JPH09111383A - Permanent magnet alloy and its production - Google Patents

Permanent magnet alloy and its production

Info

Publication number
JPH09111383A
JPH09111383A JP7293617A JP29361795A JPH09111383A JP H09111383 A JPH09111383 A JP H09111383A JP 7293617 A JP7293617 A JP 7293617A JP 29361795 A JP29361795 A JP 29361795A JP H09111383 A JPH09111383 A JP H09111383A
Authority
JP
Japan
Prior art keywords
alloy
phase
casting
mold
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7293617A
Other languages
Japanese (ja)
Other versions
JP4048568B2 (en
Inventor
Atsushi Otaki
篤史 大滝
Nobuhiko Kawamura
伸彦 河村
Hideo Tamamura
英雄 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP29361795A priority Critical patent/JP4048568B2/en
Publication of JPH09111383A publication Critical patent/JPH09111383A/en
Application granted granted Critical
Publication of JP4048568B2 publication Critical patent/JP4048568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy capable of controlling the dispersion of magnetic properties and further improving magnetic properties by preparing a permanent magnet alloy, particularly Sm-Co alloy, in which distances between leading phases of the whole ingot are properly arranged and segregation is reduced. SOLUTION: Centrifugal casting is performed under the condition of <=0.5cm/ sec average accumulation rate, by which the permanent magnet alloy having a structure in which the distances between leading phases of the whole ingot are regulated to <=200μm is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類磁石用合金の原料
となる原料合金およびこの原料合金の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy as a raw material for an alloy for rare earth magnets and a method for producing the raw material alloy.

【0002】[0002]

【従来の技術】希土類磁石用原料合金の鋳造方法として
従来からそのマクロ組織が柱状晶組織となるように箱型
等の鋳型に鋳造する方法が提案されている(特開平3−
247736)。一般に柱状晶組織を得る為には冷却速
度を速める必要があり、従来の箱型等の鋳型を用いた鋳
造法で、インゴットの厚さが薄くなるように鋳型を設定
する必要が生じた。その場合、大容量の溶湯を鋳造する
為にはインゴットを薄くした分、面積を大きくする必要
が生じる。しかし、そのような鋳型では、鋳型間隔の狭
い注湯部に大量の溶湯を注ぐ必要があり、鋳型が溶損し
易いといった問題が生ずる。また、溶湯は鋳型内を流れ
る際、温度が低下し、一方鋳型は溶湯の通過量の多い注
湯部に近い鋳型壁面ほど、より高温に加熱される。その
ため、注湯部近くと注湯部から離れた部分では溶湯およ
び凝固後のインゴットの冷却状態が異なり、得られるイ
ンゴットもその影響を受け、場所により異なった組織と
なり、全体として望ましい組織のインゴットとすること
は極めて難しくなる。
2. Description of the Related Art As a casting method of a raw material alloy for rare earth magnets, a method of casting in a box-shaped mold such that the macrostructure thereof has a columnar crystal structure has been conventionally proposed (Japanese Patent Laid-Open No. HEI 3).
247736). Generally, it is necessary to increase the cooling rate in order to obtain a columnar crystal structure, and it is necessary to set the mold so that the thickness of the ingot becomes thin by the conventional casting method using a mold such as a box shape. In that case, in order to cast a large volume of molten metal, it is necessary to make the area larger by the amount corresponding to the thinner ingot. However, in such a mold, it is necessary to pour a large amount of molten metal into a molten metal portion having a narrow mold interval, which causes a problem that the mold is easily melted. Further, the temperature of the molten metal decreases as it flows in the mold, while the mold is heated to a higher temperature as the wall surface of the mold is closer to the pouring portion where the molten metal passes through more. Therefore, the cooling state of the molten metal and the ingot after solidification is different near the pouring part and the part away from the pouring part, the resulting ingot is also affected by it, and the structure becomes different depending on the location, and the ingot of the desirable structure as a whole is It will be extremely difficult to do.

【0003】例えば、Sm−Co系磁石用合金では、注
湯部近傍では溶湯による鋳型の予熱効果により冷却速度
が遅くなり、等軸晶の発生や組織の粗大化が生じる。一
方、注湯部から離れた部分では溶湯がその位置に到達す
るまでに温度が下がり過ぎ、柱状晶組織を得る為の十分
な温度勾配が得られず、細かい等軸晶組織となる。ま
た、Zrの添加を必須とするSm2 Co17系磁石用合金
では、従来の鋳型への鋳造法ではたとえマクロ組織が柱
状晶組織となっていてもZrの偏析が確認されている。
Zrは他のSm−Co系必須元素に比べ拡散係数が小さ
い為、鋳造時に偏析したZrは焼結過程末期においても
しばしばZrが濃縮した相となって焼結体中に存在する
事となり、良好な磁石特性が得られないという致命的な
欠点を有する事となる。
For example, in an alloy for Sm-Co magnets, the cooling rate becomes slow in the vicinity of the pouring portion due to the preheating effect of the mold by the molten metal, which causes equiaxed crystals and coarsening of the structure. On the other hand, in the portion away from the pouring portion, the temperature of the molten metal is too low by the time it reaches the position, a sufficient temperature gradient for obtaining a columnar crystal structure cannot be obtained, and a fine equiaxed crystal structure is obtained. Further, in the Sm 2 Co 17 magnet alloy for which Zr must be added, segregation of Zr has been confirmed by the conventional casting method using a mold even if the macrostructure has a columnar crystal structure.
Since Zr has a smaller diffusion coefficient than other Sm-Co-based essential elements, Zr segregated during casting is often present in the sintered body as a concentrated Zr phase even at the end of the sintering process. It has a fatal drawback that excellent magnetic properties cannot be obtained.

【0004】この問題を解決する方法として、Fe−C
o−Sm中間原料合金とZr偏析相が存在せず、低融点
合金であるCu−Zr−Fe−Co−Sm中間原料合金
を得て、これらを適当な組成が得られるような比で混合
・微粉砕した後、成形・焼結する方法が提案されている
(特開平3−252103)。しかし、この方法では合
金を二品種持つ必要がある事及びブレンド工程が増える
事による製造コストの増加が問題となり、さらにブレン
ド工程での均一分散性などの問題が発生する。
As a method for solving this problem, Fe--C
An o-Sm intermediate raw material alloy and a Zr segregation phase do not exist, and a low melting point alloy Cu-Zr-Fe-Co-Sm intermediate raw material alloy is obtained, and these are mixed at a ratio such that an appropriate composition is obtained. A method of forming and sintering after pulverizing has been proposed (JP-A-3-252103). However, in this method, it is necessary to have two kinds of alloys and an increase in manufacturing cost due to an increase in the blending process becomes a problem, and further problems such as uniform dispersibility in the blending process occur.

