JPH09122439A - Exhaust gas treatment system - Google Patents

Exhaust gas treatment system

Info

Publication number
JPH09122439A
JPH09122439A JP7283677A JP28367795A JPH09122439A JP H09122439 A JPH09122439 A JP H09122439A JP 7283677 A JP7283677 A JP 7283677A JP 28367795 A JP28367795 A JP 28367795A JP H09122439 A JPH09122439 A JP H09122439A
Authority
JP
Japan
Prior art keywords
exhaust gas
concentration
heat transfer
heat
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7283677A
Other languages
Japanese (ja)
Other versions
JP3661068B2 (en
Inventor
Toshio Katsube
利夫 勝部
Takayuki Saito
隆行 斎藤
Kensho Taniguchi
憲昭 谷口
Shigeru Nozawa
滋 野沢
Ryoichi Miyataka
良一 宮高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP28367795A priority Critical patent/JP3661068B2/en
Publication of JPH09122439A publication Critical patent/JPH09122439A/en
Application granted granted Critical
Publication of JP3661068B2 publication Critical patent/JP3661068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the corrosion or clogging of a heat transfer tube of an exhaust gas heat recovering instrument without increasing the dust exhaust amount from a stack. SOLUTION: A system comprises a dust collector 3 for removing dust in boiler exhaust gas, an exhaust gas heat recovering instrument 4 with a heat transfer tube 8 for recovering a part of exhaust gas heat exhausted from the dust collector, a wet exhaust gas desulfurization equipment 5 for desulfurizing exhaust gas exhausted from the exhaust heat recovering instrument, an exhaust gas reheater 6 with a heat transfer tube 9 for heating exhaust gas exhausted from the exhaust gas desulfurization equipment and heating medium circulating pipes 10 and 11 for circulating the heating medium between the heat transfer tube 8 and the heat transfer tube 9. In that case, a heating medium heater 12 for keeping at least either one of the tube wall temperature of the heat transfer tube 8 of the exhaust gas heat recovering instrument 4 or the internal heating medium temperature at 80 deg.C or over is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス処理システ
ムに係り、特に石炭焚ボイラの排ガスを脱硫処理する湿
式排煙脱硫装置を備え、その湿式排煙脱硫装置から排出
される排ガスを再加熱する排ガス再加熱器と、その加熱
熱源を湿式排煙脱硫装置の上流側の排ガスから熱回収す
る排ガス熱回収器とからなる排ガス再加熱システムを備
えた排ガス処理システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment system, and more particularly to a wet flue gas desulfurization device for desulfurizing exhaust gas of a coal-fired boiler, and reheating the exhaust gas discharged from the wet flue gas desulfurization device. The present invention relates to an exhaust gas reheating system including an exhaust gas reheater and an exhaust gas reheat system that includes a heating heat source for recovering heat from exhaust gas upstream of a wet flue gas desulfurization apparatus.

【0002】[0002]

【従来の技術】石炭焚ボイラの排ガス処理システムは、
例えば、図4に示す系統から成るシステムが知られてい
る。すなわち、石炭焚のボイラ1から排出される排ガス
は空気予熱器2に導かれ、ここにおいて図示していない
が燃焼用空気を熱交換によって加熱する。この空気予熱
器2から排出される排ガスの性状は、排ガス温度約14
0℃、ばいじん濃度20g/m3N,SO2濃度は炭種に
よって異なるが、通常1,000ppm程度である。ま
た、ボイラ1で発生するSO2の一部は、ボイラ内で酸
化されてSO3となる。
2. Description of the Related Art An exhaust gas treatment system for a coal-fired boiler is
For example, a system including the system shown in FIG. 4 is known. That is, the exhaust gas discharged from the coal-fired boiler 1 is guided to the air preheater 2 and heats the combustion air by heat exchange although not shown here. The property of the exhaust gas discharged from the air preheater 2 is that the exhaust gas temperature is about 14
At 0 ° C., the dust concentration 20 g / m 3 N, SO 2 concentration varies depending on the coal type, but is usually about 1,000 ppm. Further, a part of SO 2 generated in the boiler 1 is oxidized in the boiler to become SO 3 .

【0003】空気予熱器2から排出される排ガスは、電
気集じん器(以下、EPと称する。)3に導かれてばい
じんが除去される。通常、EP3の出口のばいじん濃度
は100mg/m3Nで運転される。EP3から排出さ
れる排ガスは、排ガス再加熱システムを構成する排ガス
熱回収器4において、チューブ式の熱回収伝熱管8内を
通流する熱媒(通常は水が用いられる。)と熱交換する
ことにより、約90℃まで冷却される。排ガス熱回収器
4から排出される排ガスは、湿式排煙脱硫装置5に導か
れ、ここにおいてSO2及びばいじんが除去された後、
排ガス再加熱システムを構成する排ガス再加熱器6に導
かれる。
The exhaust gas discharged from the air preheater 2 is guided to an electric dust collector (hereinafter referred to as EP) 3 to remove dust. Normally, the dust concentration at the outlet of EP3 is operated at 100 mg / m 3 N. The exhaust gas discharged from EP3 exchanges heat with the heat medium (usually water is used) flowing in the tube-type heat recovery heat transfer tube 8 in the exhaust gas heat recovery device 4 which constitutes the exhaust gas reheating system. Thereby, it is cooled to about 90 ° C. The exhaust gas discharged from the exhaust gas heat recovery device 4 is guided to the wet flue gas desulfurization device 5, where after SO 2 and dust are removed,
It is guided to the exhaust gas reheater 6 which constitutes the exhaust gas reheating system.

【0004】排ガス再加熱器6内にはチューブ式の再加
熱伝熱管9が配設されており、この再加熱伝熱管9には
熱回収伝熱管8に通流される熱媒が、図示していない熱
媒循環ポンプにより、熱媒循環管路10,11を介して
循環されている。そして、この排ガス再加熱器6に導か
れた排ガスは、再加熱伝熱管9内を通流する熱媒と熱交
換することにより、約45℃から90℃まで再加熱され
て煙突7から排出される。
Inside the exhaust gas reheater 6, a tube-type reheating heat transfer tube 9 is arranged, and in this reheating heat transfer tube 9, a heat medium flowing through the heat recovery heat transfer tube 8 is shown. It is circulated through the heat medium circulation pipelines 10 and 11 by a heat medium circulation pump which is not provided. Then, the exhaust gas guided to the exhaust gas reheater 6 is reheated from about 45 ° C. to 90 ° C. and discharged from the chimney 7 by exchanging heat with the heat medium flowing in the reheating heat transfer tube 9. It

【0005】上述の通り、ボイラ1からの排ガス中のば
いじんの除去は、EP3と湿式排煙脱硫装置5の両方で
行われる。そして、ばいじんの除去性能は、EP5につ
いては荷電量の調整により、湿式排煙脱硫装置5につい
ては吸収塔内に噴霧する吸収液量の調整により制御する
ことができる。
As described above, the removal of soot and dust in the exhaust gas from the boiler 1 is performed by both the EP 3 and the wet flue gas desulfurization device 5. The dust removal performance can be controlled by adjusting the charge amount for EP5 and by adjusting the amount of absorbing liquid sprayed into the absorption tower for wet flue gas desulfurization device 5.

【0006】ところで、上述の通りボイラ1の出口にお
ける排ガス中にはSO3が含まれているため、排ガス熱
回収器4における排ガス温度の低下に伴い排ガス中のS
3が凝縮し、熱回収伝熱管8の表面に付着した灰が湿
潤状態となり、例えばスートブロワによる清掃でも除去
しにくくなり、熱回収伝熱管8の腐食や熱回収伝熱管8
周りの詰まりを誘発するという問題がある。
As described above, since SO 3 is contained in the exhaust gas at the outlet of the boiler 1, as the exhaust gas temperature in the exhaust gas heat recovery unit 4 decreases, S in the exhaust gas is reduced.
O 3 is condensed, the ash attached to the surface of the heat recovery heat transfer tube 8 becomes wet, and it becomes difficult to remove it by cleaning with a soot blower, for example, corrosion of the heat recovery heat transfer tube 8 and heat recovery heat transfer tube 8
There is a problem of inducing clogging around.

【0007】このような問題を防止する方法として、従
来、ばいじん濃度DとSO3濃度Sの比率D/Sを高く
することが提案されている。つまり、ばいじん濃度Dを
高くすることにより、SO3が凝縮してもばいじんが乾
燥状態を維持できるようにし、熱回収伝熱管8の腐食や
詰まりを防止しようとするものである。
As a method of preventing such a problem, it has been conventionally proposed to increase the ratio D / S of the dust concentration D and the SO 3 concentration S. That is, by increasing the soot and dust concentration D, the soot and dust can be maintained in a dry state even when SO 3 is condensed, and corrosion and clogging of the heat recovery heat transfer tube 8 are prevented.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、近年、
環境保護の気運の高まりから、煙突7からの排出ばいじ
ん濃度の規制値を守ることはもちろんであるが、煙突7
からの可視煙についても注目され、極力可視煙を防止す
る運用が要望されている。
However, in recent years,
Due to the growing tendency to protect the environment, it is of course necessary to keep the regulated value of the concentration of exhaust dust from the chimney 7.
The visible smoke from the plant is also attracting attention, and there is a demand for operation to prevent visible smoke as much as possible.

【0009】このような要望から、EP3は常に全荷電
で運用されるのが実状であり、これによりSO3濃度S
に対するばいじん濃度Dが低くなり、D/Sが低くなっ
て排ガス熱伝熱管8の腐食や排ガス熱伝熱管8周りの詰
まりを避けられないようになっている。
From such a demand, it is the actual situation that the EP3 is always operated with a full charge, whereby the SO 3 concentration S
The soot and dust concentration D becomes low and the D / S becomes low, so that corrosion of the exhaust gas heat transfer tube 8 and clogging around the exhaust gas heat transfer tube 8 cannot be avoided.

【0010】本発明は、煙突からのばいじん排出量を増
加させずに、排ガス熱回収器の伝熱管の腐食や詰まりを
防止することを解決すべき課題とする。
An object of the present invention is to prevent corrosion and clogging of a heat transfer tube of an exhaust gas heat recovery device without increasing the amount of dust emission from a chimney.

【0011】[0011]

【課題を解決するための手段】上記の課題は、次の手段
により解決することができる。本発明の発明者らは、S
3の凝縮による排ガス熱回収器の伝熱管のばいじん付
着及び詰まりについて、詳細に調査したところ、次のよ
うな知見を得た。
The above problems can be solved by the following means. The inventors of the present invention
As a result of detailed investigation of dust adhesion and clogging of the heat transfer tube of the exhaust gas heat recovery device due to condensation of O 3 , the following findings were obtained.

【0012】すなわち、排ガス熱回収器の伝熱管の管壁
温度は、熱媒の入口部が最も低く、排ガス熱回収器の内
部で徐々に昇温しているが、伝熱管へのばいじんの詰ま
り状態は、伝熱管温度の低い領域に集中していることが
わかった。これを各部の伝熱管管壁温度の調査結果と比
較すると、80℃以上の領域にばいじんの付着はほとん
どなく、80℃以下で温度の低い領域ほど付着量が多く
なることがわかった。
That is, the wall temperature of the heat transfer tube of the exhaust gas heat recovery device is lowest at the inlet of the heat medium and gradually rises inside the exhaust gas heat recovery device, but the heat transfer pipe is clogged with dust. It was found that the states were concentrated in the region where the heat transfer tube temperature was low. Comparing this with the results of the investigation of the heat transfer tube wall temperature of each part, it was found that there was almost no adhesion of dust in the region of 80 ° C or higher, and the amount of adhesion increased in the region of 80 ° C or lower and the temperature was low.

【0013】そこで、本発明は、ボイラから排出される
排ガス中のばいじんを除去する集じん器と、この集じん
器から排出される排ガスの熱の一部を回収する伝熱管を
備えた排ガス熱回収器と、この排ガス熱回収器から排出
される排ガスを脱硫処理する湿式排煙脱硫装置と、この
湿式排煙脱硫装置から排出される排ガスを加熱する伝熱
管を備えた排ガス再加熱器と、排ガス熱回収器の伝熱管
と排ガス再加熱器の伝熱管との間に熱媒を循環する熱媒
循環管路とを含んでなる排ガス処理システムにおいて、
排ガス熱回収器の伝熱管の管壁温度と内部熱媒温度との
少なくとも一方の温度を80℃以上に保持することを特
徴とする。
In view of this, the present invention is directed to exhaust gas heat provided with a dust collector for removing dust in exhaust gas discharged from the boiler, and a heat transfer tube for recovering a part of heat of the exhaust gas discharged from the dust collector. A collector, a wet flue gas desulfurization device for desulfurizing exhaust gas discharged from this exhaust gas heat recovery device, and an exhaust gas reheater equipped with a heat transfer tube for heating the exhaust gas discharged from this wet flue gas desulfurization device, In an exhaust gas treatment system comprising a heat transfer medium circulation pipe line for circulating a heat transfer medium between the heat transfer pipe of the exhaust gas heat recovery device and the heat transfer pipe of the exhaust gas reheater,
It is characterized in that at least one of the wall temperature of the heat transfer tube of the exhaust gas heat recovery device and the internal heat medium temperature is maintained at 80 ° C. or higher.

【0014】これにより、排ガス熱回収器において排ガ
ス温度が低下しても、伝熱管の表面の温度が80℃以上
に保たれるから、排ガス中のSO3が凝縮するのを防止
して、伝熱管の表面に付着した灰が湿潤状態となるのを
回避でき、伝熱管の腐食や伝熱管周りの灰の詰まりを抑
制できる。この作用は、集じん器によりばいじんを十分
に除去しても達成できるから、煙突からのばいじん排出
量を増加させることがない。
As a result, even if the temperature of the exhaust gas in the exhaust gas heat recovery unit drops, the temperature of the surface of the heat transfer tube is maintained at 80 ° C. or higher, so that SO 3 in the exhaust gas is prevented from condensing, It is possible to prevent the ash attached to the surface of the heat pipe from becoming wet, and to suppress the corrosion of the heat transfer pipe and the clogging of the ash around the heat transfer pipe. This action can be achieved even if the dust collector sufficiently removes the dust, and therefore does not increase the amount of dust emitted from the stack.

