JPH09110443A - Apparatus for producing glass plate - Google Patents

Apparatus for producing glass plate

Info

Publication number
JPH09110443A
JPH09110443A JP27561895A JP27561895A JPH09110443A JP H09110443 A JPH09110443 A JP H09110443A JP 27561895 A JP27561895 A JP 27561895A JP 27561895 A JP27561895 A JP 27561895A JP H09110443 A JPH09110443 A JP H09110443A
Authority
JP
Japan
Prior art keywords
glass
flow
supply groove
side walls
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27561895A
Other languages
Japanese (ja)
Inventor
Shigeaki Aoki
重明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP27561895A priority Critical patent/JPH09110443A/en
Publication of JPH09110443A publication Critical patent/JPH09110443A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an apparatus for producing a glass plate having a flow rate controller capable of forming the stable liquid surface of fused glass in the glass supplying groove at the peak parts of the flow rate controller. SOLUTION: A flow passage floor 11a of the groove bottom surface of the glass supplying groove 11 is formed high at the beginning end in the flow direction of the fused glass and low on the terminal side and is formed at a depression gradient in any positions. The peak parts 12, 12 of the walls on both sides of the glass supplying groove 11 are also formed high at the beginning end in the flow direction of the fused glass and low on the terminal side and is formed at the depression gradient in any positions. The peak parts 12, 12 of the walls on both sides of the glass supplying groove 11 are formed as slopes of the depression gradient which are increasing higher on the inner side in the transverse direction of the groove and decreasing lower on the outer side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フュージョンダウ
ンドロー方式のガラス板の製造装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a fusion down draw type glass sheet manufacturing apparatus.

【0002】[0002]

【従来の技術】従来のフュージョンダウンドロー方式の
ガラス板製造装置は、図4に示すように、溶融ガラスを
流量調節体1の頂部の上面が開口したガラス供給溝2の
端部から供給し、該ガラス供給溝2の溝側壁頂部3、3
から両側へ溢れ出る溶融ガラスを流量調節体1の両側壁
外面4、4上を流下させ、流量調節体1の下端において
合流させてガラス板5を成形している(特公昭42−2
3356号公報参照)。
2. Description of the Related Art As shown in FIG. 4, a conventional fusion downdraw type glass sheet manufacturing apparatus supplies molten glass from an end of a glass supply groove 2 having an opening on the top surface of a flow rate adjusting body 1, Groove sidewall tops 3, 3 of the glass supply groove 2
The molten glass overflowing from both sides is flowed down on the outer surfaces 4, 4 of both side walls of the flow rate control body 1 and merged at the lower end of the flow rate control body 1 to form a glass plate 5 (Japanese Patent Publication No. 42-2).
3356 gazette).

【0003】[0003]

【発明が解決しようとする課題】従来のフュージョンダ
ウンドロー方式で用いられる流量調節体1において、そ
の頂部に形成されたガラス供給溝2には、溶融ガラスの
供給側の溝底面がガラス供給溝2の終端における溝底面
よりも低く位置し、ガラス供給溝2の溝底面の勾配が溶
融ガラスの流れ方向に対して仰角となるような形状が与
えられていた。また、そのガラス供給溝2を形成する両
側壁の頂部3、3は、水平面より垂直な両側壁外面4、
4へ連続するような平坦面形状が与えられていた。
In the flow rate control body 1 used in the conventional fusion down draw system, the glass supply groove 2 formed on the top of the flow control body 1 has a glass supply groove 2 having a bottom surface on the supply side of the molten glass. The glass supply groove 2 is provided with a shape that is positioned lower than the groove bottom surface at the end and has a slope of the groove bottom surface of the glass supply groove 2 with respect to the flow direction of the molten glass. In addition, the tops 3 and 3 of both side walls forming the glass supply groove 2 are the outer surfaces 4 of both side walls perpendicular to the horizontal plane,
4 was given a flat surface shape that is continuous.

【0004】この従来の形状を有するガラス供給溝2に
おける溶融ガラスの液面は、ガラス流量、ガラス温度、
流量調節体1の設置角度に対して敏感に反応することが
確認された。その結果、わずかな操業条件の変化によっ
ても、得られるガラス板5の厚みが大きく変化してしま
う不具合があった。また、ガラス供給溝2の従来形状の
両側壁頂部3、3を越える溶融ガラスの溢流量は、ガラ
ス供給溝2を流れる溶融ガラスの液面高さの変化に対し
て素早く応答するために、溶融ガラスの供給端付近にお
いて側壁頂部3、3を越える溶融ガラスの溢流量の変動
が集中して生じる不具合があった。
The liquid level of the molten glass in the glass supply groove 2 having the conventional shape is the glass flow rate, the glass temperature,
It was confirmed that the flow rate control body 1 reacts sensitively to the installation angle. As a result, there has been a problem that the thickness of the glass plate 5 to be obtained changes greatly even if the operating conditions change slightly. In addition, the overflow rate of the molten glass that exceeds the apexes 3 and 3 on both side walls of the conventional shape of the glass supply groove 2 quickly responds to the change in the liquid level of the molten glass flowing in the glass supply groove 2, and thus the molten glass melts. There was a problem that the fluctuation of the overflow rate of the molten glass beyond the side wall tops 3 and 3 was concentrated near the glass supply end.

【0005】更に、これら従来形状のガラス供給溝2と
両側壁頂部3、3の組合せによって、溶融ガラスの供給
端近傍の溶融ガラスの液面には表面波が発生し易いこと
が確認された。この表面波は、ガラス供給溝2の両側壁
頂部3、3を越える溶融ガラスの溢流量を周期的に変化
させるので、得られるガラス板5の厚みが周期的に厚薄
を繰り返すという不具合も認められた。
Further, it has been confirmed that a surface wave is easily generated on the liquid surface of the molten glass in the vicinity of the supply end of the molten glass due to the combination of the conventional glass supply groove 2 and the top portions 3 and 3 of both side walls. This surface wave periodically changes the overflow flow rate of the molten glass that exceeds the tops 3 and 3 of both side walls of the glass supply groove 2, so that the thickness of the obtained glass plate 5 is periodically thin and thin. It was

【0006】そこで、流量調節体の頂部のガラス供給溝
において安定した溶融ガラスの液面を形成することがで
きる流量調節体の構造を発明することができれば、側壁
頂部からの溶融ガラスの溢流量を板幅方向に一様に保
ち、均一な厚みを有するガラス板を連続して安定かつ容
易に製造することが可能になる。
Therefore, if the structure of the flow rate adjusting body capable of forming a stable liquid surface of the molten glass in the glass supply groove on the top of the flow rate adjusting body can be invented, the overflow rate of the molten glass from the top of the side wall can be reduced. It becomes possible to continuously, stably and easily manufacture a glass plate having a uniform thickness while keeping it uniform in the plate width direction.

【0007】本発明は、上記認識に基いてなされたもの
で、その目的とするところは、流量調節体の頂部のガラ
ス供給溝において安定した溶融ガラスの液面を形成する
ことができる流量調節体を備えたガラス板の製造装置を
提供することにある。
The present invention has been made on the basis of the above recognition. An object of the present invention is to provide a flow control body capable of forming a stable liquid surface of molten glass in the glass supply groove at the top of the flow control body. An object of the present invention is to provide a glass plate manufacturing apparatus provided with.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の目的を
達成するために、上面が開口した樋形状をなすガラス供
給溝を頂部に有し、このガラス供給溝の両側壁頂部を溢
流堰とし、かつ、両側壁の外面同士を下方に向けて相互
に接近させて下端で終結させた流量調節体を備え、溶融
ガラスを上記ガラス供給溝の一端から連続的に供給して
両側壁頂部稜線から溢流させ、両側壁外面を流下させて
下端で合流させてガラス板を成形するガラス板の製造装
置において、ガラス供給溝の溝底面となる流路床を溶融
ガラスの流れ方向の始端側で高く、終端側で低く、どの
位置でも俯角勾配で形成し、該ガラス供給溝の両側壁頂
部も溶融ガラスの流れ方向の始端側で高く、終端側で低
く、どの位置でも俯角勾配で形成したものである。
In order to achieve the above-mentioned object, the present invention has a gutter-shaped glass supply groove having an open upper surface at the top and overflows the tops of both side walls of the glass supply groove. A flow control body was used as a weir, and the outer surfaces of both side walls were made to approach each other downward and terminated at the lower end, and the molten glass was continuously supplied from one end of the glass supply groove to the top of both side walls. In a glass plate manufacturing apparatus that overflows from a ridgeline, flows down the outer surfaces of both side walls, and joins at the lower end to form a glass plate, in a glass plate manufacturing apparatus, the flow path floor that serves as the groove bottom surface of the glass supply groove is set to the start end side in the flow direction of the molten glass. Is high at the end side and low at the end side, and is formed with a depression angle gradient at any position, and the tops of both side walls of the glass supply groove are also high at the start end side in the flow direction of the molten glass and low at the end side, and formed with a depression angle slope at any position. It is a thing.

【0009】上記のように、ガラス供給溝の流路床は、
溶融ガラスの流れ方向に対して常に順な俯角を有するた
め、ガラス供給溝内における溶融ガラスの流れをガラス
供給溝の先端へすみやかに導く。そして、ガラス供給溝
を先へ進むにつれて溶融ガラスは、溝側壁頂部より両側
へ溢れ出てゆく。ガラス供給溝の両側壁頂部にも俯角勾
配が与えてあるため、両側壁頂部を越える液面高さは、
流量調節体の長手方向に一定となる。これにより、両側
壁頂部を越える溶融ガラスの溢流量は、流量調節体の位
置によらず等しく保つことができる。また、本発明は、
ガラス供給溝の両側壁頂部が溝幅方向の内側で高く、外
側で低くなる俯角勾配の傾斜面としてある。
As described above, the flow channel floor of the glass supply groove is
Since the molten glass always has a normal depression angle with respect to the flowing direction, the flow of the molten glass in the glass supply groove is promptly guided to the tip of the glass supply groove. The molten glass overflows from the top of the side wall of the groove to both sides as it goes through the glass supply groove. Since the depression angle is given to the tops of both side walls of the glass supply groove, the liquid level height over the tops of both side walls is
It becomes constant in the longitudinal direction of the flow control body. As a result, the overflow rate of the molten glass over the tops of both side walls can be kept equal regardless of the position of the flow rate adjuster. Also, the present invention
The tops of both side walls of the glass supply groove are inclined surfaces with a depression angle gradient that is higher inside the groove width direction and lower outside.

【0010】上記のように、流量調節体のガラス供給溝
の両側壁頂部には、溝幅方向の内側で高く、外側で低く
なる俯角勾配を与えているので、溢れ越える溶融ガラス
は、両側壁頂部に平行な液面を形成して流れ落ちる。
As described above, since the depressions of the depressions are increased at the tops of both side walls of the glass supply groove of the flow rate control body in the groove width direction and become lower at the outside, the molten glass overflowing is prevented from flowing into both side walls. It forms a liquid surface parallel to the top and runs down.

【0011】両側壁頂部における溶融ガラスの側方への
溢流の流速は、ガラス供給溝における溶融ガラスの流速
よりも遅いので、両側壁頂部における流れの状態は、ガ
ラス供給溝における状態よりもゆっくりと変化すること
になる。つまり、温度変化、流量変化などの流れの状態
変化が生じる際には、まず、ガラス供給溝におけるガラ
ス流れの状態が新しい状態に移行した後に、両側壁頂部
における流れの状態の移行が完了するようになる。この
結果、本発明に係る流量調節体上のガラス供給溝を流れ
る溶融ガラスは、両側壁頂部における流れの状態に影響
を受けることなく、常に安定な状態に保たれる。
Since the flow velocity of the lateral overflow of molten glass at the tops of both side walls is slower than the flow velocity of the molten glass in the glass supply groove, the flow state at the tops of both side walls is slower than that in the glass supply groove. Will change. That is, when a flow state change such as a temperature change or a flow rate change occurs, first, the glass flow state in the glass supply groove is changed to a new state, and then the transition of the flow state in the tops of both side walls is completed. become. As a result, the molten glass flowing in the glass supply groove on the flow rate control body according to the present invention is always kept in a stable state without being affected by the flow state at the tops of both side walls.

【0012】[0012]

【発明の実施の形態】図1は本発明に係る流量調節体の
斜視図、図2の(A)は図1の流量調節体の側面図、
(B)はその平面図、(C)は(A)のC−C線断面
図、図3の(A)〜(E)は本発明においてガラス供給
溝の流路床と両側壁頂部との関係を定性的に示す概略説
明図である。図1および図2において、10は流量調節
体、20は予備成形槽、30は成形されたガラス板を示
している。
1 is a perspective view of a flow rate adjusting body according to the present invention, FIG. 2 (A) is a side view of the flow rate adjusting body of FIG.
3B is a plan view thereof, FIG. 3C is a sectional view taken along the line CC of FIG. 3A, and FIGS. 3A to 3E show the flow channel floor of the glass supply groove and the tops of both side walls in the present invention. It is a schematic explanatory drawing which shows a relationship qualitatively. 1 and 2, 10 is a flow rate control body, 20 is a preforming tank, and 30 is a molded glass plate.

【0013】流量調節体10は、一様な溝幅で上面が開
口した断面矩形樋形状のガラス供給溝11を頂部に持
ち、このガラス供給溝11の両側壁頂部12、12を溢
流堰とし、かつ、両側壁外面13、13を下方に向けて
相互に接近させて下端で終結させた形状からなる。
The flow rate control body 10 has a glass supply groove 11 having a rectangular gutter-shaped cross-section with an open upper surface with a uniform groove width at the top, and both side wall tops 12 and 12 of the glass supply groove 11 are overflow weirs. The outer surfaces 13, 13 of the both side walls are made to approach each other downward and are terminated at the lower end.

【0014】上記ガラス供給溝11の溝底面となる流路
床11aは、溶融ガラスの流れ方向の始端側で高く、終
端側で低く、どの位置でも俯角勾配で形成してある。ま
た、ガラス供給溝11の両側壁頂部12、12も、溶融
ガラスの流れ方向の始端側で高く、終端側で低く、どの
位置でも俯角勾配で形成してある。さらに、ガラス供給
溝11の両側壁頂部12、12は、溝幅方向の内側で高
く、外側で低くなる俯角勾配の傾斜面としてある。
The flow path floor 11a, which is the groove bottom surface of the glass supply groove 11, is high at the start end side in the flow direction of the molten glass and low at the end end side, and is formed with a depression angle gradient at any position. Further, the tops 12 and 12 on both side walls of the glass supply groove 11 are also high at the start end side in the flow direction of the molten glass and low at the end end side, and are formed with a depression angle gradient at any position. Further, the tops 12, 12 of both side walls of the glass supply groove 11 are inclined surfaces having a depression angle gradient that is higher inside the groove width direction and lower outside.

【0015】ガラス供給溝11の両側壁外面13、13
は、図1および図2では、上部に垂直流下面13a、1
3aを形成し、下部に内向き流下面13b、13bを形
成した場合を例示しているが、垂直流下面を省略して実
施してもよい。
Outer surfaces 13, 13 of both side walls of the glass supply groove 11
1 and 2, the vertical flow lower surfaces 13a, 1
Although the case where 3a is formed and the inward flow lower surfaces 13b and 13b are formed in the lower portion is illustrated, the vertical flow lower surface may be omitted.

【0016】予備成形槽20は、流量調節体10のガラ
ス供給溝11に溶融ガラスを供給するために設置される
もので、この予備成形槽20には予め適切な俯角を与え
て設置し、その中に供給管21から溶融ガラスを連続的
に供給し、整流板22により一様に流し、槽幅方向の流
速差が少ない定常流を形成する。この定常流となった溶
融ガラスの流れをそのままガラス供給溝11に導けば、
ガラス供給溝11の流路床11aからの溶融ガラスの液
面高さは、流路位置によらず一定となり、流路床11a
と同じ俯角を有する安定な平面を形成させることが可能
となる。
The preforming tank 20 is installed to supply the molten glass to the glass supply groove 11 of the flow rate control body 10. The preforming tank 20 is installed with an appropriate depression angle in advance, and Molten glass is continuously supplied from the supply pipe 21 and is made to flow uniformly by the straightening plate 22 to form a steady flow having a small flow velocity difference in the tank width direction. If the flow of the molten glass that has become the steady flow is guided to the glass supply groove 11 as it is,
The liquid surface height of the molten glass from the flow channel floor 11a of the glass supply groove 11 is constant regardless of the flow channel position.
It is possible to form a stable flat surface having the same depression angle as.

【0017】一般に、上面が開放された流路を流体が自
由表面を持って流れる場合、その自由表面の位置、即
ち、流体の液面高さは、流路の断面形状、流路勾配や流
体の物性により大きく変化する。また、流路形状が単純
であり、流れの方向が特定の方向に設定されている場合
には、流れの方向にのみ液面高さを評価すればよく、1
方向(1次元)の液面高さの問題として取り扱うことが
できる。
In general, when a fluid flows with a free surface in a flow channel having an open upper surface, the position of the free surface, that is, the liquid level of the fluid, depends on the cross-sectional shape of the flow channel, the flow channel gradient and the fluid. It greatly changes depending on the physical properties of Further, when the flow path shape is simple and the flow direction is set to a specific direction, the liquid level height may be evaluated only in the flow direction.
It can be treated as a problem of the liquid level in the direction (one-dimensional).

【0018】今、平板状の斜面を流下する流体の液面高
さを考えると、流体は、重力の作用により下方へ加速さ
れ、その流速を増してゆく。やがて、流体と斜面との摩
擦力が重力の作用と釣り合って、流体の流速は位置によ
り変化せず、定常運動をするようになる。この時、流体
の液面高さは位置によらず一定となり、次の式で表され
る。
Now, considering the liquid surface height of the fluid flowing down the flat plate-like slope, the fluid is accelerated downward by the action of gravity and its flow velocity increases. Eventually, the frictional force between the fluid and the slope balances with the action of gravity, and the flow velocity of the fluid does not change depending on the position, but becomes a steady motion. At this time, the height of the liquid surface is constant regardless of the position, and is expressed by the following equation.

【0019】 h=(3ηV/ρg・sinθ)1/3 ・・・式1 ここで、 η:ガラス粘度(poise)、V:流量(cm3 /s
ec)、ρ:密度(g/cm3 )、g:重力加速度(c
m/sec2 )、θ:斜面の傾斜角度 である。
H = (3ηV / ρg · sin θ) 1/3 ... Equation 1 where η: glass viscosity (poise), V: flow rate (cm 3 / s)
ec), ρ: density (g / cm 3 ), g: gravitational acceleration (c
m / sec 2 ), θ: inclination angle of slope.

【0020】次に、矩形断面を有する流路を流体が流下
する場合について考えると、前記と同様に、流体の流れ
は、流路との摩擦力と重力の作用が釣り合って、定常運
動となる。この時、流体の液面高さは位置によらず一定
となり、次の式で表される。
Next, considering the case where the fluid flows down the flow path having a rectangular cross section, the flow of the fluid becomes a steady motion due to the balance between the frictional force with the flow path and the action of gravity, as in the above. . At this time, the height of the liquid surface is constant regardless of the position, and is expressed by the following equation.

【0021】 h={(9ηV/4ρg・sinθ)a(a2 +1)}1/4 ・・・式2 ここで、a:流路断面の縦横比(液面高さ/流路幅の半
値)である。
H = {(9ηV / 4ρg · sin θ) a (a 2 +1)} 1/4 ... Equation 2 where a: aspect ratio of flow passage cross section (liquid level height / half value of flow passage width) ).

【0022】上述したように、流路勾配θをもつような
上記2種類の形状の流路における定常流れに関しては、
流体の自由表面は、流路床から液面高さだけ離れた位置
において、流路床と平行な勾配θを持った平面を形成す
ることになる。
As described above, regarding the steady flow in the above-described two types of flow channels having the flow channel gradient θ,
The free surface of the fluid forms a plane having a gradient θ parallel to the flow channel floor at a position separated from the flow channel floor by the liquid level height.

【0023】この特性を積極的に利用すれば、定常流に
おいては、流路床に等しい勾配θを持った自由表面を流
路床から液面高さhに正確に形成することができるので
ある。さらに、流体の流量を増減する場合においては、
液面高さhは流量に見合うように増減するのであるが、
その場合に形成される自由表面の形状は、常に流路床と
平行な勾配θを持つ平面となる。以下、その説明をす
る。
By positively utilizing this characteristic, in a steady flow, a free surface having a gradient θ equal to the flow path floor can be accurately formed from the flow path floor to the liquid level height h. . Furthermore, when increasing or decreasing the flow rate of fluid,
The liquid level height h increases or decreases according to the flow rate.
The shape of the free surface formed in that case is always a plane having a gradient θ parallel to the flow path floor. Hereinafter, the description will be made.

【0024】上記式1、2を変形すると次に示すような
関係を得ることができる。 h=K(V/sinθ)n ・・・式3 ここで、係数Kは次のような値をとる。
By modifying the above equations 1 and 2, the following relationships can be obtained. h = K (V / sin θ) n ... Equation 3 Here, the coefficient K takes the following values.

【0025】 平板の場合 K=(3η/ρg)n 、 n=1/3 矩形流路の場合 K={(9η/4ρg)a(a2 +1)}n 、n=1/4 一般的な形状を有する流量調節体上に溶融ガラスを流す
場合、流量調節体上部の一端より溢流を伴いながら長手
方向へ流下させることになる。つまり、流量調節体の長
手方向へ進むほど、各位置におけるガラス流下量は少な
くなる。その結果、式3が示す関係より溶融ガラスの液
面高さは低くなってゆく。
In the case of a flat plate K = (3η / ρg) n , n = 1/3 In the case of a rectangular channel K = {(9η / 4ρg) a (a 2 +1)} n , n = 1/4 General When the molten glass is caused to flow on the flow control body having a shape, it is made to flow down in the longitudinal direction from one end of the flow control body with overflow. That is, the glass flow-down amount at each position becomes smaller as the flow amount adjuster moves in the longitudinal direction. As a result, the liquid level of the molten glass becomes lower than the relationship expressed by the equation 3.

【0026】今仮に、流量調節体各部を長手方向に流れ
る溶融ガラスの流下量に見合うように、流路勾配θを小
さくすることを考えると、流路勾配θを小さくすること
によって、溶融ガラスの流速が低下し、液面高さは増加
する。つまり、流量減少による液面高さの低下に対し
て、流路勾配θを適切に少なくすれば、その液面高さを
高める効果によって、流量調節体上の液面高さの変化を
打ち消すことができる。
Now, assuming that the flow channel gradient θ is made smaller so as to be commensurate with the flow rate of the molten glass flowing in the respective portions of the flow rate control body in the longitudinal direction, the flow channel gradient θ is made smaller so that the molten glass The flow velocity decreases and the liquid level height increases. In other words, if the flow path gradient θ is reduced appropriately against the decrease in the liquid level due to the decrease in the flow rate, the effect of increasing the liquid level is to cancel out the change in the liquid level on the flow control body. You can

【0027】式3によると、流量と流路勾配θの関係と
して次の式を満たすことで、流量調節体上の液面高さを
一定に保つことができる。 Vγ/sinθγ=V0 /sinθ0 = 一定 ・・・式4 ここで、 Vγ:流量調節体上の位置γにおいて長手方向に流れる
ガラス流量(cm3 /sec) θγ:流量調節体上の位置γにおける流路床の俯角勾配 V0 :流量調節体に供給する総ガラス流量(cm3 /s
ec) θ0 :流量調節体のガラス供給端部の初期流路勾配 である。
According to the expression 3, the liquid level height on the flow rate adjusting body can be kept constant by satisfying the following expression as the relationship between the flow rate and the flow path gradient θ. Vγ / sin θγ = V 0 / sin θ 0 = constant Equation 4 Here, Vγ: glass flow rate (cm 3 / sec) flowing in the longitudinal direction at the position γ on the flow rate control body θγ: position γ on the flow rate control body Depression angle gradient V 0 of the flow path floor at: Total glass flow rate supplied to the flow rate control body (cm 3 / s
ec) θ 0 : initial flow path gradient at the glass supply end of the flow rate adjuster.

【0028】流量調節体としては、長手方向において溢
流をすべての位置で等しく保つことが求められる。この
条件を満足するためには、長手方向位置γにおいて次の
式で示す流量が長手方向に流れる必要がある。 Vγ=V0(1−γ/L) ・・・式5 ここで、L:流量調節体の長手方向の長さ(cm)であ
る。
The flow rate adjuster is required to keep the overflow in all positions equal in the longitudinal direction. In order to satisfy this condition, the flow rate shown by the following equation needs to flow in the longitudinal direction at the longitudinal position γ. Vγ = V 0 (1-γ / L) (5) where L is the length (cm) in the longitudinal direction of the flow rate adjuster.

【0029】式4と式5を組み合わせることにより、次
の条件を得ることができる。 sinθγ=sinθ0(1−γ/L) ・・・式6 式6を満足するように、流量調節体の長手方向の位置γ
において流路勾配θγを流路に与えれば、いかなる流量
においても溶融ガラスの液面高さは流量調節体の長手方
向で等しくなる。つまり、流量、ガラス粘度やその他の
物性は、溶融ガラスの液面高さに対して影響するのであ
るが、液面高さの分布としては流路床に対して平行に移
動し、いかなる偏りを生じることなく、一様な液面高さ
を実現することができる。
By combining the equations 4 and 5, the following conditions can be obtained. sin θγ = sin θ 0 (1-γ / L) ... Equation 6 The position γ in the longitudinal direction of the flow rate control body so as to satisfy Equation 6.
If the flow channel gradient θγ is applied to the flow channel in, the liquid surface height of the molten glass becomes equal in the longitudinal direction of the flow rate control body at any flow rate. In other words, the flow rate, glass viscosity, and other physical properties affect the liquid level of the molten glass, but the distribution of the liquid level moves parallel to the flow path floor and causes any deviation. It is possible to realize a uniform liquid surface height without causing any occurrence.

【0030】また、矩形流路に関しては、上記効果を得
るための流路勾配は、式7で表すこともできる。 sinθγ=A・sinθ0(1−γ/L) ・・・式7 ここで、Aは矩形流路の形状係数であり、次式で与えら
れる。 A=aγ(aγ2 +1)/a0 (a0 2 +1) a0 :流量調節体のガラス供給部の流路断面における縦
横比 aγ:流量調節体上の位置γにおける流路断面の縦横比 式7によると、矩形流路の勾配θγは、式6と同様に流
量調節体の位置γに応じて変化させる。これに加えて、
矩形流路の形状係数Aを変えることによっても、流路勾
配θγを変化させることができる。つまり、矩形流路に
おいては、流路の断面形状、例えば、流路幅を変えるこ
とで、式6が与える流路勾配とは異なる流路勾配によっ
て偏りのない一様な液面高さを流量調節体上に形成でき
ることが分かる。
Further, regarding the rectangular flow path, the flow path gradient for obtaining the above effect can also be expressed by equation 7. sin θγ = A · sin θ 0 (1-γ / L) Equation 7 Here, A is the shape factor of the rectangular flow path and is given by the following equation. A = aγ (aγ 2 +1) / a 0 (a 0 2 +1) a 0 : Aspect ratio in the flow passage cross section of the glass supply part of the flow rate control body a γ: Aspect ratio of the flow passage cross section at the position γ on the flow rate control body According to Equation 7, the gradient θγ of the rectangular flow channel is expressed by Equation 6 Similarly to, the flow rate controller is changed according to the position γ. In addition to this,
The flow channel gradient θγ can also be changed by changing the shape factor A of the rectangular flow channel. That is, in the rectangular flow path, by changing the cross-sectional shape of the flow path, for example, the flow path width, a uniform liquid surface height without deviation due to a flow path gradient different from the flow path gradient given by Equation 6 can be obtained. It can be seen that it can be formed on the adjusting body.

【0031】以上を要約すると、流量調節体のガラス供
給溝の流路床の流路勾配は、流れ方向に対して順な俯角
を与える。 主流路の勾配を俯角として式6若しくは式7を満た
すように順に保つ。その結果、主流路の流路床として、
ガラス供給溝の始端側流路床が終端側流路床よりも高く
なるような形状を与える。 両側壁頂部の勾配を順に保つ。その結果、側壁内側
稜線が側壁外側稜線よりも高くなるような形状を与え
る。
To summarize the above, the flow channel gradient of the flow channel floor of the glass supply channel of the flow rate controller gives a normal depression angle with respect to the flow direction. The gradient of the main flow path is used as the depression angle and the equations 6 and 7 are maintained in order. As a result, as the flow path floor of the main flow path,
The glass feed groove is provided with a shape such that the flow path floor at the start side is higher than the flow path floor at the end side. Keep the slopes on both sidewalls in order. As a result, a shape is given in which the sidewall inner edge line is higher than the sidewall outer edge line.

【0032】上記のような条件で流量調節体を作成する
ことが好ましい。このような条件で流量調節体を作成す
れば、流量、温度やガラス物性の変化に対して、液面高
さが流路床に対して平行に変化するので、両側壁を越え
る流れの流量を常に一定に維持できる。また、両側壁頂
部を越える流れは定常流として安定して振る舞い、液面
高さも流路床に平行に変化する。その結果、主流路での
液面高さ変化や不安定な波動に対してゆっくりと対応
し、不安定な変動を緩和する作用を持つ。
It is preferable to prepare the flow rate adjusting member under the above-mentioned conditions. If the flow rate regulator is created under such conditions, the liquid level height changes parallel to the flow path floor in response to changes in the flow rate, temperature, and glass properties, so the flow rate of the flow that exceeds both side walls can be Can be kept constant at all times. Further, the flow over the tops of both side walls behaves stably as a steady flow, and the liquid level height changes parallel to the flow path floor. As a result, it slowly responds to changes in the liquid level in the main flow path and unstable waves, and has the effect of mitigating unstable fluctuations.

【0033】上記の原理に基いて、予備成形槽20に連
なる、本発明の流量調節体10の頂部のガラス供給溝1
1の始端部へ、定常流となった溶融ガラスを供給する。
本発明に係る流量調節体10の頂部のガラス供給溝11
は、溶融ガラスの供給側の流路床11aが、ガラス供給
溝11の終端における流路床11aよりも高く位置する
と共に、流路床11aが常に俯角勾配を有するように設
計する。
Based on the above-mentioned principle, the glass supply groove 1 at the top of the flow rate control body 10 of the present invention connected to the preforming tank 20.
The molten glass that has become a steady flow is supplied to the starting end of 1.
Glass supply groove 11 at the top of the flow control body 10 according to the present invention
Is designed such that the flow path floor 11a on the supply side of the molten glass is located higher than the flow path floor 11a at the end of the glass supply groove 11, and the flow path floor 11a always has a depression angle gradient.

【0034】また、ガラス供給溝11の流路床11aの
俯角は、予備成形槽20とガラス供給溝11の接合部に
おいて予備成形槽20の俯角に等しく、ガラス供給溝1
1の先端に近ずくほど俯角が小さくなるように与えるの
が好ましい。このようにすれば、ガラス供給溝11の流
路床11aは、溶融ガラスの流れ方向に対して常に順な
俯角を有し、ガラス供給溝11内における溶融ガラスの
流れをガラス供給溝11の先端へすみやかに導くように
作用させることができる。
Further, the depression angle of the channel floor 11a of the glass supply groove 11 is equal to the depression angle of the preforming tank 20 at the joint between the preforming tank 20 and the glass supply groove 11, and the glass feeding groove 1
It is preferable that the depression angle is smaller as it approaches the tip of No. 1. In this way, the flow path floor 11a of the glass supply groove 11 always has a normal depression angle with respect to the flow direction of the molten glass, and the flow of the molten glass in the glass supply groove 11 is controlled by the tip of the glass supply groove 11. It can act so as to promptly guide.

【0035】この流路床11aにおける俯角変化は微小
で連続的とするのが好ましく、このようにしておけば、
流量調節体10のガラス供給溝11における溶融ガラス
の流れは、各位置における俯角に対応した定常流にきわ
めて近い流れとなる。そして、ガラス供給溝11を先へ
進むにつれて溶融ガラスは、溝側壁頂部12、12より
両側へ溢れ出てゆくので、ガラス供給溝11での溶融ガ
ラスの流下量は、ガラス供給溝11を先へ進むにつれて
減少する。
It is preferable that the depression angle change in the flow path floor 11a be minute and continuous.
The flow of the molten glass in the glass supply groove 11 of the flow rate adjuster 10 is a flow very close to a steady flow corresponding to the depression angle at each position. The molten glass overflows from the groove side wall tops 12 and 12 to both sides as it goes through the glass supply groove 11, so that the amount of the molten glass flowing down in the glass supply groove 11 goes to the glass supply groove 11 first. It decreases as you go.

【0036】一方、流路床11aの俯角は、ガラス供給
溝11を先へ進むにつれて小さくなるので、各部を流下
する溶融ガラスの液面高さを高くする作用を持ち、流下
量減少による液面高さの低下を補うように働く。その結
果、ガラス供給溝11を流れる溶融ガラスの液面は、予
備成形槽20における溶融ガラスの液面に連続した、流
量調節体10の長手方向にガラス供給溝11の終端部ま
で達する安定な液面を形成することになる。
On the other hand, since the depression angle of the flow path floor 11a becomes smaller as it goes through the glass supply groove 11, it has the effect of increasing the liquid surface height of the molten glass flowing down each portion, and the liquid surface due to the decrease in the amount of flow down. It works to compensate for the decrease in height. As a result, the liquid surface of the molten glass flowing in the glass supply groove 11 is continuous with the liquid surface of the molten glass in the preforming tank 20 and reaches the end of the glass supply groove 11 in the longitudinal direction of the flow rate control body 10. Will form the surface.

【0037】このようにしてガラス供給溝11に形成さ
れる安定な液面高さを有する溶融ガラスからは、両側壁
頂部12、12を越える液面高さに応じた流量の溶融ガ
ラスがガラス供給溝11から溢れ出る。
From the molten glass having a stable liquid level formed in the glass supply groove 11 in this manner, the molten glass is supplied at a flow rate depending on the liquid level height exceeding the tops 12, 12 of both side walls. It overflows from the groove 11.

【0038】本発明に係る流量調節体10のガラス供給
溝11の両側壁頂部12、12には、俯角勾配を与えて
いるので、溢れ越える溶融ガラスは定常流を形成し、両
側壁頂部12、12に平行な液面を形成し、両側壁外面
13、13から速やかに流下する。
Since the depressions of the depression angles are given to the side wall tops 12, 12 of the glass supply groove 11 of the flow rate controller 10 according to the present invention, the overflowing molten glass forms a steady flow, and the side wall tops 12, 12. A liquid surface parallel to 12 is formed and flows down quickly from the outer surfaces 13, 13 of both side walls.

【0039】両側壁頂部12、12における溶融ガラス
の側方への溢流の流速は、ガラス供給溝11における溶
融ガラスの流速よりも十分に遅いので、両側壁頂部1
2、12における流れの状態は、ガラス供給溝11にお
ける状態よりもゆっくりと変化することになる。つま
り、温度変化、流量変化などの流れの状態変化が生じる
際には、まず、ガラス供給溝11におけるガラス流れの
状態が新しい状態に移行した後に、両側壁頂部12、1
2における流れの状態の移行が完了するようになる。こ
の結果、本発明に係る流量調節体10上のガラス供給溝
11を流れる溶融ガラスは、両側壁頂部12、12にお
ける流れの状態に影響を受けることなく、常に安定な状
態に保たれる。
The flow velocity of the lateral overflow of the molten glass at the tops 12, 12 of both side walls is sufficiently slower than the flow rate of the molten glass in the glass supply groove 11, so that the top 1 of both side walls 1
The flow state in 2 and 12 changes more slowly than in the glass supply groove 11. That is, when a flow state change such as a temperature change or a flow rate change occurs, first, the glass flow state in the glass supply groove 11 shifts to a new state, and then the side wall tops 12, 1
The transition of the flow states in 2 is complete. As a result, the molten glass flowing in the glass supply groove 11 on the flow rate control body 10 according to the present invention is always kept in a stable state without being affected by the flow state at the tops 12, 12 of both side walls.

【0040】このようにして形成される流量調節体10
上の溶融ガラスの液面に対して、両側壁頂部12、12
の高さが一定値だけいかなる場所においても低くなるよ
うに、ガラス供給溝11の両側壁頂部12、12の形状
を与えると、両側壁頂部12、12を越える液面高さ
は、流量調節体10の長手方向に一定となる。これによ
り、両側壁頂部12、12を越える溶融ガラスの溢流量
は、流量調節体10の位置によらず等しく保つことがで
きる。
The flow rate control body 10 thus formed
With respect to the liquid surface of the upper molten glass, both side wall tops 12, 12
When the shape of the side wall tops 12, 12 of the glass supply groove 11 is given such that the height of the side wall is lowered by a constant value at any place, the liquid level height beyond the side wall tops 12, 12 is controlled by the flow control body. It becomes constant in the longitudinal direction of 10. As a result, the overflow rate of the molten glass over the tops 12, 12 of both side walls can be kept equal regardless of the position of the flow rate adjuster 10.

【0041】この両側壁頂部12、12を越える溶融ガ
ラスを流量調節体10の両側壁外面13、13に沿って
流下させ、流量調節体10の下方においてガラス板30
を成形すれば、板幅方向に均一な厚みを有する高品質の
ガラス板30を安定にかつ連続して製造することができ
る。
The molten glass over the tops 12, 12 of both side walls is caused to flow down along the outer surfaces 13, 13 of both side walls of the flow rate control body 10, and the glass plate 30 is provided below the flow rate control body 10.
By molding, it is possible to stably and continuously manufacture a high-quality glass plate 30 having a uniform thickness in the plate width direction.

【0042】更に、ガラス流量やガラス粘度が変化した
場合、定常流の性質に基いてガラス供給溝11の流路床
11aに平行な溶融ガラスの液面を常に形成する。この
ため、ガラス供給溝11の両側壁頂部12、12を越え
る液面高さは、流量調節体10の長手方向のいかなる位
置においても等しくなる。
Further, when the glass flow rate or the glass viscosity changes, the liquid surface of the molten glass which is parallel to the flow path floor 11a of the glass supply groove 11 is always formed on the basis of the nature of the steady flow. Therefore, the liquid level height of the glass supply groove 11 beyond the tops 12, 12 of both side walls is equal at any position in the longitudinal direction of the flow rate control body 10.

【0043】この結果、製造条件の変化に対していかな
る微調整を実施する必要もなく、両側壁頂部12、12
を越える溶融ガラスの溢流量は、流量調節体10の位置
によらず等しく保つことができ、常に板幅方向に均一な
厚みを有する高品質のガラス板30を安定にかつ連続し
て製造することができる。
As a result, there is no need to make any fine adjustments to changes in manufacturing conditions, and the tops 12, 12 of both side walls are not required to be adjusted.
The overflow flow rate of the molten glass exceeding the above value can be kept equal regardless of the position of the flow rate control body 10, and a high quality glass plate 30 having a uniform thickness in the plate width direction can always be stably and continuously manufactured. You can

【0044】図3の(A)〜(E)は、本発明におい
て、ガラス供給溝11の流路床11aと両側壁頂部1
2、12との関係を定性的に示す概略説明図である。
(A)は両者をほぼ平行関係の曲線で構成した場合(但
し、終端側では緩やかに接近させる)であり、上記実施
例の流量調節体10がこれにあたる。(B)は両者を直
線で構成した場合、(C)は流路床11aを曲線とし、
両側壁頂部12、12を直線とした場合、(D)は流路
床11aを直線とし、両側壁頂部12、12を曲線とし
た場合、(E)は両者を曲線で構成した場合であり、こ
れらの形態にあっても上記実施例と同様に溶融ガラスの
溢流量について優れた安定性が得られる。
3 (A) to 3 (E), in the present invention, the channel floor 11a of the glass supply groove 11 and the tops 1 of both side walls are shown.
It is a schematic explanatory drawing which shows the relationship with 2 and 12 qualitatively.
(A) is a case where both are formed by curves having a substantially parallel relationship (however, the flow rate adjusting body 10 of the above-mentioned embodiment corresponds to this) when they are gently approached on the terminal side. (B) is a case where both of them are constituted by a straight line, (C) is a flow path floor 11a is a curve,
When both side wall tops 12, 12 are straight, (D) is the flow path floor 11a is straight, both side wall tops 12, 12 are curved, and (E) is both curved. Even in these modes, excellent stability can be obtained with respect to the overflow rate of the molten glass as in the above-mentioned embodiment.

【0045】[0045]

【発明の効果】本発明によれば、流量、温度やガラス物
性の変化に対して、液面高さが流路床に対して平行に変
化するので、両側壁を越える流れの流量を常に一定に維
持できる。また、両側壁頂部を越える流れは定常流とし
て安定して振る舞い、液面高さも流路床に平行に変化す
る。その結果、ガラス供給溝での液面高さ変化や不安定
な波動に対してゆっくりと対応し、不安定な変動を緩和
することができ、板幅方向に均一な厚さのガラス板を製
造することができる。
According to the present invention, the liquid level height changes parallel to the flow path floor in response to changes in flow rate, temperature, and physical properties of glass, so that the flow rate of the flow passing over both side walls is always constant. Can be maintained at Further, the flow over the tops of both side walls behaves stably as a steady flow, and the liquid level height changes parallel to the flow path floor. As a result, it slowly responds to changes in liquid level in the glass supply groove and unstable waves, and can mitigate unstable fluctuations, producing glass plates with a uniform thickness in the width direction. can do.

【0046】また、本発明は、ガラス供給溝の両側壁頂
部が溝幅方向の内側で高く、外側で低くなる俯角勾配の
傾斜面としてあるため、溢れ越える溶融ガラスは、両側
壁頂部に平行な液面を形成して流れ落ちることとなり、
板幅方向に均一な厚さのガラス板を製造することができ
る。
Further, according to the present invention, since the tops of both side walls of the glass supply groove are inclined surfaces having a depression angle gradient that is high inside and low outside in the groove width direction, overflowing molten glass is parallel to the tops of both side walls. It will form a liquid surface and run down,
It is possible to manufacture a glass plate having a uniform thickness in the plate width direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る流量調節体の斜視図。FIG. 1 is a perspective view of a flow rate adjuster according to the present invention.

【図2】(A)は図1の流量調節体の側面図、(B)は
その平面図、(C)は(A)のC−C線断面図。
2A is a side view of the flow rate control body of FIG. 1, FIG. 2B is a plan view thereof, and FIG. 2C is a sectional view taken along line CC of FIG.

【図3】(A)〜(E)は本発明において、ガラス供給
溝の流路床と両側壁頂部との関係を定性的に示す概略説
明図。
3A to 3E are schematic explanatory views qualitatively showing the relationship between the flow channel floor of the glass supply groove and the tops of both side walls in the present invention.

【図4】従来の流量調節体の斜視図。FIG. 4 is a perspective view of a conventional flow rate adjuster.

【符号の説明】 10 流量調節体 11 ガラス供給溝 11a 流路床 12 側壁頂部 13 側壁外面 20 予備成形槽 30 成形されるガラス板[Explanation of Codes] 10 Flow Control Body 11 Glass Supply Groove 11a Channel Floor 12 Sidewall Top 13 Sidewall Outer Surface 20 Preforming Tank 30 Glass Plate to be Formed

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上面が開口した樋形状をなすガラス供給
溝を頂部に有し、このガラス供給溝の両側壁頂部を溢流
堰とし、かつ、両側壁の外面同士を下方に向けて相互に
接近させて下端で終結させた流量調節体を備え、溶融ガ
ラスを上記ガラス供給溝の一端から連続的に供給して両
側壁頂部稜線から溢流させ、両側壁外面を流下させて下
端で合流させてガラス板を成形するガラス板の製造装置
において、 ガラス供給溝の溝底面となる流路床を溶融ガラスの流れ
方向の始端側で高く、終端側で低く、どの位置でも俯角
勾配で形成し、該ガラス供給溝の両側壁頂部も溶融ガラ
スの流れ方向の始端側で高く、終端側で低く、どの位置
でも俯角勾配で形成したことを特徴とするガラス板の製
造装置。
1. A gutter-shaped glass supply groove having an open upper surface is provided at the top, and the tops of both side walls of the glass supply groove serve as overflow weirs, and the outer surfaces of both side walls face downward with respect to each other. Provided with a flow rate adjuster that is brought close to and terminated at the lower end, the molten glass is continuously supplied from one end of the glass supply groove to overflow from the ridge line on the top of both side walls, and the outer surfaces of both side walls are allowed to flow down to join at the lower end. In a glass plate manufacturing apparatus for forming a glass plate with a glass plate, the flow path floor, which is the groove bottom surface of the glass supply groove, is high at the start end side in the flow direction of the molten glass, low at the end side, and formed with a depression angle gradient at any position, An apparatus for manufacturing a glass plate, characterized in that the tops of both side walls of the glass supply groove are also high on the starting end side in the flow direction of the molten glass and low on the terminal end side and are formed with a depression angle gradient at any position.
【請求項2】 ガラス供給溝の両側壁頂部が溝幅方向の
内側で高く、外側で低くなる俯角勾配の傾斜面としてあ
ることを特徴とする請求項1に記載のガラス板の製造装
置。
2. The glass plate manufacturing apparatus according to claim 1, wherein the tops of both side walls of the glass supply groove are inclined surfaces having a depression angle gradient that is higher inside and lower outside in the groove width direction.
JP27561895A 1995-10-24 1995-10-24 Apparatus for producing glass plate Withdrawn JPH09110443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27561895A JPH09110443A (en) 1995-10-24 1995-10-24 Apparatus for producing glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27561895A JPH09110443A (en) 1995-10-24 1995-10-24 Apparatus for producing glass plate

Publications (1)

Publication Number Publication Date
JPH09110443A true JPH09110443A (en) 1997-04-28

Family

ID=17557969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27561895A Withdrawn JPH09110443A (en) 1995-10-24 1995-10-24 Apparatus for producing glass plate

Country Status (1)

Country Link
JP (1) JPH09110443A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085630A3 (en) * 2000-05-09 2002-03-21 Richard Pitbladdo Sheet glass forming apparatus
US6748765B2 (en) 2000-05-09 2004-06-15 Richard B. Pitbladdo Overflow downdraw glass forming method and apparatus
US6889526B2 (en) 2001-08-08 2005-05-10 Richard B. Pitbladdo Overflow downdrawn glass forming method and apparatus
US6895782B2 (en) 2002-08-08 2005-05-24 Richard B. Pitbladdo Overflow downdrawn glass forming method and apparatus
WO2005121035A1 (en) * 2004-06-02 2005-12-22 Corning Incorporated Isopipe mass distribution for forming glass substrates
WO2005110934A3 (en) * 2004-05-11 2006-01-19 Diether Boettger Method and device for controlling the temperature during glass production
WO2005121182A3 (en) * 2004-06-02 2006-05-04 Corning Inc Glass sheet forming apparatus
JP2007112684A (en) * 2005-10-24 2007-05-10 Nippon Electric Glass Co Ltd Molded refractory article mounted to manufacturing device for plate glass and forming method for glass plate
US7386999B2 (en) 2001-12-14 2008-06-17 Corning Incorporated Defect control in the making of sheet glass by the fusion process
US7681414B2 (en) 2001-08-08 2010-03-23 Corning Incorporated Overflow downdraw glass forming method and apparatus
US7690221B2 (en) 2004-02-23 2010-04-06 Corning Incorporated Sheet width control for overflow downdraw sheet glass forming apparatus
US7748236B2 (en) 2005-12-27 2010-07-06 Corning Incorporated Overflow downdraw glass forming method and apparatus
JP2010189220A (en) * 2009-02-18 2010-09-02 Avanstrate Inc Glass forming apparatus
JP2011168494A (en) * 2011-06-09 2011-09-01 Avanstrate Inc Sheet glass manufacturing method and glass forming apparatus
US8042361B2 (en) 2004-07-20 2011-10-25 Corning Incorporated Overflow downdraw glass forming method and apparatus
US9233869B2 (en) 2001-08-08 2016-01-12 Corning Incorporated Overflow downdraw glass forming method and apparatus

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748765B2 (en) 2000-05-09 2004-06-15 Richard B. Pitbladdo Overflow downdraw glass forming method and apparatus
WO2001085630A3 (en) * 2000-05-09 2002-03-21 Richard Pitbladdo Sheet glass forming apparatus
US6997017B2 (en) 2001-05-09 2006-02-14 Pitbladdo Richard B Overflow downdraw glass forming method and apparatus
US7681414B2 (en) 2001-08-08 2010-03-23 Corning Incorporated Overflow downdraw glass forming method and apparatus
US8056365B2 (en) 2001-08-08 2011-11-15 Corning Incorporated Sheet glass forming apparatus
US6889526B2 (en) 2001-08-08 2005-05-10 Richard B. Pitbladdo Overflow downdrawn glass forming method and apparatus
US8006517B2 (en) 2001-08-08 2011-08-30 Corning Incorporated Overflow downdraw glass forming method and apparatus
US9802851B2 (en) 2001-08-08 2017-10-31 Corning Incorporated Overflow downdraw glass forming method and apparatus
US8365556B2 (en) 2001-08-08 2013-02-05 Corning Incorporated Overflow downdraw glass forming method and apparatus
US7155935B2 (en) 2001-08-08 2007-01-02 Bruce Technology Llc Sheet glass forming apparatus
US9233869B2 (en) 2001-08-08 2016-01-12 Corning Incorporated Overflow downdraw glass forming method and apparatus
US7386999B2 (en) 2001-12-14 2008-06-17 Corning Incorporated Defect control in the making of sheet glass by the fusion process
US6895782B2 (en) 2002-08-08 2005-05-24 Richard B. Pitbladdo Overflow downdrawn glass forming method and apparatus
US6990834B2 (en) 2002-08-08 2006-01-31 Bruce Technology, Llc Overflow downdraw glass forming method and apparatus
US7690221B2 (en) 2004-02-23 2010-04-06 Corning Incorporated Sheet width control for overflow downdraw sheet glass forming apparatus
US8661850B2 (en) 2004-02-23 2014-03-04 Corning Incorporated Sheet width control for overflow downdraw sheet glass forming apparatus
US9643873B2 (en) 2004-02-23 2017-05-09 Corning Incorporated Sheet width control for overflow downdraw sheet glass forming apparatus
US8230699B2 (en) 2004-02-23 2012-07-31 Corning Incorporated Sheet width control for overflow downdraw sheet glass forming apparatus
WO2005110934A3 (en) * 2004-05-11 2006-01-19 Diether Boettger Method and device for controlling the temperature during glass production
KR101133391B1 (en) * 2004-06-02 2012-04-10 코닝 인코포레이티드 Glass sheet forming apparatus
WO2005121182A3 (en) * 2004-06-02 2006-05-04 Corning Inc Glass sheet forming apparatus
WO2005121035A1 (en) * 2004-06-02 2005-12-22 Corning Incorporated Isopipe mass distribution for forming glass substrates
US8042361B2 (en) 2004-07-20 2011-10-25 Corning Incorporated Overflow downdraw glass forming method and apparatus
US8474286B2 (en) 2004-07-20 2013-07-02 Corning Incorporated Overflow downdraw glass forming method and apparatus
JP2007112684A (en) * 2005-10-24 2007-05-10 Nippon Electric Glass Co Ltd Molded refractory article mounted to manufacturing device for plate glass and forming method for glass plate
US8001805B2 (en) 2005-12-27 2011-08-23 Corning Incorporated Overflow downdraw glass forming method and apparatus
US7748236B2 (en) 2005-12-27 2010-07-06 Corning Incorporated Overflow downdraw glass forming method and apparatus
JP2010189220A (en) * 2009-02-18 2010-09-02 Avanstrate Inc Glass forming apparatus
JP2011168494A (en) * 2011-06-09 2011-09-01 Avanstrate Inc Sheet glass manufacturing method and glass forming apparatus

Similar Documents

Publication Publication Date Title
JPH09110443A (en) Apparatus for producing glass plate
JP5105522B2 (en) Isopipe mass distribution for forming glass substrates
KR101133391B1 (en) Glass sheet forming apparatus
US3149949A (en) Downflow sheet drawing method and apparatus
US6748765B2 (en) Overflow downdraw glass forming method and apparatus
US3338696A (en) Sheet forming apparatus
US3451798A (en) Sheet glass edge control device
US20080047300A1 (en) Defect reduction in manufacture glass sheets by fusion process
US4101304A (en) Method and apparatus for feeding glass out of a melting tank to a flat glass forming means
KR20030069190A (en) Method and device for producing thin glass panes
KR101215733B1 (en) Molten glass supply device
US1731260A (en) Method for producing sheet glass
CN104736488B (en) Sheet glass forming method and sheet glass forming device
TWI613157B (en) Glass forming apparatus and method
US4203750A (en) Manufacture of flat glass
US3961930A (en) Manufacture of flat glass
JPS63151633A (en) Device for producing plate glass
US3973940A (en) Delivery of molten glass to a glass forming process
US20230183119A1 (en) Puddle formation device
JP2019112255A (en) Apparatus and method for manufacturing glass article
US20230110501A1 (en) Forming apparatus
JPS5948769B2 (en) Glass sheet manufacturing method and equipment
JPH1149525A (en) Tool for adjusting amount of glass green body
WO2020153195A1 (en) Immersion nozzle
KR101206122B1 (en) Isopipe mass distribution for forming glass substrates

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107