【0005】鋳造法以外の試みとしては、単ロール、双
ロール等の薄板連鋳法(ストリップキャスト法)の設備
を用いて、箔状インゴット(特開平3−247729)
または柱状晶組織を持つ箔状インゴット(特開平4−1
6923)を得る方法が提案されている。しかし、これ
らの方法では特殊で高価な鋳造設備を必要とすると同時
に、高活性の希土類元素を含む溶湯を長時間保持し、少
量ずつ供給するためルツボ、保持炉あるいはタンディッ
シュと溶湯との反応により成分が変動し易い。また、温
度を一定に保ち、定常状態で安定した鋳造を持続させる
のが極めて難しく、収率が低いといった問題がある。さ
らに、箔状である為、インゴットの表面の占める割合が
非常に大きくなり、酸化や保存容器等の取扱い上の困難
が生じる。
As an attempt other than the casting method, a foil ingot (Japanese Unexamined Patent Publication (Kokai) No. 3-247729) is used by using a thin plate continuous casting method (strip casting method) such as a single roll or a twin roll.
Alternatively, a foil-shaped ingot having a columnar crystal structure (Japanese Patent Laid-Open No. 4-1
6923) has been proposed. However, these methods require special and expensive casting equipment and, at the same time, hold a molten metal containing a highly active rare earth element for a long time and supply it little by little by using a crucible, a holding furnace or a reaction between the tundish and the molten metal. The components are easy to change. Further, it is extremely difficult to keep the temperature constant and keep stable casting in a steady state, and there is a problem that the yield is low. Furthermore, since it is foil-shaped, the proportion of the surface of the ingot becomes very large, which causes oxidation and difficulty in handling the storage container.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような問
題点を解決した、Sm−Co系焼結磁石用合金およびボ
ンド磁石用合金とその製造方法を提供するものである。
即ち、薄板連鋳法のような特殊で高価な鋳造設備を必要
とせず、従来の鋳造法での各位置もしくは冷却面から中
央部にかけて各相の大きさの大幅な変動や、場所による
濃度偏析等の問題による特性劣化等を解決するため、希
土類磁石用合金として望まれている鋳造後のミクロ組織
に於て、主相サイズがインゴット全体に均一に分布した
磁石用合金、さらにはZrを必須添加元素とする磁石用
合金の場合には、Zr偏析相のない合金を提供しようと
するものである。本発明の鋳造方法は、管状の鋳物の製
造として工業的に確立している遠心鋳造法に着目し、加
えて、溶湯の供給方法、鋳造速度、冷却方法等を工夫す
ることにより、上記インゴットの製造が可能となる鋳造
方法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides an alloy for Sm-Co based sintered magnets, an alloy for bonded magnets, and a method for producing the same, which solves the above problems.
In other words, it does not require special and expensive casting equipment such as thin plate continuous casting method, and greatly varies the size of each phase from the cooling surface to the central portion in the conventional casting method, and the concentration segregation depending on the location. In order to solve the characteristic deterioration due to problems such as the above, in the microstructure after casting, which is desired as an alloy for rare earth magnets, an alloy for magnets in which the main phase size is uniformly distributed throughout the ingot, and further Zr is essential. In the case of a magnet alloy containing an additive element, it is intended to provide an alloy having no Zr segregation phase. The casting method of the present invention focuses on the centrifugal casting method that has been industrially established as the production of tubular castings, and in addition, by devising the method for supplying the molten metal, the casting speed, the cooling method, etc., the ingot The present invention provides a casting method that enables production.

【0007】遠心鋳造法を希土類磁石合金に応用した例
はあるが(特開平1−171217)、それは円筒状に
鋳造したものをそのまま磁石とする方法であり、希土類
磁石用原料合金の製造法については何ら言及されていな
い。また、超急冷法により柱状晶組織をもつ希土類磁石
用合金の薄板を製造する例(特開平4−16923)の
中に、超急冷法として、双ロール、ピストンアンドビ
ル、遠心急冷法、片ロール等が例として述べられている
が、一般的に超急冷法での遠心急冷法は、遠心噴霧法や
回転液中紡糸法を指し(アモルファス材料、東京大学出
版会)、遠心鋳造法とは発想を異にし、本発明とは冷却
条件が異なり得られる鋳造組織も異なるものである。
Although there is an example in which the centrifugal casting method is applied to a rare earth magnet alloy (Japanese Patent Laid-Open No. 1-171217), it is a method in which a cylindrically cast product is directly used as a magnet. Is not mentioned at all. Further, in an example of producing a thin plate of an alloy for a rare earth magnet having a columnar crystal structure by the ultra-quenching method (JP-A-4-16923), a twin-roll, a piston and bill, a centrifugal quenching method, a single-roll method can be used as the ultra-quenching method. , Etc., the centrifugal quenching method in the ultra-quenching method generally refers to the centrifugal atomization method and the spinning method in the rotating liquid (amorphous material, The University of Tokyo Press), and the idea of centrifugal casting method Different from the present invention, the cooling structure is different, and the obtained cast structure is also different.

【0008】[0008]

【課題を解決するための手段】希土類磁石、特にSm−
Co系磁石において磁石特性に影響を及ぼす鋳造後の合
金組織を詳しく調査したところ、磁石作成工程における
焼結・溶体化処理・時効処理等の各熱処理の際、各処理
で相間距離や各元素の濃度分布のバラツキをいかにして
なくすかが特性に大きく影響を及ぼすことを見出した。
さらに、各処理の処理時間を短くする為には、鋳造後の
各相間距離が短いほど有効であることを見出した。本発
明では、従来法と同じようにまず真空あるいはArガス
等の不活性雰囲気中にて希土類元素を含む磁石用合金を
溶解し、合金溶湯を回転する円筒状鋳型に供給する。鋳
造された合金は円筒状鋳型の内面に円筒状に堆積凝固す
る。堆積された鋳造体は薄層が多数重なった積層構造と
なる。それは注湯された溶湯の薄層が1回転する間に半
固状もしくは固状に凝固し、その上に溶湯が注湯され、
それが半固状もしくは固状に凝固するため冷却速度が早
まる。これが繰り返されることによって積層構造とな
る。本発明によりインゴット全体として均一かつ微細な
組織を得る事が可能となり、さらに、注湯温度、溶湯堆
積速度、鋳型材質、鋳型冷却方法、鋳型径、鋳型厚、回
転速度(遠心力)等変化させることにより、鋳造後の各
相間距離を任意に選定する事が可能となる。
Means for Solving the Problems Rare earth magnets, especially Sm-
A detailed investigation of the alloy structure after casting that affects the magnet characteristics in Co-based magnets revealed that during each heat treatment such as sintering, solution treatment, aging treatment, etc., the interphase distance and the element It was found that how to eliminate the variation in concentration distribution has a great influence on the characteristics.
Furthermore, it has been found that the shorter the inter-phase distance after casting is, the more effective it is to shorten the processing time of each processing. In the present invention, as in the conventional method, the magnet alloy containing a rare earth element is first melted in a vacuum or an inert atmosphere such as Ar gas, and the alloy melt is supplied to a rotating cylindrical mold. The cast alloy is deposited and solidified in a cylindrical shape on the inner surface of the cylindrical mold. The cast body thus deposited has a laminated structure in which many thin layers are superposed. It is a semi-solid or solid solidification of a thin layer of the poured molten metal in one revolution, and the molten metal is poured on it.
Since it solidifies in a semi-solid or solid state, the cooling rate becomes faster. By repeating this, a laminated structure is obtained. According to the present invention, it is possible to obtain a uniform and fine structure as the whole ingot, and further change the pouring temperature, the melt deposition rate, the mold material, the mold cooling method, the mold diameter, the mold thickness, the rotation speed (centrifugal force), etc. This makes it possible to arbitrarily select the inter-phase distance after casting.

【0009】本発明の磁石用合金において、主相間距離
が200μmを越えた場合、均一組織のメリットが薄
れ、従来の鋳造法と同じ結果となる為、主相間距離の値
を200μm以下とした。なお、主相間距離は例えば電
子顕微鏡による組織観察写真(反射電子線像)を用い
て、JISG0552に規定する切断法と同様に、直交
する2本の線分で切断される同相の数nを求め、同時に
同相と重なる線分の合計長さΣLを求め、ΣL/nを計
算することにより求める事ができる。本発明での主相間
距離の測定方法を図1に示す。反射電子線写真の各方向
の中点に線分AB及びCDを引き、各線分で切断される
粒界相(Sm2 Co17系合金ではSm2 Co7 相及びS
mCo5 相を粒界相とし、SmCo5 系合金ではSm2
Co7 相を粒界相とする。)の数n1を求め、同時に線
分AB及びCDを実寸長さに換算し、実寸での合計長さ
ΣL1を求め、ΣL1/n1を計算する事により主相間
距離を測定した。また、本発明では、ミクロ組織である
各相の均一性や大きさが重要であり、そのマクロ組織で
あるチル晶、等軸晶、柱状晶、混晶等を何ら規定するも
のではない。
In the magnet alloy of the present invention, when the main phase distance exceeds 200 μm, the merit of uniform structure is diminished and the same result as the conventional casting method is obtained. Therefore, the value of the main phase distance is set to 200 μm or less. For the distance between the main phases, for example, by using a structure observation photograph (reflection electron beam image) by an electron microscope, the number n of in-phases cut by two orthogonal line segments is obtained in the same manner as the cutting method defined in JIS G0552. At the same time, it is possible to obtain the total length ΣL of the line segments that overlap the same phase and calculate ΣL / n. The method of measuring the distance between the main phases in the present invention is shown in FIG. Pull the line segment AB and CD in each direction of the midpoint of the reflective electron beam photographs, the grain boundary phase (Sm 2 Co 17 alloy is cut at each line segment Sm 2 Co 7 phase and S
The mCo 5 phase is used as the grain boundary phase and Sm 2 is used in the SmCo 5 alloy.
The Co 7 phase is used as the grain boundary phase. ), The line segments AB and CD are simultaneously converted to actual lengths, the total length ΣL1 at actual sizes is obtained, and ΣL1 / n1 is calculated to measure the main phase distance. Further, in the present invention, the homogeneity and size of each phase which is a microstructure is important, and the chill crystals, equiaxed crystals, columnar crystals, mixed crystals and the like which are macrostructures thereof are not defined at all.

【0010】次に溶解鋳造方法について説明する。本発
明では、従来法と同じように、まず希土類元素を含む合
金成分となる純金属、母合金等を真空あるいはアルゴン
ガス等の不活性雰囲気中にて溶解する。次に溶解後鋳造
する際、遠心鋳造を行う。溶解設備は特に限定されな
い。通常用いられている真空誘導溶解炉を用いて真空中
あるいは不活性ガス雰囲気中で溶解することが可能であ
る。遠心鋳造設備も基本的には、通常の鋼管等の製造に
用いられている設備と同様、主に回転駆動機構と円筒状
の鋳型より構成される。但し、本発明では得られる合金
のインゴットの組織が重要であり、形状については、設
備の作りやすさ、鋳造のしやすさ、鋳型の保守やセット
のしやすさ、鋳造インゴットの取り出しやすさ等の作業
性を考慮して決めることができる。鋳型の回転速度は実
用上は溶湯が鋳型の上部に達した時に、落下しないよう
少なくとも1G以上となるような回転速度が望ましい。
さらに遠心力を大きくすることにより、鋳造された溶湯
が遠心力で広がりやすくなり、冷却効果が高まり、均一
性も向上させることができる。このような効果を高める
ためには、好ましくは3G以上となるように設定する。
Next, the melting and casting method will be described. In the present invention, as in the conventional method, first, a pure metal, a mother alloy, or the like, which is an alloy component containing a rare earth element, is melted in a vacuum or an inert atmosphere such as argon gas. Next, when casting after melting, centrifugal casting is performed. The melting equipment is not particularly limited. It is possible to dissolve in a vacuum or an inert gas atmosphere using a vacuum induction melting furnace which is generally used. Centrifugal casting equipment is also basically composed of a rotary drive mechanism and a cylindrical mold, as is the case with equipment used for manufacturing ordinary steel pipes and the like. However, the structure of the alloy ingot obtained in the present invention is important, for the shape, ease of making equipment, ease of casting, ease of mold maintenance and setting, ease of removal of the cast ingot, etc. It can be decided in consideration of workability. The rotational speed of the mold is practically desirable to be at least 1 G or more so as not to drop when the molten metal reaches the upper part of the mold.
By further increasing the centrifugal force, the cast molten metal is likely to spread by the centrifugal force, the cooling effect is enhanced, and the uniformity can be improved. In order to enhance such an effect, it is preferably set to 3G or more.

【0011】鋳造時の溶湯の供給速度は以下に述べる理
由から極めて重要であり、通常の管状の鋳造体を得る時
の条件とは全く異なる条件が選定される。通常の遠心鋳
造では、溶湯が溶けている状態で、長手方向に均一な厚
さで流れ込むように、また湯境等の鋳造欠陥が生じない
よう、鋳造は短時間で行われる。本発明では、次の溶湯
が供給される前に、先に鋳型に供給された溶湯の凝固が
進行していることが重要であり、溶湯の鋳型内壁面への
平均堆積速度は小さい方が望ましい。具体的には、平均
堆積速度は0.5cm/秒以下さらに望ましくは0.0
5cm/秒以下とする。
The molten metal supply rate at the time of casting is extremely important for the following reason, and a condition completely different from the condition for obtaining an ordinary tubular cast body is selected. In normal centrifugal casting, casting is carried out in a short time so that molten metal is melted and flows in a uniform thickness in the longitudinal direction, and casting defects such as molten metal boundaries do not occur. In the present invention, before the next molten metal is supplied, it is important that the solidification of the molten metal previously supplied to the mold is progressing, and it is desirable that the average deposition rate of the molten metal on the inner wall surface of the mold is small. . Specifically, the average deposition rate is 0.5 cm / sec or less, more preferably 0.0
5 cm / sec or less.

【0012】このような条件で鋳造することにより、既
に鋳造された溶湯は次の溶湯が供給される前に、凝固が
進行するようになり、即ち表面近傍が常に半凝固もしく
は凝固状態となるため、冷却面から最終凝固位置にいた
るまでのすべての位置において、主相径のそろった偏析
の少ない合金インゴットを得ることが可能となる。特
に、Zrを必須添加元素とするSm−Co系合金では、
Zrが偏析しやすく熱処理時に拡散されにくいZrの偏
析を抑え、均一分散させる事が可能となり、良好な磁石
特性を得ることが可能となる。さらに、主相径をも細か
くなる条件を選ぶ事により、焼結・溶体化処理・時効処
理等の熱処理の時間を短縮する事が可能となり、磁石作
成工程での生産性の向上等も達成可能となる。
By casting under such conditions, the already cast molten metal will be solidified before the next molten metal is supplied, that is, the vicinity of the surface is always semi-solidified or solidified. At all positions from the cooling surface to the final solidification position, it is possible to obtain an alloy ingot with a uniform main phase diameter and less segregation. In particular, in the Sm-Co alloy containing Zr as an essential additive element,
It is possible to suppress the segregation of Zr which is easily segregated and is hardly diffused during the heat treatment, and to disperse the Zr uniformly, and it is possible to obtain good magnet characteristics. Furthermore, by selecting conditions that also make the main phase diameter finer, it is possible to shorten the time of heat treatment such as sintering, solution treatment, aging treatment, etc., and it is also possible to improve productivity in the magnet manufacturing process etc. Becomes

【0013】ところで、湯道上あるいは供給口での湯流
れ性を確保し、供給口の閉塞等の問題を起こさないよう
にする為には溶湯の単位時間当たりの供給量はあるレベ
ル以上とする必要がある。しかし、設備の大型化ととも
に溶解量が増加し、鋳型の総面積も大きくなるため、溶
湯供給量を小さくしなくとも、平均堆積速度を低い値に
設定するのが技術的に容易となる。また、鋳造する際、
鋳型内面への溶湯の供給を2箇所以上から行うことによ
って、また、さらに鋳型の長手方向に溶湯の供給口を往
復運動させながら鋳造することによって、鋳型内壁によ
り均一に薄く供給することが可能となり、さらに凝固層
の発達を促進することができる。
By the way, in order to ensure the flowability of the molten metal on the runway or at the supply port and to prevent problems such as blockage of the supply port, the supply amount of molten metal per unit time must be above a certain level. There is. However, as the equipment size increases, the melting amount increases and the total area of the mold also increases, so it is technically easy to set the average deposition rate to a low value without reducing the molten metal supply amount. Also, when casting
By supplying the molten metal to the inner surface of the mold from two or more locations, and further by casting while reciprocating the supply port of the molten metal in the longitudinal direction of the mold, it becomes possible to uniformly and thinly supply the molten metal to the inner wall of the mold. , Can further promote the development of the coagulation layer.

【0014】[0014]

【作用】本発明では、希土類磁石用合金、特にSm−C
o系合金において、遠心鋳造の採用に加えて溶湯の鋳造
条件を規定した。このことにより偏析のない、インゴッ
ト全体として主相径のそろった磁石用合金とすることに
より、磁石作成工程での焼結・溶体化処理・時効処理等
の熱処理において、部分的な粒成長や偏析を抑えること
が可能となり、磁石特性が向上もしくは安定することを
見出した。さらに、従来の鋳造法と比較し、同等もしく
は良好な結果を得る為の主相径の条件を規定した。
In the present invention, an alloy for rare earth magnets, especially Sm-C
For o-based alloys, in addition to adopting centrifugal casting, casting conditions for molten metal were specified. As a result, by using an alloy for magnets with a uniform main phase diameter as the whole ingot without segregation, partial grain growth and segregation can occur during heat treatment such as sintering, solution treatment, and aging treatment in the magnet manufacturing process. It has been found that it becomes possible to suppress the above, and the magnet characteristics are improved or stabilized. Further, as compared with the conventional casting method, the conditions of the main phase diameter for obtaining the same or good results were specified.

【0015】[0015]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 (実施例1〜4)表1に示すように、合金インゴットの
組成が、Sm:25.27重量%、Fe:15.84重
量%、Cu:5.37重量%、Zr:2.71重量%、
残部Coの組成となるように配合し、アルゴンガス雰囲
気中で、アルミナルツボを使用して高周波溶解炉で溶解
し、図2に示すような鋳型内径500mm長さ1000
mmの遠心鋳造装置を用いて、平均堆積速度0.01c
m/秒、0.04cm/秒、0.08cm/秒、0.1
0cm/秒で鋳造した。図においては1は鋳型で2及び
3はタンディッシュ、4は溶解炉が装備されている。鋳
型1は回転駆動機構6により回転される。溶湯41を溶
解炉4からタンディッシュ2及び3を通って鋳型1に注
湯し、鋳型内面にインゴットを生成させた。この時の鋳
型の回転数は、遠心力が20Gとなるように設定した。
また、往復運動タンディッシュ2を鋳型1の長手方向に
1秒/1往復で動かし、溶湯供給口の穴径、間隔および
ストロークを種々変更することにより、堆積速度を調整
した。
The present invention will be described in more detail with reference to the following examples. (Examples 1 to 4) As shown in Table 1, the composition of the alloy ingot was as follows: Sm: 25.27% by weight, Fe: 15.84% by weight, Cu: 5.37% by weight, Zr: 2.71% by weight. %,
The balance is blended so as to have a composition of Co, and is melted in a high frequency melting furnace using an alumina crucible in an argon gas atmosphere, and a mold inner diameter is 500 mm and a length is 1000 as shown in FIG.
Using a centrifugal casting machine of mm, an average deposition rate of 0.01c
m / sec, 0.04 cm / sec, 0.08 cm / sec, 0.1
It was cast at 0 cm / sec. In the figure, 1 is a mold, 2 and 3 are tundish, and 4 is equipped with a melting furnace. The mold 1 is rotated by the rotary drive mechanism 6. The molten metal 41 was poured from the melting furnace 4 through the tundish 2 and 3 into the mold 1 to form an ingot on the inner surface of the mold. The number of rotations of the mold at this time was set so that the centrifugal force was 20G.
Further, the reciprocating tundish 2 was moved in the longitudinal direction of the mold 1 at 1 second / reciprocation, and the hole diameter, interval and stroke of the molten metal supply port were variously changed to adjust the deposition rate.

【0016】[0016]

【表1】 [Table 1]

【0017】各条件での断面組織を反射電子顕微鏡で観
察し、主相間隔を測定した。測定位置は冷却面及びその
反対の面である自由面、さらに、厚さ方向に4等分した
各位置の計5点で測定した。この結果を図4に示す。こ
こで、冷却面近傍で観察される2−17相の単相組織
(ごく少量の1−5相の析出は単相組織として数えた)
での主相間隔を0とした。なお、図5に実施例1で得ら
れた合金インゴット(自由面側)の反射電子顕微鏡によ
る組織写真を示す。図5で白く見える相がSm1Co5
相で、その他灰色の相がSm2 Co17相である。いずれ
の条件においても冷却面から自由面にかけて主相間隔の
揃ったインゴットが得られることが確認できる。さら
に、堆積速度を変化させることにより任意に主相間隔を
調整することが可能であることが確認された。また、各
条件におけるZrの偏析相の有無を表1に併記した。偏
析相の有無は自由面側でランダムに5点EDXの面分析
をすることにより確認した。表1に示すように堆積速度
を速めることにより、遠心鋳造でもZrが偏析すること
が確認された。
The cross-sectional structure under each condition was observed with a reflection electron microscope to measure the main phase spacing. The measurement position was measured at a cooling surface, a free surface opposite to the cooling surface, and a total of 5 points at each position divided into four equal parts in the thickness direction. The result is shown in FIG. Here, the 2-17 phase single phase structure observed near the cooling surface (precipitation of a very small amount of 1-5 phase was counted as a single phase structure)
The main phase spacing at 0 was set to 0. Note that FIG. 5 shows a structure photograph of the alloy ingot (free surface side) obtained in Example 1 by a reflection electron microscope. The white-colored phase in Fig. 5 is Sm 1 Co 5
The other gray phase is the Sm 2 Co 17 phase. It can be confirmed that an ingot with a uniform main phase interval can be obtained from the cooling surface to the free surface under any of the conditions. Furthermore, it was confirmed that the main phase spacing can be adjusted arbitrarily by changing the deposition rate. The presence or absence of the Zr segregation phase under each condition is also shown in Table 1. The presence or absence of the segregation phase was confirmed by randomly performing a 5-point EDX surface analysis on the free surface side. As shown in Table 1, it was confirmed that by increasing the deposition rate, Zr segregated even in centrifugal casting.

【0018】次にそれぞれの合金インゴットを窒素ガス
中においてブラウンミルで35メッシュ以下まで粉砕し
た。さらにこの粉砕粉をヘキサン中で平均粒径が4.0
μmになるまでボールミル粉砕し、得られた微粉末を1
5kOeの磁場中にて1.5ton/cm2 の圧力で成
型した。得られた成型体をAr中1200℃で1時間焼
結した後、1150℃で1時間溶体化処理し急冷の後、
800℃で4時間保持した後、400℃まで30℃/時
間の冷却速度で連続冷却時効を行い磁石を作成した。得
られた磁石の特性を表1にまとめて示す。いずれの条件
においても保磁力のバラツキの少ない良好な磁石特性が
得られた。特に、堆積速度を遅めた場合極めて良好な磁
石特性を示す。
Next, each of the alloy ingots was pulverized in nitrogen gas with a brown mill to 35 mesh or less. Further, this pulverized powder was mixed with hexane to have an average particle size of 4.0
Ball-milled to μm, and the resulting fine powder was 1
It was molded at a pressure of 1.5 ton / cm 2 in a magnetic field of 5 kOe. The obtained molded body was sintered in Ar at 1200 ° C. for 1 hour, solution-treated at 1150 ° C. for 1 hour, and rapidly cooled.
After holding at 800 ° C for 4 hours, continuous cooling aging was performed up to 400 ° C at a cooling rate of 30 ° C / hour to prepare a magnet. The characteristics of the obtained magnet are summarized in Table 1. Good magnet characteristics with little variation in coercive force were obtained under any of the conditions. Particularly, when the deposition rate is slowed, extremely good magnet characteristics are exhibited.

【0019】(実施例5)表1に示すように、合金イン
ゴットの組成が、Sm:36.20重量%、残部Coの
組成となるようにアルゴンガス雰囲気で、アルミナルツ
ボを使用して高周波溶解炉で溶解し、実施例1〜4と同
じ方法により平均堆積速度0.04cm/秒で鋳造し
た。各条件での断面組織を反射電子顕微鏡で観察し、主
相間隔を測定した。測定位置は冷却面及びその反対の面
である自由面、さらに、厚さ方向に4等分した各位置の
計5点で測定した。この結果を図7に示す。本発明によ
るとSmCo5 系合金においても冷却面から自由面にか
けて主相間隔の揃ったインゴットが得られることが確認
できる。次にそれぞれの合金インゴットを窒素ガス中に
おいてブラウンミルで35メッシュ以下まで粉砕した。
さらにこの粉砕粉をヘキサン中で平均粒径が4.0μm
になるまでボールミル粉砕し、得られた微粉末を15k
Oeの磁場中にて2ton/cm2 の圧力で成型した。
得られた成型体をAr中1150℃で1時間焼結した
後、900℃で2時間溶体化処理し急冷し磁石を作成し
た。得られた磁石の特性を表1に示す。従来法と比較し
保磁力のバラツキの少ない良好な磁石特性が得られた。
(Example 5) As shown in Table 1, high-frequency melting was performed using an alumina crucible in an argon gas atmosphere so that the alloy ingot had a composition of Sm: 36.20 wt% and the balance of Co. It was melted in a furnace and cast by the same method as in Examples 1 to 4 at an average deposition rate of 0.04 cm / sec. The cross-sectional structure under each condition was observed with a reflection electron microscope, and the main phase interval was measured. The measurement position was measured at a cooling surface, a free surface opposite to the cooling surface, and a total of 5 points at each position divided into four equal parts in the thickness direction. The result is shown in FIG. According to the present invention, it can be confirmed that even in the SmCo 5 alloy, an ingot having a uniform main phase interval from the cooling surface to the free surface can be obtained. Next, each of the alloy ingots was pulverized in a nitrogen gas with a brown mill to 35 mesh or less.
Furthermore, this pulverized powder has an average particle size of 4.0 μm in hexane.
Ball milling until
It was molded in a magnetic field of Oe at a pressure of 2 ton / cm 2 .
The obtained molded body was sintered in Ar at 1150 ° C. for 1 hour, then solution-treated at 900 ° C. for 2 hours and rapidly cooled to prepare a magnet. The characteristics of the obtained magnet are shown in Table 1. Good magnet characteristics with less variation in coercive force than the conventional method were obtained.

【0020】(比較例1〜3)実施例1〜4と同じ組成
になるようにアルゴンガス雰囲気で、アルミナルツボを
使用して高周波溶解炉で溶解し、得られる合金インゴッ
トの厚さが20mm,35mm,45mmとなるように
銅製水冷箱鋳型に鋳造した。実施例1〜4と同じように
各条件での断面組織を反射電子顕微鏡で観察し、主相間
隔を測定した。測定位置は冷却面及び中央部、さらに、
冷却面から中央部までの厚さを4等分した各位置の計5
点で測定した。この結果を図4に示す。ここで、冷却面
近傍で観察される2−17相の単相組織(ごく少量の1
−5相の析出は単相組織として数えた)での主相間隔を
0とした。図4に示されるように、いずれの条件におい
ても、冷却面から中央部にかけて主相間隔が徐々に大き
くなってしまうことが確認できる。なお、図6に比較例
1で得られた合金インゴット(中央側)の反射電子顕微
鏡による組織写真を示す。図6で白く見える相がSm1
Co5 相で、薄い灰色の相がSm2 Co7 相で、灰色の
相がSm2 Co17相である。また、各条件における中央
部でのZrの偏析相の有無を表1に示す。偏析相の有無
は中央部でランダムに5点EDXの面分析をすることに
より確認した。いずれの条件においてもZrの偏析相が
存在することが確認された。次に実施例1〜4と同じ条
件で磁石を作成した。得られた磁石の特性を表1に示
す。インゴットの厚さを薄くしていくに従い、磁石特性
のバラツキが減少し、保磁力が向上する傾向が見受けら
れるが、本発明と比較し、その効果は小さいものであっ
た。
(Comparative Examples 1 to 3) The alloy ingots obtained by melting in an argon gas atmosphere in a high frequency melting furnace using an alumina crucible so as to have the same composition as in Examples 1 to 4 have a thickness of 20 mm, It was cast in a copper water-cooled box mold so as to have a size of 35 mm and 45 mm. As in Examples 1 to 4, the cross-sectional structure under each condition was observed with a reflection electron microscope, and the main phase spacing was measured. The measurement position is the cooling surface and the central part,
A total of 5 at each position where the thickness from the cooling surface to the center is divided into 4 equal parts.
Measured at points. The result is shown in FIG. Here, a single-phase structure of 2-17 phase (a very small amount of 1
The precipitation of −5 phase was counted as a single-phase structure) and the main phase interval was set to 0. As shown in FIG. 4, it can be confirmed that the main phase spacing gradually increases from the cooling surface to the central portion under any of the conditions. It is to be noted that FIG. 6 shows a structure photograph of the alloy ingot (center side) obtained in Comparative Example 1 by a reflection electron microscope. The white-colored phase in Figure 6 is Sm 1
The Co 5 phase, the light gray phase is the Sm 2 Co 7 phase, and the gray phase is the Sm 2 Co 17 phase. Table 1 shows the presence / absence of a Zr segregation phase in the central part under each condition. The presence or absence of the segregation phase was confirmed by randomly performing a 5-point EDX surface analysis in the central part. It was confirmed that the Zr segregated phase was present under any of the conditions. Next, a magnet was created under the same conditions as in Examples 1 to 4. The characteristics of the obtained magnet are shown in Table 1. As the thickness of the ingot is made thinner, variations in the magnet characteristics tend to decrease and the coercive force tends to improve, but the effect was small compared to the present invention.

【0021】(比較例4)実施例1〜4と同じ組成にな
るようにアルゴンガス雰囲気で、アルミナルツボを使用
して高周波溶解炉で溶解し、実施例1〜4と同じ方法に
より平均堆積速度0.15cm/秒で鋳造した。実施例
1〜4と同じように各条件での断面組織を反射電子顕微
鏡で観察し、主相間隔を測定した。測定位置は冷却面及
び中央部、さらに、冷却面から中央部までの厚さを4等
分した各位置の計5点で測定した。この結果を図4に示
す。図4に示されるように、この条件においては、主相
間隔が徐々に大きくなってしまうことが確認できる。ま
た、各条件における中央部でのZrの偏析相の有無を表
1に示す。偏析相の有無は中央部でランダムに5点ED
Xの面分析をすることにより確認した。この条件におい
てはZrの偏析相が存在することが確認された。次に実
施例1〜4と同じ条件で磁石を作成した。得られた磁石
の特性を表1に示す。この条件においては従来法と比較
し、本発明の効果が得られない事が確認できる。
(Comparative Example 4) Melting was carried out in a high frequency melting furnace using an alumina crucible in an argon gas atmosphere so as to have the same composition as in Examples 1 to 4, and the average deposition rate was carried out by the same method as in Examples 1 to 4. It was cast at 0.15 cm / sec. As in Examples 1 to 4, the cross-sectional structure under each condition was observed with a reflection electron microscope, and the main phase spacing was measured. The measurement position was measured at the cooling surface and the central portion, and further at a total of 5 points at each position where the thickness from the cooling surface to the central portion was divided into four equal parts. The result is shown in FIG. As shown in FIG. 4, it can be confirmed that under this condition, the main phase interval gradually increases. Table 1 shows the presence / absence of a Zr segregation phase in the central part under each condition. Presence or absence of segregation phase is 5 points ED randomly in the central part
It was confirmed by performing X-plane analysis. It was confirmed that a Zr segregation phase was present under these conditions. Next, a magnet was created under the same conditions as in Examples 1 to 4. The characteristics of the obtained magnet are shown in Table 1. It can be confirmed that the effect of the present invention cannot be obtained under this condition as compared with the conventional method.

【0022】(比較例5)実施例5と同じ組成になるよ
うにアルゴンガス雰囲気で、アルミナルツボを使用して
高周波溶解炉で溶解し、得られる合金インゴットの厚さ
が35mmとなるように銅製水冷箱鋳型に鋳造した。実
施例5と同じように各条件での断面組織を反射電子顕微
鏡で観察し、主相間隔を測定した。測定位置は冷却面及
び中央部、さらに、冷却面から中央部までの厚さを4等
分した各位置の計5点で測定した。この結果を図7に示
す。図7に示されるように、冷却面から中央部にかけて
主相間隔が徐々に大きくなってしまうことが確認でき
る。次に実施例4と同じ条件で磁石を作成した。得られ
た磁石の特性を表1に示す。本発明と比較し、その磁石
特性は小さいものであった。
(Comparative Example 5) A copper alloy was used to obtain the same composition as that of Example 5 in an argon gas atmosphere in a high frequency melting furnace using an alumina crucible so that the resulting alloy ingot had a thickness of 35 mm. It was cast in a water-cooled box mold. The cross-sectional structure under each condition was observed with a reflection electron microscope in the same manner as in Example 5, and the main phase interval was measured. The measurement position was measured at the cooling surface and the central portion, and further at a total of 5 points at each position where the thickness from the cooling surface to the central portion was divided into four equal parts. The result is shown in FIG. As shown in FIG. 7, it can be confirmed that the main phase spacing gradually increases from the cooling surface to the central portion. Next, a magnet was created under the same conditions as in Example 4. The characteristics of the obtained magnet are shown in Table 1. The magnet characteristics were smaller than those of the present invention.

【0023】[0023]

【発明の効果】以上のように本発明によれば、インゴッ
ト全体として均一に主相径を制御することにより、部分
的な濃度偏析や異常粒成長等による磁石特性のバラツキ
や特性の劣化を抑えることが可能であり、また、Zrを
必須添加元素とするSm−Co系磁石においては、偏析
しやすいZrを堆積速度を調整し、均一分散させること
により、磁石特性を向上させることも可能である。さら
に、堆積速度を遅め、主相径を小さく、さらには2−1
7相単相とすることにより、溶体化処理・時効処理等の
熱処理時間を短くすることも期待できる。
As described above, according to the present invention, by uniformly controlling the main phase diameter of the whole ingot, variations in magnet characteristics due to partial concentration segregation, abnormal grain growth, etc. are suppressed. In addition, in the Sm-Co based magnet containing Zr as an essential additive element, it is also possible to improve the magnet characteristics by adjusting the deposition rate of Zr, which is easily segregated, and uniformly dispersing it. . Furthermore, the deposition rate is slowed down, the main phase diameter is reduced, and further 2-1
It can be expected that the heat treatment time such as solution treatment and aging treatment can be shortened by using 7-phase single phase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】主相間距離の測定方法を説明する図。FIG. 1 is a diagram illustrating a method of measuring a distance between main phases.

【図2】本発明の実施例に用いた遠心鋳造設備の概略図
である。
FIG. 2 is a schematic view of a centrifugal casting facility used in an example of the present invention.

【図3】図2のA−A断面矢視図である。FIG. 3 is a sectional view taken along the line AA of FIG. 2;

【図4】実施例1〜4及び比較例1〜3の各測定位置で
の主相間隔を示した図である。
FIG. 4 is a diagram showing a main phase interval at each measurement position in Examples 1 to 4 and Comparative Examples 1 to 3.

【図5】本発明の実施例1で得られた合金インゴットの
断面反射電子顕微鏡写真である(400倍)。
FIG. 5 is a cross-sectional reflection electron micrograph of the alloy ingot obtained in Example 1 of the present invention (400 times).

【図6】本発明の比較例1で得られた合金インゴットの
断面反射電子顕微鏡写真である(400倍)。
FIG. 6 is a cross-sectional backscattered electron micrograph (400 ×) of the alloy ingot obtained in Comparative Example 1 of the present invention.

【図7】実施例5及び比較例5の各測定位置での主相間
隔を示した図である。
7 is a diagram showing the main phase spacing at each measurement position in Example 5 and Comparative Example 5. FIG.

【符号の説明】[Explanation of symbols]

1 円筒状鋳型 2 往復運動タンディッシュ 21 ノズル 3 固定タンディッシュ 4 誘導溶解炉 41 溶湯 5 回転ローラー 6 回転軸 7 真空チャンバー 71 フランジ接合部 8 冷却用ガス吹き付け管 81 ガス噴出孔 1 Cylindrical mold 2 Reciprocating motion tundish 21 Nozzle 3 Fixed tundish 4 Induction melting furnace 41 Melt 5 Rotating roller 6 Rotating shaft 7 Vacuum chamber 71 Flange joint 8 Cooling gas spray pipe 81 Gas ejection hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 H01F 1/04 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 1/053 H01F 1/04 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の一般式 Rn TMm (式中Rはミッシュメタルを含む希土類金属の一種また
は二種以上を表し、TMはCo,Fe,Zr,Cuの一
種または二種以上を表している。ここで、n,mは正の
整数。)で表わされる合金であって、鋳造後の組織の主
相間距離が200μm以下の微細組織を呈していること
を特徴とする希土類磁石用合金。
1. A compound represented by the following general formula R n TM m (wherein R represents one or more kinds of rare earth metals including misch metal, and TM represents one or more kinds of Co, Fe, Zr, Cu). Where n and m are positive integers), and the alloy for rare earth magnets is characterized by exhibiting a fine structure in which the distance between main phases of the structure after casting is 200 μm or less. .
【請求項2】 下記の一般式 Rn TMm (式中Rはミッシュメタルを含む希土類金属の一種また
は二種以上を表し、TMはCo,Fe,Zr,Cuの一
種または二種以上を表している。ここで、n,mは正の
整数。)で表わされる組織の合金溶湯を平均堆積速度を
0.5cm/秒以下で遠心鋳造する事を特徴とする希土
類磁石用合金の製造方法。
2. The following general formula R n TM m (wherein R represents one or more kinds of rare earth metals including misch metal, and TM represents one or more kinds of Co, Fe, Zr and Cu). Here, n and m are positive integers.) A method for producing an alloy for rare earth magnets, which comprises centrifugally casting an alloy melt having a structure represented by an average deposition rate of 0.5 cm / sec or less.
JP29361795A 1995-10-16 1995-10-16 Method for producing alloy for rare earth magnet Expired - Lifetime JP4048568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29361795A JP4048568B2 (en) 1995-10-16 1995-10-16 Method for producing alloy for rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29361795A JP4048568B2 (en) 1995-10-16 1995-10-16 Method for producing alloy for rare earth magnet

Publications (2)

Publication Number Publication Date
JPH09111383A true JPH09111383A (en) 1997-04-28
JP4048568B2 JP4048568B2 (en) 2008-02-20

Family

ID=17797038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29361795A Expired - Lifetime JP4048568B2 (en) 1995-10-16 1995-10-16 Method for producing alloy for rare earth magnet

Country Status (1)

Country Link
JP (1) JP4048568B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328825B1 (en) * 1997-11-12 2001-12-11 Showa Denko K.K. Alloy used for production of a rare-earth magnet and method for producing the same
US6773517B2 (en) 2000-09-08 2004-08-10 Shin-Etsu Chemical Co, Ltd. Rare-earth alloy, rate-earth sintered magnet, and methods of manufacturing
US8568539B2 (en) 2010-03-31 2013-10-29 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US9502164B2 (en) 2013-09-24 2016-11-22 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US9502165B2 (en) 2013-09-13 2016-11-22 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US9583243B2 (en) 2010-09-24 2017-02-28 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US9653198B2 (en) 2011-09-27 2017-05-16 Kabushiki Kaisha Toshiba Permanent magnet and manufacturing method thereof, and motor and generator using the same
US9715956B2 (en) 2014-11-28 2017-07-25 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US9774234B2 (en) 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US10304600B2 (en) 2013-03-26 2019-05-28 Kabushiki Kaisha Toshiba Permanent magnet, and motor and generator using the same
US10573437B2 (en) 2012-03-15 2020-02-25 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10593448B2 (en) 2012-11-20 2020-03-17 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10593447B2 (en) 2012-11-20 2020-03-17 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10629340B2 (en) 2012-11-20 2020-04-21 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10923254B2 (en) 2015-03-23 2021-02-16 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US10943716B2 (en) 2015-09-15 2021-03-09 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine
US10951074B2 (en) 2016-03-17 2021-03-16 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
US10991491B2 (en) 2012-03-15 2021-04-27 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US11081264B2 (en) 2015-09-15 2021-08-03 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328825B1 (en) * 1997-11-12 2001-12-11 Showa Denko K.K. Alloy used for production of a rare-earth magnet and method for producing the same
US6773517B2 (en) 2000-09-08 2004-08-10 Shin-Etsu Chemical Co, Ltd. Rare-earth alloy, rate-earth sintered magnet, and methods of manufacturing
US7211157B2 (en) 2000-09-08 2007-05-01 Shin-Etsu Chemical Co., Ltd. Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US7691323B2 (en) 2000-09-08 2010-04-06 Shin-Etsu Chemical Co., Ltd. Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US9774234B2 (en) 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US10102950B2 (en) 2010-03-31 2018-10-16 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US8568539B2 (en) 2010-03-31 2013-10-29 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US9583243B2 (en) 2010-09-24 2017-02-28 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US9653198B2 (en) 2011-09-27 2017-05-16 Kabushiki Kaisha Toshiba Permanent magnet and manufacturing method thereof, and motor and generator using the same
US10991491B2 (en) 2012-03-15 2021-04-27 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10573437B2 (en) 2012-03-15 2020-02-25 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10593447B2 (en) 2012-11-20 2020-03-17 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10593448B2 (en) 2012-11-20 2020-03-17 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10629340B2 (en) 2012-11-20 2020-04-21 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10304600B2 (en) 2013-03-26 2019-05-28 Kabushiki Kaisha Toshiba Permanent magnet, and motor and generator using the same
US9502165B2 (en) 2013-09-13 2016-11-22 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US9502164B2 (en) 2013-09-24 2016-11-22 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US9715956B2 (en) 2014-11-28 2017-07-25 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US10923254B2 (en) 2015-03-23 2021-02-16 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US10943716B2 (en) 2015-09-15 2021-03-09 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine
US11081264B2 (en) 2015-09-15 2021-08-03 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine
US10951074B2 (en) 2016-03-17 2021-03-16 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Also Published As

Publication number Publication date
JP4048568B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JPH09111383A (en) Permanent magnet alloy and its production
US7691323B2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
KR100745198B1 (en) Iron-base alloy permanent magnet powder and method for producing the same
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JP4106099B2 (en) Method for producing slab for R-Fe-B magnet alloy
KR0151244B1 (en) Permanent magnet
JP6104162B2 (en) Raw material alloy slab for rare earth sintered magnet and method for producing the same
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JPH0931609A (en) Rare earth magnet alloy and its production
JPH08296005A (en) Alloy for rare earth magnet and its production
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP2002301554A (en) Centrifugal casting method, centrifugal casting apparatus and alloy produced with this apparatus
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
JPH0813078A (en) Production of rare earth magnet alloy
JP3299630B2 (en) Manufacturing method of permanent magnet
JP2880428B2 (en) Centrifugal casting equipment
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP3121577B2 (en) Centrifugal casting method
JP4754739B2 (en) Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3726888B2 (en) Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

EXPY Cancellation because of completion of term