【0015】また、本発明の発明者らの調査によれば、
伝熱管の表面に付着する灰の付着量等は、ボイラで使用
する炭種によっても変化することがわかった。そこで、
排ガス熱回収器の伝熱管の管壁温度と内部熱媒温度との
少なくとも一方の温度を80℃以上に保持する保持温度
を、ボイラの運転条件に応じて変更することが好まし
い。
Further, according to the investigation by the inventors of the present invention,
It was found that the amount of ash deposited on the surface of the heat transfer tube also changed depending on the type of coal used in the boiler. Therefore,
It is preferable to change the holding temperature for holding at least one of the wall temperature of the heat transfer tube of the exhaust gas heat recovery device and the internal heat medium temperature at 80 ° C. or higher according to the operating conditions of the boiler.

【0016】ここで、伝熱管の管壁温度又は内部熱媒温
度を80℃以上に保持する手段は、排ガス熱回収器の伝
熱管に流入する熱媒を加熱する熱媒加熱器を設け、この
熱媒加熱器の加熱量を調整することにより実現できる。
Here, the means for maintaining the wall temperature of the heat transfer tube or the internal heat medium temperature at 80 ° C. or higher is provided with a heat medium heater for heating the heat medium flowing into the heat transfer tube of the exhaust gas heat recovery device. It can be realized by adjusting the heating amount of the heating medium heater.

【0017】また、排ガス熱回収器に流入する排ガスの
温度とSO2濃度とをそれぞれ測定する排ガス温度計と
SO2濃度計と、この排ガス温度計とSO2濃度計で検出
された排ガス温度とSO2濃度とから、予め定めた関係
データに基づいて排ガス熱回収器に流入する排ガスのS
3濃度を演算により求めるSO3濃度演算器と、集じん
器から排出される排ガスのばいじん濃度を測定するばい
じん濃度計と、このばいじん濃度計で測定されたばいじ
ん濃度と前記SO3濃度演算器により求められた演算S
3濃度とから、予め定められた関係データに基づいて
排ガス熱回収器の伝熱管の最低管壁温度を求め、この最
低管壁温度以上に保持するように熱媒加熱器の加熱量を
制御することが好ましい。さらに、この最低管壁温度
を、ボイラ燃料に用いられる石炭種に応じて変更するこ
とが望ましい。
Further, an exhaust gas thermometer and an SO 2 concentration meter for measuring the temperature and the SO 2 concentration of the exhaust gas flowing into the exhaust gas heat recovery device, and the exhaust gas temperature detected by the exhaust gas thermometer and the SO 2 concentration meter, respectively. Based on the SO 2 concentration, the S of the exhaust gas flowing into the exhaust gas heat recovery device based on the predetermined relational data
SO 3 concentration calculator for calculating O 3 concentration, dust concentration meter for measuring dust concentration of exhaust gas discharged from dust collector, dust concentration measured by this dust concentration meter and the SO 3 concentration calculator Calculation S found by
From the O 3 concentration, the minimum tube wall temperature of the heat transfer tube of the exhaust gas heat recovery device is obtained based on the predetermined relational data, and the heating amount of the heating medium heater is controlled so as to maintain the minimum tube wall temperature or higher. Preferably. Furthermore, it is desirable to change this minimum pipe wall temperature according to the coal type used for boiler fuel.

【0018】他方、排ガス中のSO3濃度を低減する技
術として、重油焚ボイラの場合は、排ガス中にNH3
注入することが知られている。しかし、石炭焚ボイラの
場合は、重油焚ボイラに比べてばいじん濃度が高く、注
入したNH3がばいじんに付着し、SO3と有効に反応し
ないという、ばいじんの緩衝作用があるため、NH3
入法は用いられていない。しかし、NH3を注入すれ
ば、排ガス中のSO3濃度をある程度低減できるので、
排ガス熱回収器の伝熱管壁温度又は熱媒温度の最低温度
を下げることができ、これにより熱媒加熱に用いる熱量
(蒸気量)を節約できる。
On the other hand, as a technique for reducing the concentration of SO 3 in exhaust gas, in the case of a heavy oil fired boiler, it is known to inject NH 3 into the exhaust gas. However, in the case of a coal-fired boiler, the concentration of soot and dust is higher than that of a heavy oil-fired boiler, and the injected NH 3 adheres to soot and does not react effectively with SO 3 , so there is a buffering function of soot and so NH 3 injection. The law is not used. However, if NH 3 is injected, the SO 3 concentration in the exhaust gas can be reduced to some extent.
The minimum temperature of the heat transfer tube wall temperature or the heat medium temperature of the exhaust gas heat recovery unit can be lowered, and the heat quantity (steam quantity) used for heating the heat medium can be saved.

【0019】そこで、本発明の排ガス処理システムにお
いて、集じん器の排ガス入口部又は排ガス熱回収器の排
ガス入口部にNH3を注入するNH3注入装置と、排ガス
熱回収器に流入する排ガスの温度とSO2濃度とをそれ
ぞれ測定する排ガス温度計とSO2濃度計と、この排ガ
ス温度計とSO2濃度計で検出された排ガス温度とSO2
濃度とから、予め定めた関係データに基づいて排ガス熱
回収器に流入する排ガスのSO3濃度を演算により求め
るSO3濃度演算器とを設け、このSO3濃度演算器によ
り求められた演算SO3濃度に応じてNH3の注入量を制
御するようにすることができる。
[0019] Therefore, in the exhaust gas treatment system of the present invention, the NH 3 injection device for injecting a NH 3 in the exhaust gas inlet portion of the exhaust gas inlet portion or the exhaust gas heat recovery equipment of the dust collector, the exhaust gas flowing into the exhaust gas heat recovery device Exhaust gas thermometer and SO 2 concentration meter for measuring temperature and SO 2 concentration, respectively, and exhaust gas temperature and SO 2 detected by the exhaust gas thermometer and SO 2 concentration meter
And a concentration, provided the SO 3 concentration calculator for determining the SO 3 concentration in exhaust gas flowing into the exhaust gas heat recovery device based on a predetermined relationship data by calculation, calculation SO 3 obtained by the SO 3 concentration calculator The injection amount of NH 3 can be controlled according to the concentration.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。 (発明の実施の形態1)図1に本発明の排ガス処理シス
テムの系統図を示す。同図において、図4の従来例と同
一の機能又は構成を有する部分には、同一の符号を付し
て説明を省略する。以下、図4との相違する点を中心に
説明する。なお、図1と図4において、排ガス熱回収器
4の熱回収伝熱管8と、排ガス再加熱器6の再加熱伝熱
管9の表現が相違しているが、実質的に相違するもので
はない。つまり、いずれの伝熱管も、排ガスの流れに沿
って上流側から下流側に伝熱管が配置されており、熱媒
は下流側の伝熱管から上流側の伝熱管に向かって通流さ
れるようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment of the Invention) FIG. 1 shows a system diagram of an exhaust gas treatment system of the present invention. In the figure, parts having the same functions or configurations as those of the conventional example of FIG. Hereinafter, differences from FIG. 4 will be mainly described. 1 and 4, although the expressions of the heat recovery heat transfer tube 8 of the exhaust gas heat recovery device 4 and the reheating heat transfer tube 9 of the exhaust gas reheating device 6 are different, they are not substantially different. . That is, in each heat transfer tube, the heat transfer tubes are arranged from the upstream side to the downstream side along the flow of the exhaust gas, and the heat medium is made to flow from the heat transfer tube on the downstream side toward the heat transfer tube on the upstream side. Has become.

