JP2000290026A - Optical quartz glass member for excimer laser - Google Patents

Optical quartz glass member for excimer laser

Info

Publication number
JP2000290026A
JP2000290026A JP10270899A JP10270899A JP2000290026A JP 2000290026 A JP2000290026 A JP 2000290026A JP 10270899 A JP10270899 A JP 10270899A JP 10270899 A JP10270899 A JP 10270899A JP 2000290026 A JP2000290026 A JP 2000290026A
Authority
JP
Japan
Prior art keywords
quartz glass
excimer laser
transmittance
less
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10270899A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimura
裕幸 西村
Akira Fujinoki
朗 藤ノ木
Takayuki Oshima
隆之 大嶋
Hisatoshi Otsuka
久利 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10270899A priority Critical patent/JP2000290026A/en
Publication of JP2000290026A publication Critical patent/JP2000290026A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart high uniformity and to heighten transmissivity in ultraviolet region and to improve resistance to excimer laser by hydrolyzing at least one silicon compound containing aliphatic hydrocarbon group and free from chlorine in a flame to form silica fine particles, depositing the formed particles and melting. SOLUTION: The silica particles are formed by hydrolyzing a silicon compound expressed by formula I, (R1)nSi(OR2)4-n (R1 and R2 are the same or different and each a monovalent aliphatic hydrocarbon group; n is 0 to 3) to formula II, SixRyOz (R is H or monovalent aliphatic hydrocarbon group; x is >=2, y is 2x+2, z is <=2x) in a flame. Synthetic quartz glass substantially free from chlorine and having <=30 ppb Na content is obtained by depositing the formed silica particles and vitrifying by melting. Methyltrimethoxysilane is cited as a compound expressed by formula I and hexamethyldisiloxane is cited as a compound expressed by formula II.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、紫外線、特にエキシマ
レーザー光の照射に対して優れた光透過性、均質性およ
び安定性を有する光学用合成石英ガラス部材、さらに詳
しくは半導体チップ製造用のエキシマレーザーリソグラ
フィー装置等の装置に用いるレンズ、プリズム、ビーム
スプリッターなどに好適に使用されるエキシマレーザー
用光学石英ガラス部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical synthetic quartz glass member having excellent light transmittance, homogeneity and stability with respect to irradiation of ultraviolet rays, particularly excimer laser light, and more particularly to a semiconductor quartz glass member. The present invention relates to an optical quartz glass member for an excimer laser suitably used for a lens, a prism, a beam splitter, and the like used in an apparatus such as an excimer laser lithography apparatus.

【0002】[0002]

【従来の技術】LSIの高集積度化に伴い、シリコンウ
エハー上に集積回路パターンを描画する光リソグラフィ
ー技術においてもサブミクロン単位の描画技術が要求さ
れ、それに使用する露光装置もますます改良が加えられ
てきている。たとえば、露光装置の光源の短波長化や光
の干渉を利用した超解像度技術を用いて、より微細な線
幅描画を達成してきた。具体的には、光源は水銀ランプ
のg線(波長436nm)からi線(波長365nm)
に短波長化され、屈折系の露光装置としては変形照明
法、位相シフトマスク法、などの光の干渉を利用した超
解像度技術が用いられている。このような微細描画化の
要求は、近年加速的に大きくなってきており、水銀ラン
プの次の光源として、より短波長のKrFレーザー(波
長248.3nm)やArFレーザー(波長193.4
nm)などのエキシマレーザー光が用いられはじめてい
る。このように、光源がエキシマレーザー光に変わるこ
とによって、露光装置に用いられるレンズなどの光学部
品は以前にもましてより品質の高いもの、すなわち、よ
り優れた紫外線の光透過性、及び微細な描画を行うため
のより優れた均質性が要求されている。例えば、光透過
性が悪いと、光吸収によるレンズの発熱によって、レン
ズの焦点距離やその他の特性を狂わせる要因となり、ま
た、均質性が悪いと結像特性が悪化する、などの問題が
あり、したがって、露光装置用の光学部材には非常に高
い光学的な品質が要求される。また、これらの光学的な
品質が長期に安定していなければならない。
2. Description of the Related Art As the degree of integration of LSIs increases, optical lithography techniques for drawing integrated circuit patterns on silicon wafers also require submicron-level drawing techniques, and the exposure equipment used for these techniques has been increasingly improved. Have been For example, finer line width drawing has been achieved by using a super-resolution technique utilizing a shorter wavelength of a light source of an exposure apparatus or light interference. Specifically, the light source is a g-line (wavelength 436 nm) to an i-line (wavelength 365 nm) of a mercury lamp.
As a refraction-type exposure apparatus, a super-resolution technique using light interference, such as a modified illumination method and a phase shift mask method, is used. In recent years, the demand for such finer drawing has been increasing at an accelerating rate, and as a light source next to a mercury lamp, a shorter wavelength KrF laser (wavelength 248.3 nm) or an ArF laser (wavelength 193.4 nm) is used.
excimer laser light, such as nm). In this way, by changing the light source to excimer laser light, optical components such as lenses used in the exposure apparatus have higher quality than ever before, that is, better ultraviolet light transmittance and finer drawing. There is a need for better homogeneity to perform For example, if the light transmittance is poor, heat generation of the lens due to light absorption may cause the focal length and other characteristics of the lens to be disrupted, and if the homogeneity is poor, the imaging characteristics may be deteriorated. Therefore, very high optical quality is required for an optical member for an exposure apparatus. In addition, these optical qualities must be stable for a long time.

【0003】従来のように水銀ランプのi線(波長36
5nm)を光源として用いた場合、光透過材としては多
種の光学ガラスが使用されてきた。しかしながら、Kr
FやArFのエキシマレーザーを光源として用いた場
合、透過性の問題から使用できる硝材は合成石英ガラス
もしくは蛍石に限定される。KrFエキシマレーザーリ
ソグラフィー用の露光装置には光透過材料であるレンズ
やプリズム、その他窓材などのほとんどの部品が合成石
英ガラスで構成されている。しかしながら、いわゆる一
般的な紫外線光学用に用いられる合成石英には多くの種
類のものが存在しているが、とりわけエキシマレーザー
リソグラフィーに好適なものとなると、合成石英ガラス
といえども、かなり素材の物性が限定される。これは、
(i)エキシマレーザーリソグラフィー装置に用いられ
る石英ガラスの光路長の全長は非常に長いものとなるた
め、高い透過性が要求されること、(ii)高透過性と
ともに、高い均質性も要求されること、(iii)長時
間のエキシマレーザー照射に耐えうる高い耐性(レーザ
ー耐性)が要求されること、といった各種の特性が高い
レベルで要求されるからである。一般的には、合成石英
ガラスは高純度のシリコン化合物、例えば四塩化珪素
(SiCl4)などの蒸気を、直接酸素・水素火炎中に
導入して、火炎加水分解して得たガラス微粒子を直接回
転する耐熱性基体上に堆積・溶融ガラス化させる直接
法、前記ガラス微粒子を耐熱性基体上に堆積(多孔質体
として)した後、電気炉中で加温し溶融・ガラス化して
透明ガラス体を得るスート法、などの方法がある。前記
製造方法で作成された合成石英ガラスは、高純度の原料
を用いることによって、比較的紫外線に対する透過性の
良いものが得られるが、前述したように、リソグラフィ
ー装置に用いられる石英ガラス材として用いるために
は、非常に高い透過性とともに高均質性も合わせ要求さ
れ、通常熱歪みを取り除いたり、均質性をよくするため
にある程度の熱処理工程(アニール工程)が必要であ
る。石英ガラスの紫外線領域における透過性は、含有す
る金属不純物及び石英ガラス中の構造欠陥などによって
左右される。したがって、高透過性を得るためには極力
高純度で、かつ、無欠陥のガラスを作成することが望ま
しい。しかしながら、熱処理によるアニール工程は、石
英ガラスのひずみ点以上に温度を上げて徐冷する工程が
含まれるため、熱処理炉からの金属不純物拡散によって
石英ガラスが汚染され、ひいては透過率を悪化させる。
多くの遷移金属元素は石英ガラスの紫外線領域の透過率
の悪化を引き起こすが、特にNa原子が含有されること
によって180nm近辺に吸収バンドが生じ、これがA
rFエキシマレーザーの波長領域に大きな影響を及ぼ
す。Naはアルカリ金属の1つで、熱処理工程での雰囲
気中にNaが存在すると、熱拡散によって簡単に石英ガ
ラス中に拡散していき、その結果、紫外線領域の透過率
低下を引き起こす。リソグラフィー露光装置に用いられ
る石英ガラスでは非常に高い透過率が要求されており、
実質的にこの要求を満たすためには、非常に汚染の少な
い状態で合成、熱処理などを行う必要がある。
As in the prior art, the i-line of a mercury lamp (wavelength 36
When 5 nm) is used as a light source, various types of optical glass have been used as a light transmitting material. However, Kr
When an F or ArF excimer laser is used as a light source, the usable glass material is limited to synthetic quartz glass or fluorite due to the problem of transparency. In an exposure apparatus for KrF excimer laser lithography, most components such as lenses, prisms, and window materials, which are light transmitting materials, are made of synthetic quartz glass. However, although there are many types of synthetic quartz used for so-called general ultraviolet optics, especially when it is suitable for excimer laser lithography, even if it is synthetic quartz glass, the physical properties of the material are considerably large. Is limited. this is,
(I) Since the total length of the optical path length of the quartz glass used in the excimer laser lithography apparatus is very long, high transmittance is required, and (ii) high homogeneity is required together with high transmittance. This is because various characteristics such as (iii) high resistance (laser resistance) that can withstand excimer laser irradiation for a long time are required at a high level. Generally, synthetic quartz glass is obtained by directly introducing vapor of a high-purity silicon compound, for example, silicon tetrachloride (SiCl 4 ) into an oxygen / hydrogen flame, and directly subjecting the glass particles obtained by flame hydrolysis to glass fine particles. A direct method of depositing and melting vitrification on a rotating heat-resistant substrate, depositing the glass fine particles on a heat-resistant substrate (as a porous body), then heating in an electric furnace to melt and vitrify the transparent glass body. The soot method to obtain Synthetic quartz glass produced by the above-described manufacturing method can be obtained as a material having a relatively high transmittance to ultraviolet rays by using a high-purity raw material. However, as described above, it is used as a quartz glass material used in a lithography apparatus. For this purpose, high homogeneity as well as very high transmittance are required, and a certain degree of heat treatment step (annealing step) is usually required to remove thermal distortion and improve homogeneity. The transmittance of quartz glass in the ultraviolet region is affected by metal impurities contained therein, structural defects in quartz glass, and the like. Therefore, in order to obtain high transmittance, it is desirable to produce a glass with high purity and no defect. However, since the annealing step by heat treatment includes a step of raising the temperature above the strain point of the quartz glass and gradually cooling the quartz glass, the quartz glass is contaminated by the diffusion of metal impurities from the heat treatment furnace, and thus the transmittance is deteriorated.
Many transition metal elements cause the transmittance of quartz glass to deteriorate in the ultraviolet region. In particular, due to the inclusion of Na atoms, an absorption band is generated around 180 nm, which is caused by A
This has a great effect on the wavelength range of the rF excimer laser. Na is one of alkali metals, and when Na is present in the atmosphere in the heat treatment step, it is easily diffused into quartz glass by thermal diffusion, and as a result, the transmittance in the ultraviolet region is reduced. Very high transmittance is required for quartz glass used in lithography exposure equipment,
In order to substantially satisfy this requirement, it is necessary to perform synthesis, heat treatment, and the like in a state with very little contamination.

【0004】Na濃度と紫外線領域の透過率との関係を
示すものとして特開平10−53432号公報が挙げら
れるが、この公報では、四塩化珪素を原料として直接火
炎加水分解法によって作成した合成石英ガラス中に微量
のAlを混入させることによって、Na汚染による透過
率の低下を効果的に抑えていることが記載されている。
さらに、この公報には、Naが紫外線領域の透過率を低
下させる原因であることも記載されているが、微量のA
lを共存させることによって高い透過率に維持しようと
するとする試みは、言い換えれば、Na濃度が十分に低
い光学用石英ガラスを作成することが如何に困難なこと
であるかを間接的に物語るものである。また、前記公報
の段落
Japanese Unexamined Patent Publication No. Hei 10-53432 discloses the relationship between the Na concentration and the transmittance in the ultraviolet region. In this publication, synthetic quartz prepared by direct flame hydrolysis using silicon tetrachloride as a raw material is disclosed. It is described that by mixing a small amount of Al into glass, a decrease in transmittance due to Na contamination is effectively suppressed.
Further, this publication also discloses that Na is a cause of decreasing the transmittance in the ultraviolet region,
Attempts to maintain high transmittance by coexistence of l, in other words, tell indirectly how difficult it is to make optical quartz glass with a sufficiently low Na concentration. It is. In addition, paragraph

【0017】には、均質性を達成するため2000℃付
近での2次的な熱処理を行うと、部材内部に容易にNa
が拡散してしまうことが記載されており、石英ガラス中
への完全なNaの拡散阻止は非常に困難であることこと
が窺える。そのため、該公報では、微量のNaのガラス
中への混入はしかたなく、仮に微量のNaが混入したと
してもAlを混在させることによって高透過性を維持し
ている。しかしながら、Alの濃度が高過ぎても都合が
悪く、微量のAl濃度をコントロールし、かつ、石英ガ
ラス中に均一に混在させることは、NaとAlのガラス
中での拡散係数が大幅に異なることから、技術的に非常
に困難なことである。このような困難を避けるために、
同公報では均質化のための2次的な熱処理を施さない、
すなわち、石英ガラスの合成時に高均質性のものを直接
合成する、といった合成手法が採られている。いずれに
しても、直接火炎加水分解法により合成した石英ガラス
であっても、歪みを取るための2次的な熱処理は必要で
あり、その場合Naによる汚染は避けられないものであ
る。このように、高透過性を維持するためにはNaによ
る汚染を極力小さくする必要があるが、これには合成時
の雰囲気や熱処理時の雰囲気をできるだけクリーンな雰
囲気に保つことが重要である。一方、高均質性を維持す
るためには、歪み取りのための熱処理や、均質化のため
の熱処理が必要であり、多かれ少なかれNaの拡散によ
って石英ガラスは汚染され、その結果透過率は低下して
しまう。このように、エキシマレーザー露光装置の光学
材料に要求されている、高透過性と高均質性の両物性を
同時に高いレベルで維持した石英ガラス部材を作成する
ことは非常に困難である。
In order to achieve homogeneity, when a secondary heat treatment is performed at around 2000 ° C., Na is easily added to the inside of the member.
Is diffused, which indicates that it is very difficult to completely prevent the diffusion of Na into quartz glass. Therefore, in this publication, a very small amount of Na cannot be mixed into the glass, and even if a small amount of Na is mixed, high permeability is maintained by mixing Al. However, it is inconvenient even if the concentration of Al is too high, and controlling a small amount of Al and uniformly mixing it in quartz glass requires a large difference in the diffusion coefficient between Na and Al in the glass. Therefore, it is technically very difficult. To avoid such difficulties,
In this publication, no secondary heat treatment is applied for homogenization,
That is, a synthetic method of directly synthesizing a highly homogeneous material at the time of synthesizing quartz glass is employed. In any case, even with quartz glass synthesized by the direct flame hydrolysis method, a secondary heat treatment for removing distortion is necessary, and in this case, contamination by Na is inevitable. As described above, in order to maintain high permeability, it is necessary to minimize contamination by Na. For this purpose, it is important to keep the atmosphere during synthesis and the atmosphere during heat treatment as clean as possible. On the other hand, in order to maintain high homogeneity, heat treatment for strain relief and heat treatment for homogenization are necessary, and quartz glass is more or less contaminated by the diffusion of Na, and as a result, the transmittance is reduced. Would. As described above, it is very difficult to produce a quartz glass member which simultaneously maintains both high transparency and high homogeneity physical properties required for an optical material of an excimer laser exposure apparatus at a high level.

【0005】[0005]

【発明が解決しようとする課題】こうした現状に鑑み、
本発明者等は、紫外線領域の透過率とNa濃度の関係を
各種の化学物質を出発原料として作成した合成石英ガラ
スについて調べた結果、塩素を含まない原料を用いて合
成した石英ガラスは塩素を含む原料を用いて合成した石
英ガラスより遥かに紫外線領域の透過率の低下が小さ
く、特にNa濃度が30ppb以下では透過率の低下に
大きな影響を及ぼさないことを見出した。すなわち、塩
素を含まない合成石英ガラスにおいては、透過率に影響
を及ぼすNa濃度の許容値がかなり高いことを意味して
いる。さらに、前記出発原料から得たガラス微粒子を直
接回転する耐熱性基体上に堆積・透明ガラス化させる直
接火炎加水分解法で合成した石英ガラスは含有水素分子
濃度が高く、エキシマレーザーの長時間の照射において
も安定し、光学的特性に殆ど変化が起こらないことを見
出して、本発明を完成したものである。すなわち、
In view of the current situation,
The present inventors have investigated the relationship between the transmittance in the ultraviolet region and the Na concentration of synthetic quartz glass prepared using various chemical substances as starting materials, and as a result, quartz glass synthesized using a chlorine-free raw material has chlorine. It has been found that the decrease in transmittance in the ultraviolet region is much smaller than that of quartz glass synthesized using a raw material containing the same, and that particularly when the Na concentration is 30 ppb or less, the decrease in transmittance is not significantly affected. That is, in the synthetic quartz glass containing no chlorine, the allowable value of the Na concentration which affects the transmittance is considerably high. Furthermore, quartz glass synthesized by a direct flame hydrolysis method, in which glass fine particles obtained from the starting material are directly deposited on a rotating heat-resistant substrate and formed into a transparent glass, has a high hydrogen molecule content and is exposed to excimer laser for a long time. It has been found that the present invention is stable and that almost no change occurs in the optical characteristics. That is,

【0006】本発明は、高い均質性を有するとともに、
紫外線領域の透過率が高く、かつレーザー耐性に優れた
エキシマレーザー用光学石英ガラス部材を提供すること
を目的とする。
The present invention has high homogeneity and
It is an object of the present invention to provide an optical quartz glass member for an excimer laser having a high transmittance in an ultraviolet region and excellent laser resistance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明は、一般式(3)
To achieve the above object, the present invention provides a compound represented by the following general formula (3):

【化3】 (R1nSi(OR24-n (3) (式中、R1、R2は同一または異種の脂肪族一価炭化水
素基、nは0〜3の整数を示す。) または、一般式(4)
(R 1 ) n Si (OR 2 ) 4-n (3) (wherein, R 1 and R 2 are the same or different aliphatic monovalent hydrocarbon groups, and n is an integer of 0 to 3) Or the general formula (4)

【化4】 Sixyz (4) (式中、Rは水素原子または脂肪族一価炭化水素基、x
は2以上の正の数、yは2x+2、zは2xをそれぞれ
超えない正の数を示す。)で表わされる珪素化合物を火
炎中で加水分解して生成したシリカ微粒子を堆積・溶融
ガラス化して得た実質的に塩素を含まないとともに、N
a含有量が30ppb以下の合成石英ガラスからなるこ
とを特徴とするエキシマレーザー用光学石英ガラス部材
に係る。
Embedded image Six R y O z (4) (where R is a hydrogen atom or an aliphatic monovalent hydrocarbon group, x
Is a positive number of 2 or more, y is 2x + 2, and z is a positive number not exceeding 2x. )) Is substantially free of chlorine obtained by depositing and melting vitrification of silica fine particles produced by hydrolyzing a silicon compound represented by
The present invention relates to an optical quartz glass member for excimer laser, which is made of synthetic quartz glass having a content of 30 ppb or less.

【0010】上記一般式(3)で表わされる化合物とし
ては、具体的にメチルトリメトキシシランSiCH
3(CH3O)3、テトラメトキシシランSi(CH3O)
4などが挙げられ、一般式(4)で表わされる化合物と
しては、具体的にヘキサメチルジシロキサン(CH33
SiOSi(CH33などが挙げられる。こららの化合
物は、いずれも分子中に塩素原子を含有しない化合物で
ある。本発明の合成石英ガラスはこれらの化合物を火炎
中で加水分解して生成したシリカ微粒子を直接回転する
耐熱性基体上に堆積・透明ガラス化させる直接火炎加水
分解法で合成される。前記「実質的に塩素が含まない」
とは、合成石英ガラス中の塩素濃度が比濁法による測定
限界値以下、すなわち10ppm以下であることをい
う。因に、塩素を含む原料、例えば、四塩化珪素SiC
4やメチルトリクロルシランSi(CH3)Cl3など
の原料で直接火炎加水分解法にて作成した合成石英ガラ
ス中には一般的に塩素が約50〜150ppmの範囲で
含有される。
The compound represented by the general formula (3) is specifically exemplified by methyltrimethoxysilane SiCH
3 (CH 3 O) 3 , tetramethoxysilane Si (CH 3 O)
4 and the like. Specific examples of the compound represented by the general formula (4) include hexamethyldisiloxane (CH 3 ) 3
SiOSi (CH 3 ) 3 and the like. Each of these compounds is a compound that does not contain a chlorine atom in the molecule. The synthetic quartz glass of the present invention is synthesized by a direct flame hydrolysis method in which silica fine particles generated by hydrolyzing these compounds in a flame are deposited and transparently vitrified on a rotating heat-resistant substrate. Said "substantially free of chlorine"
This means that the chlorine concentration in the synthetic quartz glass is equal to or less than a measurement limit value by a turbidimetric method, that is, equal to or less than 10 ppm. Incidentally, a raw material containing chlorine, for example, silicon tetrachloride SiC
The synthetic quartz glass created by direct flame hydrolysis method in raw materials such as l 4 and methyltrichlorosilane Si (CH 3) Cl 3 generally chlorine is contained in the range of about 50 to 150 ppm.

【0011】一般的に石英ガラスの透過率を分光光度計
で測定する場合、純粋な不純物による吸収損失が全くな
い場合であっても、両表面の反射損失と石英ガラスのレ
イリー散乱による損失によって、見掛けの透過率は10
0%を示さない。ArFエキシマレーザーリソグラフィ
ー用の露光装置に使用される石英ガラスの透過性は、露
光装置の設計如何によって多少異なるが、一般的には純
粋な不純物による吸収損失がまったくないガラスの内部
透過率から約0.2%を引いた程度、すなわち反射及び
レイリー散乱損失を差し引いた透過率を100%とした
場合、99.8%程度の高い内部透過率が必要である。
なお、石英ガラスの場合は、波長193.4nmでのレ
イリー散乱損失は0.15〜0.2%(/cm)といわ
れている。図1は、塩素を含む合成石英ガラスと塩素を
実質的に含まない合成石英ガラスにおいて、Na濃度と
波長193.4nmにおける光路長1cm当たりの内部
透過率との関係を示したグラフである。図1に示すよう
に塩素を含む石英ガラスも塩素を実質的に含まない石英
ガラスもNa濃度が増加するにしたがって、193.4
nmの内部透過率は低下するが、塩素を含む石英ガラス
において低下が著しい。すなわち、塩素を含む石英ガラ
スにおいては、微量のNaが不純物として存在しても波
長193.4nmにおける光透過性は大きく悪化する
が、塩素を実質的に含まない石英ガラスの場合には、前
記と同じ量のNaが不純物として存在しても、波長19
3.4nmにおける光透過の悪化は小さく抑えることが
できる。すなわち、塩素を実質的に含まない石英ガラス
の場合には十分な熱処理プロセスを施しても透過率があ
まり低下しないので、高透過性を維持しつつ、高均質の
石英ガラスが簡単に製造できる。実際にArFエキシマ
レーザーリソグラフィー用露光装置の光学材料に要求さ
れる内部透過率は99.8%程度であり、内部透過率が
99.8%を示すNa濃度は、図1によれば塩素が実質
的に含まれない石英ガラスでは約30ppb、塩素を含
む石英ガラスの場合では約10ppbである。すなわ
ち、塩素を実質的に含まない石英ガラス部材にあっては
Naによる汚染を30ppb以下に抑えた熱処理条件を
選択して均質化処理をすれば、内部透過率を99.8%
以上に維持できるが、塩素を含む石英ガラスの場合はN
aによる汚染を10ppb以下に抑える必要がある。か
かる石英ガラスは、非常に限定された条件を選択して製
造せざるを得ず、満足な均質化ができない。前記Naに
よる汚染を30ppb以下に抑えた均質化法としては、
例えば特開平7−267662号公報に記載の処理法等
を挙げることができる。この均質化処理により632.
8nmにおける屈折率の変動幅が少なくとも1×10-5
以下、複屈折量が2nm/cm以下で、かつ3方向の脈
理や層状構造のない合成石英ガラス部材が得られる。均
質性が前記範囲未満では結像特性が悪く、エキシマレー
ザーリソグラフィー装置で要求される微細なパターンの
描画が困難となる。
In general, when the transmittance of quartz glass is measured with a spectrophotometer, even if there is no absorption loss due to pure impurities, the reflection loss on both surfaces and the loss due to Rayleigh scattering of the quartz glass cause Apparent transmittance is 10
Does not show 0%. The transmittance of quartz glass used in an exposure apparatus for ArF excimer laser lithography slightly varies depending on the design of the exposure apparatus. However, in general, the transmittance of quartz glass is about 0% due to the internal transmittance of glass having no absorption loss due to pure impurities. Assuming that the transmittance after subtracting 0.2%, that is, the transmittance after subtracting the reflection and Rayleigh scattering losses is 100%, a high internal transmittance of approximately 99.8% is required.
In the case of quartz glass, the Rayleigh scattering loss at a wavelength of 193.4 nm is said to be 0.15 to 0.2% (/ cm). FIG. 1 is a graph showing the relationship between Na concentration and internal transmittance per 1 cm of optical path length at a wavelength of 193.4 nm in synthetic quartz glass containing chlorine and synthetic quartz glass containing substantially no chlorine. As shown in FIG. 1, both the quartz glass containing chlorine and the quartz glass containing substantially no chlorine were 193.4 as the Na concentration increased.
Although the internal transmittance of nm decreases, the decrease is remarkable in quartz glass containing chlorine. That is, in quartz glass containing chlorine, the light transmittance at a wavelength of 193.4 nm is greatly deteriorated even if a trace amount of Na is present as an impurity. Even if the same amount of Na is present as an impurity,
Deterioration of light transmission at 3.4 nm can be kept small. That is, in the case of quartz glass containing substantially no chlorine, the transmittance does not decrease so much even if a sufficient heat treatment process is performed, so that highly homogeneous quartz glass can be easily produced while maintaining high transmittance. Actually, the internal transmittance required for the optical material of the exposure apparatus for ArF excimer laser lithography is about 99.8%, and the Na concentration at which the internal transmittance indicates 99.8% is substantially equal to that of chlorine according to FIG. It is about 30 ppb for quartz glass which is not included in general, and about 10 ppb for quartz glass containing chlorine. That is, in a quartz glass member which does not substantially contain chlorine, the internal transmittance can be 99.8% if a heat treatment condition in which contamination by Na is suppressed to 30 ppb or less is selected and homogenization treatment is performed.
Although the above can be maintained, in the case of quartz glass containing chlorine, N
It is necessary to suppress contamination by a to 10 ppb or less. Such quartz glass must be manufactured under very limited conditions and cannot be satisfactorily homogenized. As a homogenization method in which the contamination by Na is suppressed to 30 ppb or less,
For example, a processing method described in JP-A-7-267662 can be used. 632.
The variation width of the refractive index at 8 nm is at least 1 × 10 −5
Hereinafter, a synthetic quartz glass member having a birefringence of 2 nm / cm or less and having no striae or a layered structure in three directions can be obtained. If the homogeneity is less than the above range, the imaging characteristics are poor, and it becomes difficult to draw a fine pattern required in an excimer laser lithography apparatus.

【0012】上記塩素を含むか含まないかにより石英ガ
ラスのNa濃度による193.4nmの内部透過率が異
なる理由については詳しいことは分かっていないが、も
ともと、Na原子自体にはこの領域には吸収帯はなく、
それが石英ガラス中に含まれると、石英ガラスのあるサ
イトとの相互作用により吸収バンドが現れるものと考え
られる。塩素原子がNa原子のトラップサイトの一つと
考えられ、塩素とNaが混在することによって、吸収バ
ンドの生成が助長されるものと推定される。
The reason why the internal transmittance at 193.4 nm differs depending on the Na concentration of quartz glass depending on whether chlorine is contained or not is not known in detail, but originally, Na atoms themselves are absorbed in this region. No obi,
When it is contained in quartz glass, it is considered that an absorption band appears due to interaction with a certain site of quartz glass. The chlorine atom is considered to be one of the trap sites of the Na atom, and it is presumed that the mixture of chlorine and Na promotes the generation of the absorption band.

【0013】本発明の石英ガラスにあって、波長260
nm以下の低圧水銀ランプなどの紫外線を照射すること
で、高い透過性及び高い均質性の両特性を備えた石英ガ
ラスを製造することができる。すなわち、非常に高均質
の特性を得るために長時間の熱処理を施したためNa濃
度が30ppb程度となった石英ガラスであっても、紫
外線照射の手法を併用することによって、Naが10p
pb以下のものと同等の透過性を示す石英ガラスに改質
でき、ArFエキシマレーザー用の光学材料として十分
に使用できる。前記改善に用いられるランプとしては、
低圧水銀ランプ、波長172nmのXe2エキシマラン
プ、或は波長222nmのKrClエキシマランプが好
ましく用いられる。特にエキシマランプは、低圧水銀ラ
ンプより高い出力があり処理が短時間でできて好適であ
る。
The quartz glass of the present invention has a wavelength of 260
Irradiation with ultraviolet light such as a low-pressure mercury lamp having a wavelength of not more than nm makes it possible to produce quartz glass having both high transmittance and high homogeneity. That is, even if the quartz glass has a Na concentration of about 30 ppb due to a long-time heat treatment to obtain a very high uniform characteristic, Na can be reduced to 10 p
It can be modified into quartz glass having the same transmittance as that of pb or less, and can be sufficiently used as an optical material for an ArF excimer laser. Lamps used for the improvement include:
A low-pressure mercury lamp, a 172 nm wavelength Xe 2 excimer lamp, or a 222 nm wavelength KrCl excimer lamp is preferably used. In particular, an excimer lamp is preferable because it has a higher output than a low-pressure mercury lamp and can be processed in a short time.

【0014】石英ガラスがエキシマレーザーリソグラフ
ィー用露光装置の透過材料として好適に用いられるため
には、高い透過率及び均質性を維持することもさること
ながら、品質を長期に安定に維持するために高いレーザ
ー耐性を維持することも重要である。一般的に石英ガラ
スにエキシマレーザーを照射すると、E’center
やNBOHCと呼ばれる常磁性欠陥が生成し、これらの
欠陥が紫外線領域に吸収帯を持っているため、紫外線領
域の透過率の低下を引き起こす。また、レーザーコンパ
クションと呼ばれている、レーザー照射に伴う石英ガラ
スの収縮がみられ、そのため、屈折率が上昇し、その結
果、露光装置のレンズ材として用いた場合、結像特性が
悪化する。このような現象を総じてレーザーダメージと
呼ぶが、露光装置用の透過材料は、レーザーダメージに
対する耐性を高めておくことも重要なことである。本発
明の石英ガラス部材にあっては、合成石英ガラスが直接
火炎加水分解法で作成されているところから、水素分子
濃度が高くレーザー耐性が高いが、好ましくは水素分子
濃度が少なくとも2×1017分子/cm3以上であるの
がよい。前記範囲未満ではレーザーダメージを受け易
く、エキシマレーザーリソグラフィー用露光装置の部材
としては不適当である。
In order for quartz glass to be suitably used as a transmission material of an exposure apparatus for excimer laser lithography, it is necessary to maintain high transmittance and homogeneity, and also to maintain quality stably for a long period of time. It is also important to maintain laser resistance. In general, when excimer laser is irradiated on quartz glass, E'center
And NBOHC are generated, and these defects have an absorption band in the ultraviolet region, so that the transmittance in the ultraviolet region is reduced. Further, the shrinkage of the quartz glass accompanying the laser irradiation, which is called laser compaction, is observed, so that the refractive index increases. As a result, when the quartz glass is used as a lens material of an exposure apparatus, the imaging characteristics deteriorate. Such a phenomenon is generally referred to as laser damage, and it is also important that the transmission material for an exposure apparatus has improved resistance to laser damage. In the quartz glass member of the present invention, since the synthetic quartz glass is prepared by the direct flame hydrolysis method, the hydrogen molecule concentration is high and the laser resistance is high, but the hydrogen molecule concentration is preferably at least 2 × 10 17 It is preferably at least molecule / cm 3 . If it is less than the above range, it is apt to be damaged by laser, and is unsuitable as a member of an exposure apparatus for excimer laser lithography.

【0015】次に、本発明の製造方法を図面に基づいて
説明する。図2において1は耐熱性基体、2は火炎、3
は多重管バーナー、4はバブリング装置、5はキャリア
ーガス導入口、6はシールガス導入口、7は支燃ガス導
入口、8は燃焼ガス導入口を夫々表わす。バブリング装
置4で気化しキャリアガスと混合された原料は多重管バ
ーナー3の中心ポートに導入される。一方、シールガ
ス、燃焼ガス、支燃性ガスはそれぞれのガス導入口6、
7、8から多重管バーナー3に供給され燃焼される。前
記燃焼ガスと支燃性ガスとの火炎2中に導入された原料
ガスは酸化されてシリカ微粒子となり、それが回転する
耐熱性基体1上に堆積される、と同時に溶融ガラス化さ
れて棒状の石英ガラスに製造される。前記多重管バーナ
ー2は耐熱性基体1に対して下部斜め方向に火炎が生じ
るように配しても、また耐熱性基体1の先端下方に配し
てもよいが、耐熱性基体1と多重管バーナー3との間隔
を一定に保つため石英ガラスの成長速度と同期して耐熱
性基体1の回転軸方向が移動できる構造とするのがよ
い。前記キャリアガスの流量はニードルバルブと通常の
浮遊式流量計で調節するが、より好ましくはマスフロー
コントラーラーを用いた正確な制御がよい。
Next, the manufacturing method of the present invention will be described with reference to the drawings. In FIG. 2, 1 is a heat-resistant substrate, 2 is a flame, 3
Denotes a multi-tube burner, 4 denotes a bubbling device, 5 denotes a carrier gas inlet, 6 denotes a seal gas inlet, 7 denotes a supporting gas inlet, and 8 denotes a combustion gas inlet. The raw material vaporized by the bubbling device 4 and mixed with the carrier gas is introduced into the center port of the multi-tube burner 3. On the other hand, the sealing gas, the combustion gas, and the supporting gas are respectively supplied to the gas inlets 6,
It is supplied from 7 and 8 to the multi-tube burner 3 and burned. The raw material gas introduced into the flame 2 of the combustion gas and the supporting gas is oxidized into fine silica particles, which are deposited on the rotating heat-resistant substrate 1 and simultaneously melted and vitrified to form a rod. Manufactured on quartz glass. The multi-tube burner 2 may be disposed so as to generate a flame in a lower oblique direction with respect to the heat-resistant substrate 1 or may be disposed below the tip of the heat-resistant substrate 1. In order to keep the distance from the burner 3 constant, it is preferable to adopt a structure in which the rotation axis direction of the heat-resistant base 1 can be moved in synchronization with the growth rate of quartz glass. The flow rate of the carrier gas is adjusted by a needle valve and an ordinary floating flow meter, and more preferably, accurate control using a mass flow controller is preferable.

【0016】[0016]

【発明の実施の形態】次に本発明の実施例について述べ
るがこれによって本発明はなんら限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described, but the present invention is not limited thereto.

【0017】なお、以下の実施例及び比較例の物性値は
以下の測定方法で求めた値である。 i)屈折率分布:フィゾー型干渉計による測定法(波長
632.8nmにて測定)。 ii)複屈折量:直交ニコル法における標準歪検板との
目視観察による比較法。 iii)脈理:目視。 iv)193nm内部透過率:193nmにおける石英
ガラスの理論透過率90.86%からレイリー散乱にお
けるロスとして知れる0.18%を減じた90.68%
を用いて、厚さ10mmにおける見掛け透過率T%に対
し、(T/90.68)×100より求めた測定法。 v)金属不純物濃度:フレームレス原子吸光分析法によ
る測定法 vi)水素分子濃度:V.S.Khotimchenk
o et al.,J. Appl. Spectro
sc.,46. 632〜635(1987)に記載の
測定法。 vii)塩素濃度:比濁法による測定法。
The physical properties of the following Examples and Comparative Examples are values obtained by the following measuring methods. i) Refractive index distribution: Measurement method using a Fizeau interferometer (measured at a wavelength of 632.8 nm). ii) Birefringence: a comparison method by visual observation with a standard strain test plate in the orthogonal Nicols method. iii) Striae: visual. iv) 193 nm internal transmittance: 90.68% obtained by subtracting 0.18% known as a loss in Rayleigh scattering from 90.86% of the theoretical transmittance of quartz glass at 193 nm.
Is a measurement method obtained from (T / 90.68) × 100 with respect to an apparent transmittance T% at a thickness of 10 mm. v) Metal impurity concentration: Measurement method by flameless atomic absorption spectrometry vi) Hydrogen molecule concentration: S. Khotimchenk
o et al. , J. et al. Appl. Spectro
sc. , 46. 632-635 (1987). vii) Chlorine concentration: Measurement method by turbidimetry.

【0018】[0018]

【実施例】実施例1 高純度メチルトリメトキシシランを図2に示すガラス製
造装置のバブリング装置に導入し、Arキャリアーガス
にてバブリングし、Arと原料の混合ガスを酸素、水素
ガスにより燃焼しているバーナーに導入した。バーナー
火炎中でメチルトリメトキシシランを加水分解反応して
シリカ微粒子を生成した。前記製造装置において、1は
耐熱性基体、2は火炎、3は多重管バーナー、4は原料
バブリング装置、5はキャリアーガス導入口、6はシー
ルガス導入口、7は支燃ガス導入口、8は燃焼ガス導入
口である。前記シリカ微粒子を酸素・水素火炎で高温に
維持されている回転する石英ガラスターゲット材に堆
積、溶融し、透明ガラスに成長させ、直径約150m
m、長さ約450mmの合成石英ガラスインゴットを得
た。前記製造におけるバブリング装置の原料の温度は9
5℃、キャリアーガスの流量は3.5slm(stan
dard litter minute)で、流量はマ
スフローコントローラーによって抑制した。また、石英
ガラスターゲットの回転数は20rpmであり、50時
間の成長を行った。
Example 1 High-purity methyltrimethoxysilane was introduced into a bubbling apparatus of a glass manufacturing apparatus shown in FIG. 2 and bubbled with an Ar carrier gas, and a mixed gas of Ar and raw materials was burned with oxygen and hydrogen gases. Has been introduced to the burner. Hydrolysis reaction of methyltrimethoxysilane in a burner flame produced silica fine particles. In the manufacturing apparatus, 1 is a heat-resistant substrate, 2 is a flame, 3 is a multi-tube burner, 4 is a raw material bubbling device, 5 is a carrier gas inlet, 6 is a seal gas inlet, 7 is a combustion gas inlet, 8 Is a combustion gas inlet. The silica fine particles are deposited on a rotating quartz glass target material maintained at a high temperature by an oxygen / hydrogen flame, melted, grown into a transparent glass, and have a diameter of about 150 m.
m and a synthetic quartz glass ingot having a length of about 450 mm were obtained. The temperature of the raw material of the bubbling device in the above production is 9
5 ° C., the flow rate of the carrier gas was 3.5 slm (stan
The flow rate was controlled by a mass flow controller. The rotation speed of the quartz glass target was 20 rpm, and growth was performed for 50 hours.

【0019】得られた合成石英ガラスインゴットをひず
み取りのため、大気中で1150℃に10時間保持した
のち、徐冷する熱処理を行った。この合成石英ガラスイ
ンゴットの中心部から試験片を複数個切り出し、金属不
純物分析を行った。その結果、Naは6ppbであっ
た。その他の金属不純物であるLi、K、Fe、Cu、
Al、Tiなどの濃度は、それぞれ5ppb以下であっ
た。また、不純物分析を行った部分の近傍より、直径6
0mm、厚さ10mmの試験片を切り出し、両面(対
面)を光学研磨を施し、可視紫外分光光度計にて波長1
93.4nmのエキシマレーザー光の内部透過率を測定
したところ、99.97%と良好な透過率を示した。さ
らに、前記試験片の水素分子濃度をラマン散乱法で測定
したところ、4.2×1018分子/cm3であった。ま
た、上記インゴットを長さ50mmに切断し、中心部か
ら直径120mmの領域の632.8nmにおける屈折
率の最大値と最小値の差(Δn)を測定したところ、
5.0×10-6であり、複屈折量は2nm/cm以下
と、均質性が高く、かつ、高透過性を示した。
The obtained synthetic quartz glass ingot was kept at 1150 ° C. for 10 hours in the air to remove strain, and then subjected to a heat treatment of gradually cooling. A plurality of test pieces were cut out from the center of the synthetic quartz glass ingot, and metal impurities were analyzed. As a result, Na was 6 ppb. Other metal impurities such as Li, K, Fe, Cu,
The concentrations of Al, Ti, etc. were each 5 ppb or less. In addition, from the vicinity of the portion where the impurity analysis was performed,
A test piece having a thickness of 0 mm and a thickness of 10 mm was cut out, optically polished on both sides (facing side), and a wavelength of 1
When the internal transmittance of the excimer laser beam of 93.4 nm was measured, a good transmittance of 99.97% was shown. Further, when the hydrogen molecule concentration of the test piece was measured by a Raman scattering method, it was 4.2 × 10 18 molecules / cm 3 . Further, the ingot was cut into a length of 50 mm, and the difference (Δn) between the maximum value and the minimum value of the refractive index at 632.8 nm in a region having a diameter of 120 mm from the center was measured.
It was 5.0 × 10 −6 , and the birefringence was 2 nm / cm or less, indicating high homogeneity and high transmittance.

【0020】実施例2 出発原料としてヘキサメチルジシロキサンを用い、バブ
リング装置の原料の温度を95℃、キャリアーガスの流
量を2.0slmとした以外、実施例1と同様の製造方
法で直径約150mm、長さ約450mmの合成石英ガ
ラスインゴットを得た。得られた合成石英ガラスインゴ
ットをひずみ取りのため、大気中で1150℃に30時
間保持したのち、徐冷する熱処理を行った。この合成石
英ガラスインゴットについて実施例1と同様に金属不純
物分析及び波長193.4nmのエキシマレーザー光の
透過率測定を行った。Na濃度は15ppb、Li、
K、Fe、Cu、Al、Tiなどの濃度はそれぞれ5p
pb以下であった。また、波長193.4nmにおける
内部透過率は99.90%と良好な透過性を示した。さ
らに、測定した水素分子濃度は2.4×1018分子/c
3であった。前記インゴットを長さ50mmに切断
し、中心部から直径120mmの領域の632.8nm
における屈折率の最大値と最小値の差(Δn)を測定し
たところ、4.0×10-6であり、複屈折量は2nm/
cm以下と、均質性が高く、かつ、高透過性を示した。
Example 2 The same manufacturing method as in Example 1 except that hexamethyldisiloxane was used as a starting material, the temperature of the raw material of the bubbling apparatus was 95 ° C., and the flow rate of the carrier gas was 2.0 slm, was used. A synthetic quartz glass ingot having a length of about 450 mm was obtained. The obtained synthetic quartz glass ingot was kept at 1150 ° C. for 30 hours in the air to remove strain, and then heat-treated by slow cooling. For this synthetic quartz glass ingot, metal impurity analysis and transmittance measurement of an excimer laser beam having a wavelength of 193.4 nm were performed in the same manner as in Example 1. Na concentration is 15 ppb, Li,
The concentration of K, Fe, Cu, Al, Ti, etc. is 5 p
pb or less. In addition, the internal transmittance at a wavelength of 193.4 nm was 99.90%, indicating good transmittance. Further, the measured hydrogen molecule concentration is 2.4 × 10 18 molecules / c.
m 3 . The ingot was cut to a length of 50 mm, and 632.8 nm in a region having a diameter of 120 mm from the center.
When the difference (Δn) between the maximum value and the minimum value of the refractive index was measured, it was 4.0 × 10 −6 and the birefringence was 2 nm /
cm or less, showing high homogeneity and high permeability.

【0021】比較例1 出発原料として高純度の四塩化珪素を用い、かつキャリ
アガスとして酸素を用い実施例1と同様の装置で直径約
150mm、長さ約450mmの合成石英ガラスインゴ
ットを得た。バブリング装置の原料温度は40℃、キャ
リアーガスの流量は4.5slmで、流量をマスフロー
コントローラーで抑制し、石英ガラスターゲットの回転
数を20rpmとして50時間の成長であった。
Comparative Example 1 A synthetic quartz glass ingot having a diameter of about 150 mm and a length of about 450 mm was obtained using the same apparatus as in Example 1 using high-purity silicon tetrachloride as a starting material and oxygen as a carrier gas. The raw material temperature of the bubbling device was 40 ° C., the flow rate of the carrier gas was 4.5 slm, the flow rate was suppressed by a mass flow controller, and the growth was performed for 50 hours at a rotation speed of the quartz glass target of 20 rpm.

【0022】得られた合成石英ガラスインゴットを歪み
取りのため、大気中1150℃に20時間保持したの
ち、徐冷する熱処理を行った。この合成石英ガラスにつ
いて実施例1と同様に、金属不純物分析及び193.4
nmエキシマレーザー光の透過率測定を行った。その結
果、Na濃度は15ppbであり、波長193.4nm
における内部透過率は99.53%であり、エキシマレ
ーザー露光装置用の光学部品に使用するためには幾分透
過率が悪く、不適当であった。また、Li、K、Fe、
Cu、Al、Tiなどの不純物濃度はそれぞれ5ppb
以下、塩素濃度は100ppmであった。さらに、測定
した水素分子濃度は2.2×1018分子/cm3であっ
た。前記インゴットを長さ50mmに切断し、中心部か
ら直径120mmの領域の632.8nmにおける屈折
率の最大値と最小値の差(Δn)を測定したところ、
4.6×10-6であり、複屈折量は2nm/cm以下で
あった。
The obtained synthetic quartz glass ingot was kept at 1150 ° C. in the atmosphere for 20 hours to remove strain, and then heat-treated by gradually cooling. In the same manner as in Example 1, the synthetic quartz glass was subjected to metal impurity analysis and 193.4.
The transmittance of nm excimer laser light was measured. As a result, the Na concentration was 15 ppb, and the wavelength was 193.4 nm.
Was 99.53%, and the transmittance was somewhat poor and unsuitable for use in optical components for excimer laser exposure apparatuses. Li, K, Fe,
The impurity concentration of Cu, Al, Ti, etc. is 5 ppb
Hereinafter, the chlorine concentration was 100 ppm. Further, the measured hydrogen molecule concentration was 2.2 × 10 18 molecules / cm 3 . The ingot was cut into a length of 50 mm, and the difference (Δn) between the maximum value and the minimum value of the refractive index at 632.8 nm in a region having a diameter of 120 mm from the center was measured.
It was 4.6 × 10 -6 and the birefringence was 2 nm / cm or less.

【0023】比較例2 実施例1と同様に 高純度メチルトリメトキシシランを
用いて直径約150mm、長さ約450mmの合成石英
ガラスインゴットを合成した。得られた合成石英ガラス
インゴットをひずみ取りのため、大気中で1250℃に
100時間保持したのち、徐冷する熱処理を行った。こ
の合成石英ガラスインゴットについて実施例1と同様に
金属不純物分析及び波長193.4nmのエキシマレー
ザー光の透過率測定を行った。その結果、Na濃度は5
0ppbであり、波長193.4nmにおける内部透過
率は99.63%でエキシマレーザー露光装置用の光学
部品としては不適当であったが、塩素を含む原料で合成
した比較例1のNaを10ppb含有する石英ガラス部
材とほぼ同程度の透過性であった。また、Li、K、F
e、Cu、Al、Tiなどの不純物濃度はそれぞれ5p
pb以下であり、さらに、測定した水素分子濃度は8.
5×1017分子/cm3であった。
Comparative Example 2 In the same manner as in Example 1, a synthetic quartz glass ingot having a diameter of about 150 mm and a length of about 450 mm was synthesized using high-purity methyltrimethoxysilane. The obtained synthetic quartz glass ingot was kept at 1250 ° C. for 100 hours in the air to remove strain, and then heat-treated by slow cooling. For this synthetic quartz glass ingot, metal impurity analysis and transmittance measurement of an excimer laser beam having a wavelength of 193.4 nm were performed in the same manner as in Example 1. As a result, the Na concentration was 5
Although the internal transmittance at a wavelength of 193.4 nm was 99.63%, which was unsuitable as an optical component for an excimer laser exposure apparatus, it contained 10 ppb of Na of Comparative Example 1 synthesized with a raw material containing chlorine. About the same as the quartz glass member to be used. Li, K, F
e, Cu, Al, Ti, etc. impurity concentration is 5p
pb or less, and the measured hydrogen molecule concentration is 8.
It was 5 × 10 17 molecules / cm 3 .

【0024】実施例3 実施例1と同様に、高純度メチルトリメトキシシランを
用いて直径約150mm、長さ約450mmの合成石英
ガラスインゴットを合成した。得られた合成石英ガラス
インゴットの一部より、脈理除去及び成型のために、約
1800℃で短時間高温処理を行い、直径300mm、
厚さ100mmの円柱状石英ガラス成型体を形成した。
この円柱状石英ガラス成型体を、歪み取り及び屈折率均
一化のために、大気中1150℃で40時間加熱し、9
00℃まで5℃/hrの冷却速度で徐冷し、後室温まで
冷却した。得られた合成石英ガラス体について実施例1
と同様に、金属不純物分析及び波長193.4nmのエ
キシマレーザー光の透過率測定を行った。その結果、N
a濃度は25ppb、Li、K、Fe、Cu、Al、T
iなどの濃度はそれぞれ5ppb以下であった。また、
波長193.4nmのエキシマレーザー光に対する内部
透過率は99.81%と良好な値を示した。さらに、測
定した水素分子濃度は5.0×1017分子/cm3であ
った。前記石英ガラス体の中心部から直径250mmの
領域の632.8nmにおける屈折率の最大値と最小値
の差(Δn)を測定したところ、2.0×10-6であ
り、複屈折量は2nm/cm以下と、均質性が高く、か
つ、高透過性を示した。
Example 3 In the same manner as in Example 1, a synthetic quartz glass ingot having a diameter of about 150 mm and a length of about 450 mm was synthesized using high-purity methyltrimethoxysilane. From a part of the obtained synthetic quartz glass ingot, a high-temperature treatment was performed at about 1800 ° C. for a short time to remove striae and mold, and the diameter was 300 mm.
A cylindrical quartz glass molded body having a thickness of 100 mm was formed.
This cylindrical quartz glass molded body was heated at 1150 ° C. in the air for 40 hours to remove distortion and uniformize the refractive index.
The mixture was gradually cooled to 00 ° C at a cooling rate of 5 ° C / hr, and then cooled to room temperature. Example 1 of the obtained synthetic quartz glass body
In the same manner as in the above, metal impurity analysis and transmittance measurement of excimer laser light having a wavelength of 193.4 nm were performed. As a result, N
a concentration is 25 ppb, Li, K, Fe, Cu, Al, T
The concentrations of i and the like were each 5 ppb or less. Also,
The internal transmittance with respect to an excimer laser beam having a wavelength of 193.4 nm showed a good value of 99.81%. Further, the measured hydrogen molecule concentration was 5.0 × 10 17 molecules / cm 3 . The difference (Δn) between the maximum value and the minimum value of the refractive index at 632.8 nm in a region having a diameter of 250 mm from the center of the quartz glass body was 2.0 × 10 −6 and the birefringence was 2 nm. / Cm or less, showing high homogeneity and high permeability.

【0025】比較例3 比較例1と同様に高純度四塩化珪素を用いて直径約15
0mm、長さ約450mmの合成石英ガラスインゴット
を合成した。該合成石英ガラスの一部を切り出し、実施
例3と同様な脈理除去及び成型工程を施し、直径300
mm、厚さ100mmの円柱状石英ガラス成型体を形成
した。この円柱状石英ガラス成型体について実施例3と
同様の条件で歪み取り及び屈折率均一化のための熱処理
をを行った。得られた合成石英ガラス体について実施例
1と同様に、金属不純物分析及び波長193.4nmの
エキシマレーザー光の透過率測定を行った。その結果、
Na濃度は30ppb、Li、K、Fe、Cu、Al、
Tiなどの濃度はそれぞれ5ppb以下、塩素濃度は1
00ppmであった。また、波長193.4nmエキシ
マレーザー光に対する内部透過率は98.95%であ
り、エキシマレーザー用光学材料として用いるには透過
率が低く、不適当なものであった。さらに、測定した水
素分子濃度は6.0×1017分子/cm3であり、石英
ガラス体の中心部から直径250mmの領域の632.
8nmにおける屈折率の最大値と最小値の差(Δn)を
測定したところ、2.0×10-6であり、複屈折量は2
nm/cm以下であった。
COMPARATIVE EXAMPLE 3 As in Comparative Example 1, a high-purity silicon tetrachloride was used and a diameter of about 15
A synthetic quartz glass ingot having a length of 0 mm and a length of about 450 mm was synthesized. A portion of the synthetic quartz glass was cut out and subjected to the same stria removing and molding steps as in Example 3 to give a diameter of 300 mm.
A cylindrical quartz glass molded body having a thickness of 100 mm and a thickness of 100 mm was formed. The cylindrical quartz glass molded body was subjected to a heat treatment for removing distortion and making the refractive index uniform under the same conditions as in Example 3. The obtained synthetic quartz glass body was subjected to metal impurity analysis and transmittance measurement of an excimer laser beam having a wavelength of 193.4 nm in the same manner as in Example 1. as a result,
Na concentration is 30 ppb, Li, K, Fe, Cu, Al,
The concentration of Ti etc. is 5 ppb or less and the chlorine concentration is 1
It was 00 ppm. Further, the internal transmittance for the excimer laser light having a wavelength of 193.4 nm was 98.95%, and the transmittance was low and unsuitable for use as an optical material for excimer laser. Further, the measured hydrogen molecule concentration was 6.0 × 10 17 molecules / cm 3 , and the 632.cm in a region having a diameter of 250 mm from the center of the quartz glass body was measured.
When the difference (Δn) between the maximum value and the minimum value of the refractive index at 8 nm was measured, it was 2.0 × 10 −6 and the birefringence was 2
nm / cm or less.

【0026】実施例4 実施例3と同様に、高純度メチルトリメトキシシランを
用いて直径約150mm、長さ約450mmの合成石英
ガラスインゴットを合成し、該合成インゴットの一部よ
り、脈理除去及び成型のために、約1800℃で短時間
高温処理を行い、直径300mm、厚さ100mmの円
柱状石英ガラス成型体を形成した。この円柱状石英ガラ
ス成型体を、歪み取り及び屈折率均一化のために、大気
中1150℃で40時間加熱し、900℃まで5℃/h
rの冷却速度で徐冷し、後室温まで冷却した。得られた
合成石英ガラス体に窒素雰囲気中で、照度強度20mW
/cm2の低圧水銀ランプによる紫外線を24時間照射
し、実施例1と同様に、金属不純物分析及び波長19
3.4nmのエキシマレーザー光の透過率測定を行っ
た。その結果、Na濃度は25ppb、Li、K、F
e、Cu、Al、Tiなどの濃度はそれぞれ5ppb以
下であった。また、波長193.4nmのエキシマレー
ザー光に対する内部透過率は99.92%と非常に良好
な透過率を示した。さらに、測定した水素分子濃度は
5.0×1017分子/cm3であった。前記石英ガラス
体の中心部から直径250mmの領域の632.8nm
における屈折率の最大値と最小値の差(Δn)を測定し
たところ、2.0×10-6であり、複屈折量は2nm/
cm以下と、均質性が高く、かつ、非常に高い透過性を
示した。
Example 4 In the same manner as in Example 3, a synthetic quartz glass ingot having a diameter of about 150 mm and a length of about 450 mm was synthesized using high-purity methyltrimethoxysilane, and striae was removed from a part of the synthetic ingot. A high-temperature treatment was performed at about 1800 ° C. for a short time to form a cylindrical quartz glass molded body having a diameter of 300 mm and a thickness of 100 mm. This cylindrical quartz glass molded body is heated at 1150 ° C. for 40 hours in the air for 5 hours at 900 ° C. in order to remove strain and equalize the refractive index.
The resultant was gradually cooled at a cooling rate of r, and then cooled to room temperature. An illuminance intensity of 20 mW is applied to the obtained synthetic quartz glass body in a nitrogen atmosphere.
UV light from a low-pressure mercury lamp of 24 cm / cm 2 for 24 hours.
The transmittance of a 3.4 nm excimer laser beam was measured. As a result, the Na concentration was 25 ppb, Li, K, F
The concentrations of e, Cu, Al, Ti and the like were each 5 ppb or less. Further, the internal transmittance with respect to an excimer laser beam having a wavelength of 193.4 nm was 99.92%, which was a very good transmittance. Further, the measured hydrogen molecule concentration was 5.0 × 10 17 molecules / cm 3 . 632.8 nm in a region having a diameter of 250 mm from the center of the quartz glass body
When the difference (Δn) between the maximum value and the minimum value of the refractive index was measured, it was 2.0 × 10 −6 and the birefringence was 2 nm /
cm or less, showing high homogeneity and very high permeability.

【0027】実施例5 実施例4において、紫外線の照射を照度強度1mW/c
2のXe2エキシマランプを24時間照射した以外、実
施例4と同様にして直径300mm、厚さ100mmの
石英ガラス体を得た。得られた合成石英ガラス体につい
て実施例1と同様に、金属不純物分析及び波長193.
4nmのエキシマレーザー光の透過率測定を行った。そ
の結果、Na濃度は25ppb、Li、K、Fe、C
u、Al、Tiなどの濃度はそれぞれ5ppb以下であ
った。また、波長193.4nmのエキシマレーザー光
に対する内部透過率は99.94%と非常に良好な透過
率を示した。さらに、測定した水素分子濃度は5.2×
1017分子/cm3であった。前記石英ガラス体の中心
部から直径250mmの領域の632.8nmにおける
屈折率の最大値と最小値の差(Δn)を測定したとこ
ろ、1.5×10-6であり、複屈折量は2nm/cm以
下、均質性が高く、かつ、非常に高い透過性を示した。
Example 5 In Example 4, irradiation with ultraviolet light was performed at an illuminance intensity of 1 mW / c.
A quartz glass body having a diameter of 300 mm and a thickness of 100 mm was obtained in the same manner as in Example 4, except that the m 2 Xe 2 excimer lamp was irradiated for 24 hours. In the same manner as in Example 1, the obtained synthetic quartz glass body was subjected to metal impurity analysis and wavelength 193.
The transmittance of a 4 nm excimer laser beam was measured. As a result, the Na concentration was 25 ppb, Li, K, Fe, C
The concentrations of u, Al, Ti and the like were each 5 ppb or less. Further, the internal transmittance with respect to the excimer laser light having a wavelength of 193.4 nm was 99.94%, which was a very good transmittance. Further, the measured hydrogen molecule concentration is 5.2 ×
It was 10 17 molecules / cm 3 . The difference (Δn) between the maximum value and the minimum value of the refractive index at 632.8 nm in a region having a diameter of 250 mm from the center of the quartz glass body was 1.5 × 10 −6 and the birefringence was 2 nm. / Cm or less, high homogeneity and very high permeability.

【0028】[0028]

【発明の効果】本発明のエキシマレーザー用光学石英ガ
ラス部材は、均質性に優れる上に、ArFエキシマレー
ザー光に対して高い透過率を有し、かつレーザー耐性に
も優れている。このエキシマレーザー用光学石英ガラス
部材を用いることによっで、高いスループット、長時間
の高安定性、良好な結像特性を維持した信頼性の高いエ
キシマレーザーリソグラフィー露光装置を構成すること
ができ、ひいては安価で、かつ、安定な半導体チップの
製造ができる。
The optical quartz glass member for an excimer laser according to the present invention is excellent in homogeneity, has a high transmittance to ArF excimer laser light, and also has excellent laser resistance. By using this optical quartz glass member for excimer laser, it is possible to construct a highly reliable excimer laser lithography exposure apparatus that maintains high throughput, long-term high stability, and good imaging characteristics. An inexpensive and stable semiconductor chip can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の石英ガラス部材と塩素を含む石英ガラ
ス部材のNa濃度と波長193.4nmにおける内部透
過率の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Na concentration of a quartz glass member of the present invention and a quartz glass member containing chlorine and the internal transmittance at a wavelength of 193.4 nm.

【図2】合成石英ガラスの製造装置の概略図である。FIG. 2 is a schematic view of an apparatus for manufacturing synthetic quartz glass.

【符号の説明】[Explanation of symbols]

1:耐熱性基体 2:火炎 3:多重管バーナー 4:原料バブリング装置 5:キャリアーガス導入口 6:シールガス導入口 7:支燃ガス導入口 8:燃焼ガス導入口 1: Heat resistant substrate 2: Flame 3: Multiple tube burner 4: Raw material bubbling device 5: Carrier gas inlet 6: Seal gas inlet 7: Supporting gas inlet 8: Combustion gas inlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/027 G03F 1/14 B // G03F 1/14 H01L 21/30 515D (72)発明者 藤ノ木 朗 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社石英技術研究所内 (72)発明者 大嶋 隆之 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社石英技術研究所内 (72)発明者 大塚 久利 新潟県中頸城郡頸城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内 Fターム(参考) 2H095 BA07 BC27 2H097 AA03 CA13 EA01 GB00 LA10 4G014 AH15 4G062 AA04 BB02 CC06 MM02 5F046 AA25 BA03 BA07 CA04 CA08 CB10 CB12 CB17 CB19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/027 G03F 1/14 B // G03F 1/14 H01L 21/30 515D (72) Inventor Akira Fujinoki 88, Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima, Japan (72) Inventor of quartz technology research institute, Shin-Etsu Quartz Co., Ltd. Hisatoshi Otsuka 28, Nishifukushima, Nishifukushima, Niigata Pref. BA07 CA04 CA08 CB10 CB12 CB17 CB19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式(1) 【化1】 (R1nSi(OR24-n (1) (式中、R1、R2は同一または異種の脂肪族一価炭化水
素基、nは0〜3の整数を示す。) または、一般式(2) 【化2】 Sixyz (2) (式中、Rは水素原子または脂肪族一価炭化水素基、x
は2以上の正の数、yは2x+2、zは2xをそれぞれ
超えない正の数を示す。)で表わされる珪素化合物を火
炎中で加水分解して生成したシリカ微粒子を堆積・溶融
ガラス化して得た実質的に塩素を含まないとともに、N
a含有量が30ppb以下の合成石英ガラスからなるこ
とを特徴とするエキシマレーザー用光学石英ガラス部
材。
(1) (R 1 ) n Si (OR 2 ) 4-n (1) (wherein R 1 and R 2 are the same or different aliphatic monovalent hydrocarbons) group, n is an integer of 0-3.) or the general formula (2) ## STR2 ## Si x R y O z (2 ) ( wherein, R represents a hydrogen atom or an aliphatic monovalent hydrocarbon group, x
Is a positive number of 2 or more, y is 2x + 2, and z is a positive number not exceeding 2x. )) Is substantially free of chlorine obtained by depositing and melting vitrification of silica fine particles produced by hydrolyzing a silicon compound represented by
An optical quartz glass member for excimer laser, comprising a synthetic quartz glass having a content of 30 ppb or less.
【請求項2】水素分子濃度が2×1017分子/cm3
上、波長193.4nmに対する内部透過率が99.8
%以上で、かつ屈折率分布Δnが1×10-5以下、複屈
折量が2nm/cm以下であることを特徴とする請求項
1記載のエキシマレーザー用光学石英ガラス部材。
2. The internal transmittance at a hydrogen molecule concentration of 2 × 10 17 molecules / cm 3 or more and a wavelength of 193.4 nm is 99.8.
2. The optical quartz glass member for an excimer laser according to claim 1, wherein the refractive index distribution Δn is 1 × 10 −5 or less and the birefringence is 2 nm / cm or less.
【請求項3】シラン化合物がメチルトリメトキシシラ
ン、テトラメトキシシランまたはヘキサメチルジシロキ
サンであることを特徴とする請求項1又は2に記載のエ
キシマレーザー用光学石英ガラス部材。
3. The optical quartz glass member for an excimer laser according to claim 1, wherein the silane compound is methyltrimethoxysilane, tetramethoxysilane or hexamethyldisiloxane.
【請求項4】さらに低圧水銀ランプまたは波長260n
m以下に輝線を有するエキシマランプによる紫外線が照
射され、紫外線領域の透過率が改善されたことを特徴と
する請求項1ないし3のいずれか1に記載のエキシマレ
ーザー用光学石英ガラス部材。
4. A low-pressure mercury lamp or a wavelength of 260 n.
The optical quartz glass member for an excimer laser according to any one of claims 1 to 3, wherein ultraviolet rays are irradiated by an excimer lamp having an emission line of m or less to improve transmittance in an ultraviolet region.
JP10270899A 1999-04-09 1999-04-09 Optical quartz glass member for excimer laser Pending JP2000290026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270899A JP2000290026A (en) 1999-04-09 1999-04-09 Optical quartz glass member for excimer laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270899A JP2000290026A (en) 1999-04-09 1999-04-09 Optical quartz glass member for excimer laser

Publications (1)

Publication Number Publication Date
JP2000290026A true JP2000290026A (en) 2000-10-17

Family

ID=14334779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270899A Pending JP2000290026A (en) 1999-04-09 1999-04-09 Optical quartz glass member for excimer laser

Country Status (1)

Country Link
JP (1) JP2000290026A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269287A (en) * 2003-03-06 2004-09-30 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass member for optics and method of manufacturing the same
JP2019502633A (en) * 2015-12-18 2019-01-31 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Glass fiber and base material made of homogeneous quartz glass
JP2019506352A (en) * 2015-12-18 2019-03-07 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of carbon-doped silicon dioxide granules as an intermediate in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269287A (en) * 2003-03-06 2004-09-30 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass member for optics and method of manufacturing the same
JP2019502633A (en) * 2015-12-18 2019-01-31 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Glass fiber and base material made of homogeneous quartz glass
JP2019506352A (en) * 2015-12-18 2019-03-07 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of carbon-doped silicon dioxide granules as an intermediate in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
JP7044454B2 (en) 2015-12-18 2022-03-30 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of carbon-doped silicon dioxide granules as an intermediate in the preparation of quartz glass
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Similar Documents

Publication Publication Date Title
KR100382776B1 (en) Quartz glass, optical member containing the same, and manufacturing method thereof
US5958809A (en) Fluorine-containing silica glass
KR19980087016A (en) Method of manufacturing synthetic quartz glass optical member and optical member
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2000290026A (en) Optical quartz glass member for excimer laser
JP2001019465A (en) Synthetic quartz glass member for excimer laser and its production
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
US6630418B2 (en) Fused silica containing aluminum
EP1458651B1 (en) Fused silica having improved index homogeneity
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JP3944759B2 (en) Synthetic quartz glass for optics, manufacturing method thereof, and optical member for excimer laser
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
JPH0558668A (en) Synthetic quartz glass optical member for uv ray laser
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP3965552B2 (en) Method for producing synthetic quartz glass
JP2000143259A (en) Synthetic quartz glass optical member and its production
JP2001199734A (en) Method for producing quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071102