JPH09111441A - Magnesium evaporating method - Google Patents

Magnesium evaporating method

Info

Publication number
JPH09111441A
JPH09111441A JP29733995A JP29733995A JPH09111441A JP H09111441 A JPH09111441 A JP H09111441A JP 29733995 A JP29733995 A JP 29733995A JP 29733995 A JP29733995 A JP 29733995A JP H09111441 A JPH09111441 A JP H09111441A
Authority
JP
Japan
Prior art keywords
evaporation
splash
molten
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29733995A
Other languages
Japanese (ja)
Inventor
Yasushi Fukui
康 福居
Tadaaki Miono
忠昭 三尾野
Minoru Saito
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29733995A priority Critical patent/JPH09111441A/en
Publication of JPH09111441A publication Critical patent/JPH09111441A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaporate Mg under a stable condition while suppressing the generation of splash. SOLUTION: At the time of evaporating a molten Mg fed to an evaporating vessel 2 by heating from a surface, an under part or a side part of the molten Mg is heated so that a temp. gradient hardly causes a heat flow directed from a surface layer of the molten Mg to a downward. An upper part temp. and lower part temp. of a molten Mg bath 2 are measured by a temp. sensor 9 and the power to be supplied to an upper part heater 7, a lower part heater 8 or a side part heating device is controlled preferably based on the measured result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スプラッシュや蒸気漏
れの発生を防止しながら蒸発槽から蒸着用の金属蒸気を
安定して蒸発させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of stably evaporating metal vapor for vapor deposition from an evaporation tank while preventing splash and vapor leakage.

【0002】[0002]

【従来の技術】Zn,Mg,Cd等の比較的低い温度で
高い蒸気圧が得られる材料では、閉じた構造をもつ蒸発
槽を使用し、蒸発槽からシャッターを介して金属蒸気を
蒸発させ、流出した金属蒸気をダクトによって基板まで
輸送し、基板表面に蒸着させている。このとき、シャッ
ター部分を蒸気流速が音速となるチョーキング条件に設
定すると、シャッター開度に応じて蒸気が流出するため
蒸気流量の制御が容易になる。蒸発材料の供給方法とし
ては、大気中の溶解槽で蒸発材料を溶解し、大気圧によ
って蒸発槽に金属蒸気を送り込む方式が日新技報第56
巻(1987)第41頁で紹介されている。この方式で
は、溶解槽の上下動により蒸発面の高さが調整される。
2. Description of the Related Art For materials such as Zn, Mg, and Cd that can obtain high vapor pressure at relatively low temperatures, an evaporation tank having a closed structure is used, and metal vapor is evaporated from the evaporation tank through a shutter. The metal vapor that has flown out is transported to the substrate by a duct and deposited on the substrate surface. At this time, if the shutter portion is set to a choking condition in which the steam flow velocity becomes the sonic speed, the steam flows out in accordance with the opening degree of the shutter, so that the control of the steam flow rate becomes easy. As a method of supplying the evaporation material, there is a method in which the evaporation material is melted in a melting tank in the atmosphere and metal vapor is sent to the evaporation tank by the atmospheric pressure.
Volume (1987), page 41. In this method, the height of the evaporation surface is adjusted by the vertical movement of the melting tank.

【0003】蒸発速度は、蒸発材料の温度を高くするこ
とによって大きくなる。しかし、蒸発温度を単純に高く
するだけでは種々の問題があり、加熱方法も含めて改善
すべき点がある。すなわち、蒸発材料の温度を上げる
と、蒸発材料内部の蒸気圧が高くなる。蒸気圧が静圧
(=蒸発材料の浴深圧+蒸発槽内の空間圧力)を超える
と、蒸発材料の内部に蒸気が発生するようになる。内部
に発生した蒸気は、図1に示すように気泡となって融液
表面まで浮上する沸騰現象を起こす。蒸発材料内部を上
昇した気泡は、融液表面で破裂する。このとき、ある一
定の大きさ以上の気泡が破裂すると、表面にある蒸発材
料がスプラッシュとなって弾き飛ばされる。気泡が小さ
い場合、表面張力の影響によって蒸発材料は弾き飛ばさ
れず、スプラッシュが発生しない。
The evaporation rate is increased by increasing the temperature of the evaporation material. However, simply raising the evaporation temperature has various problems, and there are points to be improved including the heating method. That is, when the temperature of the evaporation material is increased, the vapor pressure inside the evaporation material increases. When the vapor pressure exceeds the static pressure (= bath pressure of the evaporation material + space pressure in the evaporation tank), steam is generated inside the evaporation material. The vapor generated inside becomes a bubble as shown in FIG. 1 and causes a boiling phenomenon of floating up to the surface of the melt. The bubbles rising inside the evaporation material burst at the surface of the melt. At this time, when bubbles of a certain size or larger burst, the evaporation material on the surface becomes a splash and is repelled. When the bubbles are small, the evaporation material is not repelled by the influence of the surface tension, and the splash does not occur.

【0004】スプラッシュは、溶融状態にある蒸発材料
の小さな粒子である。スプラッシュの発生は、実質的な
蒸発面積を急激に大きくし、蒸発速度を不安定化させ
る。また、スプラッシュがシャッターを通過すると、多
量の蒸発材料がシャッターの開度に関係なく通過するこ
とになり、蒸着速度が不安定になる。更には、スプラッ
シュが基板まで到達すると、蒸着膜の欠陥となる。ま
た、蒸発材料が蒸気になるとき、多量の熱が蒸発熱とし
て消費されるため、蒸発材料の表面温度が内部温度より
下がる。表面温度の低下は、蒸発速度が大きい場合に顕
著になり、蒸発速度を低下させる。下がった蒸発速度を
回復させるためには、加熱が必要になる。しかし、より
高温に蒸発材料を加熱すると、そのことによって蒸発材
料の内部温度が上昇し、気泡が深部より発生し、多量の
スプラッシュが発生するようになる。深部で発生した気
泡は、融液表面に達したときに大きな気泡となることか
ら、スプラッシュの発生をより激化させる。
Splash is a small particle of vaporized material in the molten state. The generation of the splash causes the substantial evaporation area to increase rapidly, and destabilizes the evaporation rate. Further, when the splash passes through the shutter, a large amount of evaporation material passes through regardless of the opening of the shutter, and the vapor deposition rate becomes unstable. Furthermore, when the splash reaches the substrate, it causes defects in the deposited film. Further, when the evaporation material becomes vapor, a large amount of heat is consumed as the evaporation heat, so that the surface temperature of the evaporation material falls below the internal temperature. The decrease in the surface temperature becomes remarkable when the evaporation rate is high, and the evaporation rate is decreased. Heating is required to restore the reduced evaporation rate. However, when the evaporation material is heated to a higher temperature, the internal temperature of the evaporation material rises, bubbles are generated from the deep portion, and a large amount of splash is generated. The bubbles generated in the deep portion become large bubbles when they reach the surface of the melt, which further intensifies the generation of splash.

【0005】特に密度の小さなMgの蒸発では、浴深圧
が小さく、表面からの同じ深さにおいても他の金属材料
に比較して静圧が小さくなる。そのため、大きな気泡が
発生し、スプラッシュが発生し易くなる。また、Mg
は、他の金属材料に比較して融点650℃近傍ですでに
高い蒸気圧を呈することから、潜在的にスプラッシュが
発生し易い蒸発材料である。しかし、実用的には多少の
温度変動があっても凝固が生じないように、融点650
℃以上で蒸発させることが必要とされる。たとえば、溶
解槽(図示せず)からシュノーケル1を経て蒸発槽2に
送り込まれたZn,Mg等の蒸発材料3を、図2に示す
ようにヒータ4で蒸発槽2の底面から加熱すると、溶融
した蒸発材料3は、原理的に表面層より内部の温度が高
くなる温度勾配をもつ。この状態で蒸発材料3の蒸発が
始まると、蒸発により表面層の温度が低下し、温度勾配
が一層大きくなり、スプラッシュが加速される。
Particularly in the case of evaporation of Mg having a low density, the bath depth pressure is small, and the static pressure becomes smaller than that of other metal materials even at the same depth from the surface. Therefore, large bubbles are generated, and splash is likely to occur. In addition, Mg
Is a vaporized material that is likely to cause a splash because it already exhibits a high vapor pressure near a melting point of 650 ° C. as compared with other metal materials. However, in practice, the melting point is 650 so that solidification does not occur even if there is some temperature fluctuation.
Evaporation above ° C is required. For example, when the evaporation material 3 such as Zn, Mg, etc. sent from the melting tank (not shown) through the snorkel 1 to the evaporation tank 2 is heated from the bottom surface of the evaporation tank 2 by the heater 4 as shown in FIG. The evaporated material 3 has a temperature gradient in which the internal temperature is higher than the surface layer in principle. When the evaporation of the evaporation material 3 starts in this state, the temperature of the surface layer is lowered by the evaporation, the temperature gradient is further increased, and the splash is accelerated.

【0006】また、図3に示すように蒸発槽2の側面か
ら加熱する方式では、上下を同時に加熱しているため、
蒸発材料3の表面温度が内部温度より低くなる現象を本
質的に修正できない。また、ヒータ4から離れた蒸発槽
2の中央部には、熱エネルギーを効率よく供給できず、
水平方向に関する温度勾配も大きくなり、これによって
もスプラッシュの抑制が困難になる。中央部まで熱エネ
ルギーを効率よく供給するためには側面の温度を上げざ
るを得ず、結果として蒸発槽2の側面が高温になる。そ
のため、側面で多量のスプラッシュを発生させることに
なる。このように、何れの加熱方式にあっても、スプラ
ッシュの発生を抑制できない。スプラッシュは、シャッ
ター5を通過して、ダクト6により基板まで輸送される
ものもあり、蒸着膜に欠陥を発生させ易い。また、蒸発
槽2を底面又は側面から加熱するとき、蒸発槽2と蒸発
材料3が接する部分が高温になるため、蒸発槽2が侵食
され易く、蒸発槽2の寿命が短くなる。そこで、日新技
報第56巻(1987)第41頁では、図4に示すよう
に、ヒータ4を蒸発槽2の上方に配置することを紹介し
ている。蒸発槽2の上方に配置したヒータ4は、上面か
ら蒸発材料3を加熱するので、表層部から内部に掛けて
高温となる温度勾配が修正され、スプラッシュの発生が
抑制される。また、加熱される部分が蒸発材料3の表面
のみであるため、蒸発槽2と蒸発材料3が接する部分の
温度が比較的低く、蒸発槽2の長寿命化も図られる。
In the method of heating from the side surface of the evaporation tank 2 as shown in FIG. 3, since the upper and lower parts are heated at the same time,
The phenomenon that the surface temperature of the evaporation material 3 becomes lower than the internal temperature cannot be essentially corrected. Further, thermal energy cannot be efficiently supplied to the central portion of the evaporation tank 2 which is separated from the heater 4,
The temperature gradient in the horizontal direction also becomes large, which also makes it difficult to suppress the splash. In order to efficiently supply heat energy to the central portion, the temperature of the side surface must be raised, and as a result, the side surface of the evaporation tank 2 becomes hot. Therefore, a large amount of splash is generated on the side surface. As described above, the generation of splash cannot be suppressed by any heating method. Some of the splashes pass through the shutter 5 and are transported to the substrate by the duct 6, which easily causes defects in the deposited film. Further, when the evaporation tank 2 is heated from the bottom surface or the side surface, the temperature at a portion where the evaporation tank 2 and the evaporation material 3 are in contact with each other becomes high, so that the evaporation tank 2 is easily eroded and the life of the evaporation tank 2 is shortened. Therefore, Nisshin Giho, Vol. 56 (1987), page 41, introduces that the heater 4 is arranged above the evaporation tank 2 as shown in FIG. The heater 4 arranged above the evaporation tank 2 heats the evaporation material 3 from the upper surface, so that the temperature gradient from the surface layer portion to the inside where the temperature becomes high is corrected, and the generation of splash is suppressed. Further, since the heated portion is only the surface of the evaporation material 3, the temperature of the portion where the evaporation tank 2 and the evaporation material 3 are in contact is relatively low, and the life of the evaporation tank 2 is extended.

【0007】[0007]

【発明が解決しようとする課題】しかし、上部から加熱
する図4の方式でも、Mgを蒸発されるとき0.5mm
以下のスプラッシュが発生する場合がある。これは、M
gの密度が低いことに加え、蒸発槽の下部から放出され
る熱エネルギーを加算した熱量の熱エネルギーを上方の
みから供給するため、Mgの表層温度が過度に高くなり
過ぎることに原因がある。その結果、図2,3の加熱方
式と同様に、蒸気流出量を大きくした場合、蒸発槽2内
の圧力が低下し、スプラッシュが発生し易くなる。これ
は、蒸発槽2内の圧力低下に応じて融液の静圧が下が
り、図1で説明した気泡の発生位置が下方にずれるため
である。その結果、スプラッシュの発生が多くなり、ま
たそのサイズも大きくなる。本発明は、このような問題
を解消すべく案出されたものであり、蒸発材料内部の温
度勾配を制御することにより、スプラッシュの発生を抑
制し、安定した条件下でMgを蒸発させることを目的と
する。
However, even with the method of FIG. 4 in which heating is performed from above, when Mg is vaporized, it is 0.5 mm.
The following splash may occur: This is M
In addition to the low density of g, the heat energy of the heat amount added from the heat energy emitted from the lower part of the evaporation tank is supplied only from above, which causes the surface temperature of Mg to become excessively high. As a result, similar to the heating method shown in FIGS. 2 and 3, when the vapor outflow amount is increased, the pressure in the evaporation tank 2 is lowered, and splash is likely to occur. This is because the static pressure of the melt decreases as the pressure in the evaporation tank 2 decreases, and the bubble generation position described in FIG. 1 shifts downward. As a result, the number of splashes increases, and the size increases. The present invention has been devised to solve such a problem. By controlling the temperature gradient inside the evaporation material, it is possible to suppress the occurrence of splash and to evaporate Mg under stable conditions. To aim.

【0008】[0008]

【課題を解決するための手段】本発明のは、その目的を
達成するため、蒸発槽に送り込んだ溶融Mg浴を表面か
ら加熱して蒸発させる際、溶融Mg浴の表層から下方に
向かう熱流がない温度勾配となるように、溶融Mg浴の
下部又は側部を加熱することを特徴とする。また、溶融
Mg浴の上部温度及び下部温度を測定し、測定結果に基
づき溶融Mg浴を表面から加熱する上部加熱装置と下部
又は側部から加熱する下部加熱装置又は側部加熱装置に
供給する電力を制御することが良い。
In order to achieve the object, according to the present invention, when a molten Mg bath fed into an evaporation tank is heated from the surface to be evaporated, a heat flow downward from the surface layer of the molten Mg bath is generated. The bottom or side of the molten Mg bath is heated so that there is no temperature gradient. Also, the upper temperature and the lower temperature of the molten Mg bath are measured, and the electric power supplied to the upper heating device that heats the molten Mg bath from the surface and the lower heating device or the side heating device that heats the molten Mg bath from the surface based on the measurement result. Good to control.

【0009】本発明は、たとえば図5,6に示すよう
に、蒸発材料3を上方から加熱する上部加熱装置7に下
部加熱装置8を追加した装置を使用する。加熱装置7,
8としては、ヒータや誘導加熱コイル等が使用される。
上部加熱装置7は、蒸発槽2の内部(図5)に、或いは
外部上方(図6)に配置することができる。また、蒸発
槽2内にある蒸発材料3の上部や下部に熱電対等の温度
センサー9を設け、上下方向及び水平方向に関する温度
勾配が所定範囲になるように加熱装置7,8の加熱条件
を制御する。たとえば、蒸発材料3の表層から下層に向
かった熱流を抑制するため、下部温度が上部温度と同等
又は上部温度以上になるように設定する。上部の温度セ
ンサー9は、蒸発による温度変動が大きな表層部分を避
け、融液表面から10mm以上深い部分に設置すること
が好ましい。下部加熱装置8に代えて、図7に示すよう
に蒸発槽2の下部側面を加熱する高周波加熱装置等の側
部加熱装置10を使用することもできる。
The present invention uses a device in which a lower heating device 8 is added to an upper heating device 7 for heating the evaporation material 3 from above as shown in FIGS. Heating device 7,
As 8, a heater, an induction heating coil or the like is used.
The upper heating device 7 can be arranged inside the evaporation tank 2 (FIG. 5) or above the outside (FIG. 6). Further, temperature sensors 9 such as thermocouples are provided above and below the evaporation material 3 in the evaporation tank 2, and the heating conditions of the heating devices 7 and 8 are controlled so that the temperature gradients in the vertical direction and the horizontal direction are within a predetermined range. To do. For example, in order to suppress the heat flow from the surface layer of the evaporation material 3 to the lower layer, the lower temperature is set to be equal to or higher than the upper temperature. The upper temperature sensor 9 is preferably installed at a portion deeper than 10 mm from the surface of the melt, avoiding the surface layer portion where the temperature fluctuation due to evaporation is large. Instead of the lower heating device 8, a side heating device 10 such as a high frequency heating device that heats the lower side surface of the evaporation tank 2 as shown in FIG. 7 can be used.

【0010】上部加熱装置7と下部加熱装置8又は側部
加熱装置10とを組み合わせることにより、蒸発材料3
の上部温度以上に下部温度を設定するとき、蒸発材料3
の表層から下部に向かった熱流がない状態が得られる。
また、蒸発槽の下部から放出される熱量は、下部加熱装
置8又は側部加熱装置10で補償される。そのため、上
部から加熱しても蒸発材料3の表層部が過度に加熱され
ず、表層の高温化に起因したスプラッシュの発生が抑制
される。更に、下部からの熱供給により表層部へ向かっ
た熱流が存在する状態にすると、表層部の温度上昇が抑
えられ、結果としてスプラッシュの発生が一層抑制され
る。このようにして、本発明によるとき、スプラッシュ
のない状態で蒸発速度を大きくできる。また、蒸着速度
を上げるためにシャッター開度を大きくし、蒸発槽2内
部の圧力が低下した場合にあっても、スプラッシュが発
生しなくなる。
By combining the upper heating device 7 and the lower heating device 8 or the side heating device 10, the evaporation material 3
When setting the lower temperature above the upper temperature of the
There is no heat flow from the surface layer to the bottom.
The amount of heat released from the lower part of the evaporation tank is compensated by the lower heating device 8 or the side heating device 10. Therefore, even if it heats from the upper part, the surface layer part of the evaporation material 3 is not excessively heated, and the generation of splash due to the temperature rise of the surface layer is suppressed. Further, when the heat flow toward the surface layer exists due to the heat supply from the lower part, the temperature rise in the surface layer is suppressed, and as a result, the generation of splash is further suppressed. In this way, according to the present invention, the evaporation rate can be increased without splash. Further, even if the shutter opening is increased to increase the vapor deposition rate and the pressure inside the evaporation tank 2 is reduced, the splash does not occur.

【0011】[0011]

【実施例】ダクト6,シャッター5に連なった350m
m×55mmサイズの鉄製蒸発槽2を真空槽に設置し、
図5の加熱方式で蒸発材料3を加熱した。上部加熱装置
7及び下部加熱装置8には黒鉛ヒータを使用した。蒸発
材料3としてのMgは、大気雰囲気中で下方に配置され
ている溶解槽(図示せず)からシュノーケル1を介して
蒸発槽2に供給した。蒸発槽2内にある蒸発材料3の表
面高さは、溶解槽を上下動させることによって一定値1
50mmに維持した。蒸発材料3の温度は、上部では融
液表面から12mm下の位置で測定し、下部では底面か
ら35mm上の位置で測定した。発生した蒸気は、シャ
ッター5から流出し、ダクト6を経由して基板(めっき
原板)に到達した。シャッター5の開度は、1500m
2 に設定した。
[Example] 350 m connected to duct 6 and shutter 5
The iron evaporation tank 2 of mx 55 mm size is installed in the vacuum tank,
The evaporation material 3 was heated by the heating method shown in FIG. Graphite heaters were used for the upper heating device 7 and the lower heating device 8. Mg as the evaporation material 3 was supplied to the evaporation tank 2 through the snorkel 1 from a melting tank (not shown) arranged below in the air atmosphere. The surface height of the evaporation material 3 in the evaporation tank 2 is fixed to 1 by moving the melting tank up and down.
It was maintained at 50 mm. The temperature of the evaporation material 3 was measured at a position 12 mm below the melt surface in the upper part, and at a position 35 mm above the bottom surface in the lower part. The generated steam flows out from the shutter 5 and reaches the substrate (plating original plate) via the duct 6. The opening of the shutter 5 is 1500 m
m 2 .

【0012】この条件下でスプラッシュの発生状況を調
査した。粒径が0.5mm以下のスプラッシュは、シャ
ッター5及びダクト6を通過するため、ダクト6の先端
を通過する基板上でスプラッシュの有無を調査した。数
mm以上の大きなスプラッシュは、シャッター5を通過
しにくいため、蒸発槽2の側方に設けた覗き窓から観測
し、スプラッシュの有無を調査した。なお、覗き窓に
は、曇り防止用にArガスを吹き付けた。比較のため、
図2及び図4の加熱方式によってMgを蒸発させ、スプ
ラッシュ発生の有無を調査した。この場合、蒸発槽2及
びヒータ4には前述した本発明例と同じものを使用し、
また温度センサーも同じ位置にセットした。
Under these conditions, the occurrence of splash was investigated. Since the splash having a particle size of 0.5 mm or less passes through the shutter 5 and the duct 6, the presence / absence of splash on the substrate passing through the tip of the duct 6 was examined. Since a large splash of several mm or more does not easily pass through the shutter 5, it was observed through a viewing window provided on the side of the evaporation tank 2 to investigate the presence or absence of splash. Ar gas was sprayed on the viewing window to prevent fogging. For comparison,
Mg was evaporated by the heating method shown in FIGS. 2 and 4, and the presence or absence of splash was investigated. In this case, the evaporation tank 2 and the heater 4 are the same as those of the above-described example of the present invention,
The temperature sensor was also set at the same position.

【0013】以上の各蒸発槽2で、Mgを蒸発させた。
なお、真空槽は、真空中の残留ガスが窒素となるよう
に、真空度0.05トールの真空雰囲気に維持した。各
蒸発法ごとにスプラッシュの有無を調査した結果を表1
に示す。表1から明らかなように、上部及び下部から蒸
発材料3を加熱した本発明例では、数mm以上の大きい
スプラッシュ及び0.5mm以下の小さなスプラッシュ
の何れも発生しておらず、安定条件下でMgの蒸発を継
続できることが判った。これに対し、図2の加熱方式を
採用した比較例では、大径スプラッシュが観察され、蒸
発条件が不安定であった。また、図4の上部加熱方式を
採用した場合でも、小径スプラッシュの発生が抑制でき
ず、蒸着物にスプラッシュ起因に欠陥が持ち込まれがち
であった。
Mg was evaporated in each of the evaporation tanks 2 described above.
The vacuum chamber was maintained in a vacuum atmosphere with a vacuum degree of 0.05 Torr so that the residual gas in the vacuum was nitrogen. Table 1 shows the results of a survey on the presence of splash for each evaporation method.
Shown in As is clear from Table 1, in the example of the present invention in which the evaporation material 3 was heated from the upper part and the lower part, neither a large splash of several mm or more and a small splash of 0.5 mm or less occurred, and under stable conditions. It was found that the evaporation of Mg can be continued. On the other hand, in the comparative example adopting the heating method of FIG. 2, a large-diameter splash was observed and the evaporation condition was unstable. Further, even when the upper heating method of FIG. 4 was adopted, the generation of small diameter splash could not be suppressed, and defects were apt to be introduced into the deposit due to splash.

【0014】 [0014]

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は、蒸発材料であるMg融液に表層から下部に向かった
熱流が生じないように温度勾配を制御することにより、
融液表面で発生しがちなスプラッシュを抑制している。
そのため、蒸発条件が安定化し、ダクトを介して一定量
の蒸気を送り出すことができ、またスプラッシュに起因
した欠陥がない高品質の蒸着めっきが得られる。このよ
うに、本発明のMg蒸発法は、蒸着めっきラインにおい
て高品質の蒸着めっきを形成する有効な蒸発法となる。
As described above, in the present invention, by controlling the temperature gradient so that the heat flow from the surface layer to the lower part does not occur in the Mg melt which is the evaporation material,
It suppresses the splash that tends to occur on the melt surface.
Therefore, the evaporation conditions are stabilized, a certain amount of steam can be sent out through the duct, and high-quality vapor deposition plating free from defects due to splash can be obtained. As described above, the Mg evaporation method of the present invention is an effective evaporation method for forming high-quality evaporation plating in an evaporation plating line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 融液表面でスプラッシュが発生するメカニズ
ムを説明する図
FIG. 1 is a diagram for explaining the mechanism of splash generation on the melt surface.

【図2】 従来の下部加熱方式でMgを蒸発させる蒸発
FIG. 2 is an evaporation tank for evaporating Mg by a conventional lower heating method.

【図3】 従来の側部加熱方式でMgを蒸発させる蒸発
FIG. 3 is an evaporation tank for evaporating Mg by a conventional side heating method.

【図4】 従来の上部加熱方式でMgを蒸発させる蒸発
FIG. 4 is an evaporation tank for evaporating Mg by a conventional upper heating method.

【図5】 本発明に従って上部加熱及び下部加熱を組み
合わせた加熱方式でMgを蒸発させる蒸発槽
FIG. 5 is an evaporation tank for evaporating Mg by a heating method combining upper heating and lower heating according to the present invention.

【図6】 同じく上部加熱及び下部加熱を組み合わせた
加熱方式でMgを蒸発させる蒸発槽
[Fig. 6] Similarly, an evaporation tank for evaporating Mg by a heating method that also combines upper heating and lower heating.

【図7】 同じく上部加熱及び側部加熱を組み合わせた
加熱方式でMgを蒸発させる蒸発槽
[Fig. 7] Similarly, an evaporation tank for evaporating Mg by a heating method that also combines upper heating and side heating.

【符号の説明】[Explanation of symbols]

1:シュノーケル 2:蒸発槽 3:蒸発材料(M
g) 4:ヒータ 5:シャッター 6:ダクト 7:上部加熱装置
8:下部加熱装置 9:温度センサー 10:側部加熱装置
1: Snorkel 2: Evaporation tank 3: Evaporation material (M
g) 4: heater 5: shutter 6: duct 7: upper heating device
8: Lower heating device 9: Temperature sensor 10: Side heating device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸発槽に送り込んだ溶融Mg浴を表面か
ら加熱して蒸発させる際、溶融Mg浴の表層から下方に
向かう熱流がない温度勾配となるように、溶融Mg浴の
下部又は側部を加熱することを特徴とするMg蒸発方
法。
1. A lower portion or a side portion of the molten Mg bath so that when the molten Mg bath sent to the evaporation tank is heated from the surface to be evaporated, there is no temperature flow downward from the surface layer of the molten Mg bath. A method of evaporating Mg, comprising:
【請求項2】 溶融Mg浴の上部温度及び下部温度を測
定し、測定結果に基づき溶融Mg浴を表面から加熱する
上部加熱装置と下部又は側部から加熱する下部加熱装置
又は側部加熱装置に供給する電力を制御する請求項1記
載のMg蒸発方法。
2. An upper heating device for heating the molten Mg bath from the surface and a lower heating device or side heating device for heating the molten Mg bath from the surface based on the measurement results. The Mg evaporation method according to claim 1, wherein the supplied electric power is controlled.
JP29733995A 1995-10-20 1995-10-20 Magnesium evaporating method Withdrawn JPH09111441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29733995A JPH09111441A (en) 1995-10-20 1995-10-20 Magnesium evaporating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29733995A JPH09111441A (en) 1995-10-20 1995-10-20 Magnesium evaporating method

Publications (1)

Publication Number Publication Date
JPH09111441A true JPH09111441A (en) 1997-04-28

Family

ID=17845248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29733995A Withdrawn JPH09111441A (en) 1995-10-20 1995-10-20 Magnesium evaporating method

Country Status (1)

Country Link
JP (1) JPH09111441A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337105B1 (en) 1997-07-14 2002-01-08 Matsushita Electric Industrial Co., Ltd. Method and apparatus for forming thin functional film
JP2007063660A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Inorganic vapor deposition source and method for controlling heat source therefor
US7905961B2 (en) 2005-08-31 2011-03-15 Samsung Mobile Display Co., Ltd. Linear type deposition source
US8048229B2 (en) 2005-08-31 2011-11-01 Samsung Mobile Display Co., Ltd. Apparatus for depositing an organic layer and method for controlling a heating unit thereof
KR101101339B1 (en) * 2003-06-27 2012-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337105B1 (en) 1997-07-14 2002-01-08 Matsushita Electric Industrial Co., Ltd. Method and apparatus for forming thin functional film
KR101101339B1 (en) * 2003-06-27 2012-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing apparatus
JP2007063660A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Inorganic vapor deposition source and method for controlling heat source therefor
JP4648868B2 (en) * 2005-08-31 2011-03-09 三星モバイルディスプレイ株式會社 Inorganic vapor deposition source heating source control method
US7905961B2 (en) 2005-08-31 2011-03-15 Samsung Mobile Display Co., Ltd. Linear type deposition source
US8048229B2 (en) 2005-08-31 2011-11-01 Samsung Mobile Display Co., Ltd. Apparatus for depositing an organic layer and method for controlling a heating unit thereof

Similar Documents

Publication Publication Date Title
KR102535908B1 (en) Apparatus and method for vacuum deposition
KR101530183B1 (en) Industrial vapour generator for the deposition of an alloy coating onto a metal strip
WO2006075998A2 (en) Means and method for a liquid metal evaporation source with integral level sensor and external reservoir
KR100287978B1 (en) MG evaporation method with increased evaporation rate
JPH09111441A (en) Magnesium evaporating method
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
KR20180016150A (en) Evaporation source with Plate for Preventing Spitting
JPH09137268A (en) Method for evaporating magnesium
JP2021526186A (en) device
US3373050A (en) Deflecting particles in vacuum coating process
WO2021057921A1 (en) Vacuum plating device
JP2005082872A (en) Vapor deposition system and vapor deposition method
US3836387A (en) Method of vaporizing metal
JP4056680B2 (en) Film forming apparatus and method
JP2000017427A (en) Gas deposition method and its apparatus
JPH09111440A (en) Vaporization method suppressing splashing and device therefor
US3672327A (en) Vaporization of metal for vacuum metalizing
JP4344631B2 (en) Molecular beam source for organic thin film deposition
JPH01275750A (en) Thin metallic film manufacturing equipment
US3504094A (en) Method and apparatus for feeding particulate material to a rotating vacuum vaporization crucible
JPH0544023A (en) Method and device for evaporating substance
JPH0892734A (en) Evaporation of mg
WO2012090436A1 (en) Casting device and casting method
JP4996452B2 (en) Deposition source, deposition system
JPH01263265A (en) Vacuum arc deposition method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107