【0021】排ガス熱回収器4の熱回収伝熱管8に流入
する熱媒を加熱する熱媒加熱器12が、熱媒循環管路1
0に設けられている。熱媒加熱器12は加熱媒体として
の蒸気13が通流される伝熱管を備えてなり、この伝熱
管に通流する蒸気の流量を流量調整計14と流量調整弁
15により調整可能になっている。熱回収伝熱管8に流
入する熱媒の温度は、熱媒温度計16により検出され、
その検出値が流量調整計14に入力されている。流量調
整計14は、熱媒温度設定値演算器17から出力される
熱回収伝熱管8の入口熱媒温度の設定値に、検出値が一
致するように流量制御弁13を制御し、これにより、熱
回収伝熱管8に流入する熱媒温度を設定値に制御するよ
うになっている。
The heat medium heater 12 for heating the heat medium flowing into the heat recovery heat transfer tube 8 of the exhaust gas heat recovery device 4 is constituted by the heat medium circulation conduit 1
0 is provided. The heat medium heater 12 includes a heat transfer tube through which steam 13 as a heating medium flows, and the flow rate of the steam flowing through the heat transfer tube can be adjusted by a flow rate adjuster 14 and a flow rate adjustment valve 15. . The temperature of the heat medium flowing into the heat recovery heat transfer tube 8 is detected by the heat medium thermometer 16,
The detected value is input to the flow rate adjuster 14. The flow rate controller 14 controls the flow rate control valve 13 so that the detected value matches the set value of the inlet heat medium temperature of the heat recovery heat transfer tube 8 output from the heat medium temperature set value calculator 17, thereby The heat medium temperature flowing into the heat recovery heat transfer tube 8 is controlled to a set value.

【0022】EP3の出口には、排ガス温度計18と、
SO2濃度計19と、ばいじん濃度計20がそれぞれ設
けられている。排ガス温度計18とSO3濃度計19に
より検出された排ガス温度とSO2濃度はSO3濃度演算
器21に入力されている。
At the outlet of EP3, an exhaust gas thermometer 18 and
An SO 2 concentration meter 19 and a dust concentration meter 20 are provided respectively. The exhaust gas temperature and the SO 2 concentration detected by the exhaust gas thermometer 18 and the SO 3 concentration meter 19 are input to the SO 3 concentration calculator 21.

【0023】SO3濃度演算器21は、入力される排ガ
ス温度とSO2濃度とから予め定められた関係データに
基づいてSO3濃度を求める。このSO3濃度の求め方の
原理は次のとおりである。まず、ボイラ1からの排ガス
中の硫黄分には、燃料中に含まれる硫黄Sから生成され
たSO2と、そのSO2の一部(通常約2%程度)が酸化
されたSO3とが含まれる。この排ガスが空気予熱器2
で冷却されると、SO2の一部が凝縮して、ばいじんと
共に、空気予熱器2に吸着される。この吸着量は、空気
予熱器2の出口の排ガス温度によって変化することが考
えられている。したがって、空気予熱器2の出口の排ガ
ス温度とSO2濃度とSO3濃度との関係データを予め設
定しておくことができる。そして、この関係データに基
づき、排ガス温度計18とSO2濃度計19による検出
値に対応するSO3濃度を計算で求めることができる。
The SO 3 concentration calculator 21 obtains the SO 3 concentration based on a predetermined relationship data from the exhaust gas temperature and the SO 2 concentration to be input. The principle of how to obtain this SO 3 concentration is as follows. First, in the sulfur content in the exhaust gas from the boiler 1, SO 2 produced from sulfur S contained in the fuel and SO 3 obtained by oxidizing a part (usually about 2%) of the SO 2 are included. This exhaust gas is the air preheater 2
When cooled by, part of SO 2 is condensed and adsorbed in the air preheater 2 together with dust. It is considered that this adsorption amount changes depending on the exhaust gas temperature at the outlet of the air preheater 2. Therefore, the relationship data between the exhaust gas temperature at the outlet of the air preheater 2, the SO 2 concentration, and the SO 3 concentration can be set in advance. Then, based on this relational data, the SO 3 concentration corresponding to the values detected by the exhaust gas thermometer 18 and the SO 2 concentration meter 19 can be calculated.

【0024】SO3濃度演算器21で求められた演算S
3濃度は、熱媒温度設定値演算器17に入力される。
熱媒温度設定値演算器17は演算SO3濃度と、ばいじ
ん濃度と、使用炭種情報22とを取り込み、熱回収伝熱
管8の入口熱媒温度の設定値を演算する。
Calculation S obtained by the SO 3 concentration calculator 21
The O 3 concentration is input to the heat medium temperature set value calculator 17.
The heat medium temperature set value calculator 17 takes in the calculated SO 3 concentration, the dust concentration, and the used coal type information 22, and calculates the set value of the heat medium temperature at the inlet of the heat recovery heat transfer tube 8.

【0025】ここで、熱媒温度設定値演算器17におけ
る演算内容について説明する。前に述べた通り、排ガス
熱回収器4の熱回収伝熱管8への付着ばいじん量は、伝
熱管の管壁温度が低い部分に多いことが確認されてい
る。これを定量的に評価するため、排ガス温度、排ガス
中のSO3濃度、ばいじん濃度、熱回収伝熱管の管壁温
度を変化可能な試験装置を用い、それらの関係を詳細に
検討した。これにより得られた試験結果の一例として、
熱回収伝熱管の管壁温度に対するばいじん付着量の関係
を図2に示す。図2において、横軸は熱回収伝熱管の管
壁温度を示し、縦軸はばいじん付着量を示す。また、図
中の曲線L1〜L5は試験結果を示すものであり、試験
条件は下表のとおりである。
The contents of calculation in the heat medium temperature set value calculator 17 will now be described. As described above, it has been confirmed that the amount of dust adhering to the heat recovery heat transfer tube 8 of the exhaust gas heat recovery device 4 is large in the portion where the tube wall temperature of the heat transfer tube is low. In order to quantitatively evaluate this, a test device capable of changing the exhaust gas temperature, the SO 3 concentration in the exhaust gas, the dust concentration, and the wall temperature of the heat recovery heat transfer tube was used, and their relationships were examined in detail. As an example of the test results obtained by this,
Fig. 2 shows the relationship between the temperature of the wall surface of the heat recovery heat transfer tube and the amount of accumulated dust. In FIG. 2, the horizontal axis represents the wall temperature of the heat recovery heat transfer tube, and the vertical axis represents the amount of adhering dust. The curves L1 to L5 in the figure show the test results, and the test conditions are as shown in the table below.

【0026】表試験結果 炭種 D/S NH3注入 L1 A 7 無し L2 A 15 無し L3 B 7 無し L4 B 15 無し L5 B 15 有り 試験結果L1,L2は、炭種Aの発生ばいじんを用いて
行い、それぞれD/Sを変えたものである。D/Sは下
記で定義される。
Table Test Results Coal Type D / S NH 3 Injection L1 A 7 No L2 A 15 No L3 B 7 No L4 B 15 No L5 B 15 Test Results L1 and L2 used coal type A generated dust. Performed, and the D / S was changed respectively. D / S is defined below.

【0027】D/S=ダスト濃度(mg/m3N)/S
3濃度(ppm) 試験結果L3,L4は炭種をBとして同一条件で試験を
実施したものである。
D / S = dust concentration (mg / m 3 N) / S
O 3 concentration (ppm) Test results L3 and L4 were obtained by conducting the test under the same conditions with the coal type being B.

【0028】ところで、実際の装置においては、熱回収
伝熱管8に付着するばいじんによるドラフトロス(圧力
損失)の増加が問題になるから、許容ドラフトロスに基
づいてばいじん付着量の許容値を求めることができる。
この許容付着量の一例を図2に直線Oで示す。これらの
ことから、図2に示すように、直線Oと各曲線L1〜L
4との交点に対応する温度T1〜T4を、熱回収伝熱管
の最低管壁温度の設定値にすることにより、伝熱管周り
の灰の詰まりを抑制でき、かつ伝熱管の腐食を低減でき
ることになる。また、図2に示すように、ボイラ燃料の
炭種やD/Sなどの運転条件により、最低管壁温度の設
定値T1〜T4は異なるが、実用上は、ほぼ80℃を維
持すれば十分である。
By the way, in an actual apparatus, since the increase of draft loss (pressure loss) due to dust and dirt adhering to the heat recovery heat transfer tube 8 becomes a problem, the allowable value of the dust and dirt adhesion amount should be calculated based on the allowable draft loss. You can
An example of this allowable adhesion amount is shown by a straight line O in FIG. From these, as shown in FIG. 2, the straight line O and each of the curves L1 to L
By setting the temperatures T1 to T4 corresponding to the intersections with No. 4 to the set value of the minimum wall temperature of the heat recovery heat transfer tube, clogging of ash around the heat transfer tube can be suppressed and corrosion of the heat transfer tube can be reduced. Become. Further, as shown in FIG. 2, the minimum pipe wall temperature set values T1 to T4 are different depending on the operating conditions such as the coal type of the boiler fuel and the D / S, but practically, it is sufficient to maintain about 80 ° C. Is.

【0029】したがって、D/S、炭種性状により排ガ
ス熱回収器4の入口媒体温度の設定値を制御することに
より、最適な蒸気量で排ガス熱回収器4の熱回収伝熱管
8へのばいじん付着に伴う詰まりなど防止することがで
きる。なお、熱回収伝熱管8内の媒体温度は、熱回収伝
熱管8の管壁温度とほとんど同等であるから、媒体加熱
器12の加熱媒体の流量制御は、熱回収伝熱管8の管壁
温度に変えて、その入口媒体温度に基づいて制御しても
同等である。
Therefore, by controlling the set value of the inlet medium temperature of the exhaust gas heat recovery device 4 depending on the D / S and coal type properties, soot and dust to the heat recovery heat transfer tube 8 of the exhaust gas heat recovery device 4 with the optimum amount of steam. It is possible to prevent clogging caused by adhesion. Since the medium temperature in the heat recovery heat transfer tube 8 is almost equal to the tube wall temperature of the heat recovery heat transfer tube 8, the flow rate of the heating medium of the medium heater 12 is controlled by the tube wall temperature of the heat recovery heat transfer tube 8. Alternatively, control based on the inlet medium temperature is also equivalent.

【0030】(発明の実施の形態2)本発明の他の実施
の形態による排ガス処理システムの系統図を図3に示
す。図3に示すシステムが図2のシステムと異なる点
は、EP3の入口にNH3を注入するNH3注入装置30
を設け、SO3濃度演算器21から出力される演算SO3
濃度に合わせてNH3の注入量を制御するようにしたこ
とにある。この注入量は流量計31により計測されて熱
媒温度の設定値演算器17に入力される。熱媒温度の設
定値演算器17は、NH3の注入量に応じて熱媒温度の
設定値を変更する。 通常、NH3注入は、排ガス中の
SO3による腐食防止する方法として、重油焚ボイラに
おいて一般に使用される方法であるが、石炭焚ボイラに
おいては排ガス中のばいじん濃度が高いので、注入した
NH3がばいじんに付着してしまい、SO3と有効に反応
しないという、ばいじんの緩衝作用があるため用いられ
ていない。
(Second Embodiment of the Invention) A system diagram of an exhaust gas treatment system according to another embodiment of the present invention is shown in FIG. Is different from the system of Figure 2 the system shown in FIG. 3, NH 3 injection device 30 for injecting the NH 3 to the inlet of the EP3
Is provided and the calculation SO 3 output from the SO 3 concentration calculator 21 is performed.
The purpose is to control the injection amount of NH 3 according to the concentration. This injection amount is measured by the flow meter 31 and input to the set value calculator 17 for the heat medium temperature. The heat medium temperature set value calculator 17 changes the heat medium temperature set value according to the injection amount of NH 3 . Normally, NH 3 injection is a method generally used in heavy oil-fired boilers as a method for preventing corrosion by SO 3 in exhaust gas, but in coal-fired boilers, the concentration of soot and dust in exhaust gas is high, so injected NH 3 It is not used because it has a buffering function for soot and dust that it adheres to soot and does not react effectively with SO 3 .

【0031】しかし、環境規制の強化に伴い、EP3の
出口ばいじん濃度が低減されると、石炭焚ボイラであっ
てもD/Sが小さくなり、NH3を注入する必要が生じ
てきた。このNH3注入量の設定法として、SO3濃度演
算器21の出力を用いることが有効である。
However, if the dust concentration at the outlet of EP3 is reduced due to the stricter environmental regulations, D / S becomes smaller even in a coal-fired boiler, and it becomes necessary to inject NH 3 . It is effective to use the output of the SO 3 concentration calculator 21 as a method of setting the NH 3 injection amount.

【0032】つまり、石炭焚ボイラの排ガスの場合、E
P3の入口に過剰にNH3を注入しても、EP3の出口
排ガス中にSO3が残存することが確認されている。こ
れは、ばいじんが多量にあるためばいじんにNH3が付
着され、SO3と有効に反応しないためである。さらに
過剰にNH3を供給すると、熱回収伝熱管8の表面にN
4塩として析出し、却って熱回収伝熱管8周りを詰ま
らせることもわかった。また、NH3を吸着したばいじ
んがEP3で捕集されると、EP捕集灰の性状も低下す
る欠点があり、石炭焚ボイラの排ガスの場合は、NH3
を過剰に注入だけでは、SO3を除去することが不可能
であることを確認した。
That is, in the case of exhaust gas from a coal-fired boiler, E
It has been confirmed that even if NH 3 is excessively injected into the inlet of P3, SO 3 remains in the exhaust gas at the outlet of EP3. This is because NH 3 is attached to the soot and does not react effectively with SO 3 due to the large amount of soot and dust. When NH 3 is further supplied in excess, N is transferred to the surface of the heat recovery heat transfer tube 8.
It was also found that it precipitates as H 4 salt and conversely blocks the heat recovery heat transfer tube 8. In addition, when the soot and dust that has adsorbed NH 3 is collected by EP 3, there is a drawback that the properties of the EP collected ash also deteriorate, and in the case of the exhaust gas of a coal-fired boiler, NH 3
It was confirmed that SO 3 cannot be removed only by injecting excessively.

【0033】したがって、NH3注入を行っても、SO3
よる熱回収伝熱管8への灰の付着トラブルを防止できる
わけでないから、熱回収伝熱管8の管壁温度を設定値以
上に保つことが重要である。
Therefore, even if NH 3 injection is performed, SO 3
Since it is not possible to prevent the ash from adhering to the heat recovery heat transfer tube 8, it is important to maintain the temperature of the wall surface of the heat recovery heat transfer tube 8 at or above the set value.

【0034】しかし、NH3注入により排ガス中の残存
SO3濃度を低減できるので、管壁温度の設定値を図2
の示す試験結果L5の如く低くすることができるので、
媒体の加熱に要する蒸気量を節約できることから、NH
3注入は有効である。
However, since the residual SO 3 concentration in the exhaust gas can be reduced by injecting NH 3 , the set value of the tube wall temperature is set as shown in FIG.
Since it can be lowered like the test result L5 shown by,
Since the amount of steam required to heat the medium can be saved, NH
3 injections are effective.

【0035】図3において、EP3の入口にNH3を注
入する場合を示したが、これに代えて、EP3の出口に
NH3を注入するようにしてもよい。これによれば、ば
いじん濃度の低い排ガス中にNH3を注入することにな
るから、SO3とNH3が良好に反応させることができ、
NH3の注入量を節約できると共に、EP3の捕集灰に
NH3が混入するのを防止できる。
In FIG. 3, the case where NH 3 is injected into the inlet of EP3 is shown, but instead of this, NH 3 may be injected into the outlet of EP3. According to this, since NH 3 is injected into the exhaust gas having a low dust concentration, SO 3 and NH 3 can be reacted favorably,
The injection amount of NH 3 can be saved, and NH 3 can be prevented from being mixed in the collected ash of EP3.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
煙突からのばいじん排出量を増加させずに、排ガス熱回
収器の伝熱管の腐食や詰まりを防止することができる。
As described above, according to the present invention,
Corrosion and clogging of the heat transfer tube of the exhaust gas heat recovery device can be prevented without increasing the amount of dust emission from the chimney.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排ガス処理システムの一例の系統
図である。
FIG. 1 is a system diagram of an example of an exhaust gas treatment system according to the present invention.

【図2】熱回収伝熱管の管壁温度と伝熱管のばいじん付
着量との関係を示す試験結果である。
FIG. 2 is a test result showing a relationship between a tube wall temperature of the heat recovery heat transfer tube and a dust adhesion amount of the heat transfer tube.

【図3】本発明に係る排ガス処理システムの他の一例の
系統図である。
FIG. 3 is a system diagram of another example of an exhaust gas treatment system according to the present invention.

【図4】従来技術に係る排ガス処理システムの一例の系
統図である。
FIG. 4 is a system diagram of an example of an exhaust gas treatment system according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 空気予熱器 3 電気集じん器 4 排ガス熱回収器 5 湿式排煙脱硫装置 6 排ガス再加熱器 7 煙突 8 熱回収伝熱管 9 再加熱伝熱管 10,11 熱媒循環管路 12 熱媒加熱器 13 蒸気 14 流量調整計 15 流量調整弁 16 熱媒温度計 17 熱媒温度設定値演算器 18 排ガス温度計 19 SO2濃度計 20 ばいじん濃度計 21 SO3濃度演算器 30 NH3注入装置1 Boiler 2 Air preheater 3 Electrostatic precipitator 4 Exhaust gas heat recovery device 5 Wet flue gas desulfurization device 6 Exhaust gas reheater 7 Chimney 8 Heat recovery heat transfer pipe 9 Reheating heat transfer pipe 10, 11 Heat medium circulation pipe line 12 Heat medium Heater 13 Steam 14 Flow rate controller 15 Flow rate control valve 16 Heat medium thermometer 17 Heat medium temperature set value calculator 18 Exhaust gas thermometer 19 SO 2 concentration meter 20 Soot and dust concentration meter 21 SO 3 concentration calculator 30 NH 3 injection device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野沢 滋 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 宮高 良一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shigeru Nozawa 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Kure Factory (72) Ryoichi Miyataka 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Stock Company Kure Factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ボイラから排出される排ガス中のばいじ
んを除去する集じん器と、この集じん器から排出される
排ガスの熱の一部を回収する伝熱管を備えた排ガス熱回
収器と、この排ガス熱回収器から排出される排ガスを脱
硫処理する湿式排煙脱硫装置と、この湿式排煙脱硫装置
から排出される排ガスを加熱する伝熱管を備えた排ガス
再加熱器と、前記排ガス熱回収器の伝熱管と前記排ガス
再加熱器の伝熱管との間に熱媒を循環する熱媒循環管路
とを含んでなる排ガス処理システムにおいて、前記排ガ
ス熱回収器の伝熱管の管壁温度と内部熱媒温度との少な
くとも一方の温度を80℃以上に保持することを特徴と
する排ガス処理システム。
1. A dust collector for removing soot and dust in exhaust gas discharged from a boiler, and an exhaust gas heat recovery device provided with a heat transfer tube for recovering a part of heat of exhaust gas discharged from this dust collector, Wet flue gas desulfurization device for desulfurizing exhaust gas discharged from the exhaust gas heat recovery device, exhaust gas reheater equipped with a heat transfer pipe for heating exhaust gas discharged from the wet exhaust gas desulfurization device, and the exhaust gas heat recovery device In a waste gas treatment system comprising a heat transfer tube for circulating a heat transfer medium between the heat transfer tube of the exhaust gas reheater and the heat transfer tube of the exhaust gas reheater, the tube wall temperature of the heat transfer tube of the exhaust gas heat recovery device and An exhaust gas treatment system, characterized in that at least one of the internal heat medium temperature is maintained at 80 ° C or higher.
【請求項2】 請求項1に記載の排ガス処理システムに
おいて、前記排ガス熱回収器の伝熱管の管壁温度と内部
熱媒温度との少なくとも一方の温度の保持温度を、前記
ボイラの運転条件に応じて変更することを特徴とする排
ガス処理システム。
2. The exhaust gas treatment system according to claim 1, wherein a holding temperature of at least one of a tube wall temperature of the heat transfer tube of the exhaust gas heat recovery device and an internal heat medium temperature is set as an operating condition of the boiler. An exhaust gas treatment system characterized by being changed according to circumstances.
【請求項3】 請求項1又は2に記載の排ガス処理シス
テムにおいて、前記排ガス熱回収器の伝熱管に流入する
熱媒を加熱する熱媒加熱器を設け、この熱媒加熱器の加
熱量を調整して前記排ガス熱回収器の伝熱管の管壁温度
と内部熱媒温度との少なくとも一方の温度を調整するこ
とを特徴とする排ガス処理システム。
3. The exhaust gas treatment system according to claim 1, wherein a heat medium heater for heating a heat medium flowing into the heat transfer pipe of the exhaust gas heat recovery device is provided, and a heating amount of the heat medium heater is set. An exhaust gas treatment system, wherein the temperature of at least one of a wall temperature of a heat transfer tube of the exhaust gas heat recovery device and an internal heat medium temperature is adjusted to adjust the temperature.
【請求項4】 請求項3に記載の排ガス処理システムに
おいて、前記排ガス熱回収器に流入する排ガスの温度と
SO2濃度とをそれぞれ測定する排ガス温度計とSO2
度計と、この排ガス温度計とSO2濃度計で検出された
排ガス温度とSO2濃度とから、予め定めた関係データ
に基づいて前記排ガス熱回収器に流入する排ガスのSO
3濃度を演算により求めるSO3濃度演算器と、前記集じ
ん器から排出される排ガスのばいじん濃度を測定するば
いじん濃度計と、このばいじん濃度計で測定されたばい
じん濃度と前記SO3濃度演算器により求められた演算
SO3濃度とから、予め定められた関係データに基づい
て前記排ガス熱回収器の伝熱管の最低管壁温度を求め、
この最低管壁温度を保持するように前記熱媒加熱器の加
熱量を制御することを特徴とする排ガス処理システム。
4. The exhaust gas treatment system according to claim 3, wherein an exhaust gas thermometer and an SO 2 concentration meter for respectively measuring the temperature and the SO 2 concentration of the exhaust gas flowing into the exhaust gas heat recovery device, and the exhaust gas thermometer. And the SO 2 concentration of the exhaust gas flowing into the exhaust gas heat recovery device based on predetermined relationship data from the exhaust gas temperature and the SO 2 concentration detected by the SO 2 concentration meter.
SO 3 concentration calculator for calculating 3 concentration, dust concentration meter for measuring dust concentration of exhaust gas discharged from the dust collector, dust concentration measured by this dust concentration meter and SO 3 concentration calculator From the calculated SO 3 concentration obtained by the above, the minimum tube wall temperature of the heat transfer tube of the exhaust gas heat recovery device is obtained based on predetermined relational data,
An exhaust gas treatment system, characterized in that the heating amount of the heating medium heater is controlled so as to maintain this minimum pipe wall temperature.
【請求項5】 請求項4に記載の排ガス処理システムに
おいて、前記最低管壁温度は、ボイラ燃料に用いられる
石炭種に応じて変更することを特徴とする排ガス処理シ
ステム。
5. The exhaust gas treatment system according to claim 4, wherein the minimum pipe wall temperature is changed according to the type of coal used for the boiler fuel.
【請求項6】 請求項3,4,5のいずれかに記載の排
ガス処理システムにおいて、前記熱媒加熱器は、蒸気を
加熱媒体として前記熱媒を熱交換により加熱するもので
あることを特徴とする排ガス処理システム。
6. The exhaust gas treatment system according to claim 3, wherein the heating medium heater heats the heating medium by heat exchange using steam as a heating medium. Exhaust gas treatment system.
【請求項7】 ボイラから排出される排ガス中のばいじ
んを除去する集じん器と、この集じん器から排出される
排ガスの熱の一部を回収する伝熱管を備えた排ガス熱回
収器と、この排ガス熱回収器から排出される排ガスを脱
硫処理する湿式排煙脱硫装置と、この湿式排煙脱硫装置
から排出される排ガスを加熱する伝熱管を備えた排ガス
再加熱器と、前記排ガス熱回収器の伝熱管と前記排ガス
再加熱器の伝熱管との間に熱媒を循環する熱媒循環管路
とを含んでなる排ガス処理システムにおいて、前記集じ
ん器の排ガス入口部又は前記排ガス熱回収器の排ガス入
口部にNH3を注入するNH3注入装置と、前記排ガス熱
回収器に流入する排ガスの温度とSO2濃度とをそれぞ
れ測定する排ガス温度計とSO2濃度計と、この排ガス
温度計とSO2濃度計で検出された排ガス温度とSO2
度とから、予め定めた関係データに基づいて前記排ガス
熱回収器に流入する排ガスのSO3濃度を演算により求
めるSO3濃度演算器とを設け、このSO3濃度演算器に
より求められた演算SO3濃度に応じて前記NH3の注入
量を制御することを特徴とする排ガス処理システム。
7. A dust collector for removing dust and dirt in exhaust gas discharged from a boiler, and an exhaust gas heat recovery device provided with a heat transfer tube for recovering a part of heat of exhaust gas discharged from this dust collector, Wet flue gas desulfurization device for desulfurizing exhaust gas discharged from the exhaust gas heat recovery device, exhaust gas reheater equipped with a heat transfer pipe for heating exhaust gas discharged from the wet exhaust gas desulfurization device, and the exhaust gas heat recovery device In an exhaust gas treatment system comprising a heat transfer tube for a heat transfer tube for circulating a heat transfer medium between the heat transfer tube for the exhaust gas reheater and the heat transfer tube for the exhaust gas reheater, the exhaust gas inlet part of the dust collector or the exhaust gas heat recovery and NH 3 injection device for injecting a NH 3 in the exhaust gas inlet portion of the vessel, an exhaust gas thermometer and a SO 2 concentration meter the temperature and SO 2 concentration of the exhaust gas flowing into the exhaust gas heat recovery unit is measured respectively, the exhaust gas temperature Kay and SO 2 concentration In from the detected exhaust gas temperature and the SO 2 concentration was provided and a SO 3 concentration calculator for determining by calculation the SO 3 concentration in exhaust gas flowing into the exhaust gas heat recovery unit on the basis of a predetermined relationship data, this SO 3 An exhaust gas treatment system, characterized in that the injection amount of NH 3 is controlled according to the calculated SO 3 concentration obtained by the concentration calculator.
【請求項8】 ボイラから排出される排ガス中のばいじ
んを除去する集じん器と、この集じん器から排出される
排ガスの熱の一部を回収する伝熱管を備えた排ガス熱回
収器と、この排ガス熱回収器から排出される排ガスを脱
硫処理する湿式排煙脱硫装置と、この湿式排煙脱硫装置
から排出される排ガスを加熱する伝熱管を備えた排ガス
再加熱器と、前記排ガス熱回収器の伝熱管と前記排ガス
再加熱器の伝熱管との間に熱媒を循環する熱媒循環管路
とを含んでなる排ガス処理システムにおいて、前記排ガ
ス熱回収器の伝熱管に流入する熱媒を加熱する熱媒加熱
器と、前記集じん器の排ガス入口部又は前記排ガス熱回
収器の排ガス入口部にNH3を注入するNH3注入装置
と、前記排ガス熱回収器に流入する排ガスの温度とSO
2濃度とをそれぞれ測定する排ガス温度計とSO2濃度計
と、この排ガス温度計とSO2濃度計で検出された排ガ
ス温度とSO2濃度とから、予め定めた関係データに基
づいて前記排ガス熱回収器に流入する排ガスのSO3
度を演算により求めるSO3濃度演算器と、前記集じん
器から排出される排ガスのばいじん濃度を測定するばい
じん濃度計と、このばいじん濃度計で測定されたばいじ
ん濃度と前記SO3濃度演算器により求められた演算S
3濃度とから、予め定められた関係データに基づいて
前記排ガス熱回収器の伝熱管の最低管壁温度を求め、こ
の最低管壁温度を保持するように前記熱媒加熱器の加熱
量を制御するとともに、前記演算SO3濃度に応じて前
記NH3の注入量を制御することを特徴とする排ガス処
理システム。
8. A dust collector for removing dust and dirt in exhaust gas discharged from a boiler, and an exhaust gas heat recovery device provided with a heat transfer tube for recovering a part of heat of exhaust gas discharged from this dust collector, Wet flue gas desulfurization device for desulfurizing exhaust gas discharged from the exhaust gas heat recovery device, exhaust gas reheater equipped with a heat transfer pipe for heating exhaust gas discharged from the wet exhaust gas desulfurization device, and the exhaust gas heat recovery device Medium which comprises a heat transfer tube for a waste gas reheater and a heat transfer medium circulation line for circulating a heat transfer medium between the heat transfer tube for the exhaust gas reheater, and the heat transfer medium flowing into the heat transfer tube for the exhaust gas heat recovery device. a heat medium heater for heating and a NH 3 injection device for injecting a NH 3 in the exhaust gas inlet portion of the exhaust gas inlet part or the exhaust gas heat recovery device of the dust collector, the temperature of the exhaust gas flowing into the exhaust gas heat recovery unit And SO
2 concentration and from the exhaust gas temperature gauge and SO 2 concentration meter for measuring respectively, the exhaust gas temperature and the SO 2 concentration detected by the exhaust gas temperature gauge and SO 2 concentration meter, the exhaust gas heat based on a predetermined relationship data and SO 3 concentration calculator for determining by calculation the SO 3 concentration in exhaust gas flowing into the collector, the dust concentration meter for measuring the dust concentration of the exhaust gas discharged from the precipitator was determined by the dust densitometer dust Concentration and calculation S obtained by the SO 3 concentration calculator
From the O 3 concentration, the minimum tube wall temperature of the heat transfer tube of the exhaust gas heat recovery device is determined based on predetermined relational data, and the heating amount of the heating medium heater is set so as to maintain this minimum tube wall temperature. An exhaust gas treatment system, which controls the injection amount of NH 3 according to the calculated SO 3 concentration.
JP28367795A 1995-10-31 1995-10-31 Exhaust gas treatment system Expired - Fee Related JP3661068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28367795A JP3661068B2 (en) 1995-10-31 1995-10-31 Exhaust gas treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28367795A JP3661068B2 (en) 1995-10-31 1995-10-31 Exhaust gas treatment system

Publications (2)

Publication Number Publication Date
JPH09122439A true JPH09122439A (en) 1997-05-13
JP3661068B2 JP3661068B2 (en) 2005-06-15

Family

ID=17668646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28367795A Expired - Fee Related JP3661068B2 (en) 1995-10-31 1995-10-31 Exhaust gas treatment system

Country Status (1)

Country Link
JP (1) JP3661068B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323024A (en) * 1996-06-07 1997-12-16 Babcock Hitachi Kk Flue gas treating plant and its operation
US6180305B1 (en) 2000-02-16 2001-01-30 Imation Corp. Organic photoreceptors for liquid electrophotography
JP2011200781A (en) * 2010-03-25 2011-10-13 Babcock Hitachi Kk Exhaust gas treatment apparatus and operation method of exhaust gas treatment apparatus
JP2013034965A (en) * 2011-08-10 2013-02-21 Babcock Hitachi Kk Wet flue-gas treatment apparatus and method
CN108779915A (en) * 2016-03-30 2018-11-09 三菱日立电力***株式会社 Exhaust treatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257633A (en) * 1985-09-06 1987-03-13 Hitachi Ltd Device for monitoring and controlling waste gas
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH0719448A (en) * 1993-07-05 1995-01-20 Chubu Electric Power Co Inc Operation of device for treating exhaust gas from boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257633A (en) * 1985-09-06 1987-03-13 Hitachi Ltd Device for monitoring and controlling waste gas
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH0719448A (en) * 1993-07-05 1995-01-20 Chubu Electric Power Co Inc Operation of device for treating exhaust gas from boiler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323024A (en) * 1996-06-07 1997-12-16 Babcock Hitachi Kk Flue gas treating plant and its operation
US6180305B1 (en) 2000-02-16 2001-01-30 Imation Corp. Organic photoreceptors for liquid electrophotography
JP2011200781A (en) * 2010-03-25 2011-10-13 Babcock Hitachi Kk Exhaust gas treatment apparatus and operation method of exhaust gas treatment apparatus
JP2013034965A (en) * 2011-08-10 2013-02-21 Babcock Hitachi Kk Wet flue-gas treatment apparatus and method
CN108779915A (en) * 2016-03-30 2018-11-09 三菱日立电力***株式会社 Exhaust treatment system
US10471382B2 (en) 2016-03-30 2019-11-12 Mitsubishi Hitachi Power Systems, Ltd. Air pollution control system
CN108779915B (en) * 2016-03-30 2020-03-27 三菱日立电力***株式会社 Exhaust gas treatment system

Also Published As

Publication number Publication date
JP3661068B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
KR101036979B1 (en) Exhaust gas treating apparatus
CA1235344A (en) Control system for economic operation of a steam generator
KR20050057282A (en) Exhaust smoke-processing system
JP3193966B2 (en) Flue gas desulfurization apparatus and method
JPH09122439A (en) Exhaust gas treatment system
JP4761284B2 (en) Exhaust gas treatment device and its operation method
JP2002370012A (en) Exhaust gas treatment apparatus
JP3200608B2 (en) Exhaust gas treatment method
CN212456949U (en) Separation type air preheating system for preventing ABS (anti-lock brake System) of air preheater from being blocked
JP3408832B2 (en) Flue gas treatment equipment and its control equipment
JP3544432B2 (en) Exhaust gas treatment equipment and its operation method
CN107525064A (en) The pulverized-coal fired boiler economizer soot blower system optimization operation method calculated based on temperature and pressure
JPH1199317A (en) Flue gas desulfurizer and its operation
JP3783122B2 (en) Smoke removal equipment
JP2012057860A (en) Exhaust heat recovery device
JP2930520B2 (en) Heat recovery unit for boiler with denitration equipment
JP2001074229A (en) Flue gas processor and method of operating the same
CN111306566A (en) Separation type air preheating system and method for preventing ABS (anti-lock brake System) of air preheater from being blocked
JP2826560B2 (en) Exhaust gas treatment method
JPH09290128A (en) Exhaust gas processing apparatus and method for controlling its operation
JP3731265B2 (en) Exhaust gas reheating device in flue gas treatment facility
JP2003322329A (en) Rotation regenerated air preheater and its soot blower method
JPH10141890A (en) Cleaning method for heat exchanger and exhaust gas desulfurizing apparatus
JPH1047601A (en) Waste heat recovery heat exchanger
JP2024037672A (en) Waste treatment equipment and waste treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees