721A JP28985195A JP28985195A JPH09133721A JP H09133721 A JPH09133721 A JP H09133721A JP 28985195 A JP28985195 A JP 28985195A JP 28985195 A JP28985195 A JP 28985195A JP H09133721 A JPH09133721 A JP H09133721A
Authority
JP
Japan
Prior art keywords
signal
frequency
observation
correlation function
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28985195A
Other languages
Japanese (ja)
Other versions
JP3609177B2 (en
Inventor
Hitoshi Kitayoshi
均 北▲吉▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP28985195A priority Critical patent/JP3609177B2/en
Priority to US08/746,293 priority patent/US5748314A/en
Priority to DE19645953A priority patent/DE19645953B4/en
Publication of JPH09133721A publication Critical patent/JPH09133721A/en
Application granted granted Critical
Publication of JP3609177B2 publication Critical patent/JP3609177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Unknown Time Intervals (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate result on a real time basis without any need of a fast analog-digital converter, regarding correlation function measurements such as passive delay time measurements. SOLUTION: Two measurement signals a(t) and b(t) are limited to the prescribed measurement frequency band (center frequency: f0 , band width: BW) via conversion parts 11 and 12, and converted to the same intermediate frequency IF. Also, mixers 13 and 14, and local oscillators 15 and 16 are used for the further frequency conversion of the measurement signals a(t) and b(t), in order to generate the prescribed frequency difference, and the result so obtained is multiplied by a multiplier 18. Then, a differential frequency component is subjected to a vector detection process, thereby finding phase information P(f0 ) and amplitude information. In this case, the delay time τΔτ(f0 ) is determined by dividing the phase information P(f0 ) by a center angle frequency 2πf0 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、信号や各種物理量
の遅延測定や位相測定などを行うための受動型の相関関
数測定方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passive type correlation function measuring method and apparatus for performing delay measurement and phase measurement of signals and various physical quantities.

【0002】[0002]

【従来の技術】被測定伝送路における周波数ごとの遅延
時間や移相量を測定する方法には、大別すると、能動型
の方法と受動型の方法とがある。能動型の方法は、ネッ
トワークアナライザなどで使用されており、試験用信号
を自ら発生して被測定伝送路に入力し、被測定伝送路か
らの出力信号によって被測定伝送路の伝達関数を求める
方法である。この方法では、式(1)に示すように伝達関
数の位相Phase(f)を観測周波数fで微分すること
によって、周波数fにおける被測定伝送路の遅延時間τ
(f)を容易に求めることができる。
2. Description of the Related Art The methods for measuring the delay time and the amount of phase shift for each frequency in a transmission line to be measured are roughly classified into an active method and a passive method. The active method is used in network analyzers, etc., where a test signal is generated by itself and input to the measured transmission line, and the transfer function of the measured transmission line is obtained from the output signal from the measured transmission line. Is. In this method, the phase Phase (f) of the transfer function is differentiated by the observation frequency f as shown in the equation (1), so that the delay time τ of the measured transmission line at the frequency f is
(f) can be easily obtained.

【0003】[0003]

【数1】 一方、受動型の測定では、外部の信号源で発生した信号
を被測定伝送路に入力させる。この場合、観測できるス
ペクトルが連続であるとは限らず、また、外部の信号源
での変動等によってSN比も一定しないので、遅延量τ
の関数として相互相関関数C(τ)を式(2)のように定義
し、C(τ)を最大にする遅延量τmを遅延時間としてい
た。
(Equation 1) On the other hand, in the passive type measurement, a signal generated by an external signal source is input to the measured transmission line. In this case, the observable spectrum is not always continuous, and the SN ratio is not constant due to fluctuations in the external signal source.
The cross-correlation function C (τ) is defined as a function of Eq. (2), and the delay amount τ m that maximizes C (τ) is the delay time.

【0004】[0004]

【数2】 ここでa(t)及びb(t)は、時刻tの関数として表わさ
れる観測信号であり、Tは相関決定のための測定時間を
表わすパラメータである。図6は、制限された周波数帯
域でこの演算を効率良く実施するための構成を示してい
る。
(Equation 2) Where a (t) and b (t) are observed signals represented as a function of time t, and T is a parameter representing the measurement time for determining the correlation. FIG. 6 shows a configuration for efficiently performing this calculation in a limited frequency band.

【0005】信号源91からの信号が、それぞれ遅延時
間がτabで表わされる遅延要素92,93に入力する
ものとする。各遅延要素92,93からの出力が、観測
信号a(t),b(t)で表わされている。これら観測信号
a(t),b(t)に対してFFT(高速フーリエ変換)処
理94,95を施すことにより、周波数fの関数として
のスペクトルSa(f),Sb(f)を算出する。そして、観
測周波数をf0、観測周波数帯域の幅をΔfとして、処
理96により、式(3)に示される相関関数Cab(f0)を算
出し、相関関数Cab(f0)の位相を2πf0によって除算
し、Δτ(f0)の近似値を求める。なお、*は、複素共役
を示している。
It is assumed that the signals from the signal source 91 are input to the delay elements 92 and 93 whose delay times are represented by τ a and τ b , respectively. The output from each delay element 92, 93 is represented by an observed signal a (t), b (t). By performing FFT (Fast Fourier Transform) processing 94 and 95 on these observed signals a (t) and b (t), spectra S a (f) and S b (f) as a function of frequency f are calculated. To do. Then, the observation frequency f 0, the width of the observation frequency band as Delta] f, by the processing 96 calculates a correlation function C ab represented by the formula (3) (f 0), the phase of the correlation function C ab (f 0) Is divided by 2πf 0 to obtain an approximate value of Δτ (f 0 ). Note that * indicates a complex conjugate.

【0006】[0006]

【数3】 Δτ(f0)は、観測周波数f0における2つの遅延要素9
2,93の遅延時間τa(f0),τb(f0)の差である。した
がって、被測定伝送路への入力信号を検出してa(t)と
し、被測定伝送路からの出力信号をb(t)とすることに
よって、この被測定伝送路における遅延時間がΔτ
(f0)として求められることになる。
(Equation 3) Δτ (f 0 ) is equal to the two delay elements 9 at the observation frequency f 0 .
It is the difference between the delay times τ a (f 0 ), τ b (f 0 ) of 2,93. Therefore, by detecting the input signal to the measured transmission line and setting it as a (t) and setting the output signal from the measured transmission line as b (t), the delay time in this measured transmission line is Δτ.
It will be obtained as (f 0 ).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た受動型の測定は、観測信号a(t),b(t)の周波数ス
ペクトルを求める必要があるので高速かつ高精度のアナ
ログ/デジタル変換器を必要とするとともに、FFT演
算や上述の式(3)の数値積分など数多くの数値演算を行
わなければならないためにリアルタイムでの解析が難し
い、という問題点を有する。
However, in the above passive type measurement, since it is necessary to obtain the frequency spectrum of the observation signals a (t) and b (t), a high-speed and highly accurate analog / digital converter is used. In addition to the necessity, there is a problem that real-time analysis is difficult because a lot of numerical operations such as FFT operation and numerical integration of the above equation (3) have to be performed.

【0008】本発明の目的は、高速のアナログデジタル
変換器を必要とせず、特に、遅延時間Δτが観測用周波
数帯域Δfに対して小さい場合(Δτ<1/Δf)に、
高速かつ高精度で相関関数を決定でき、遅延時間Δτを
決定できる相関関数測定方法及び装置を提供することに
ある。
The object of the present invention does not require a high-speed analog-digital converter, and particularly when the delay time Δτ is smaller than the observation frequency band Δf (Δτ <1 / Δf),
It is an object of the present invention to provide a correlation function measuring method and apparatus capable of determining a correlation function at high speed and with high accuracy and determining a delay time Δτ.

【0009】[0009]

【課題を解決するための手段】本発明の相関関数測定方
法は、所定の観測周波数帯域において第1の観測信号と
第2の観測信号の間の相関関数を測定する方法であっ
て、前記第1の観測信号を前記観測周波数帯域に制限し
て第1の周波数の信号に周波数変換し、前記第2の観測
信号を前記観測周波数帯域に制限し、前記第1の周波数
への周波数変換時と同一の基準周波数信号に基づき、前
記第1の周波数に対して所定の周波数差を有する第2の
周波数の信号に前記第2の観測信号を周波数変換し、前
記第1の周波数の信号と前記第2の周波数の信号を乗算
し、これらの差周波数成分に対して前記基準周波数信号
に基準づいてベクトル検波を行う。
A correlation function measuring method of the present invention is a method of measuring a correlation function between a first observation signal and a second observation signal in a predetermined observation frequency band, the method comprising: One observation signal is limited to the observation frequency band and frequency-converted to a signal of a first frequency, the second observation signal is limited to the observation frequency band, and the frequency is converted to the first frequency. Based on the same reference frequency signal, the second observation signal is frequency-converted into a signal of a second frequency having a predetermined frequency difference with respect to the first frequency, and the signal of the first frequency and the signal of the first frequency are converted. Signals of two frequencies are multiplied, and vector detection is performed on these difference frequency components based on the reference frequency signal.

【0010】本発明の方法では、上述の式(3)に基づく
演算を行う代わりに、第1の観測信号及び第2の観測信
号を所定の観測周波数帯域に帯域制限して乗算し、乗算
結果の差周波数成分に対してベクトル検波を施すことに
よって、相関関数に関する情報を得ている。この際、観
測周波数帯域に帯域制限された2信号をそのまま乗算す
ると差周波数成分がほぼ直流成分となること、また、観
測周波数帯域の信号では乗算を行う際に高すぎることな
どから、周波数変換を行い、帯域制限後の第1の観測信
号と第2の観測信号との間に所定の周波数差が生じるよ
うにしている。また、乗算器に入力すべき周波数の信号
に直接変換するのではなく、いったん、第1の観測信号
と第2の観測信号とを同一の中間周波数に変換し、さら
に再度の周波数変換を行ってから乗算器に信号を与える
ようにしてもよい。なお、相関関数の測定では位相情報
を保存しなければならないから、周波数変換やベクトル
検波が同一の基準周波数信号に基づいて行われるよう
に、具体的には例えば局部発振器をこの基準周波数信号
に位相ロックさせるようにする必要がある。
In the method of the present invention, instead of performing the calculation based on the above equation (3), the first observation signal and the second observation signal are band-limited to a predetermined observation frequency band and multiplied, and the multiplication result Information on the correlation function is obtained by performing vector detection on the difference frequency component of. At this time, if the observed frequency band is multiplied by the band-limited two signals as they are, the difference frequency component becomes almost a direct current component, and the signal in the observed frequency band is too high when performing multiplication. Then, a predetermined frequency difference is generated between the first observed signal and the second observed signal after band limitation. In addition, instead of directly converting into a signal of a frequency to be input to the multiplier, the first observation signal and the second observation signal are first converted into the same intermediate frequency, and then frequency conversion is performed again. It is also possible to give a signal to the multiplier. Since the phase information must be stored in the measurement of the correlation function, so that the frequency conversion and the vector detection are performed based on the same reference frequency signal, specifically, for example, a local oscillator is phased to this reference frequency signal. It needs to be locked.

【0011】本発明では、ベクトル検波の方法として、
基準周波数信号に基づいて上述の差周波数に相当する参
照信号を発生させてベクトル検波を行なう、合成フーリ
エ積分(SFI;Synthesized Fourier Integration)に
基づく方法を好ましく用いることができる。また、受動
型の遅延時間測定を行う場合には、被測定伝送路の出力
信号と入力信号をそれぞれ第1の観測信号と第2の観測
信号とし、ベクトル検波によって得られた位相情報P
(f0)を観測角周波数2πf0で除算すればよい。
In the present invention, as a vector detection method,
A method based on Synthesized Fourier Integration (SFI), in which a reference signal corresponding to the above-mentioned difference frequency is generated based on a reference frequency signal and vector detection is performed, can be preferably used. Further, in the case of performing passive type delay time measurement, the output signal and the input signal of the transmission path to be measured are the first observation signal and the second observation signal, respectively, and the phase information P obtained by the vector detection is used.
(f 0 ) may be divided by the observed angular frequency 2πf 0 .

【0012】本発明の相関関数測定装置は、所定の観測
周波数帯域において第1の観測信号と第2の観測信号の
間の相関関数を測定する装置であって、前記第1の観測
信号を前記観測周波数帯域に制限して所定の中間周波数
の信号に周波数変換する第1の変換手段と、前記第2の
観測信号を前記観測周波数帯域に制限し、前記第1の変
換手段におけるものと同一の基準周波数信号に基づき、
前記第2の観測信号を前記中間周波数の信号に周波数変
換する第2の変換手段と、前記第1の変換手段から供給
される信号と前記第2の変換手段から供給される信号と
を乗算する乗算器と、前記第1の変換手段及び前記第2
の変換手段の少なくとも一方の出力と前記乗算器との設
けられたミキサと、前記ミキサごとに設けられ、前記乗
算器に入力する2信号間に所定の周波数差が生じるよう
に、前記基準周波数信号に位相ロックした局部発振信号
を前記ミキサに供給する局部発振器と、前記乗算器の出
力のうち差周波数成分に対して前記基準周波数信号を基
づいてベクトル検波を行うベクトル検波器と、を有す
る。
A correlation function measuring device of the present invention is a device for measuring a correlation function between a first observation signal and a second observation signal in a predetermined observation frequency band, wherein the first observation signal is A first conversion unit that limits the frequency of the signal to a predetermined intermediate frequency by limiting the observation frequency band, and a second conversion unit that limits the second observation signal to the observation frequency band and is the same as that in the first conversion unit. Based on the reference frequency signal,
Second conversion means for frequency-converting the second observation signal into a signal of the intermediate frequency, and a signal supplied from the first conversion means and a signal supplied from the second conversion means are multiplied. A multiplier, the first conversion means and the second
The mixer provided with the output of at least one of the conversion means and the multiplier, and the reference frequency signal so that a predetermined frequency difference is generated between the two signals that are provided for each mixer and input to the multiplier. A local oscillator that supplies a phase-locked local oscillation signal to the mixer, and a vector detector that performs vector detection on the difference frequency component of the output of the multiplier based on the reference frequency signal.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態につい
て、図面を参照して説明する。図1は本発明の実施の一
形態の相関関数測定装置の構成を示すブロック図であ
り、この装置は、本発明の方法に基づいて、2つの観測
信号a(t),b(t)の間の相関、典型的には、観測中心
周波数をf0、帯域幅をBWとする観測周波数帯域にお
ける両者間の遅延時間Δτ(f0)を測定するためのもの
である。なお、図において周波数値がかっこ書きされて
いるが、これらの周波数値は一例であって、本発明はこ
のような周波数での運用に限定されるものではない。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a correlation function measuring apparatus according to an embodiment of the present invention. This apparatus is based on the method of the present invention and is used to measure two observation signals a (t) and b (t). It is for measuring the correlation between them, typically, the delay time Δτ (f 0 ) between them in the observation frequency band with the observation center frequency f 0 and the bandwidth BW. It should be noted that although the frequency values are written in parentheses in the figure, these frequency values are examples, and the present invention is not limited to operation at such frequencies.

【0014】観測信号a(t),b(t)を中心周波数f0
帯域幅BWに帯域制限し、さらに中間周波数IF(ここ
では21.4MHz)の信号に周波数変換する変換部1
1,12が設けられている。このうち、変換部12には
基準周波数信号fref(ここでは10MHz)を発振し
て出力する基準発振部(不図示)が内蔵されており、変
換部11,12において周波数変換を行うための局部発
振部(不図示)は、この基準周波数信号frefに位相ロ
ックして作動するように構成されている。また、観測中
心周波数f0の範囲は例えば0Hz〜26.5GHzであ
り、帯域幅BWは、例えば、10Hz〜3MHzであ
る。変換部11,12は、例えば、RFスペクトルアナ
ライザをゼロスパンモードで動作させることによって実
現する。
The observed signals a (t) and b (t) are converted to center frequencies f 0 ,
A conversion unit 1 that limits the band to the bandwidth BW and further performs frequency conversion into a signal of an intermediate frequency IF (here, 21.4 MHz).
1, 12 are provided. Of these, the conversion unit 12 has a built-in reference oscillation unit (not shown) that oscillates and outputs a reference frequency signal f ref (here, 10 MHz), and the conversion units 11 and 12 are used to perform frequency conversion. The oscillating unit (not shown) is configured to operate by being phase locked to the reference frequency signal f ref . Moreover, the range of the observation center frequency f 0 is, for example, 0 Hz to 26.5 GHz, and the bandwidth BW is, for example, 10 Hz to 3 MHz. The conversion units 11 and 12 are realized by operating the RF spectrum analyzer in the zero span mode, for example.

【0015】各変換部11,12の出力側には、それぞ
れ、ミキサ13,14が設けられており、ミキサ13,1
4には、基準周波数信号frefに位相ロックした局部発
振器15,16が接続している。ここでは、局部発振器
15の発振周波数を7MHz、局部発振器16の発振周
波数を6MHzとして両者の差fdを1MHzとし、ミ
キサ13によって観測信号a(t)が14.4±1.5MH
zに、ミキサ14によって観測信号b(t)が15.4±
1.5MHzに変換されるようにしている。ミキサ14
の出力側には、15.4±1.5MHzのバンドパスフィ
ルタ17が設けられ、イメージ周波数が除去されるよう
になっている。
Mixers 13 and 14 are provided on the output sides of the converters 11 and 12, respectively.
Connected to 4 are local oscillators 15 and 16 which are phase locked to the reference frequency signal f ref . Here, the oscillation frequency of the local oscillator 15 is 7 MHz, the oscillation frequency of the local oscillator 16 is 6 MHz, the difference f d between them is 1 MHz, and the observed signal a (t) is 14.4 ± 1.5 MH by the mixer 13.
In z, the observed signal b (t) by the mixer 14 is 15.4 ±.
It is designed to be converted to 1.5MHz. Mixer 14
A band-pass filter 17 having a frequency of 15.4 ± 1.5 MHz is provided on the output side to remove the image frequency.

【0016】バンドパスフィルタ17の出力とミキサ1
3の出力とが乗算器18に入力し、14.4±1.5MH
zに変換された観測信号a(t)と15.4±1.5MHz
に変換された観測信号b(t)とが乗算され、乗算結果が
SFIベクトル検波器19に入力する。SFIベクトル
検波器19は、基準周波数信号freqを基準信号とし
て、乗算結果のうちの差周波数fd成分をベクトル検波
し、振幅情報と位相情報P(f0)を出力する。観測信号
a(t),b(t)間の遅延時間Δτ(f0)は、
Output of bandpass filter 17 and mixer 1
The output of 3 is input to the multiplier 18, and 14.4 ± 1.5 MH
Observation signal a (t) converted to z and 15.4 ± 1.5 MHz
Is multiplied by the observed signal b (t) that has been converted into, and the multiplication result is input to the SFI vector detector 19. The SFI vector detector 19 vector-detects the difference frequency f d component of the multiplication result using the reference frequency signal f req as a reference signal, and outputs amplitude information and phase information P (f 0 ). The delay time Δτ (f 0 ) between the observed signals a (t) and b (t) is

【0017】[0017]

【数4】 によって与えられる。なお、上述の装置においては、観
測信号a(t)の経路にはバンドパスフィルタが設けられ
ていないが、これは、SFIベクトル検波器19におい
て、観測信号a(t)のイメージ周波数(28.4MH
z)と観測信号b(t)との乗算結果である43.8MH
z及び13MHzの信号が除去されるからである。
(Equation 4) Given by In the above-mentioned device, no bandpass filter is provided in the path of the observation signal a (t), but this is because the SFI vector detector 19 uses the image frequency of the observation signal a (t) (28. 4 MH
z) and the observation signal b (t), which is the multiplication result of 43.8 MH
This is because the z and 13 MHz signals are removed.

【0018】次に、SFIベクトル検波器19の構成に
ついて、図2を用いて説明する。SFIベクトル検波器
19は、合成フーリエ積分によって、入力信号のベクト
ル検波を行うものである。
Next, the configuration of the SFI vector detector 19 will be described with reference to FIG. The SFI vector detector 19 performs vector detection of the input signal by synthetic Fourier integration.

【0019】基準周波数信号frefの入力するデジタル
シンセサイザ31が設けられており、デジタルシンセサ
イザでは、図示するように、基準周波数信号frefに応
じて、階段状に数値が時間変化するデジタル信号が生成
する。このデジタル信号は、一方の正弦波メモリ34に
入力するとともに、デジタル加算器33を経て他方の正
弦波メモリ35に入力する。デジタル加算器33では、
進相量に相当する位相データが加算される。正弦波メモ
リ34,35は、正弦波の1周期を等分した各時間ごと
に正弦波でのそのときの値を格納したものであって、一
定の増分でクロックに同期して値が変化するデジタル信
号を与えることにより、正弦波に相当して値が変化する
デジタル信号を出力する。正弦波メモリ34,35の出
力側には、それぞれ、デジタル信号とアナログ信号とを
乗算するアナログデジタル乗算器36,37が設けられ
ており、デジタル信号として正弦波メモリ34,35の
出力がそれぞれアナログデジタル乗算器36,37に入
力している。
A digital synthesizer 31 to which the reference frequency signal f ref is input is provided. As shown in the figure, the digital synthesizer 31 generates a digital signal whose numerical value changes stepwise according to the reference frequency signal f ref. To do. This digital signal is input to one of the sine wave memories 34, and is also input to the other sine wave memory 35 via the digital adder 33. In the digital adder 33,
Phase data corresponding to the amount of phase advance is added. The sine wave memories 34 and 35 store the value of the sine wave at each time, which is obtained by equally dividing one cycle of the sine wave, and the value changes at a constant increment in synchronization with the clock. By applying a digital signal, a digital signal whose value changes corresponding to a sine wave is output. On the output sides of the sine wave memories 34 and 35, analog digital multipliers 36 and 37 for multiplying a digital signal and an analog signal, respectively, are provided, and the outputs of the sine wave memories 34 and 35 are analog signals. It is input to the digital multipliers 36 and 37.

【0020】一方、アナログ信号である入力信号は、バ
ンドパスフィルタ32を介して、アナログデジタル乗算
器36,37のアナログ側の入力端子に供給されてい
る。アナログデジタル乗算器36,37の出力は、それ
ぞれ、積分器38,39を介し、アナログデジタル変換
器40,41に入力する。そして、各アナログデジタル
変換器40,41の出力は演算・表示部42に入力し、
ベクトル検波結果が算出されて位相や振幅情報が出力す
る。
On the other hand, the input signal which is an analog signal is supplied to the analog-side input terminals of the analog-digital multipliers 36 and 37 via the bandpass filter 32. The outputs of the analog-digital multipliers 36, 37 are input to the analog-digital converters 40, 41 via the integrators 38, 39, respectively. Then, the outputs of the analog-digital converters 40 and 41 are input to the calculation / display unit 42,
The vector detection result is calculated and the phase and amplitude information is output.

【0021】結局、このSFIベクトル検波器19で
は、デジタルシンセサイザ31と正弦波メモリ34,3
5を使用することによって、基準周波数信号frefに位
相がロックした任意の周波数の正弦波をこのSFIベク
トル検波器19での参照信号として発生させることがで
きる。そして、各アナログデジタル乗算器36,37で
は、基準周波数信号frefから合成された所定の周波数
(上述の例では1MHz)の正弦波信号(参照信号)と
入力信号とが乗算され、乗算結果が積分器38,39で
積分される。したがって、デジタル加算器で加える位相
データを移相量π/4に相当する値とすることにより、
入力信号のうちの周波数が1MHzである成分につい
て、余弦(コサイン)成分と正弦(サイン)成分が抽出
されることとなり、ベクトル検波が実現されたことにな
る。
After all, in this SFI vector detector 19, the digital synthesizer 31 and the sine wave memories 34 and 3 are used.
By using 5, a sine wave having an arbitrary frequency whose phase is locked to the reference frequency signal f ref can be generated as a reference signal in the SFI vector detector 19. Then, in each of the analog-digital multipliers 36 and 37, the sine wave signal (reference signal) of the predetermined frequency (1 MHz in the above example) synthesized from the reference frequency signal f ref is multiplied by the input signal, and the multiplication result is It is integrated by integrators 38 and 39. Therefore, by setting the phase data added by the digital adder to a value corresponding to the phase shift amount π / 4,
The cosine (sine) component and the sine (sine) component are extracted from the component of the input signal having a frequency of 1 MHz, which means that the vector detection is realized.

【0022】以上、本発明の実施の形態の一つを説明し
たが、観測周波数の帯域幅BWがベクトル検波の周波数
(1MHz)よりも十分に狭い場合には、観測信号a
(t)側のミキサ13と局部発振器15を省略することも
可能である。図3はこの場合の相関関数測定装置の構成
を示しており、観測信号b(t)側の局部発振器16の発
振周波数を1MHzとし、乗算器18には20.4MH
zに周波数変換された観測信号b(t)と、中間周波数I
F(21.4MHz)に周波数変換された観測信号a
(t)が入力する。
Although one of the embodiments of the present invention has been described above, when the bandwidth BW of the observed frequency is sufficiently narrower than the frequency of vector detection (1 MHz), the observed signal a
It is also possible to omit the mixer 13 and the local oscillator 15 on the (t) side. FIG. 3 shows the configuration of the correlation function measuring apparatus in this case, in which the oscillation frequency of the local oscillator 16 on the observed signal b (t) side is 1 MHz, and the multiplier 18 is 20.4 MHz.
Observation signal b (t) frequency-converted to z and intermediate frequency I
Observation signal a converted to F (21.4 MHz)
(t) enters.

【0023】次に、上述の相関関数測定装置を用いた測
定例について説明する。図4に示した例では、信号波源
61に対して回路網A62、回路網B63、…が直列に
接続されている。回路網A62の入力信号(信号波源6
1の出力信号)を観測信号a(t)とし回路網A62の出
力信号を観測信号b(t)として引き出すことにより、回
路網A62の動作状態や遅延特性が測定されている。こ
の場合、信号波源61から回路網A62に入力する信号
や回路網A62の出力信号は電気的な信号である必要は
なく、各種センサを通じて計測される、例えば、温度、
流量、音圧、変位量などの物理量で表わされるものであ
ってもよく、観測信号a(t)とb(t)が別の物理量で表
わされていてもよい。これらの場合でも、例えば遅延時
間Δτ(f0)から、伝搬速度や、単位時間当りの流量、
伝搬距離等を求めることができる。このように、回路網
や伝送路の任意の点から観測信号を引き出すことによ
り、動作状態の測定を行うことができる。
Next, a measurement example using the above correlation function measuring device will be described. In the example shown in FIG. 4, the circuit network A 62, the circuit network B 63, ... Are connected in series to the signal wave source 61. Input signal of the network A62 (signal wave source 6
The output state of the circuit network A62 is measured by observing the output signal of the circuit network A62 as the observed signal a (t) and the output signal of the circuit network A62 as the observed signal b (t). In this case, the signal input from the signal wave source 61 to the circuit network A62 or the output signal of the circuit network A62 does not need to be an electrical signal, and is measured through various sensors, for example, temperature,
It may be represented by a physical quantity such as a flow rate, sound pressure, or a displacement amount, and the observation signals a (t) and b (t) may be represented by different physical quantities. Even in these cases, for example, from the delay time Δτ (f 0 ) to the propagation velocity, the flow rate per unit time,
The propagation distance and the like can be obtained. In this way, the operation state can be measured by extracting the observation signal from an arbitrary point of the circuit network or the transmission line.

【0024】図5に示した例は、本発明による相関関数
測定装置を複素相関器として波動干渉器に使用し、ホロ
グラムの記録を行うものである。音波や電波も波動であ
ることでは光とは変わらないから、レーザ光を用いる場
合と同じ原理によって、ホログラム像を得ることができ
る(例えば、上羽 貞行、"音波ホログラフィと騒音源
探査"、計測と制御、第16巻第5号、427〜433
頁、1977年)。ただしこの場合には波長が光の場合
に比べて格段に長いから、固定センサ72と走査センサ
73とを用意し、ホログラム観測面71内で走査センサ
73をxy方向に2次元的に走査させながらデータを取
得し、計算処理によってホログラム像を再生する。すな
わち、固定センサ72からの信号を観測信号a(t)と
し、走査センサ73からの信号を観測信号b(t)とし
て、本実施の形態の相関関数測定装置1を用いて、ホロ
グラム観測面71上の各点(x,y)についてのSFIベ
クトル検波情報(振幅と位相)Cab(x,y)を測定す
る。そして、測定された振幅情報と位相情報に基づき、
ホログラム像再生装置74によってホログラム像を再生
し、これを像表示装置75で表示すればよい。ホログラ
ム像から波源の広がりなどを知ることができる。
In the example shown in FIG. 5, a hologram is recorded by using the correlation function measuring apparatus according to the present invention as a complex correlator in a wave interferometer. Since sound waves and radio waves are similar to light when they are waves, hologram images can be obtained by the same principle as when using laser light (for example, Sadayuki Ueba, "Sound holography and noise source exploration", measurement And control, Vol. 16, No. 5, 427-433
P., 1977). However, in this case, since the wavelength is much longer than that of light, the fixed sensor 72 and the scanning sensor 73 are prepared, and the scanning sensor 73 is two-dimensionally scanned in the xy directions within the hologram observation surface 71. Data is acquired and a hologram image is reproduced by calculation processing. That is, the signal from the fixed sensor 72 is used as the observation signal a (t), and the signal from the scanning sensor 73 is used as the observation signal b (t). The SFI vector detection information (amplitude and phase) C ab (x, y) for each point (x, y) above is measured. Then, based on the measured amplitude information and phase information,
The hologram image may be reproduced by the hologram image reproducing device 74 and displayed on the image display device 75. You can know the spread of the wave source from the hologram image.

【0025】なお、観測中心周波数f0と観測周波数帯
域幅BWを可変として波源再生像(ホログラム像)の比
較を行うことによって、波源とホログラム観測面との間
の距離や波源の性質などを詳しく知ることができる。ホ
ログラム観測面から波源までの距離は、再生された波源
像の位相を観測中心周波数f0で微分することによって
得られる。観測中心周波数f0と帯域幅BWを変化させ
た再生像を比較し振幅分布と位相分布の差異を利用する
ことにより、波源間の相関関係を知ることができる。
It should be noted that the observation center frequency f 0 and the observation frequency bandwidth BW are made variable to compare the reproduction image (hologram image) of the wave source, so that the distance between the wave source and the hologram observation surface, the nature of the wave source, etc. can be detailed. I can know. The distance from the hologram observation surface to the wave source is obtained by differentiating the phase of the reproduced wave source image by the observation center frequency f 0 . The correlation between the wave sources can be known by comparing the observed center frequency f 0 and the reproduced image in which the bandwidth BW is changed and utilizing the difference between the amplitude distribution and the phase distribution.

【0026】[0026]

【発明の効果】以上説明したように本発明は、2つの観
測信号a(t),b(t)に対して観測周波数帯域に応じた
帯域制限を行った後に、これらの間に所定の周波数差が
生じるように周波数変換を行ってから乗算し、乗算結果
に対してベクトル検波を行うことにより、高速のアナロ
グデジタル変換器を必要とせず、複雑な数値計算も必要
とせず、リアルタイムで被測定伝送路の遅延時間等を計
算できるようになるという効果がある。
As described above, according to the present invention, two observation signals a (t) and b (t) are subjected to band limitation according to the observation frequency band, and then a predetermined frequency is placed between them. By performing frequency conversion so that there is a difference and then multiplying, and performing vector detection on the multiplication result, there is no need for a high-speed analog-to-digital converter, no complicated numerical calculation, and real-time measurement There is an effect that the delay time and the like of the transmission line can be calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の相関関数測定装置の構
成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a correlation function measuring apparatus according to an embodiment of the present invention.

【図2】SFIベクトル検波器の構成を示すブロック図
である。
FIG. 2 is a block diagram illustrating a configuration of an SFI vector detector.

【図3】本発明の別の実施の形態の相関関数測定装置の
構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a correlation function measuring device according to another embodiment of the present invention.

【図4】測定例を説明するブロック図である。FIG. 4 is a block diagram illustrating a measurement example.

【図5】測定例を説明するブロック図である。FIG. 5 is a block diagram illustrating a measurement example.

【図6】従来の受動型の遅延時間測定を説明する図であ
る。
FIG. 6 is a diagram illustrating a conventional passive type delay time measurement.

【符号の説明】[Explanation of symbols]

1 相関関数測定装置 11,12 変換部 13,14 ミキサ 15,16 局部発振器 17 バンドパスフィルタ 18 乗算器 19 SFIベクトル検波器 31 デジタルシンセサイザ 32 バンドパスフィルタ 33 デジタル加算器 34,35 正弦波メモリ 36,37 アナログデジタル乗算器 38,39 積分器 40,41 アナログデジタル変換器 42 演算・表示部 61 信号波源 62,63 回路網 71 ホログラム観測面 72 固定センサ 73 走査センサ 74 ホログラム像再生装置 75 像表示装置 1 Correlation Function Measuring Device 11, 12 Conversion Unit 13, 14 Mixer 15, 16 Local Oscillator 17 Bandpass Filter 18 Multiplier 19 SFI Vector Detector 31 Digital Synthesizer 32 Bandpass Filter 33 Digital Adder 34, 35 Sine Wave Memory 36, 37 analog-digital multiplier 38, 39 integrator 40, 41 analog-digital converter 42 arithmetic / display unit 61 signal wave source 62, 63 circuit network 71 hologram observation surface 72 fixed sensor 73 scanning sensor 74 hologram image reproducing device 75 image display device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定の観測周波数帯域において第1の観
測信号と第2の観測信号の間の相関関数を測定する方法
であって、 前記第1の観測信号を前記観測周波数帯域に制限して第
1の周波数の信号に周波数変換し、 前記第2の観測信号を前記観測周波数帯域に制限し、前
記第1の周波数への周波数変換時と同一の基準周波数信
号に基づき、前記第1の周波数に対して所定の周波数差
を有する第2の周波数の信号に前記第2の観測信号を周
波数変換し、 前記第1の周波数の信号と前記第2の周波数の信号を乗
算し、これらの差周波数成分に対して前記基準周波数信
号に基づいてベクトル検波を行う相関関数測定方法。
1. A method of measuring a correlation function between a first observation signal and a second observation signal in a predetermined observation frequency band, wherein the first observation signal is limited to the observation frequency band. The first frequency is converted into a signal of a first frequency, the second observation signal is limited to the observation frequency band, and the first frequency is converted based on the same reference frequency signal as in the frequency conversion to the first frequency. To the second frequency signal having a predetermined frequency difference with respect to the second observation signal by frequency conversion, and the first frequency signal and the second frequency signal are multiplied, A correlation function measuring method for performing vector detection on a component based on the reference frequency signal.
【請求項2】 所定の観測周波数帯域において第1の観
測信号と第2の観測信号の間の相関関数を測定する方法
であって、 前記第1の観測信号を前記観測周波数帯域に制限して所
定の中間周波数の信号に周波数変換し、 前記第2の観測信号を前記観測周波数帯域に制限し、前
記第1の観測信号の場合におけるものと同一の基準周波
数信号に基づき、前記第2の観測信号を前記中間周波数
の信号に周波数変換し、 前記中間周波数への変換後の前記第1の観測信号及び前
記第2の観測信号の少なくとも一方に対して前記基準周
波数信号に基づいて周波数変換を行い、前記第1の観測
信号と前記第2観測信号の間に所定の周波数差を生じさ
せ、 前記周波数差が生じた前記第1の観測信号と前記第2の
観測信号とを乗算し、乗算の結果として生じる差周波数
成分に対して前記基準周波数信号に基づいてベクトル検
波を行う相関関数測定方法。
2. A method for measuring a correlation function between a first observation signal and a second observation signal in a predetermined observation frequency band, wherein the first observation signal is limited to the observation frequency band. Frequency conversion to a signal of a predetermined intermediate frequency, limiting the second observation signal to the observation frequency band, based on the same reference frequency signal as in the case of the first observation signal, the second observation The signal is frequency-converted into a signal of the intermediate frequency, and frequency conversion is performed on at least one of the first observation signal and the second observation signal after conversion to the intermediate frequency based on the reference frequency signal. , A predetermined frequency difference is generated between the first observation signal and the second observation signal, and the first observation signal and the second observation signal having the frequency difference are multiplied, Result Correlation function measuring method for performing vector detection based on the reference frequency signal to the frequency components.
【請求項3】 前記ベクトル検波が、合成フーリエ積分
により、前記基準周波数信号に基づいて前記周波数差に
相当する参照信号を生成して行われる請求項1または2
に記載の相関関数測定方法。
3. The vector detection is performed by generating a reference signal corresponding to the frequency difference based on the reference frequency signal by synthetic Fourier integration.
Correlation function measuring method described in.
【請求項4】 前記ベクトル検波によって得られた位相
情報を観測周波数で除算することにより、前記第1の観
測信号と前記第2の観測信号の間の遅延時間を決定する
請求項1乃至3いずれか1項に記載の相関関数決定方
法。
4. The delay time between the first observation signal and the second observation signal is determined by dividing the phase information obtained by the vector detection by the observation frequency. Or the correlation function determination method described in item 1.
【請求項5】 所定の観測周波数帯域において第1の観
測信号と第2の観測信号の間の相関関数を測定する装置
であって、 前記第1の観測信号を前記観測周波数帯域に制限して所
定の中間周波数の信号に周波数変換する第1の変換手段
と、 前記第2の観測信号を前記観測周波数帯域に制限し、前
記第1の変換手段におけるものと同一の基準周波数信号
に基づき、前記第2の観測信号を前記中間周波数の信号
に周波数変換する第2の変換手段と、 前記第1の変換手段から供給される信号と前記第2の変
換手段から供給される信号とを乗算する乗算器と、 前記第1の変換手段及び前記第2の変換手段の少なくと
も一方の出力と前記乗算器との設けられたミキサと、 前記ミキサごとに設けられ、前記乗算器に入力する2信
号間に所定の周波数差が生じるように、前記基準周波数
信号に位相ロックした局部発振信号を前記ミキサに供給
する局部発振器と、 前記乗算器の出力のうち差周波数成分に対して前記基準
周波数信号を基づいてベクトル検波を行うベクトル検波
器と、を有する相関関数測定装置。
5. An apparatus for measuring a correlation function between a first observation signal and a second observation signal in a predetermined observation frequency band, wherein the first observation signal is limited to the observation frequency band. A first conversion means for performing frequency conversion into a signal of a predetermined intermediate frequency; and limiting the second observation signal to the observation frequency band, based on the same reference frequency signal as in the first conversion means, Second conversion means for frequency-converting the second observation signal into the intermediate frequency signal, and multiplication for multiplying the signal supplied from the first conversion means by the signal supplied from the second conversion means. And a mixer provided with the output of at least one of the first conversion means and the second conversion means and the multiplier, and between two signals provided for each mixer and input to the multiplier. The predetermined frequency difference As described above, a local oscillator that supplies a local oscillation signal phase-locked to the reference frequency signal to the mixer, and a vector detection based on the reference frequency signal for the difference frequency component of the output of the multiplier is performed. A vector detector, and a correlation function measuring device having a vector detector.
【請求項6】 前記ベクトル検波器が、前記基準周波数
信号から前記周波数差に相当する参照信号を生成してベ
クトル検波を行なう合成フーリエ積分ベクトル検波器で
ある請求項5に記載の相関関数測定装置。
6. The correlation function measuring device according to claim 5, wherein the vector detector is a synthetic Fourier integral vector detector that performs a vector detection by generating a reference signal corresponding to the frequency difference from the reference frequency signal. .
JP28985195A 1995-11-08 1995-11-08 Correlation function measurement method and apparatus Expired - Fee Related JP3609177B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28985195A JP3609177B2 (en) 1995-11-08 1995-11-08 Correlation function measurement method and apparatus
US08/746,293 US5748314A (en) 1995-11-08 1996-11-07 Correlation function measurement method and apparatus, and wave source image visualization method and apparatus based on correlation function measurement
DE19645953A DE19645953B4 (en) 1995-11-08 1996-11-07 Method for determining a correlation and apparatus for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28985195A JP3609177B2 (en) 1995-11-08 1995-11-08 Correlation function measurement method and apparatus

Publications (2)

Publication Number Publication Date
JPH09133721A true JPH09133721A (en) 1997-05-20
JP3609177B2 JP3609177B2 (en) 2005-01-12

Family

ID=17748593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28985195A Expired - Fee Related JP3609177B2 (en) 1995-11-08 1995-11-08 Correlation function measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP3609177B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921947B4 (en) * 1998-05-13 2005-12-22 Advantest Corp. Method and apparatus for reconstructing the distribution of radio wave sources
DE19917661B4 (en) * 1998-04-17 2007-02-15 Advantest Corp. Method and device for measuring electromagnetic waves
KR100900593B1 (en) * 2002-06-18 2009-06-02 김칠수 Method for time interval precision measurement using frequency conversion
CN105739289A (en) * 2016-03-18 2016-07-06 山东交通学院 Measuring method and circuit for pulse time interval based on integrated phase detection discriminator
CN106896709A (en) * 2015-11-25 2017-06-27 英特尔Ip公司 High frequency time interleaved Digital time converter DTC
KR20180054337A (en) * 2016-11-15 2018-05-24 한국전자통신연구원 Apparatus for measuring passive intermodulation distortion signal and method for using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19917661B4 (en) * 1998-04-17 2007-02-15 Advantest Corp. Method and device for measuring electromagnetic waves
DE19921947B4 (en) * 1998-05-13 2005-12-22 Advantest Corp. Method and apparatus for reconstructing the distribution of radio wave sources
KR100900593B1 (en) * 2002-06-18 2009-06-02 김칠수 Method for time interval precision measurement using frequency conversion
CN106896709A (en) * 2015-11-25 2017-06-27 英特尔Ip公司 High frequency time interleaved Digital time converter DTC
CN105739289A (en) * 2016-03-18 2016-07-06 山东交通学院 Measuring method and circuit for pulse time interval based on integrated phase detection discriminator
KR20180054337A (en) * 2016-11-15 2018-05-24 한국전자통신연구원 Apparatus for measuring passive intermodulation distortion signal and method for using the same

Also Published As

Publication number Publication date
JP3609177B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
US5748314A (en) Correlation function measurement method and apparatus, and wave source image visualization method and apparatus based on correlation function measurement
US20020024331A1 (en) Method of investigating vibrations and an apparatus therefor
KR0156087B1 (en) Method and apparatus for multi-channel digital reception and apparatus of ultrasonic diagnosis
JPH02504673A (en) Navigation and tracking system
Huang et al. Time domain Doppler estimators of the amplitude of vibrating targets
JPH0389174A (en) Electronic measuring apparatus and estimation of frequency
US20180128674A1 (en) Mode-matching of mems resonators
RU2456548C2 (en) Signal processing method, signal processing apparatus and coriolis acceleration flow metre
JP3609177B2 (en) Correlation function measurement method and apparatus
Singh Simultaneous estimation of moving-vibration parameters by sliding Goertzel algorithm in PLL technique
JP2675733B2 (en) Chemical sensing equipment
JPH07151681A (en) Gas density measuring apparatus
CN111750972A (en) Target vibration measurement method suitable for dual-frequency continuous laser radar
JPH05346305A (en) Method and device for measuring position of moving object and the time of the position measurement
CN101461720B (en) Method and device for regulating measuring range of movement velocity based on spectral Doppler
JP3696379B2 (en) Multi-input amplitude / phase measurement method and apparatus
JP2001159608A (en) Gas concentration measuring apparatus
JPH03128422A (en) Ultrasonic sound speed measuring method
KR100706218B1 (en) Phase measurement device, method, and recording medium
US7783456B2 (en) Wave detection device, method, program, and recording medium
JPH10239364A (en) Method for observing surge distribution and method for distributing surge distribution
JPH11237465A (en) Marine radar using short wave or ultrashort wave
JPH10232252A (en) Hologram observation method of three-dimensional wave source distribution
JP2004294189A (en) Ultrasonic microscope
JP3391578B2 (en) Correlation device and flow information display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040617

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040915

A61 First payment of annual fees (during grant procedure)

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071022

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081022

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees