JPH09102320A - Solid electrolyte battery and its manufacture - Google Patents

Solid electrolyte battery and its manufacture

Info

Publication number
JPH09102320A
JPH09102320A JP7282609A JP28260995A JPH09102320A JP H09102320 A JPH09102320 A JP H09102320A JP 7282609 A JP7282609 A JP 7282609A JP 28260995 A JP28260995 A JP 28260995A JP H09102320 A JPH09102320 A JP H09102320A
Authority
JP
Japan
Prior art keywords
positive electrode
solid electrolyte
electrolyte battery
electrode material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282609A
Other languages
Japanese (ja)
Other versions
JP3384661B2 (en
Inventor
Maruo Jinno
丸男 神野
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28260995A priority Critical patent/JP3384661B2/en
Publication of JPH09102320A publication Critical patent/JPH09102320A/en
Application granted granted Critical
Publication of JP3384661B2 publication Critical patent/JP3384661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte battery that is made excellent in discharge characteristic by suppressing deterioration of positive electrode material at the interface between the positive electrode and a polymeric solid electrolyte in forming the polymeric solid electrolyte on the positive electrode and which can be charged and discharged at large current when used as a secondary battery, so that it is excellent in charge/discharge cycle characteristic as well. SOLUTION: This solid electrolyte battery has a polymeric solid electrolyte 3 between positive 1 and negative 2 electrodes. Prior to formation of the polymeric solid electrolyte 3 on the positive electrode 1, a layer 1a of positive electrode material which differs in crystallinity from the positive electrode material used in the positive electrode is formed at the interface between the positive electrode 1 and the polymeric solid electrolyte 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正極と負極との
間に高分子固体電解質を備えた固体電解質電池及びこの
ような固体電解質電池の製造方法に係り、正極と高分子
固体電解質高分子固体電解質との界面抵抗が少なく、放
電特性に優れると共に、二次電池として使用する場合
に、大電流での充放電が行なえ、充放電サイクル特性に
も優れた固体電解質電池及びこの固体電解質電池の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte battery having a polymer solid electrolyte between a positive electrode and a negative electrode, and a method for manufacturing such a solid electrolyte battery. Manufacture of a solid electrolyte battery and an excellent solid-state electrolyte battery that has low interface resistance with an electrolyte and is excellent in discharge characteristics, and can be charged and discharged at a large current when used as a secondary battery, and is also excellent in charge-discharge cycle characteristics. It is about the method.

【0002】[0002]

【従来の技術】従来より、電池における電解質として
は、一般に水系或いは非水系の電解液が使用されていた
が、近年、このような液体の電解質に代えて、高分子で
構成された高分子固体電解質を用いた固体電解質電池が
注目されるようになった。すなわち、このような固体電
解質電池は電解質が液体でないため、漏液の心配がな
く、腐食性も小さく、また電解液の注液等を必要とせ
ず、電池構造が簡単で、その組立ても容易になる等の利
点があった。
2. Description of the Related Art Conventionally, an aqueous or non-aqueous electrolyte has been generally used as an electrolyte in a battery. In recent years, instead of such a liquid electrolyte, a polymer solid composed of a polymer has been used. Attention has been focused on solid electrolyte batteries using electrolytes. That is, in such a solid electrolyte battery, since the electrolyte is not a liquid, there is no fear of liquid leakage, the corrosiveness is small, and there is no need to inject the electrolytic solution, the battery structure is simple, and its assembly is easy. There were advantages such as becoming.

【0003】ここで、このような固体電解質電池を製造
するにあたり、従来においては、正極上に高分子固体電
解質用のモノマー材料を塗布し、これに紫外線や電子線
を照射して、このモノマー材料を重合させて高分子固体
電解質を形成することが行なわれていた。
Here, in manufacturing such a solid electrolyte battery, conventionally, a monomer material for a polymer solid electrolyte is coated on a positive electrode, and this monomer material is irradiated with ultraviolet rays or electron beams. Was polymerized to form a polymer solid electrolyte.

【0004】しかし、このように正極上に高分子固体電
解質用のモノマー材料を塗布して紫外線や電子線を照射
させた場合、上記正極と高分子固体電解質との界面部分
における正極材料が上記のモノマー材料と反応し、また
電子線によるエネルギー等によって不活性化し、これに
より高分子固体電解質との界面部分における正極材料が
劣化する。そして、正極と高分子固体電解質との界面抵
抗が増大し、得られた電池における放電容量が低下し、
また二次電池として使用した場合に、大電流での充放電
が困難になり、また充放電サイクル特性が低下する等の
問題があった。
However, when the monomer material for polymer solid electrolyte is coated on the positive electrode and irradiated with ultraviolet rays or electron beams, the positive electrode material at the interface between the positive electrode and the polymer solid electrolyte is as described above. It reacts with the monomer material and is inactivated by the energy of the electron beam or the like, which deteriorates the positive electrode material at the interface with the solid polymer electrolyte. Then, the interface resistance between the positive electrode and the solid polymer electrolyte increases, and the discharge capacity of the obtained battery decreases.
Further, when used as a secondary battery, there are problems that charging / discharging with a large current becomes difficult, and charging / discharging cycle characteristics deteriorate.

【0005】[0005]

【発明が解決しようとする課題】この発明は、正極と負
極との間に高分子固体電解質が設けられた固体電解質電
池における上記のような問題を解決することを課題とす
るものであり、正極上に高分子固体電解質を形成する際
に、高分子固体電解質との界面において正極材料が劣化
するのを抑制し、正極と高分子固体電解質との界面抵抗
を低くすることができ、放電特性に優れると共に、二次
電池として使用する場合に、大電流での充放電が行な
え、充放電サイクル特性にも優れた固体電解質電池が得
られるようにすることを課題とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems in a solid electrolyte battery in which a polymer solid electrolyte is provided between a positive electrode and a negative electrode. When forming a solid polymer electrolyte on the very top, it is possible to suppress deterioration of the positive electrode material at the interface with the solid polymer electrolyte, and it is possible to reduce the interfacial resistance between the positive electrode and the solid polymer electrolyte, and to improve discharge characteristics. An object of the present invention is to obtain a solid electrolyte battery which is excellent and can be charged and discharged with a large current when used as a secondary battery, and has excellent charge and discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】この発明における固体電
解質電池においては、上記のような課題を解決するた
め、正極と負極との間に高分子固体電解質を備える固体
電解質電池において、正極と高分子固体電解質の界面部
分において、上記正極における正極材料と結晶性の異な
る正極材料の層を形成するようにしたのである。
In the solid electrolyte battery of the present invention, in order to solve the above problems, in a solid electrolyte battery having a polymer solid electrolyte between a positive electrode and a negative electrode, the positive electrode and the polymer At the interface portion of the solid electrolyte, a layer of a positive electrode material having a crystallinity different from that of the positive electrode material of the positive electrode is formed.

【0007】また、この発明における固体電解質電池の
製造方法においては、上記のような課題を解決するた
め、正極と負極との間に高分子固体電解質を備える固体
電解質電池を製造するにあたり、正極上に高分子固体電
解質を形成する前に、高分子固体電解質との界面部分に
物理的手法により正極における正極材料と結晶性の異な
る正極材料の層を形成するようにしたのである。
Further, in order to solve the above-mentioned problems, in the method for manufacturing a solid electrolyte battery according to the present invention, in manufacturing a solid electrolyte battery including a polymer solid electrolyte between a positive electrode and a negative electrode, Before forming the solid polymer electrolyte, a layer of a positive electrode material having a different crystallinity from the positive electrode material in the positive electrode was formed by a physical method at the interface with the solid polymer electrolyte.

【0008】この発明のように、正極と高分子固体電解
質との界面部分において、正極における正極材料と結晶
性の異なる正極材料の層を設けると、前記のように正極
上に高分子固体電解質用のモノマー材料を塗布し、これ
に紫外線や電子線を照射して、このモノマー材料を重合
させて高分子固体電解質を形成する際に、上記の結晶性
の異なる正極材料の層により、正極を構成する正極材料
が上記のモノマー材料と反応したり、電子線等のエネル
ギーにより不活性化して劣化するのが抑制され、これに
より正極と高分子固体電解質との界面抵抗の増大が抑制
され、放電特性が向上すると共に、二次電池として使用
する場合においても、大電流での充放電が可能となると
共に、充放電サイクル特性も向上すると考えられる。
When a layer of a positive electrode material having a crystallinity different from that of the positive electrode material in the positive electrode is provided at the interface between the positive electrode and the solid polymer electrolyte as in the present invention, the solid polymer electrolyte for the positive electrode is formed on the positive electrode as described above. Of the positive electrode material having different crystallinity when forming a solid polymer electrolyte by polymerizing this monomer material by irradiating it with ultraviolet rays or an electron beam. It is suppressed that the positive electrode material that reacts with the above-mentioned monomer material or is inactivated by the energy of the electron beam or the like and deteriorates, thereby suppressing the increase in the interfacial resistance between the positive electrode and the solid polymer electrolyte, and the discharge characteristics. It is considered that, when used as a secondary battery, charging and discharging can be performed with a large current, and charging and discharging cycle characteristics are also improved.

【0009】ここで、上記のように正極における正極材
料と結晶性の異なる正極材料の層を形成する物理的方法
としては、スパッタ法,CVD法,真空蒸着法等を使用
することができ、この結晶性の異なる正極材料の層につ
いては、モノマー材料との反応や、電子線等のエネルギ
ーによる劣化が少ない非晶質の正極材料の層を形成する
ことが好ましい。
Here, as a physical method for forming a layer of a positive electrode material having a crystallinity different from that of the positive electrode material in the positive electrode as described above, a sputtering method, a CVD method, a vacuum deposition method or the like can be used. As for the layers of the positive electrode material having different crystallinity, it is preferable to form an amorphous positive electrode material layer which is less likely to be deteriorated due to the reaction with the monomer material or the energy such as electron beam.

【0010】また、上記のように正極と高分子固体電解
質との界面部分に形成する結晶性の異なる正極材料の層
の厚みについては、その厚みが薄すぎると、この結晶性
の異なる正極材料の層によって正極を構成する正極材料
の劣化を十分に抑制することができなくなる一方、その
厚みが厚すぎると、正極を構成する正極材料におけるイ
オンの吸蔵・放出が抑制されるため、結晶性の異なる正
極材料の層を形成する場合、その厚みを0.1〜1μm
の範囲にすることが好ましい。
Regarding the thickness of the layer of the positive electrode material having different crystallinity formed at the interface between the positive electrode and the solid polymer electrolyte as described above, when the thickness is too thin, the positive electrode material having different crystallinity is formed. While it becomes impossible to sufficiently suppress the deterioration of the positive electrode material that constitutes the positive electrode by the layer, if the thickness is too thick, the absorption and desorption of ions in the positive electrode material that constitutes the positive electrode is suppressed, so that the crystallinity is different. When forming the layer of the positive electrode material, the thickness thereof is 0.1 to 1 μm.
It is preferable to be within the range.

【0011】また、上記の正極を構成する正極材料と、
高分子固体電解質との界面に形成する結晶性の異なる正
極材料の層を構成する正極材料とは同じ材料であって
も、異なった材料であっても良いが、正極としての特性
が似たものを使用することが好ましく、特に、上記のよ
うなモノマー材料との反応や、電子線等のエネルギーに
よる劣化を抑制する点からは、上記の正極を構成する正
極材料及び結晶性の異なる正極材料がリチウムの吸蔵・
放出が可能な遷移金属酸化物で構成されている場合に有
効である。
Further, a positive electrode material constituting the above positive electrode,
The positive electrode material forming the layer of the positive electrode material having different crystallinity formed at the interface with the solid polymer electrolyte may be the same material or different material, but the characteristics of the positive electrode are similar. In particular, from the viewpoint of suppressing the reaction with the monomer material as described above and deterioration due to energy such as an electron beam, the positive electrode material and the positive electrode material having different crystallinity constituting the above positive electrode are Storage of lithium
It is effective when it is composed of a transition metal oxide that can be released.

【0012】ここで、このようなリチウムの吸蔵・放出
が可能な遷移金属酸化物を、正極を構成する正極材料
や、結晶性の異なる正極材料の層に使用する場合、例え
ば、正極を構成する正極材料に、結晶性のLiCoO
2 ,LiMnO2 ,LiNiO2,LiFeO2 ,Li
TiO2 ,LiCrO2 のいずれかを使用した場合に
は、結晶性の異なる正極材料の層に、非晶質のLiCo
2 ,LiMnO2 ,LiNiO2 ,LiFeO2 ,L
iTiO2 ,LiCrO2 のいずれかを選択して使用す
ることができる。
Here, when such a transition metal oxide capable of inserting and extracting lithium is used for a positive electrode material constituting a positive electrode or a layer of a positive electrode material having different crystallinity, for example, it constitutes a positive electrode. For the positive electrode material, crystalline LiCoO 2
2, LiMnO 2, LiNiO 2, LiFeO 2, Li
When either TiO 2 or LiCrO 2 is used, amorphous LiCo is formed on the layer of the positive electrode material having different crystallinity.
O 2, LiMnO 2, LiNiO 2 , LiFeO 2, L
Either iTiO 2 or LiCrO 2 can be selected and used.

【0013】また、上記のように正極材料にリチウムの
吸蔵・放出が可能な遷移金属酸化物を使用してリチウム
イオンを高分子固体電解質を通して移動させる場合、負
極材料としては、金属リチウム或いはリチウムの吸蔵・
放出が可能な合金、金属酸化物、炭素材料等が使用され
る。ここで、上記の合金としては、例えば、Li−Al
合金,Li−In合金,Li−Sn合金,Li−Pb合
金,Li−Bi合金,Li−Ga合金,Li−Sr合
金,Li−Si合金,Li−Zn合金,Li−Cd合
金,Li−Ca合金,Li−Ba合金等のリチウム合金
を、また上記の金属酸化物としては、例えば、Fe2
3 ,TiO2 ,Nb23 ,WO3 等の金属酸化物を、
また上記の炭素材料としては、例えば、天然黒鉛,人造
黒鉛,無定形炭素等を使用することができる。
When a lithium metal is used as the positive electrode material to move lithium ions through the polymer solid electrolyte by using a transition metal oxide capable of inserting and extracting lithium, the negative electrode material may be metallic lithium or lithium. Occlusion
Releaseable alloys, metal oxides, carbon materials, etc. are used. Here, as the above-mentioned alloy, for example, Li-Al
Alloy, Li-In alloy, Li-Sn alloy, Li-Pb alloy, Li-Bi alloy, Li-Ga alloy, Li-Sr alloy, Li-Si alloy, Li-Zn alloy, Li-Cd alloy, Li-Ca Alloys, lithium alloys such as Li-Ba alloys, and the above metal oxides include, for example, Fe 2 O.
Metal oxides such as 3 , TiO 2 , Nb 2 O 3 and WO 3 ,
Further, as the above-mentioned carbon material, for example, natural graphite, artificial graphite, amorphous carbon or the like can be used.

【0014】また、上記のようにリチウムイオンを移動
させる場合において、この高分子固体電解質に加える溶
質としては、例えば、トリフルオロメタンスルホン酸リ
チウムLiCF3 SO3 ,ヘキサフルオロリン酸リチウ
ムLiPF6 ,テトラフルオロホウ酸リチウムLiBF
4 ,過塩素酸リチウムLiClO4 ,トリフルオロメタ
ンスルホン酸イミドリチウムLiN(CF3 SO22
等を使用することができる。
When the lithium ions are moved as described above, the solute to be added to the polymer solid electrolyte is, for example, lithium trifluoromethanesulfonate LiCF 3 SO 3 , lithium hexafluorophosphate LiPF 6 , tetrafluoromethane. Lithium borate LiBF
4 , lithium perchlorate LiClO 4 , trifluoromethanesulfonic acid imide lithium LiN (CF 3 SO 2 ) 2
Etc. can be used.

【0015】また、高分子固体電解質に上記のような溶
質を加えるにあたっては、上記の溶質を溶解する溶媒を
加え、上記の高分子固体電解質をゲル状にして使用する
こともでき、このような溶媒としては、例えば、プロピ
レンカーボネート,エチレンカーボネート,γ−ブチロ
ラクトン,ブチレンカーボネート,1,2−ジメトキシ
エタン,ジメチルカーボネート,ジエチルカーボネート
等を使用することができる。
In addition, when adding the above-mentioned solute to the polymer solid electrolyte, it is also possible to add a solvent for dissolving the above-mentioned solute to make the above-mentioned polymer solid electrolyte into a gel and use it. As the solvent, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, butylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate or the like can be used.

【0016】[0016]

【実施例】以下、この発明に係る固体電解質電池及びそ
の製造方法について実施例を挙げて具体的に説明すると
共に、比較例を挙げ、この実施例に係る固体電解質電池
が放電特性や充放電サイクル特性の点において優れてい
ることを明らかにする。なお、この発明における固体電
解質電池は下記の実施例に示したものに限定されるもの
ではなく、その要旨を変更しない範囲において適宜変更
して実施できるものである。
EXAMPLES Hereinafter, the solid electrolyte battery and the method for producing the same according to the present invention will be specifically described with reference to Examples, and comparative examples will be given. The solid electrolyte batteries according to this Example show discharge characteristics and charge / discharge cycles. It reveals that it is superior in terms of characteristics. The solid electrolyte battery according to the present invention is not limited to the ones shown in the following examples, and can be implemented by appropriately changing it without departing from the scope of the invention.

【0017】[実施例1]この実施例においては、正
極,負極及び高分子固体電解質を下記のようにして作製
し、図1に示すような扁平型の固体電解質二次電池を得
るようにした。
[Example 1] In this example, a positive electrode, a negative electrode and a polymer solid electrolyte were prepared as follows to obtain a flat type solid electrolyte secondary battery as shown in FIG. .

【0018】(正極の作製)正極材料としては700〜
900℃の温度で熱処理したリチウム含有二酸化コバル
トLiCoO2 を用い、このリチウム含有二酸化コバル
トと、導電剤であるカーボン粉末と、結着剤であるフッ
素樹脂粉末とを85:10:5の重量比で混合し、この
混合物をドクターブレード法により正極集電体5上に塗
布した後、これを100〜150℃で真空熱処理し、厚
さが約70μm、直径が10mmの円板状になった正極
1を得た。なお、正極集電体5にはフェライト系ステン
レス鋼を使用した。
(Production of Positive Electrode) The positive electrode material is 700 to
Using lithium-containing cobalt dioxide LiCoO 2 heat-treated at a temperature of 900 ° C., this lithium-containing cobalt dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder were mixed at a weight ratio of 85: 10: 5. After mixing and applying this mixture on the positive electrode current collector 5 by the doctor blade method, this was subjected to vacuum heat treatment at 100 to 150 ° C. to form a disk-shaped positive electrode 1 having a thickness of about 70 μm and a diameter of 10 mm. Got In addition, ferritic stainless steel was used for the positive electrode current collector 5.

【0019】次に、このようにして作製した正極1上に
対して、下記の表1に示すスパッタ条件でスパッタリン
グを行ない、上記の正極材料と結晶性が異なる非晶質の
リチウム含有二酸化コバルトLiCoO2 により厚みが
約0.75μmになった非晶質層1aを上記の正極1上
に形成した。
Next, the positive electrode 1 thus produced was subjected to sputtering under the sputtering conditions shown in Table 1 below, and amorphous lithium-containing cobalt dioxide LiCoO 2 having crystallinity different from that of the above positive electrode material. the amorphous layer 1a of thickness by 2 became about 0.75μm was formed on the positive electrode 1 above.

【0020】[0020]

【表1】 [Table 1]

【0021】(負極の作製)負極材料としては黒鉛粉末
を用い、この黒鉛粉末と結着剤であるフッ素樹脂とを9
5:5の重量比で混合し、この混合物をドクターブレー
ド法により負極集電体6上に塗布した後、これを100
〜150℃で真空熱処理して、厚みが約50μm,直径
が10mmの円板状になった負極2を得た。なお、負極
集電体6にはフェライト系ステンレス鋼を使用した。
(Production of Negative Electrode) Graphite powder was used as a negative electrode material, and the graphite powder and a fluororesin as a binder were mixed with each other.
The mixture was mixed in a weight ratio of 5: 5, and the mixture was applied onto the negative electrode current collector 6 by the doctor blade method, and then this was mixed with 100
Vacuum heat treatment was performed at ˜150 ° C. to obtain a disk-shaped negative electrode 2 having a thickness of about 50 μm and a diameter of 10 mm. In addition, ferritic stainless steel was used for the negative electrode current collector 6.

【0022】(高分子固体電解質の作製)高分子固体電
解質におけるモノマー材料に、下記の化1に示す分子量
が約1000のアクリレート系モノマーを用い、このモ
ノマー材料に対し、エチレンカーボネートとジメチルカ
ーボネートとが4:6の割合になった混合溶媒に過塩素
酸リチウムLiClO4 を1mol/l溶解させた電解
液を重量比1:3の割合で混合させて高分子固体電解質
用の溶液を調製し、この高分子固体電解質用の溶液を上
記のようにして作製した正極1上における非晶質層1a
の上に25〜100μmの厚みになるように塗布し、そ
の後、この高分子固体電解質形成用溶液にエレクトロカ
ーテン式電子線照射装置から出力200kV、照射線量
2〜5Mradで電子線を照射して上記のモノマー材料
を重合させ、上記の非晶質層1a上にゲル状になった高
分子固体電解質3を作製した。
(Preparation of Solid Polymer Electrolyte) An acrylate-based monomer having a molecular weight of about 1000 shown in the following chemical formula 1 is used as a monomer material in the solid polymer electrolyte, and ethylene carbonate and dimethyl carbonate are added to the monomer material. An electrolyte solution in which 1 mol / l of lithium perchlorate LiClO 4 was dissolved in a mixed solvent having a ratio of 4: 6 was mixed at a weight ratio of 1: 3 to prepare a solution for a polymer solid electrolyte. Amorphous layer 1a on the positive electrode 1 prepared by the above-mentioned solution for solid polymer electrolyte
To a thickness of 25 to 100 μm, and then the solution for forming a polymer solid electrolyte is irradiated with an electron beam at an output of 200 kV and an irradiation dose of 2 to 5 Mrad from the electrocurtain type electron beam irradiation device. The monomer material of 1 was polymerized to prepare a gelled polymer solid electrolyte 3 on the amorphous layer 1a.

【0023】[0023]

【化1】 Embedded image

【0024】(電池の作製)そして、この実施例1の固
体電解質電池においては、図1に示すように、上記のよ
うにして作製した高分子固体電解質3の上に上記の負極
1を重ね、正極1における非晶質層1aと負極2との間
に高分子固体電解質3を挾むようにして正極缶4aと負
極缶4bとが形成する電池ケース4内に収容させ、正極
集電体5を介して正極1を正極缶4aに接続させる一
方、負極集電体6を介して負極2を負極缶4bに接続さ
せ、この正極缶4aと負極缶4bとを絶縁性パッキン7
により電気的に絶縁し、この電池内部で生じた化学エネ
ルギーを正極缶4aと負極缶4bの両端子から電気エネ
ルギーとして外部へ取り出すようにした。
(Preparation of Battery) In the solid electrolyte battery of Example 1, as shown in FIG. 1, the negative electrode 1 was placed on the solid polymer electrolyte 3 prepared as described above. The solid polymer electrolyte 3 is sandwiched between the amorphous layer 1a and the negative electrode 2 in the positive electrode 1 and housed in the battery case 4 formed by the positive electrode can 4a and the negative electrode can 4b. While the positive electrode 1 is connected to the positive electrode can 4a, the negative electrode 2 is connected to the negative electrode can 4b through the negative electrode current collector 6, and the positive electrode can 4a and the negative electrode can 4b are insulated by the insulating packing 7
The electric energy is electrically insulated by means of and the chemical energy generated inside the battery is taken out as electric energy from both terminals of the positive electrode can 4a and the negative electrode can 4b.

【0025】[比較例1]この比較例においては、上記
実施例1の固体電解質電池において正極1上に非晶質層
1aを設ける工程をなくし、それ以外については、上記
実施例1の場合とと同様にして、図2に示す固体電解質
電池を作製した。
[Comparative Example 1] In this comparative example, the step of providing the amorphous layer 1a on the positive electrode 1 in the solid electrolyte battery of the above-mentioned Example 1 was omitted, and other than that, the case of the above-mentioned Example 1 was omitted. The solid electrolyte battery shown in FIG. 2 was produced in the same manner as in.

【0026】次に、上記のようにして作製した実施例1
及び比較例1の各固体電解質電池について、それぞれ温
度25℃の雰囲気下において、充電電流密度500μA
/cm2 で4.20Vまで充電した後、放電電流密度5
00μA/cm2 で2.50Vまで放電し、このような
充放電のサイクルを繰り返して行ない、サイクル数の増
加に伴う放電容量の変化を測定して、これらの固体電解
質電池における充放電サイクル特性を調べ、その結果を
図3に示した。
Next, Example 1 manufactured as described above was used.
And each solid electrolyte battery of Comparative Example 1 under a temperature of 25 ° C., a charging current density of 500 μA
Discharge current density of 5 after charging to 4.20 V at 1 / cm 2
The solid-state battery was discharged to 2.50 V at 00 μA / cm 2 and the charging / discharging cycle was repeated, and the change in the discharging capacity with the increase in the number of cycles was measured to determine the charging / discharging cycle characteristics of these solid electrolyte batteries. The investigation was conducted and the results are shown in FIG.

【0027】この結果、正極1と高分子固体電解質3と
の間に正極1における正極材料と結晶性の異なる非晶質
層1aを形成した実施例1の固体電解質電池は、非晶質
層1aを形成しなかった比較例1の固体電解質電池に比
べて、サイクル数の増加に伴う放電容量の減少が著しく
少なくなっており、充放電サイクル特性が非常に向上し
ていた。
As a result, the solid electrolyte battery of Example 1 in which the amorphous layer 1a having a crystallinity different from that of the positive electrode material in the positive electrode 1 was formed between the positive electrode 1 and the solid polymer electrolyte 3 was the amorphous layer 1a. Compared to the solid electrolyte battery of Comparative Example 1 in which the battery was not formed, the decrease in discharge capacity with the increase in the number of cycles was significantly reduced, and the charge / discharge cycle characteristics were significantly improved.

【0028】また、実施例1と比較例1の固体電解質電
池について、上記のように温度25℃の雰囲気下で、充
電電流密度500μA/cm2 で4.20Vまで充電さ
せた後、放電電流密度500μA/cm2 で2.50V
まで放電させるようにして、これらの各固体電解質電池
における充放電特性を調べた。ここで、充放電特性を調
べるにあたっては、縦軸に電池電圧、横軸に充放電容量
をとり、充放電容量による電池電圧の変動を調べ、その
結果を図4に示した。なお、同図においては、実施例1
の固体電解質電池における結果を実線で、比較例1の固
体電解質電池における結果を破線で示すと共に、放電時
における結果を太線で、充電時における結果を細線で示
した。
Further, the solid electrolyte batteries of Example 1 and Comparative Example 1 were charged at a charging current density of 500 μA / cm 2 to 4.20 V in the atmosphere at a temperature of 25 ° C. as described above, and then discharged at a discharge current density. 2.50 V at 500 μA / cm 2
The charging / discharging characteristics of each of these solid electrolyte batteries were examined by discharging the solid electrolyte batteries. Here, in examining the charge / discharge characteristics, the vertical axis represents the battery voltage, and the horizontal axis represents the charge / discharge capacity. The variation of the battery voltage due to the charge / discharge capacity was investigated, and the results are shown in FIG. In addition, in FIG.
The results for the solid electrolyte battery of No. 2 are shown by a solid line, the results for the solid electrolyte battery of Comparative Example 1 are shown by a broken line, the results at the time of discharging are shown by a thick line, and the results at the time of charging are shown by a thin line.

【0029】この結果、上記のように非晶質層1aを設
けた実施例1の固体電解質電池は、非晶質層1aを設け
ていない比較例1の固体電解質電池に比べて、放電時に
おける電池電圧の変動が少なく、比較例1の電池に比べ
て放電特性が優れていた。
As a result, the solid electrolyte battery of Example 1 provided with the amorphous layer 1a as described above has a higher discharge time than the solid electrolyte battery of Comparative Example 1 not provided with the amorphous layer 1a. The fluctuation of the battery voltage was small, and the discharge characteristics were superior to those of the battery of Comparative Example 1.

【0030】次に、上記実施例1における固体電解質電
池において、上記のように正極1を作製した後、この正
極1上に非晶質LiCoO2 からなる非晶質層1aを形
成するにあたり、この非晶質層1aの厚みを変化させた
複数の固体電解質電池を作製した。
Next, in the solid electrolyte battery of Example 1, the positive electrode 1 was prepared as described above, and then the amorphous layer 1a made of amorphous LiCoO 2 was formed on the positive electrode 1. A plurality of solid electrolyte batteries having different thicknesses of the amorphous layer 1a were produced.

【0031】そして、このように非晶質層1aの厚みが
異なった各固体電解質電池に対し、上記の充放電条件と
同じ条件で充放電を50サイクル行ない、その時点での
各固体電解質電池における容量保存率を測定し、上記の
非晶質層1aの厚みと容量保存率との関係を調べ、その
結果を図5に示した。
Then, for each solid electrolyte battery having the amorphous layer 1a having a different thickness as described above, 50 cycles of charge and discharge are performed under the same conditions as the above charge and discharge conditions, and in each solid electrolyte battery at that time. The capacity storage rate was measured, and the relationship between the thickness of the amorphous layer 1a and the capacity storage rate was examined, and the results are shown in FIG.

【0032】この結果、上記の非晶質層1aの厚みが
0.1〜1.0μmの範囲では容量保存率が90%以上
で、容量保存率の低下が少なかったのに対して、非晶質
層1aの厚みが0.1μmより薄い場合や、1μmより
厚い場合には、容量保存率が低下していた。
As a result, when the thickness of the amorphous layer 1a is in the range of 0.1 to 1.0 μm, the capacity retention rate is 90% or more, and the decrease in the capacity retention rate was small, whereas the amorphous layer 1a was amorphous. When the thickness of the textured layer 1a was thinner than 0.1 μm or thicker than 1 μm, the capacity retention rate was low.

【0033】[実施例2]この実施例においては、上記
実施例1の固体電解質電池における正極1の部分だけを
変更し、それ以外については上記実施例1と同様にして
固体電解質電池を作製した。
Example 2 In this example, a solid electrolyte battery was manufactured in the same manner as in Example 1 except that only the positive electrode 1 portion in the solid electrolyte battery of Example 1 was changed. .

【0034】ここで、この実施例2においては、正極1
を作製するにあたり、原料として炭酸リチウムLiCO
3 と二酸化マンガンMnO2 を用い、これらを大気中で
700〜1000℃の温度で20時間熱処理して得たリ
チウム含有二酸化マンガンLiMnO2 を正極材料とし
て使用し、このリチウム含有二酸化マンガンと、導電剤
であるカーボン粉末と、結着剤であるフッ素樹脂粉末と
を85:10:5の重量比で混合し、この混合物をドク
ターブレード法により正極集電体5上に塗布した後、こ
れを100〜150℃で真空熱処理し、厚さが約70μ
m、直径が10mmの円板状になった正極1を作製し
た。
Here, in this Example 2, the positive electrode 1
LiCO 3 as a raw material for producing
Lithium-containing manganese dioxide LiMnO 2 obtained by heat-treating 3 and manganese dioxide MnO 2 in the air at a temperature of 700 to 1000 ° C. for 20 hours was used as a positive electrode material. Of the carbon powder and the fluororesin powder of the binder are mixed in a weight ratio of 85: 10: 5, and the mixture is applied on the positive electrode current collector 5 by the doctor blade method, and then 100- Vacuum heat treatment at 150 ℃, thickness about 70μ
A disk-shaped positive electrode 1 having a diameter of m and a diameter of 10 mm was produced.

【0035】その後は、この正極1上に上記実施例1の
場合と同様にして、非晶質のリチウム含有二酸化コバル
トLiCoO2 からなる厚みが約0.75μmになった
非晶質層1aを形成した。
Thereafter, the amorphous layer 1a made of amorphous lithium-containing cobalt dioxide LiCoO 2 and having a thickness of about 0.75 μm is formed on the positive electrode 1 in the same manner as in the first embodiment. did.

【0036】[比較例2]この比較例においては、上記
実施例2の固体電解質電池において正極1上に非晶質層
1aを設ける工程をなくし、それ以外については、上記
実施例2と同様にして固体電解質電池を作製した。
[Comparative Example 2] In this comparative example, the step of providing the amorphous layer 1a on the positive electrode 1 in the solid electrolyte battery of the above-described Example 2 was omitted, and otherwise the same as in Example 2 above. Then, a solid electrolyte battery was produced.

【0037】次に、上記のようにして作製した実施例2
及び比較例2の各固体電解質電池に対して、上記実施例
1及び比較例1の場合と同様にして充放電を行ない、充
放電のサイクル数の増加に伴う放電容量の変化を測定
し、これらの固体電解質電池における充放電サイクル特
性を調べ、その結果を図6に示した。
Next, Example 2 produced as described above
And each solid electrolyte battery of Comparative Example 2 was charged and discharged in the same manner as in Example 1 and Comparative Example 1 above, and the change in discharge capacity with the increase in the number of charge and discharge cycles was measured. The charge / discharge cycle characteristics of the solid electrolyte battery of No. 3 were investigated, and the results are shown in FIG.

【0038】この結果、正極1と高分子固体電解質3と
の間に正極1における正極材料と結晶性の異なる非晶質
層1aを形成した実施例2の固体電解質電池は、非晶質
層1aを形成しなかった比較例2の固体電解質電池に比
べて、サイクル数の増加に伴う放電容量の減少が著しく
少なくなっており、充放電サイクル特性が非常に向上し
ていた。
As a result, the solid electrolyte battery of Example 2 in which the amorphous layer 1a having a crystallinity different from that of the positive electrode material in the positive electrode 1 was formed between the positive electrode 1 and the solid polymer electrolyte 3 was the amorphous layer 1a. Compared with the solid electrolyte battery of Comparative Example 2 in which the battery was not formed, the decrease in discharge capacity with the increase in the number of cycles was significantly reduced, and the charge / discharge cycle characteristics were greatly improved.

【0039】[実施例3]この実施例においても、上記
実施例1の固体電解質電池における正極1の部分だけを
変更し、それ以外については、上記実施例1と同様にし
て固体電解質電池を作製した。
[Example 3] Also in this example, a solid electrolyte battery was prepared in the same manner as in Example 1 except that only the positive electrode 1 portion in the solid electrolyte battery of Example 1 was changed. did.

【0040】ここで、この実施例3においては、正極1
を作製するにあたり、原料として水酸化リチウムLiO
Hと水酸化ニッケルNi(OH)2 を用い、これらを酸
素雰囲気中で700〜800℃の温度で20時間熱処理
して得たリチウム含有二酸化ニッケルLiNiO2 を正
極材料として使用し、このリチウム含有二酸化ニッケル
と、導電剤であるカーボン粉末と、結着剤であるフッ素
樹脂粉末とを85:10:5の重量比で混合し、この混
合物をドクターブレード法により正極集電体5上に塗布
した後、これを100〜150℃で真空熱処理し、厚さ
が約70μm、直径が10mmの円板状になった正極1
を作製した。
Here, in the third embodiment, the positive electrode 1
Lithium hydroxide LiO as a raw material for producing
Lithium-containing nickel dioxide LiNiO 2 obtained by heat-treating H and nickel hydroxide Ni (OH) 2 at a temperature of 700 to 800 ° C. for 20 hours in an oxygen atmosphere was used as a positive electrode material. After nickel, carbon powder as a conductive agent, and fluororesin powder as a binder were mixed in a weight ratio of 85: 10: 5, and this mixture was applied on the positive electrode current collector 5 by the doctor blade method. This was subjected to vacuum heat treatment at 100 to 150 ° C. to form a disk-shaped positive electrode 1 having a thickness of about 70 μm and a diameter of 10 mm.
Was prepared.

【0041】そして、この実施例においては、この正極
1上にスパッタリングによって非晶質層1aを形成する
にあたり、スパッタリングのターゲットに上記実施例2
において使用したリチウム含有二酸化マンガンLiMn
2 を用い、それ以外については、上記実施例1の場合
と同じスパッタ条件でスパッタリングを行ない、上記の
正極1上に、非晶質のリチウム含有二酸化マンガンLi
MnO2 で構成され厚みが約0.75μmになった非晶
質層1aを形成した。
In this embodiment, when the amorphous layer 1a is formed on the positive electrode 1 by sputtering, the sputtering target is used in Embodiment 2 described above.
Lithium-containing manganese dioxide LiMn used in
O 2 was used, and other than that, sputtering was performed under the same sputtering conditions as in the case of Example 1 above. Amorphous lithium-containing manganese dioxide Li was formed on the positive electrode 1 described above.
An amorphous layer 1a made of MnO 2 and having a thickness of about 0.75 μm was formed.

【0042】[比較例3]この比較例においては、上記
実施例3の固体電解質電池において正極1上に非晶質層
1aを設ける工程をなくし、それ以外については、上記
実施例3と同様にして固体電解質電池を作製した。
[Comparative Example 3] In this Comparative Example, the step of providing the amorphous layer 1a on the positive electrode 1 in the solid electrolyte battery of the above Example 3 was omitted, and otherwise the same as in Example 3 above. Then, a solid electrolyte battery was produced.

【0043】次に、上記のようにして作製した実施例3
及び比較例3の各固体電解質電池に対して、上記実施例
1及び比較例1の場合と同様にして、これらの各固体電
解質電池における充放電特性を調べ、その結果を図7に
示した。なお、同図においては、実施例3の固体電解質
電池における結果を実線で、比較例3の固体電解質電池
における結果を破線で示すと共に、放電時における結果
を太線で、充電時における結果を細線で示した。
Next, Example 3 produced as described above
For each of the solid electrolyte batteries of Comparative Example 3 and Comparative Example 3, the charge and discharge characteristics of each of the solid electrolyte batteries were examined in the same manner as in Example 1 and Comparative Example 1, and the results are shown in FIG. In the figure, the results of the solid electrolyte battery of Example 3 are shown by solid lines, the results of the solid electrolyte battery of Comparative Example 3 are shown by broken lines, the results of discharging are shown by thick lines, and the results of charging are shown by thin lines. Indicated.

【0044】この結果、上記のように非晶質層1aを設
けた実施例3の固体電解質電池は、非晶質層1aを設け
ていない比較例3の固体電解質電池に比べて、放電時に
おける電池電圧の変動が少なく、比較例3の電池に比べ
て放電特性が優れていた。
As a result, the solid electrolyte battery of Example 3 in which the amorphous layer 1a was provided as described above was discharged during discharging as compared with the solid electrolyte battery of Comparative Example 3 in which the amorphous layer 1a was not provided. The fluctuation of the battery voltage was small, and the discharge characteristics were superior to those of the battery of Comparative Example 3.

【0045】[0045]

【発明の効果】以上詳述したように、この発明において
は、正極と高分子固体電解質との界面部分において、正
極における正極材料と結晶性の異なる正極材料の層を設
けるようにしたため、前記のようにこの結晶性の異なる
正極材料の層によって正極を構成する正極材料の劣化が
抑制され、これによりこの固体電解質電池の放電特性が
向上すると共に、二次電池として使用した場合には、大
電流での充放電が可能となり、その充放電サイクル特性
も著しく向上した。
As described above in detail, in the present invention, a layer of a positive electrode material having a crystallinity different from that of the positive electrode material in the positive electrode is provided at the interface between the positive electrode and the solid polymer electrolyte. As described above, the deterioration of the positive electrode material that constitutes the positive electrode is suppressed by the layer of the positive electrode material having different crystallinity, thereby improving the discharge characteristics of the solid electrolyte battery and, when used as a secondary battery, a large current Charging and discharging have been made possible, and the charging and discharging cycle characteristics have been significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明における実施例1〜3の各固体電解質
電池の構造を示した断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing the structure of each solid electrolyte battery of Examples 1 to 3 in the present invention.

【図2】比較例1〜3の各固体電解質電池の構造を示し
た断面説明図である。
FIG. 2 is a cross-sectional explanatory view showing the structure of each solid electrolyte battery of Comparative Examples 1 to 3.

【図3】実施例1及び比較例1の各固体電解質電池にお
ける充放電サイクル特性を示した図である。
FIG. 3 is a diagram showing charge / discharge cycle characteristics in each solid electrolyte battery of Example 1 and Comparative Example 1.

【図4】実施例1及び比較例1の各固体電解質電池にお
ける充放電特性を示した図である。
FIG. 4 is a diagram showing charge / discharge characteristics in each solid electrolyte battery of Example 1 and Comparative Example 1.

【図5】実施例1の固体電解質電池において、正極上に
形成する非晶質層の厚みを変化させた場合における容量
保存率の変化を示した図である。
FIG. 5 is a diagram showing changes in the capacity retention rate when the thickness of the amorphous layer formed on the positive electrode is changed in the solid electrolyte battery of Example 1.

【図6】実施例2及び比較例2の各固体電解質電池にお
ける充放電サイクル特性を示した図である。
FIG. 6 is a diagram showing charge / discharge cycle characteristics in each solid electrolyte battery of Example 2 and Comparative Example 2.

【図7】実施例3及び比較例3の各固体電解質電池にお
ける充放電特性を示した図である。
FIG. 7 is a diagram showing charge / discharge characteristics in each solid electrolyte battery of Example 3 and Comparative Example 3.

【符号の説明】[Explanation of symbols]

1 正極 1a 結晶性の異なる正極材料の層(非晶質層) 2 負極 3 高分子固体電解質 1 Positive Electrode 1a Positive Electrode Material Layer with Different Crystallinity (Amorphous Layer) 2 Negative Electrode 3 Polymer Solid Electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間に高分子固体電解質を
備える固体電解質電池において、正極と高分子固体電解
質の界面部分において、上記正極における正極材料と結
晶性の異なる正極材料の層が形成されてなることを特徴
とする固体電解質電池。
1. In a solid electrolyte battery comprising a solid polymer electrolyte between a positive electrode and a negative electrode, a layer of a positive electrode material having a crystallinity different from that of the positive electrode material in the positive electrode is formed at an interface portion between the positive electrode and the solid polymer electrolyte. A solid electrolyte battery characterized by comprising:
【請求項2】 請求項1に記載した固体電解質電池にお
いて、正極と高分子固体電解質との界面部分における結
晶性の異なる正極材料の層の厚みが0.1〜1μmであ
ることを特徴とする固体電解質電池。
2. The solid electrolyte battery according to claim 1, wherein the thickness of the layer of the positive electrode material having different crystallinity at the interface between the positive electrode and the solid polymer electrolyte is 0.1 to 1 μm. Solid electrolyte battery.
【請求項3】 請求項1に記載した固体電解質電池にお
いて、上記正極を構成する正極材料及び上記結晶性の異
なる正極材料がリチウムの吸蔵・放出が可能なリチウム
含有遷移金属酸化物で構成されていることを特徴とする
固体電解質電池。
3. The solid electrolyte battery according to claim 1, wherein the positive electrode material forming the positive electrode and the positive electrode material having different crystallinity are made of a lithium-containing transition metal oxide capable of inserting and extracting lithium. A solid electrolyte battery characterized in that
【請求項4】 正極と負極との間に高分子固体電解質を
備える固体電解質電池を製造するにあたり、正極上に高
分子固体電解質を形成する前に、高分子固体電解質との
界面部分に物理的手法により正極における正極材料と結
晶性の異なる正極材料の層を形成することを特徴とする
固体電解質電池の製造方法。
4. When manufacturing a solid electrolyte battery comprising a solid polymer electrolyte between a positive electrode and a negative electrode, before forming the solid polymer electrolyte on the positive electrode, a physical interface is formed at the interface with the solid polymer electrolyte. A method for producing a solid electrolyte battery, which comprises forming a layer of a positive electrode material having a crystallinity different from that of the positive electrode material in the positive electrode by a method.
JP28260995A 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery Expired - Fee Related JP3384661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28260995A JP3384661B2 (en) 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28260995A JP3384661B2 (en) 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPH09102320A true JPH09102320A (en) 1997-04-15
JP3384661B2 JP3384661B2 (en) 2003-03-10

Family

ID=17654747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28260995A Expired - Fee Related JP3384661B2 (en) 1995-10-03 1995-10-03 Solid electrolyte battery and method for manufacturing solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3384661B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015162A (en) * 1999-06-29 2001-01-19 Sony Corp Solid electrolyte battery
US6444369B1 (en) 1998-01-08 2002-09-03 Sanyo Electric Co., Ltd. Gelled polymer electrolyte lithium secondary cell
JP2009070591A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Cathode, all-solid battery and manufacturing method of all-solid battery
JPWO2009063747A1 (en) * 2007-11-13 2011-03-31 住友電気工業株式会社 Lithium battery and manufacturing method thereof
JP2014060020A (en) * 2012-09-18 2014-04-03 Toshiba Corp Nonaqueous electrolyte battery
JP2016225281A (en) * 2015-05-26 2016-12-28 パナソニックIpマネジメント株式会社 All-solid lithium ion secondary battery and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444369B1 (en) 1998-01-08 2002-09-03 Sanyo Electric Co., Ltd. Gelled polymer electrolyte lithium secondary cell
JP2001015162A (en) * 1999-06-29 2001-01-19 Sony Corp Solid electrolyte battery
JP2009070591A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Cathode, all-solid battery and manufacturing method of all-solid battery
JPWO2009063747A1 (en) * 2007-11-13 2011-03-31 住友電気工業株式会社 Lithium battery and manufacturing method thereof
JP5316809B2 (en) * 2007-11-13 2013-10-16 住友電気工業株式会社 Lithium battery and manufacturing method thereof
JP2014060020A (en) * 2012-09-18 2014-04-03 Toshiba Corp Nonaqueous electrolyte battery
JP2016225281A (en) * 2015-05-26 2016-12-28 パナソニックIpマネジメント株式会社 All-solid lithium ion secondary battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP3384661B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JP4878683B2 (en) Lithium secondary battery
JP4412778B2 (en) Polymer electrolyte battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
CN103682356A (en) Lithium ion battery anode material and preparation method thereof
JP2001143705A (en) Non-aqueous electrolyte secondary battery
JP2000215884A (en) Positive electrode for nonaqueous electrolyte battery, its manufacture, nonaqueous electrolyte battery using the positive electrode, and manufacture of the battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP4210440B2 (en) Gel-like electrolyte and lithium battery using the same
TW200301022A (en) Lithium ion secondary battery
JP3574072B2 (en) Gel polymer electrolyte lithium secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
JP3384661B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JP2000294291A (en) Polymer electrolyte battery
JPH0997617A (en) Solid electrolytic battery
JPH09134730A (en) Solid electrolyte battery and its manufacture
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP3363676B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP4382319B2 (en) Lithium secondary battery
JP3732063B2 (en) Lithium polymer secondary battery
JP3443257B2 (en) Solid electrolyte battery
JP4259885B2 (en) Nonaqueous electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees