JPH0910213A - Needle-like ultrasonic probe - Google Patents

Needle-like ultrasonic probe

Info

Publication number
JPH0910213A
JPH0910213A JP16196095A JP16196095A JPH0910213A JP H0910213 A JPH0910213 A JP H0910213A JP 16196095 A JP16196095 A JP 16196095A JP 16196095 A JP16196095 A JP 16196095A JP H0910213 A JPH0910213 A JP H0910213A
Authority
JP
Japan
Prior art keywords
ultrasonic
needle
propagation medium
acoustic
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16196095A
Other languages
Japanese (ja)
Other versions
JP3654309B2 (en
Inventor
Koichi Yokozawa
宏一 横澤
Shizuo Ishikawa
靜夫 石川
Ryuichi Shinomura
隆一 篠村
Yukio Ito
由喜男 伊藤
Hidezo Sano
秀造 佐野
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP16196095A priority Critical patent/JP3654309B2/en
Priority to US08/671,010 priority patent/US5829439A/en
Publication of JPH0910213A publication Critical patent/JPH0910213A/en
Application granted granted Critical
Publication of JP3654309B2 publication Critical patent/JP3654309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve signal strength by matching the position of a focus where ultrasonic waves transmitted and received from an ultrasonic converter are gathered inside an acoustic propagation medium by the action of an acoustic lens with the position of the boundary of a viable tissue and the acoustic propagation medium in the range of a focal depth. CONSTITUTION: The ultrasonic waves transmitted from the vibrator 4 of the ultrasonic converter are propagated inside a substrate 3, then converged by the acoustic lens 2 and made incident on the viable tissue 50 and the ultrasonic waves reflected from the viable tissue 50 are received by the vibrator 4. The ultrasonic converter is mounted to the internal needle 10 of this needle-like ultrasonic probe and the scanning of the ultrasonic converter to the surrounding viable tissues 50 is realized by operating the internal needle 10. The liquid acoustic propagation medium 40 supplied by an acoustic propagation medium inlet/outlet tube 30 is interposed between the acoustic lens 2 and the viable tissue 50, the inlet/outlet device of the acoustic propagation medium 40 is attached on the opposite end of the acoustic propagation medium inlet/outlet tube 30 and the position of the boundary of the viable tissue 50 and the liquid acoustic propagation medium 40 is finely adjusted and matched with the position of the focus of the acoustic lens 2 by changing a hydrostatic pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超音波診断装置用の探
触子に係わり、特に、被検体内深層部の組織性状診断及
び高分解能撮像に好適な針状超音波探触子に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for an ultrasonic diagnostic apparatus, and more particularly to a needle-shaped ultrasonic probe suitable for diagnosing a tissue property of a deep layer in a subject and high-resolution imaging. Is.

【0002】[0002]

【従来の技術】臓器に発生した病変を診断する方法とし
て生体検査(バイオプシ)が知られている。
2. Description of the Related Art A biopsy is known as a method for diagnosing a lesion occurring in an organ.

【0003】これは、超音波撮像装置で体腔内の臓器を
描出しながら、穿刺針を病変部まで刺入し、針の内部に
病変部の生体組織を導入して採取し、これを鑑別して病
名の診断を行うものである。
[0003] In this technique, an ultrasonic imaging apparatus is used to depict an organ in a body cavity, a puncture needle is inserted into a lesioned part, and a living tissue of the lesioned part is introduced into the needle to be sampled for discrimination. It diagnoses the disease name.

【0004】しかし、この方法では生体組織を体外に摘
出した後固定、染色して検査するため、ただちに診断す
ることができず、また組織が生体内の状態から変化する
という問題があった。
However, this method has a problem that the tissue cannot be diagnosed immediately because the living tissue is removed from the body, fixed, stained and inspected, and the tissue changes from the state in the living body.

【0005】そのため、例えば、下記公報(イ)ないし
(ハ)に記載されているように、穿刺針に超音波変換器
を取り付けて直接病変部に刺入し、病変部の組織性状を
測定したり、周囲の生体組織を画像化する針状超音波探
触子が提案されている。
Therefore, for example, as described in the following gazettes (a) to (c), an ultrasonic transducer is attached to a puncture needle and directly inserted into a lesioned part, and the tissue property of the lesioned part is measured. Alternatively, a needle-like ultrasonic probe for imaging surrounding living tissue has been proposed.

【0006】(イ)特公平4−078299号公報 (ロ)特公平5−000125号公報 (ハ)特公平5−009097号公報 前記公報(特公平4−078299号)(イ)、およ
び、前記公報(特公平5−000125号)(ロ)に記
載された針状超音波探触子は、超音波を用いて、周囲の
生体組織の音速や反射率などの音響特性を測定するもの
である。
(B) Japanese Patent Publication No. 4-078299 (b) Japanese Patent Publication No. 5-000125 (c) Japanese Patent Publication No. 5-009097 Japanese Patent Publication (Japanese Patent Publication No. 4-078299) (a) and the above The needle-shaped ultrasonic probe disclosed in Japanese Patent Publication (Kokoku No. 5-000125) (B) measures acoustic properties such as the speed of sound and reflectance of the surrounding biological tissue using ultrasonic waves. .

【0007】前記公報(特公平4−078299号)
(イ)には、針に凹部を設けてその壁面に超音波変換器
を設けた針状超音波探触子が記載されており、また、前
記公報(特公平5−000125号)(ロ)には、穿刺
針の内針と超音波変換器を交換可能とした針状超音波探
触子が記載されている。
The above publication (Japanese Patent Publication No. 0-078299)
(A) describes a needle-like ultrasonic probe in which a needle is provided with a concave portion and an ultrasonic transducer is provided on the wall surface thereof, and the publication (Japanese Patent Publication No. 5-000125) (b). Describes an acicular ultrasonic probe in which the inner needle of the puncture needle and the ultrasonic transducer can be replaced.

【0008】これに対して、前記公報(特公平5−00
9097号)(ハ)に記載された針状超音波探触子は、
周囲の生体組織の音速や反射率などの音響特性により、
周囲の組織を画像化し、当該画像を観察することにより
病名の診断を行うものであり、前記公報(特公平5−0
09097号)(ハ)には、外針の一部に開口部を設け
て内針側面に実装した超音波変換器が露出させ、これを
走査するようにした針状超音波探触子が記載されてい
る。
On the other hand, in the above publication (Japanese Patent Publication No. 5-00)
9097) (c), the needle-shaped ultrasonic probe is
Due to acoustic characteristics such as the speed of sound and reflectance of the surrounding living tissue,
The diagnosis of the disease name is performed by imaging the surrounding tissue and observing the image.
No. 09097) (C) describes a needle-shaped ultrasonic probe in which an opening is provided in a part of an outer needle and an ultrasonic transducer mounted on the side surface of the inner needle is exposed and is scanned. Has been done.

【0009】[0009]

【発明が解決しようとする課題】一般に、超音波を測定
対象に送波し、その反射波を受波する場合、反射率は媒
質の音響インピーダンスの不連続性に依存し、界面での
音響インピーダンスの差が大きいほど反射率も大きい。
Generally, when an ultrasonic wave is transmitted to an object to be measured and the reflected wave is received, the reflectance depends on the discontinuity of the acoustic impedance of the medium, and the acoustic impedance at the interface is The greater the difference between, the greater the reflectance.

【0010】しかし、比較的狭い視野を高い位置分解能
で描出することを目的とする針状超音波探触子では、視
野内の生体組織には音響インピーダンスの分布が乏し
く、したがって反射率が小さいため、信号強度が小さい
という問題があった。
However, in a needle-shaped ultrasonic probe for the purpose of rendering a relatively narrow visual field with high positional resolution, the living tissue in the visual field has a poor acoustic impedance distribution and therefore a low reflectance. There was a problem that the signal strength was small.

【0011】また、被検者の負担を軽減するためには、
超音波変換器を針状超音波探触子に複数実装して撮像時
間を短縮することが望ましい。
In order to reduce the burden on the subject,
It is desirable to reduce the imaging time by mounting a plurality of ultrasonic transducers on the needle-shaped ultrasonic probe.

【0012】しかしながら、細い針状の探触子に複数の
超音波変換器を密に実装するのは困難であり、超音波変
換器を分散させて実装密度を下げる必要があるが、撮像
に最も適した超音波変換器の配列方法を決定する必要が
あった。
However, it is difficult to densely mount a plurality of ultrasonic transducers on a thin needle-shaped probe, and it is necessary to disperse the ultrasonic transducers to reduce the mounting density. It was necessary to determine a suitable ultrasonic transducer array method.

【0013】本発明は、前記従来技術の問題点を解決す
るためになされたものであり、本発明の目的は、針状超
音波探触子において、信号強度を向上させることが可能
となる技術を提供することにある。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to improve the signal strength of a needle-shaped ultrasonic probe. To provide.

【0014】また、本発明の他の目的は、針状超音波探
触子において、撮像に最も適した配列方法で、複数の超
音波変換器を分散させて実装することが可能となる技術
を提供することにある。
Another object of the present invention is to provide a technique capable of dispersively mounting a plurality of ultrasonic transducers in a needle-shaped ultrasonic probe by an arraying method most suitable for imaging. To provide.

【0015】本発明の前記目的並びにその他の目的及び
新規な特徴は、本明細書の記載及び添付図面によって明
らかにする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0016】[0016]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記の通りである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows.

【0017】(1)生体内に挿入または刺入して周囲の
生体組織を超音波により計測する針状超音波探触子であ
って、超音波を収束させる音響レンズを備え、軸に垂直
な方向に超音波を送受波する超音波変換器を有する針状
超音波探触子において、前記音響レンズと計測対象であ
る生体組織との間に音響伝搬媒体を介在させ、前記超音
波変換器から送受波される超音波が前記音響レンズによ
って前記音響伝搬媒体内で収束して結ぶ焦点の位置を、
前記生体組織と前記音響伝搬媒体との界面の位置に、音
響レンズの焦点深度の範囲で、少なくとも計測中は一致
させる手段を有することを特徴とする。
(1) A needle-shaped ultrasonic probe which is inserted into or inserted into a living body to measure surrounding living tissue by ultrasonic waves, which is equipped with an acoustic lens for converging ultrasonic waves and which is perpendicular to the axis. In a needle-shaped ultrasonic probe having an ultrasonic transducer that transmits and receives ultrasonic waves in a direction, an acoustic propagation medium is interposed between the acoustic lens and the biological tissue to be measured, and the ultrasonic transducer The position of the focal point where the ultrasonic waves transmitted and received are converged and formed in the acoustic propagation medium by the acoustic lens,
It is characterized in that it has means for matching the position of the interface between the living tissue and the acoustic propagation medium within the range of the depth of focus of the acoustic lens at least during measurement.

【0018】(2)生体内に挿入または刺入して周囲の
生体組織を超音波により計測する針状超音波探触子であ
って、超音波を収束させる音響レンズを備え、軸に垂直
な方向に超音波を送受波する超音波変換器を有する針状
超音波探触子において、液体の音響伝搬媒体を給排する
給排管を有し、前記音響レンズと計測対象である生体組
織との間に前記給排管により液体の音響伝搬媒体を給排
し、前記超音波変換器から送受波される超音波が前記音
響レンズによって前記液体の音響伝搬媒体内で収束して
結ぶ焦点の位置を、前記生体組織と前記音響伝搬媒体と
の界面の位置に、音響レンズの焦点深度の範囲で、少な
くとも計測中は一致させることを特徴とする。
(2) A needle-like ultrasonic probe which is inserted into or inserted into a living body to measure surrounding living tissue by ultrasonic waves, which is equipped with an acoustic lens for converging ultrasonic waves and which is perpendicular to the axis. In a needle-shaped ultrasonic probe having an ultrasonic transducer for transmitting and receiving ultrasonic waves in a direction, a supply / discharge tube for supplying / discharging a liquid acoustic propagation medium is provided, and the acoustic lens and a biological tissue to be measured. The position of the focal point that feeds and drains the liquid acoustic propagation medium by the supply / drain pipe between the ultrasonic transducers transmitted and received from the ultrasonic transducer and converges in the liquid acoustic propagation medium by the acoustic lens. Is coincident with the position of the interface between the living tissue and the acoustic propagation medium within the range of the depth of focus of the acoustic lens at least during measurement.

【0019】(3)前記(2)の手段において、前記音
響伝搬媒体を給排する給排管が、少なくとも2本有する
ことを特徴とする。
(3) The means of (2) above is characterized in that at least two supply / discharge pipes for supplying / discharging the acoustic propagation medium are provided.

【0020】(4)前記(2)または(4)の手段にお
いて、送波と受波の時間差を計測する手段を設け、また
前記給排管の反対の端部に音響伝搬媒体の給排器と圧力
調整器を設けて、送波と受波の時間差を参照して前記音
響伝搬媒体の圧力を調整することを特徴とする。
(4) In the above-mentioned means (2) or (4), means for measuring the time difference between the transmitted wave and the received wave is provided, and a supply / discharge device for the acoustic propagation medium is provided at the opposite end of the supply / discharge pipe. And a pressure regulator to adjust the pressure of the acoustic propagation medium with reference to the time difference between the transmitted wave and the received wave.

【0021】(5)生体内に挿入または刺入して周囲の
生体組織を超音波により計測する針状超音波探触子であ
って、超音波を収束させる音響レンズを備え、軸に垂直
な方向に超音波を送受波する超音波変換器を有する針状
超音波探触子において、前記音響レンズと計測対象であ
る生体組織との間に固体の音響伝搬媒体を有し、前記超
音波変換器から送受波される超音波が前記音響レンズに
よって前記固体の音響伝搬媒体内で収束して結ぶ焦点の
位置を、前記生体組織と前記音響伝搬媒体との界面の位
置に、音響レンズの焦点深度の範囲で、少なくとも計測
中は一致させることを特徴とする。
(5) A needle-shaped ultrasonic probe which is inserted into or inserted into a living body to measure surrounding living tissues by ultrasonic waves, which is equipped with an acoustic lens for converging ultrasonic waves and which is perpendicular to the axis. In a needle-shaped ultrasonic probe having an ultrasonic transducer that transmits and receives ultrasonic waves in a direction, a solid acoustic propagation medium is provided between the acoustic lens and a biological tissue to be measured, and the ultrasonic conversion is performed. The position of the focal point at which the ultrasonic waves transmitted and received from the vessel are converged and bound in the solid acoustic propagation medium by the acoustic lens at the position of the interface between the biological tissue and the acoustic propagation medium, the focal depth of the acoustic lens. It is characterized in that they are matched at least during the measurement within the range of.

【0022】(6)前記(1)ないし(5)の手段にお
いて、前記超音波変換器を、軸の周囲に螺旋状に走査す
ることにより、周辺の生体組織を画像化することを特徴
とする。
(6) In the means (1) to (5), the ultrasonic transducer is spirally scanned around the axis to image the surrounding living tissue. .

【0023】(7)軸に垂直な方向に超音波を送受波す
る超音波変換器を少なくとも2個有し、生体内に挿入ま
たは刺入して前記超音波変換器を針の軸の周囲に螺旋状
に走査することにより周辺の生体組織を画像化する針状
超音波探触子において、前記の超音波変換器が、軸周囲
を廻る螺旋上に配置されることを特徴とする。
(7) At least two ultrasonic transducers for transmitting and receiving ultrasonic waves in a direction perpendicular to the axis are provided, and the ultrasonic transducers are inserted or inserted into a living body to surround the ultrasonic transducers around the axis of the needle. In a needle-shaped ultrasonic probe for imaging a surrounding living tissue by scanning in a spiral shape, the ultrasonic transducers are arranged on a spiral around an axis.

【0024】(8)前記(7)の手段において、複数の
超音波変換器の間隔が、針の回転方向については等し
く、かつ、軸方向については必要な画像の走査線間隔の
2倍、またはその整数倍であることを特徴とする。
(8) In the above-mentioned means (7), the intervals between the plurality of ultrasonic transducers are equal in the needle rotation direction and twice in the axial direction the required scanning line interval of the image, or It is characterized by being an integral multiple thereof.

【0025】(9)前記(7)の手段において、複数の
超音波変換器の間隔が、針の回転方向については等し
く、かつ、軸方向については必要な画像の走査線間隔の
倍数であることを特徴とする。
(9) In the above-mentioned means (7), the intervals between the plurality of ultrasonic transducers are equal in the needle rotation direction, and in the axial direction are multiples of the necessary scanning line intervals of the image. Is characterized by.

【0026】(10)前記(7)の手段において、超音
波変換器の数がm、螺旋状走査における1回転あたりの
軸方向の移動距離がp、第1番目の超音波変換器の位置
を基準として第s番目の超音波変換器の回転方向の位置
がθs度であるとき、その軸方向の位置が、nを整数、
tを1、あるいは、m未満かつmと互いに素なる自然数
として、 p[(θs/360)+(s−1){n+(1/m)}] で与えられることを特徴とする。
(10) In the above means (7), the number of ultrasonic transducers is m, the axial movement distance per rotation in spiral scanning is p, and the position of the first ultrasonic transducer is When the position in the rotation direction of the s-th ultrasonic transducer is θs degrees as a reference, the position in the axial direction is n as an integer,
It is characterized by being given by p [(θs / 360) + (s−1) {n + (1 / m)}], where t is 1 or a natural number less than m and coprime to m.

【0027】[0027]

【作用】前記したように、超音波の反射率は媒質の音響
インピーダンスの不連続性に依存し、音響インピーダン
スの不連続が著しいほど反射率は大きくなる。
As described above, the reflectance of ultrasonic waves depends on the discontinuity of the acoustic impedance of the medium, and the greater the discontinuity of the acoustic impedance, the greater the reflectance.

【0028】前記(1)、(2)および(5)の手段に
よれば、針状超音波探触子において、超音波変換器の音
響レンズと検査対象である生体組織と間に、例えば、液
体または固体の音響伝搬媒体を介在させ、超音波変換器
から送受波される超音波が音響レンズの作用により音響
伝搬媒体内で結ぶ焦点の位置を、生体組織と音響伝搬媒
体の界面の位置に、焦点深度の範囲で一致させるように
したので、音響インピーダンスの不連続性が大きくな
り、これにより、大きな反射信号を得ることが可能とな
る。
According to the above means (1), (2) and (5), in the needle-shaped ultrasonic probe, for example, between the acoustic lens of the ultrasonic transducer and the living tissue to be inspected, With a liquid or solid acoustic propagation medium interposed, the position of the focal point where the ultrasonic waves transmitted and received from the ultrasonic transducer are connected in the acoustic propagation medium by the action of the acoustic lens is located at the interface between the biological tissue and the acoustic propagation medium. Since they are matched in the range of the depth of focus, the discontinuity of the acoustic impedance becomes large, which makes it possible to obtain a large reflected signal.

【0029】前記(3)および(4)の手段によれば、
針状超音波探触子の内部に音響伝搬媒体の給排管を設け
るようにしたので、外部から、音響レンズと計測対象で
ある生体組織との間に液体の音響伝搬媒体を給排するこ
とが可能となる。
According to the above means (3) and (4),
Since the supply / discharge pipe for the acoustic propagation medium is provided inside the needle ultrasonic probe, it is possible to supply / discharge the liquid acoustic propagation medium between the acoustic lens and the biological tissue to be measured from the outside. Is possible.

【0030】また、音響伝搬媒体給排管を、供給用およ
び排出用に2本以上設けるようにしたので、音響レンズ
と計測対象である生体組織間に血液などが入り込んで超
音波の視野を妨げる場合に、液体の音響伝搬媒体を流し
て洗浄することが可能となる。
Further, since two or more sound propagation medium supply / discharge pipes are provided for supply and discharge, blood and the like enter between the acoustic lens and the living tissue to be measured and obstruct the view field of ultrasonic waves. In this case, it becomes possible to wash by flowing a liquid acoustic propagation medium.

【0031】前記(6)の手段によれば、超音波変換器
を螺旋状に走査するようにしたので、走査中超音波探触
子は停止せず、走査時間が短縮することが可能となる。
According to the means (6), since the ultrasonic transducer is spirally scanned, the ultrasonic probe is not stopped during the scanning, and the scanning time can be shortened.

【0032】前記(7)ないし(10)の手段によれ
ば、走査時間を短縮するために超音波変換器を2個以上
実装する際に、超音波変換器を、軸周囲を廻る螺旋上に
配置する。
According to the above means (7) to (10), when two or more ultrasonic transducers are mounted in order to shorten the scanning time, the ultrasonic transducers are arranged on a spiral around the axis. Deploy.

【0033】即ち、超音波変換器の数をm個とし、螺旋
状走査における1回転あたりの軸方向の移動距離をpと
するとき、第1番目の超音波変換器の位置を基準にし
て、第s番目の超音波変換器の回転方向の位置がθs度
であれば、その軸方向の位置を、p[(θs/360)
+(s−1){n+(t/m)}] で与える。
That is, when the number of ultrasonic transducers is m and the axial movement distance per rotation in spiral scanning is p, the position of the first ultrasonic transducer is used as a reference, If the position of the s-th ultrasonic transducer in the rotation direction is θs degrees, the position in the axial direction is p [(θs / 360)
+ (S-1) {n + (t / m)}].

【0034】ここで、nは整数、tは1、あるいは、m
未満かつmと互いに素なる自然数である。
Here, n is an integer, t is 1, or m
It is a natural number that is less than and relatively prime to m.

【0035】より具体的に典型例を挙げれば、超音波変
換器を針の軸周囲を廻る螺旋上に配置し、その間隔は針
の回転方向に対しては等しく、軸方向に対しては必要な
画像の走査線の間隔の2倍に配置する。
More specifically, as a typical example, the ultrasonic transducers are arranged in a spiral around the axis of the needle, and their intervals are equal to each other in the rotation direction of the needle and required in the axial direction. It is arranged at twice the interval between the scanning lines of the image.

【0036】また、超音波変換器を軸線に沿った直線上
に配置し、その間隔は必要な画像の走査線間隔またはそ
のt倍に配置してもよい。
Further, the ultrasonic transducers may be arranged on a straight line along the axis, and the distance between them may be arranged at a necessary scanning line interval of an image or at a multiple thereof.

【0037】これにより、走査時間を短縮する目的で複
数の超音波変換器を1本の針状超音波探触子に実装する
とき、各々の超音波変換器の走査線の軌跡は重なり合う
ことなく等間隔に配列され、最も効率的な配置となり、
撮像時間の短い超音波探触子を実現することが可能とな
る。
Accordingly, when a plurality of ultrasonic transducers are mounted on one needle-shaped ultrasonic probe for the purpose of shortening the scanning time, the loci of scanning lines of the ultrasonic transducers do not overlap each other. It is arranged at equal intervals, which is the most efficient arrangement,
It is possible to realize an ultrasonic probe with a short imaging time.

【0038】[0038]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0039】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
In all the drawings for explaining the embodiments, parts having the same functions are designated by the same reference numerals, and the repeated description thereof will be omitted.

【0040】さらに、文中に示した数値や素材は一例で
あり、必ずしもこの通りである必要はなく、また、説明
を容易にするため図の寸法と説明文の寸法は必ずしも一
致していない。
Furthermore, the numerical values and materials shown in the text are only examples, and they do not necessarily have to be as they are, and the dimensions of the drawings and the dimensions of the explanation do not necessarily match for ease of explanation.

【0041】[実施例1]図1は、本発明の一実施例
(実施例1)である針状超音波探触子を長さ方向に切断
した断面を示す縦断面図である。
[Embodiment 1] FIG. 1 is a longitudinal sectional view showing a cross section of a needle-shaped ultrasonic probe, which is an embodiment (Embodiment 1) of the present invention, taken in the lengthwise direction.

【0042】図2は、図1に示す針状超音波探触子の主
要部を拡大して示す拡大図、図3は、図1に示す針状超
音波探触子を同図に示すA−A’の線で切断した断面を
示す断面図である。
FIG. 2 is an enlarged view showing an enlarged main part of the needle-shaped ultrasonic probe shown in FIG. 1. FIG. 3 is a view showing the needle-shaped ultrasonic probe shown in FIG. It is sectional drawing which shows the cross section cut | disconnected by the line of A '.

【0043】図4は、図1に示す針状超音波探触子の全
体構成を示す全体図である。
FIG. 4 is an overall view showing the overall configuration of the needle-shaped ultrasonic probe shown in FIG.

【0044】図1ないし図4において、1は超音波変換
器、2は音響レンズ、3は基板、4は振動子、5は信号
線実装基板、6は信号線、10は内針、20は外針、3
0は音響伝搬媒体給排管、35は音響伝搬媒体給排管3
0の開口部、40は液体の音響伝搬媒体、50は生体組
織、60は駆動部、70は液体の音響伝搬媒体40の給
排器、80は圧力調整器、90は送受波装置、100は
信号処理装置、110は表示装置、120は駆動制御装
置である。
In FIGS. 1 to 4, 1 is an ultrasonic transducer, 2 is an acoustic lens, 3 is a substrate, 4 is a transducer, 5 is a signal line mounting substrate, 6 is a signal line, 10 is an inner needle, and 20 is. Outer needle, 3
0 is a sound propagation medium supply / discharge pipe, 35 is a sound propagation medium supply / discharge pipe 3
0 is an opening, 40 is a liquid acoustic propagation medium, 50 is a biological tissue, 60 is a drive unit, 70 is a liquid ejector of the acoustic propagation medium 40, 80 is a pressure regulator, 90 is a wave transmitting / receiving device, and 100 is A signal processing device, 110 is a display device, and 120 is a drive control device.

【0045】超音波変換器1は、レンズ加工した基板3
と、前記基板3に形成された薄膜の振動子4とから構成
される。
The ultrasonic transducer 1 is composed of a lens-processed substrate 3
And a thin film vibrator 4 formed on the substrate 3.

【0046】振動子4から送波された超音波は、基板3
内を伝搬した後音響レンズ2で収束され生体組織50に
入射され、また、生体組織50から反射された超音波
は、逆の経路をたどって振動子4に受波される。
The ultrasonic wave transmitted from the vibrator 4 is transmitted to the substrate 3
After propagating through the inside, the ultrasonic waves are converged by the acoustic lens 2 and incident on the living tissue 50, and the ultrasonic waves reflected from the living tissue 50 follow the opposite path and are received by the transducer 4.

【0047】なお、基板3は、例えば、サファイア、振
動子4は、例えば、酸化亜鉛(ZnO)で製作する。
The substrate 3 is made of, for example, sapphire, and the vibrator 4 is made of, for example, zinc oxide (ZnO).

【0048】超音波変換器1は、針状超音波探触子の内
針10に実装されており、周囲の生体組織50に対する
超音波変換器1の走査は内針10を動作することによっ
て実現される。
The ultrasonic transducer 1 is mounted on the inner needle 10 of the needle-shaped ultrasonic probe, and the ultrasonic transducer 1 scans the surrounding living tissue 50 by operating the inner needle 10. To be done.

【0049】このため、内針10の逆端には、これを駆
動するための駆動部60が設けられており、前記駆動部
60は、駆動部制御装置120により制御される。
Therefore, a drive unit 60 for driving the inner needle 10 is provided at the opposite end, and the drive unit 60 is controlled by the drive unit control device 120.

【0050】外針20は、超音波変換器1を保護し、ま
た、走査時の内針10のブレを防ぐためのものであり、
刺入時には先端部のみを残して内針10を収納し、計測
時に図1に示すように、超音波変換器1を露出させる。
The outer needle 20 is for protecting the ultrasonic transducer 1 and for preventing the blurring of the inner needle 10 during scanning.
At the time of insertion, the inner needle 10 is stored while leaving only the distal end portion, and at the time of measurement, the ultrasonic transducer 1 is exposed as shown in FIG.

【0051】ここで、針は内針10、外針20ともに、
例えば、ステンレスで製作する。
Here, the needles for both the inner needle 10 and the outer needle 20 are
For example, it is made of stainless steel.

【0052】内針10の直径は1.6mm〜1mm程
度、音響レンズの直径、焦点距離は200μm程度、超
音波の周波数は200MHz程度が適当である。
It is suitable that the inner needle 10 has a diameter of about 1.6 mm to 1 mm, the acoustic lens has a diameter and a focal length of about 200 μm, and the ultrasonic wave frequency is about 200 MHz.

【0053】信号線6を介する振動子4への送波電圧の
印加、受波電圧の検波は、送受波装置90が行う。
The wave transmitting / receiving device 90 applies the wave transmitting voltage to the vibrator 4 via the signal line 6 and detects the wave receiving voltage.

【0054】信号処理装置100は、駆動制御装置12
0に指示を与えて駆動部60による針状超音波探触子の
走査、送受波の制御、検出信号による画像化を行い表示
装置110に表示する。
The signal processing device 100 includes a drive control device 12
0 is instructed to scan the needle-shaped ultrasonic probe by the drive unit 60, control transmission / reception, and image by a detection signal to display on the display device 110.

【0055】本実施例の針状超音波探触子は、内針10
を螺旋状に走査してCモード像の画像を得る針状超音波
探触子である。
The needle-shaped ultrasonic probe of the present embodiment has an inner needle 10
Is a needle-like ultrasonic probe that spirally scans to obtain a C-mode image.

【0056】音響レンズ2と生体組織50との間には、
音響伝搬媒体給排管30によって供給される液体の音響
伝搬媒体40が介在される。
Between the acoustic lens 2 and the living tissue 50,
The liquid acoustic propagation medium 40 supplied by the acoustic propagation medium supply / discharge pipe 30 is interposed.

【0057】また、音響伝搬媒体給排管30の逆端に
は、静水圧を調整可能な液体の音響伝搬媒体40の給排
器70が設けられている。
At the opposite end of the sound propagation medium supply / discharge pipe 30, there is provided a supply / discharge device 70 for the liquid sound propagation medium 40 whose hydrostatic pressure can be adjusted.

【0058】この静水圧を変えることによって、生体組
織50と液体の音響伝搬媒体40の界面の位置を微調整
し、音響レンズ2の焦点の位置に合わせる。
By changing the hydrostatic pressure, the position of the interface between the living tissue 50 and the liquid acoustic propagation medium 40 is finely adjusted to match the focus position of the acoustic lens 2.

【0059】音響レンズ2と生体組織50との間の距離
は、振動子4が超音波を送波した時間と、これが生体組
織50と液体の音響伝搬媒体40の界面で反射して受波
される時間の時間差でモニターできる。
The distance between the acoustic lens 2 and the living tissue 50 is the time when the ultrasonic wave is transmitted by the transducer 4 and is reflected by the interface between the living tissue 50 and the liquid acoustic propagation medium 40 to be received. You can monitor the time difference.

【0060】そこで、図4に示すように、送受波装置9
0でこの時間差を検出し、これを参照しつつ圧力調整を
行えば正確な位置合わせができる。
Therefore, as shown in FIG.
If the time difference is detected at 0 and the pressure is adjusted with reference to this, accurate alignment can be performed.

【0061】ここで、音響伝搬媒体給排管が2本あるの
はその一方を供給専用、他方を排出専用に用いるためで
ある。
Here, there are two sound propagation medium supply / discharge pipes because one of them is used only for supply and the other is used for discharge.

【0062】これにより、生体組織50から血液などが
滲み出して音響レンズ2と生体組織50の間に入り、超
音波の視野の妨げになる場合などに液体の音響伝搬媒体
40を流して洗浄できる。
As a result, in the case where blood or the like seeps out from the living tissue 50 and enters between the acoustic lens 2 and the living tissue 50 and interferes with the visual field of ultrasonic waves, the liquid acoustic propagation medium 40 can be flowed to clean. .

【0063】生体組織50の音響インピーダンスは臓器
の細胞の場合、一般に1.35から1.8×106(k
g/m2s)程度であり、水は1.5×106(kg/m
2s)程度であるから、液体の音響伝搬媒体40として
はグリセリンなど音響インピーダンスの大きいものを用
いたほうが信号強度は大きくなる。
In the case of organ cells, the acoustic impedance of the living tissue 50 is generally 1.35 to 1.8 × 10 6 (k
g / m 2 s) and water is 1.5 × 10 6 (kg / m
Since the liquid acoustic propagation medium 40 is about 2 s), the signal intensity becomes larger when a liquid acoustic propagation medium 40 having a large acoustic impedance such as glycerin is used.

【0064】しかし、この液体の音響伝搬媒体40は検
査後も生体組織50に残存するため、生理食塩水など無
害なものを用いるものとする。
However, since this liquid acoustic propagation medium 40 remains in the living tissue 50 after the inspection, a harmless one such as physiological saline is used.

【0065】液体の音響伝搬媒体40として生理食塩水
を用いた場合、生体組織内の音響インピーダンスの分布
による反射率と比較して、生体組織と音響伝搬媒体の界
面における反射率は少なくとも10倍以上である。
When physiological saline is used as the liquid acoustic propagation medium 40, the reflectance at the interface between the biological tissue and the acoustic propagation medium is at least 10 times or more that of the acoustic impedance distribution in the biological tissue. Is.

【0066】なお、肝臓などの臓器の組織を計測する場
合に、臓器から滲みだす血液の基体などが音響伝搬媒体
とした作用すれば、音響伝搬媒体を外部から給排する必
要はない。
When the tissue of an organ such as the liver is measured, it is not necessary to supply / exhaust the acoustic propagation medium from the outside if the substrate of blood exuding from the organ acts as the acoustic propagation medium.

【0067】[実施例2]図5は、本発明の他の実施例
(実施例2)である針状超音波探触子の主要部を拡大し
て示す拡大図である。
[Embodiment 2] FIG. 5 is an enlarged view showing an enlarged main part of a needle-shaped ultrasonic probe which is another embodiment (Embodiment 2) of the present invention.

【0068】図5において、2は音響レンズ、3は基
板、4は振動子、8は固体の音響伝搬媒体、10は内
針、50は生体組織である。
In FIG. 5, 2 is an acoustic lens, 3 is a substrate, 4 is a vibrator, 8 is a solid acoustic propagation medium, 10 is an inner needle, and 50 is a living tissue.

【0069】本実施例2の針状超音波探触子は、音響伝
搬媒体として、例えば、ポリスチレンからなる固体の音
響伝搬媒体8を用いるようにした点で、前記実施例1の
針状超音波探触子と相違している。
The needle-like ultrasonic probe of the second embodiment is different from the needle-like ultrasonic probe of the first embodiment in that the solid acoustic propagation medium 8 made of polystyrene, for example, is used as the acoustic propagation medium. It is different from the probe.

【0070】本実施例2の構成により、内針10の断面
を完全に円形にすることができ、これを回転走査する際
に周囲組織を傷つけることがない。
With the configuration of the second embodiment, the cross section of the inner needle 10 can be made completely circular, and the surrounding tissue is not damaged when this is rotationally scanned.

【0071】周囲組織から滲み出る体液により円滑に走
査できる場合は、液体の音響伝搬媒体40を供給する必
要はなく、給排管30は不要である。
If the body fluid exuding from the surrounding tissue can be smoothly scanned, it is not necessary to supply the liquid acoustic propagation medium 40 and the supply / discharge pipe 30 is not necessary.

【0072】もちろん円滑な走査に必要な場合や、血液
などを洗浄する必要があるときは、前記実施例1と同じ
く音響レンズ2と生体組織50の間に液体の音響伝達媒
体40を給排することも可能である。
Of course, when it is necessary for smooth scanning, or when it is necessary to wash blood or the like, the liquid acoustic transmission medium 40 is supplied or discharged between the acoustic lens 2 and the living tissue 50 as in the first embodiment. It is also possible.

【0073】前記したように、固体の音響伝搬媒体8の
音響インピーダンスは、生体組織50と異なっているほ
うがよく、2.0×106(kg/m2s)を超えること
が望ましい。
As described above, the acoustic impedance of the solid acoustic propagation medium 8 should be different from that of the living tissue 50, and preferably exceeds 2.0 × 10 6 (kg / m 2 s).

【0074】音響伝搬媒体が、固体の音響伝搬媒体8で
あれば、検査後に生体内に残存することはなく、液体の
場合に比べてその材料の選択枝は多い。
If the acoustic propagation medium is a solid acoustic propagation medium 8, it does not remain in the living body after the examination, and there are many choices of the material as compared with the case of liquid.

【0075】しかし、例えば、レンズ材がサファイアの
場合、音響伝搬媒体の音響インピーダンスがサファイア
の値(約44×106(kg/m2s))に近過ぎては音
響レンズ2で超音波が屈折しにくくなる。
However, for example, when the lens material is sapphire, if the acoustic impedance of the acoustic propagation medium is too close to the value of sapphire (about 44 × 10 6 (kg / m 2 s)), ultrasonic waves are emitted by the acoustic lens 2. Hard to refract.

【0076】ポリスチレンは、超音波の減衰も少なく、
音響インピーダンスもこれに適した材料である。
Polystyrene has little attenuation of ultrasonic waves,
Acoustic impedance is also a suitable material for this.

【0077】図6は、従来の針状超音波探触子の主要部
を拡大して示す拡大図である。
FIG. 6 is an enlarged view showing an enlarged main part of a conventional needle-shaped ultrasonic probe.

【0078】図6において、2は音響レンズ、3は基
板、4は振動子、10は内針、50は生体組織である。
In FIG. 6, 2 is an acoustic lens, 3 is a substrate, 4 is a vibrator, 10 is an inner needle, and 50 is a living tissue.

【0079】図6に示すように、従来の針状超音波探触
子では、音響レンズ2は生体組織50にほぼ密着してお
り、音響レンズ2の焦点は周囲の生体組織50の内部に
位置する。
As shown in FIG. 6, in the conventional needle-shaped ultrasonic probe, the acoustic lens 2 is in close contact with the living tissue 50, and the focus of the acoustic lens 2 is located inside the surrounding living tissue 50. To do.

【0080】この構成では、生体組織50内部の音響特
性を計測することができるが、生体組織50内の微妙な
音響インピーダンス分布による超音波の反射を計測する
ため、超音波の反射率が低く、信号強度が小さくなる。
With this configuration, the acoustic characteristics inside the living tissue 50 can be measured, but since the reflection of the ultrasonic waves due to the subtle acoustic impedance distribution inside the living tissue 50 is measured, the reflectance of the ultrasonic waves is low, The signal strength decreases.

【0081】[実施例3]前記各実施例では、簡単のた
め超音波変換器を1個としている。
[Embodiment 3] In each of the above embodiments, one ultrasonic transducer is used for simplicity.

【0082】本実施例3は、超音波変換器を複数個用い
る場合の配列方法を決定する実施例である。
The third embodiment is an embodiment for determining the arrangement method when a plurality of ultrasonic transducers are used.

【0083】図7、図8、図9は、本実施例3におい
て、針状超音波探触子上に複数個の超音波変換器を配置
する場合の配置方法の一例を示す図である。
FIG. 7, FIG. 8 and FIG. 9 are views showing an example of an arrangement method when a plurality of ultrasonic transducers are arranged on the needle-shaped ultrasonic probe in the third embodiment.

【0084】図10は、針状超音波探触子上に複数個の
超音波変換器を配置する場合の、最も簡単な配置方法を
示す図である。
FIG. 10 is a diagram showing the simplest arrangement method when a plurality of ultrasonic transducers are arranged on the needle-shaped ultrasonic probe.

【0085】なお、図7ないし図10では、説明を容易
にするため、超音波変換器の位置を丸で示し、走査時の
走査線の軌跡を同時に示している。
7 to 10, the position of the ultrasonic transducer is shown by a circle and the loci of scanning lines at the time of scanning are shown at the same time for ease of explanation.

【0086】図7ないし図10の針状超音波探触子7
は、図1に示す内針10に相当する。
Needle-like ultrasonic probe 7 shown in FIGS. 7 to 10.
Corresponds to the inner needle 10 shown in FIG.

【0087】図11、図12、図13は、針状超音波探
触子7を螺旋状に走査して得られる画像の走査線を模式
的に示す図である。
11, 12, and 13 are schematic views showing scanning lines of an image obtained by scanning the needle ultrasonic probe 7 in a spiral shape.

【0088】本実施例3の針状超音波探触子において、
実装する超音波変換器の数をm個とし、螺旋状走査にお
ける1回転あたりの軸方向の移動距離をpとすれば、第
1番目の超音波変換器の位置を基準として、第s番目の
超音波変換器の回転方向の位置がθs度であれば、その
軸方向の位置を、下記(1)式により与える。
In the needle-shaped ultrasonic probe of the third embodiment,
If the number of ultrasonic transducers to be mounted is m and the axial movement distance per rotation in spiral scanning is p, the s-th ultrasonic transducer with the position of the first ultrasonic transducer as a reference is used. If the position of the ultrasonic transducer in the rotation direction is θs degrees, the position in the axial direction is given by the following equation (1).

【0089】[0089]

【数1】 p[(θs/360)+(s−1){n+(t/m)}] ………… (1) ここで、nは整数、tは1、あるいは、m未満かつmと
互いに素なる自然数である。
## EQU1 ## p [(θs / 360) + (s-1) {n + (t / m)}] (1) where n is an integer, t is 1 or less than m and m Is a natural number that is relatively prime to.

【0090】なお、図7ないし図10に示す例では、超
音波変換器の数mをすべて4としており、また、第1、
2、3、4番目の超音波変換器を各々A、B、C、D、
その走査線を各々a、b、c、dで示している。
In the examples shown in FIG. 7 to FIG. 10, the number m of ultrasonic transducers is all 4, and the first,
The second, third, and fourth ultrasonic transducers A, B, C, D,
The scanning lines are indicated by a, b, c and d, respectively.

【0091】超音波変換器を複数個実装する場合、最も
簡単な配列方法は図10に示す配列方法であり、4個の
超音波変換器が、回転方向には等間隔、軸方向には同じ
位置に配置されている。
When mounting a plurality of ultrasonic transducers, the simplest arrangement method is the arrangement method shown in FIG. 10, in which four ultrasonic transducers are arranged at equal intervals in the rotation direction and the same in the axial direction. It is located in a position.

【0092】図10に示す配列方法は、前記(1)式に
おいて、nが−1、tが3の場合に相当する。
The arrangement method shown in FIG. 10 corresponds to the case where n is -1 and t is 3 in the equation (1).

【0093】図13は、図10に示す配列方法のように
超音波変換器を配置した場合の走査線を示している。
FIG. 13 shows scanning lines when ultrasonic transducers are arranged as in the arrangement method shown in FIG.

【0094】当然ながら、超音波変換器を4個実装すれ
ば、超音波変換器が1個の場合と比較して同じ走査線密
度を得るに必要な時間は4分の1に短縮できる。
As a matter of course, when four ultrasonic transducers are mounted, the time required to obtain the same scanning line density can be shortened to one fourth as compared with the case where there is one ultrasonic transducer.

【0095】しかし、図3から理解できるように、細い
内針10に複数の超音波変換器を図10に示す配列方法
のように実装することは困難である。
However, as can be understood from FIG. 3, it is difficult to mount a plurality of ultrasonic transducers on the thin inner needle 10 as in the arrangement method shown in FIG.

【0096】そこで、超音波変換器を、例えば、図7に
示す配列方法で配置する。
Therefore, the ultrasonic transducers are arranged by the arrangement method shown in FIG. 7, for example.

【0097】図7に配列方法において、第2番目の超音
波変換器の回転方向の位置θ2は90°、同じく第3番
目、第4番目の超音波変換器に関しては、θ3=180
°、θ4=270°である。
In the arrangement method shown in FIG. 7, the position θ2 in the rotation direction of the second ultrasonic transducer is 90 °, and θ3 = 180 for the third and fourth ultrasonic transducers.
And θ4 = 270 °.

【0098】図7に示す配列方法は、前記(1)式にお
いて、nが0、tが1の場合に相当し、これは、内針1
0の回転方向に対しては等間隔に、軸方向に対しては得
られる画像の走査線間隔の2倍に等しい間隔で配置し
た、といいかえてもよい。
The arrangement method shown in FIG. 7 corresponds to the case where n is 0 and t is 1 in the formula (1), which corresponds to the inner needle 1
It may be said that they are arranged at equal intervals in the rotation direction of 0 and at intervals equal to twice the scanning line interval of the obtained image in the axial direction.

【0099】図11は、図7に示す配列方法のように超
音波変換器を配置した場合の走査線を示しており、図1
3に示す走査線との差異は始点部分のみで、走査線密度
は図13と同じになる。
FIG. 11 shows scanning lines when ultrasonic transducers are arranged as in the arrangement method shown in FIG.
The difference from the scanning line shown in FIG. 3 is only the starting point portion, and the scanning line density is the same as in FIG.

【0100】しかしながら、超音波変換器の位置を軸方
向にずらすことにより、実装は容易となる。
However, mounting is facilitated by shifting the position of the ultrasonic transducer in the axial direction.

【0101】同様に、前記(1)式において、nを0、
tを3とすると、図8に示す配列方法が得られる。
Similarly, in the equation (1), n is 0,
When t is 3, the arrangement method shown in FIG. 8 is obtained.

【0102】tの値として4の因数である2をとると、
走査線が重なり合ってしまう。
Taking the factor of 4 as the value of t,
Scanning lines overlap.

【0103】図8に示す配列方法ように、tの値には走
査線が重ならないための条件があり、tは1、あるい
は、m未満かつmと互いに素なる自然数でなければなら
ない。
As in the arrangement method shown in FIG. 8, the value of t has a condition that scanning lines do not overlap, and t must be 1 or a natural number less than m and coprime to m.

【0104】ここで、超音波変換器の数が4個であれ
ば、tの値は1または3である。
If the number of ultrasonic transducers is four, the value of t is 1 or 3.

【0105】図9に示す配列方法は、超音波変換器の回
転方向の位置をすべて0°にとった例である。
The arrangement method shown in FIG. 9 is an example in which all the positions of the ultrasonic transducers in the rotation direction are set to 0 °.

【0106】図9に示す配列方法は、前記(1)式にお
いて、nが0、tが3の場合に相当し、図12は、図9
に示す配列方法のように超音波変換器を配置した場合の
走査線を示している。
The arrangement method shown in FIG. 9 corresponds to the case where n is 0 and t is 3 in the equation (1), and FIG.
The scanning lines when the ultrasonic transducers are arranged as in the arrangement method shown in FIG.

【0107】図9に示す配列方法でも、走査線密度を図
13とほとんど変えることなく超音波変換器の実装密度
を低減することが可能となる。
The arrangement method shown in FIG. 9 also makes it possible to reduce the mounting density of the ultrasonic transducers with almost the same scanning line density as in FIG.

【0108】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論であ
る。
As described above, the invention made by the present inventor is
Although the present invention has been described in detail with reference to the embodiment, the present invention is not limited to the embodiment, and it is needless to say that various changes can be made without departing from the scope of the invention.

【0109】[0109]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記の通りである。
The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0110】(1)本発明によれば、軸に垂直な方向に
超音波を送受波する超音波変換器を少なくとも1個有
し、これを生体組織内に刺入して周囲の生体組織を計測
する針状超音波探触子において、超音波変換器から送受
波される超音波が音響レンズの作用により音響伝搬媒体
内で結ぶ焦点の位置を、生体組織と音響伝搬媒体の界面
の位置に、焦点深度の範囲で一致させるようにしたの
で、音響インピーダンスの差が大きくなり、反射信号の
強度を10倍以上向上させることが可能となる。
(1) According to the present invention, at least one ultrasonic transducer for transmitting and receiving ultrasonic waves in the direction perpendicular to the axis is provided, and the ultrasonic transducer is inserted into the living tissue to remove the surrounding living tissue. In the needle-like ultrasonic probe to be measured, the position of the focal point where the ultrasonic waves transmitted and received from the ultrasonic transducer are connected in the acoustic propagation medium by the action of the acoustic lens is set to the position of the interface between the biological tissue and the acoustic propagation medium. Since they are matched in the range of the depth of focus, the difference in acoustic impedance becomes large, and the intensity of the reflected signal can be improved 10 times or more.

【0111】これにより、得られる画像の階調を増すこ
とができ、針状超音波探触子による診断が容易になる。
As a result, the gradation of the obtained image can be increased, and the diagnosis with the needle-shaped ultrasonic probe becomes easy.

【0112】(2)本発明によれば、針状超音波探触子
に複数個の超音波変換器を実装する場合に実装密度を低
減できるとともに、各々の超音波変換器の走査線の軌跡
が重なり合うことなく等間隔に配列される最も効率的な
配置とすることが可能となる。
(2) According to the present invention, when a plurality of ultrasonic transducers are mounted on the needle-shaped ultrasonic probe, the mounting density can be reduced and the loci of scanning lines of each ultrasonic transducer. It is possible to achieve the most efficient arrangement in which the cells are arranged at regular intervals without overlapping.

【0113】これにより、撮像時間を短縮することがで
き、被検者の負担を軽減することが可能となる。
As a result, the imaging time can be shortened and the burden on the subject can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例(実施例1)である針状超音
波探触子を長さ方向に切断した断面を示す縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a cross section of a needle-shaped ultrasonic probe according to an embodiment (Example 1) of the present invention taken along the length direction.

【図2】図1に示す針状超音波探触子の主要部を拡大し
て示す拡大図である。
FIG. 2 is an enlarged view showing an enlarged main part of the needle-shaped ultrasonic probe shown in FIG.

【図3】図1に示す針状超音波探触子を同図に示すA−
A’の線で切断した断面を示す断面図である。
FIG. 3 is a view showing the needle-shaped ultrasonic probe shown in FIG.
It is sectional drawing which shows the cross section cut | disconnected by the line of A '.

【図4】図1に示す針状超音波探触子の全体構成を示す
全体図である。
4 is an overall view showing an overall configuration of the needle-shaped ultrasonic probe shown in FIG.

【図5】本発明の他の実施例(実施例2)である針状超
音波探触子の主要部を拡大して示す拡大図である。
FIG. 5 is an enlarged view showing an enlarged main part of a needle-shaped ultrasonic probe which is another embodiment (Example 2) of the invention.

【図6】従来の針状超音波探触子の主要部を拡大して示
す拡大図である。
FIG. 6 is an enlarged view showing an enlarged main part of a conventional needle-shaped ultrasonic probe.

【図7】本実施例3において、針状超音波探触子上に複
数個の超音波変換器を配置する場合の配置方法の一例を
示す図である。
FIG. 7 is a diagram showing an example of an arrangement method when a plurality of ultrasonic transducers are arranged on a needle-shaped ultrasonic probe in the third embodiment.

【図8】本実施例3において、針状超音波探触子上に複
数個の超音波変換器を配置する場合の配置方法の一例を
示す図である。
FIG. 8 is a diagram showing an example of an arrangement method when a plurality of ultrasonic transducers are arranged on a needle-shaped ultrasonic probe in the third embodiment.

【図9】本実施例3において、針状超音波探触子上に複
数個の超音波変換器を配置する場合の配置方法の一例を
示す図である。
FIG. 9 is a diagram showing an example of an arrangement method when a plurality of ultrasonic transducers are arranged on a needle-shaped ultrasonic probe in the third embodiment.

【図10】針状超音波探触子上に複数個の超音波変換器
を配置する場合の、最も簡単な配置方法を示す図であ
る。
FIG. 10 is a diagram showing a simplest arrangement method when a plurality of ultrasonic transducers are arranged on a needle-shaped ultrasonic probe.

【図11】図7に示す配置方法の場合に、針状超音波探
触子を螺旋状に走査して得られる画像の走査線を模式的
に示す図である。
11 is a diagram schematically showing scanning lines of an image obtained by helically scanning a needle-shaped ultrasonic probe in the case of the arrangement method shown in FIG.

【図12】図9に示す配置方法の場合に、針状超音波探
触子を螺旋状に走査して得られる画像の走査線を模式的
に示す図である。
FIG. 12 is a diagram schematically showing scanning lines of an image obtained by spirally scanning a needle-shaped ultrasonic probe in the case of the arrangement method shown in FIG.

【図13】図10に示す配置方法の場合に、針状超音波
探触子を螺旋状に走査して得られる画像の走査線を模式
的に示す図である。
13 is a diagram schematically showing scanning lines of an image obtained by helically scanning a needle-shaped ultrasonic probe in the case of the arrangement method shown in FIG.

【符号の説明】[Explanation of symbols]

1…超音波変換器、2…音響レンズ、3…基板、4…振
動子、5…信号線実装基板、6…信号線、7…針状超音
波探触子、8…固体の音響伝搬媒体、10…内針、20
…外針、30…音響伝搬媒体給排管、35…音響伝搬媒
体給排管30の開口部、40…液体の音響伝搬媒体、5
0…生体組織、60…駆動部、70…液体の音響伝搬媒
体40の給排器、80…圧力調整器、90…送受波装
置、100…信号処理装置、110…表示装置、120
…駆動制御装置。
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic transducer, 2 ... Acoustic lens, 3 ... Substrate, 4 ... Oscillator, 5 ... Signal line mounting substrate, 6 ... Signal line, 7 ... Needle-like ultrasonic probe, 8 ... Solid acoustic propagation medium 10 ... Inner needle, 20
Outer needle, 30 ... Sound propagation medium supply / discharge pipe, 35 ... Opening portion of sound propagation medium supply / discharge pipe 30, 40 ... Liquid sound propagation medium, 5
0 ... Biological tissue, 60 ... Driving part, 70 ... Feeder / discharger of liquid acoustic propagation medium 40, 80 ... Pressure regulator, 90 ... Wave transmitting / receiving device, 100 ... Signal processing device, 110 ... Display device, 120
... Drive controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 由喜男 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 (72)発明者 佐野 秀造 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 (72)発明者 神田 浩 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Ito 1-14-1 Kanda, Chiyoda-ku, Tokyo Inside Hitachi Medical Co., Ltd. (72) Inventor Shuzo Sano 1-1-1, Uchikanda, Chiyoda-ku, Tokyo No. 14 Inside Hitachi Medical Co. (72) Inventor Hiroshi Kanda 1-1-14 Kanda, Chiyoda-ku, Tokyo Inside Hitachi Medical Co.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 生体内に挿入または刺入して周囲の生体
組織を超音波により計測する針状超音波探触子であっ
て、超音波を収束させる音響レンズを備え、軸に垂直な
方向に超音波を送受波する超音波変換器を有する針状超
音波探触子において、前記音響レンズと計測対象である
生体組織との間に音響伝搬媒体を介在させ、前記超音波
変換器から送受波される超音波が前記音響レンズによっ
て前記音響伝搬媒体内で収束して結ぶ焦点の位置を、前
記生体組織と前記音響伝搬媒体との界面の位置に、音響
レンズの焦点深度の範囲で、少なくとも計測中は一致さ
せる手段を有することを特徴とする針状超音波探触子。
1. A needle-like ultrasonic probe that is inserted into or inserted into a living body to measure surrounding living tissue by ultrasonic waves, and is provided with an acoustic lens that converges ultrasonic waves, and is in a direction perpendicular to an axis. In a needle-shaped ultrasonic probe having an ultrasonic transducer for transmitting and receiving ultrasonic waves, an acoustic propagation medium is interposed between the acoustic lens and a biological tissue to be measured, and the ultrasonic transducer transmits and receives. The position of the focal point of the ultrasonic waves to be converged and bound in the acoustic propagation medium by the acoustic lens, at the position of the interface between the biological tissue and the acoustic propagation medium, in the range of the depth of focus of the acoustic lens, at least A needle-like ultrasonic probe having means for matching during measurement.
【請求項2】 生体内に挿入または刺入して周囲の生体
組織を超音波により計測する針状超音波探触子であっ
て、超音波を収束させる音響レンズを備え、軸に垂直な
方向に超音波を送受波する超音波変換器を有する針状超
音波探触子において、液体の音響伝搬媒体を給排する給
排管を有し、前記音響レンズと計測対象である生体組織
との間に前記給排管により液体の音響伝搬媒体を給排
し、前記超音波変換器から送受波される超音波が前記音
響レンズによって前記液体の音響伝搬媒体内で収束して
結ぶ焦点の位置を、前記生体組織と前記音響伝搬媒体と
の界面の位置に、音響レンズの焦点深度の範囲で、少な
くとも計測中は一致させることを特徴とする針状超音波
探触子。
2. A needle-like ultrasonic probe which is inserted into or inserted into a living body to measure surrounding living tissue by ultrasonic waves, and which is provided with an acoustic lens for converging ultrasonic waves and which is in a direction perpendicular to an axis. In a needle-shaped ultrasonic probe having an ultrasonic transducer for transmitting and receiving ultrasonic waves, having a supply / discharge pipe for supplying / discharging a liquid acoustic propagation medium, between the acoustic lens and the biological tissue to be measured. A liquid acoustic propagation medium is supplied and ejected by the supply / drain pipe, and ultrasonic waves transmitted and received from the ultrasonic transducer are converged by the acoustic lens in the liquid acoustic propagation medium to form a focal point. A needle-like ultrasonic probe, which is made to coincide with a position of an interface between the living tissue and the acoustic propagation medium within a range of a depth of focus of an acoustic lens at least during measurement.
【請求項3】 前記音響伝搬媒体を給排する給排管を、
少なくとも2本有することを特徴とする請求項2に記載
された針状超音波探触子。
3. A supply / discharge pipe for supplying / discharging the acoustic propagation medium,
The needle-shaped ultrasonic probe according to claim 2, characterized in that it has at least two.
【請求項4】 送波と受波の時間差を計測する手段を設
け、また前記給排管の反対の端部に音響伝搬媒体の給排
器と圧力調整器を設けて、送波と受波の時間差を参照し
て前記音響伝搬媒体の圧力を調整することを特徴とする
請求項2または請求項3に記載された針状超音波探触
子。
4. A means for measuring the time difference between the transmitted wave and the received wave, and a supply / discharge device and pressure regulator for the acoustic propagation medium at the opposite end of the supply / discharge pipe to transmit and receive the wave. The needle-like ultrasonic probe according to claim 2 or 3, wherein the pressure of the acoustic propagation medium is adjusted with reference to the time difference of.
【請求項5】 生体内に挿入または刺入して周囲の生体
組織を超音波により計測する針状超音波探触子であっ
て、超音波を収束させる音響レンズを備え、軸に垂直な
方向に超音波を送受波する超音波変換器を有する針状超
音波探触子において、前記音響レンズと計測対象である
生体組織との間に固体の音響伝搬媒体を有し、前記超音
波変換器から送受波される超音波が前記音響レンズによ
って前記固体の音響伝搬媒体内で収束して結ぶ焦点の位
置を、前記生体組織と前記音響伝搬媒体との界面の位置
に、音響レンズの焦点深度の範囲で、少なくとも計測中
は一致させることを特徴とする針状超音波探触子。
5. A needle-like ultrasonic probe that is inserted into or inserted into a living body to measure surrounding living tissue by ultrasonic waves, and is provided with an acoustic lens that converges ultrasonic waves, and is in a direction perpendicular to an axis. In a needle-shaped ultrasonic probe having an ultrasonic transducer for transmitting and receiving ultrasonic waves, a solid acoustic propagation medium is provided between the acoustic lens and a biological tissue to be measured, and the ultrasonic transducer The position of the focal point where the ultrasonic waves transmitted and received from the acoustic lens are converged and bound by the acoustic lens in the solid acoustic propagation medium, at the position of the interface between the biological tissue and the acoustic propagation medium, the depth of focus of the acoustic lens. A needle-like ultrasonic probe characterized in that they are matched within a range at least during measurement.
【請求項6】 前記超音波変換器が、複数個設けられる
ことを特徴とする請求項1ないし請求項5のいずれか1
項に記載された針状超音波探触子。
6. The ultrasonic transducer according to claim 1, wherein a plurality of the ultrasonic transducers are provided.
The needle-like ultrasonic probe described in the item.
【請求項7】 前記超音波変換器を、軸の周囲に螺旋状
に走査することにより、周辺の生体組織を画像化するこ
とを特徴とする請求項1ないし請求項6のいずれか1項
に記載された針状超音波探触子。
7. The living body tissue in the surroundings is imaged by scanning the ultrasonic transducer in a spiral shape around an axis thereof. The needle-shaped ultrasonic probe described.
【請求項8】 軸に垂直な方向に超音波を送受波する超
音波変換器を少なくとも2個有し、生体内に挿入または
刺入して前記超音波変換器を針の軸の周囲に螺旋状に走
査することにより周辺の生体組織を画像化する針状超音
波探触子において、前記の超音波変換器が、軸周囲を廻
る螺旋上に配置されることを特徴とする針状超音波探触
子。
8. At least two ultrasonic transducers for transmitting and receiving ultrasonic waves in a direction perpendicular to the axis are provided, and the ultrasonic transducers are inserted or inserted into a living body to spiral the ultrasonic transducers around the axis of the needle. In a needle-shaped ultrasonic probe for imaging a living body tissue in the surroundings by scanning in a circular pattern, the ultrasonic transducer is arranged in a spiral around the axis, and the needle-shaped ultrasonic wave is characterized. Probe.
【請求項9】 複数の超音波変換器の間隔が、針の回転
方向については等しく、かつ、軸方向については必要な
画像の走査線間隔の2倍、またはその整数倍であること
を特徴とする請求項8に記載された針状超音波探触子。
9. The ultrasonic transducers are arranged at equal intervals in the needle rotation direction and twice in the axial direction the required image scanning line interval, or an integral multiple thereof. The needle-shaped ultrasonic probe according to claim 8.
【請求項10】 複数の超音波変換器の間隔が、針の回
転方向については等しく、かつ、軸方向については必要
な画像の走査線間隔の倍数であることを特徴とする請求
項8に記載された針状超音波探触子。
10. The ultrasonic transducer according to claim 8, wherein the intervals between the ultrasonic transducers are equal with respect to the rotating direction of the needle and are multiples of the required scanning line interval of the image with respect to the axial direction. Needle-shaped ultrasonic probe.
【請求項11】 超音波変換器の数がm、螺旋状走査に
おける1回転あたりの軸方向の移動距離がp、第1番目
の超音波変換器の位置を基準として第s番目の超音波変
換器の回転方向の位置がθs度であるとき、その軸方向
の位置が、nを整数、tを1、あるいは、m未満かつm
と互いに素なる自然数として、 p[(θs/360)+(s−1){n+(t/m)}] で与えられることを特徴とする請求項8に記載された針
状超音波探触子。
11. The number of ultrasonic transducers is m, the axial movement distance per rotation in spiral scanning is p, and the sth ultrasonic transducer is based on the position of the first ultrasonic transducer. When the rotational position of the container is θs degrees, the axial position is such that n is an integer and t is 1, or less than m and m.
The needle-like ultrasonic probe according to claim 8, wherein p [(θs / 360) + (s−1) {n + (t / m)}] is given as a natural number coprime to Child.
JP16196095A 1995-06-28 1995-06-28 Acicular ultrasonic probe Expired - Fee Related JP3654309B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16196095A JP3654309B2 (en) 1995-06-28 1995-06-28 Acicular ultrasonic probe
US08/671,010 US5829439A (en) 1995-06-28 1996-06-28 Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16196095A JP3654309B2 (en) 1995-06-28 1995-06-28 Acicular ultrasonic probe

Publications (2)

Publication Number Publication Date
JPH0910213A true JPH0910213A (en) 1997-01-14
JP3654309B2 JP3654309B2 (en) 2005-06-02

Family

ID=15745346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16196095A Expired - Fee Related JP3654309B2 (en) 1995-06-28 1995-06-28 Acicular ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3654309B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106972A (en) * 2004-08-24 2013-06-06 General Hospital Corp Method and apparatus for imaging of vessel segments
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
JP2013106972A (en) * 2004-08-24 2013-06-06 General Hospital Corp Method and apparatus for imaging of vessel segments
US9254102B2 (en) 2004-08-24 2016-02-09 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis

Also Published As

Publication number Publication date
JP3654309B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JPH0910213A (en) Needle-like ultrasonic probe
US5829439A (en) Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
US10105062B2 (en) Miniaturized photoacoustic imaging apparatus including a rotatable reflector
Carovac et al. Application of ultrasound in medicine
US8764666B2 (en) Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
JP3782107B2 (en) Acoustic imaging, Doppler catheters and guidewires
US5505088A (en) Ultrasound microscope for imaging living tissues
US8021305B2 (en) Ultrasound probe, ultrasonograph, and ultrasonography
JPH0419860B2 (en)
JPH03500726A (en) Methods and devices for examination and treatment of internal organs
GB2208138A (en) Ultrasonic transducer array around a flexible tube
JP3583789B2 (en) Continuous wave transmitting / receiving ultrasonic imaging apparatus and ultrasonic probe
CN107582026B (en) Catheter applied to uterus
JP2003230560A (en) Ultrasonograph
JP3844869B2 (en) Needle-shaped ultrasonic probe and ultrasonic diagnostic apparatus
CN105125238B (en) A kind of transurethral bladder supersonic detection method, diagnostic equipment and transducer
JPS6240018B2 (en)
JPS628172B2 (en)
JPS6137943B2 (en)
JP3483053B2 (en) Needle-like ultrasonic probe and ultrasonic diagnostic imaging apparatus using the same
JP3676453B2 (en) Acicular ultrasonic probe
JPS6137942B2 (en)
JPH10248851A (en) Ultrasonic endoscope
JP3462667B2 (en) Needle-like ultrasonic probe and ultrasonic diagnostic apparatus
JPH10179587A (en) Needle-like ultrasonic probe and ultrasonic imaging device using this

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees