JPH0897400A - Vacuum electron beam interference device - Google Patents

Vacuum electron beam interference device

Info

Publication number
JPH0897400A
JPH0897400A JP23478294A JP23478294A JPH0897400A JP H0897400 A JPH0897400 A JP H0897400A JP 23478294 A JP23478294 A JP 23478294A JP 23478294 A JP23478294 A JP 23478294A JP H0897400 A JPH0897400 A JP H0897400A
Authority
JP
Japan
Prior art keywords
electron beam
electrons
beam source
hole
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23478294A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nishiyama
英利 西山
Katsuhiro Kuroda
勝広 黒田
Taku Oshima
卓 大嶋
Masakuni Okamoto
政邦 岡本
Akihiro Kitagawa
明弘 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23478294A priority Critical patent/JPH0897400A/en
Publication of JPH0897400A publication Critical patent/JPH0897400A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To comprises a switch, an amplifier element or a logic circuit normally operating at a room temperature or under radioactive rays by a method where there are in a vacuum arranged a screen plate having holes behind the anode arranged facing an electron beam source, and an electron collecting electrode capable of applying a positive voltage to the electron beam source and located further behind the screen plate. CONSTITUTION: When a positive high voltage is applied to an field-emission electron beam source 1, electrons are taken out in a vacuum towards an anode 2. The anode 2 has holes of about 2μm so that the accelerated electrons advance backwardly. Further, the electrons pass through hole 4 in a screen plate 3 composed of a plate of W and are collected to an electron collecting electrode 7. Incidentally, the holes 4 are a circle having a diameter of about 0.1μm so that a quantum level can be performed by applying a voltage. Therefore, the wave number of electrons passing through the holes 4 is limited to a few and the strength distribution of electrons specially occurs due to interference effects among electrons having a different wave number. Accordingly, by a change of a voltage V4 applied to the holes 4, a current value 1 obtained from the electron collecting electrode 7 is changed and this current value change is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスイッチ,増幅素子や論
理回路に係わり、特に、高集積化,高速化,機能化に適
する電子波干渉効果を用いた素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switch, an amplifying element and a logic circuit, and more particularly to an element using an electron wave interference effect suitable for high integration, high speed and functionalization.

【0002】[0002]

【従来の技術】従来のスイッチ,増幅素子や論理回路は
全て半導体中に作られていた。また、高集積化,高速
化,多機能化のために電子波干渉効果が用いられてい
る。例えば、特開平5−7005 号公報「干渉効果半導体装
置」がある。すなわち、図5に示す半導体ヘテロ界面に
生じる二次元電子ガスを用いたもので、この装置ではソ
ース領域52から取り出された電子の通る経路は全て半
導体51中であり、ゲート電極53に電圧を印加して電
子の通るポイントコンタクト54を狭め、この時、電子
がポイントコンタクト54を通過するときエネルギが量
子化され、左右のポイントコンタクトを通過した電子の
干渉効果により空間的な電子の強度分布が生じる。そし
て、左右のゲート電極53の印加する電圧の大きさを変
えることにより、左右のポイントコンタクト54を通る
電子の波長が異なるため、空間的な電子の強度分布が変
化し、その効果を利用してドレイン領域55から得る電
流量を調節している。
2. Description of the Related Art Conventional switches, amplifiers and logic circuits are all made in a semiconductor. Also, the electron wave interference effect is used for high integration, high speed, and multi-functionality. For example, there is an interference effect semiconductor device disclosed in Japanese Patent Laid-Open No. 5-7005. That is, the two-dimensional electron gas generated at the semiconductor hetero interface shown in FIG. 5 is used. In this device, all the paths taken by the electrons extracted from the source region 52 are in the semiconductor 51, and a voltage is applied to the gate electrode 53. Then, the point contact 54 through which the electrons pass is narrowed. At this time, energy is quantized when the electrons pass through the point contact 54, and a spatial electron intensity distribution is generated due to the interference effect of the electrons passing through the left and right point contacts. . Then, by changing the magnitude of the voltage applied to the left and right gate electrodes 53, the wavelengths of the electrons passing through the left and right point contacts 54 are different, so that the spatial intensity distribution of the electrons is changed, and the effect is utilized. The amount of current obtained from the drain region 55 is adjusted.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術の干渉効
果半導体装置では、電子の通る経路は全て固体中であ
り、固体中の電子と格子による散乱の影響を避けるた
め、超微細加工,液体ヘリウム温度程度の極低温が必要
であった。また、材料として半導体を用いているため
に、放射線の入射により容易に電荷を発生し、その結果
回路に誤動作が生じるため、放射線に弱いという問題点
があった。
In the interference effect semiconductor device of the prior art described above, all the paths through which electrons pass are in a solid, and in order to avoid the influence of electrons and lattice scattering in the solid, ultrafine processing and liquid helium are performed. An extremely low temperature of about the temperature was required. In addition, since a semiconductor is used as a material, electric charges are easily generated by the incidence of radiation, and as a result, a circuit malfunctions, which causes a problem of being weak against radiation.

【0004】[0004]

【課題を解決するための手段】前記問題点を解決するた
めに、本発明における電子線装置は、電子線源とこれに
対向して配置された電子を取り出すための陽極と、取り
出された電子の通る経路に置かれた孔の少なくとも一つ
開いた少なくとも一つの遮蔽板と、前記孔を通過した電
子を収集する少なくとも一つの電子収集電極を全て真空
中に構成する。ただし、前記孔の周囲は導電性の物質で
構成、もしくはコーティングされており、前記孔に前記
電子線源に対して独立に、もしくは同時に負の電圧を加
えることが可能であり、その結果、前記孔の電子の通り
うる大きさが電子のエネルギが量子化される程度、さら
には、全く通さなくなる程度にまで変化できるようにす
る。
In order to solve the above problems, an electron beam apparatus according to the present invention includes an electron beam source, an anode arranged opposite to the electron beam source for taking out electrons, and an electron taken out. At least one shield plate that is open in at least one hole that is placed in the path through which the hole passes and at least one electron collection electrode that collects electrons that have passed through the hole are all constructed in a vacuum. However, the periphery of the hole is composed of or is coated with a conductive material, and it is possible to apply a negative voltage to the hole independently or simultaneously with respect to the electron beam source, and as a result, The size of the electrons that can pass through the holes can be changed to such an extent that the energy of the electrons is quantized, or even to such an extent that the electrons cannot pass through at all.

【0005】[0005]

【作用】図1(a)のように電子の通る経路は真空中で
あり、電子線源1と対向して配置された陽極2の後方に
孔4の開いた遮蔽板3と、さらに後方に電子線源1に対
して正の電圧を印加できる電子収集電極7がある。この
とき孔4は電子線源に対して負の電圧を印加可能であ
り、次に説明するように電子の通ることの可能な領域を
電子のエネルギが量子化される程度にまで変化させるこ
とができる。電圧印加により大きさが変化する一辺の長
さがdの正方形の孔4の場合、正方形の孔のある一辺に
沿った横軸,縦軸をそれぞれx軸,y軸とすれば、とり
うる波長は定在波の立つ条件である数1,数2となる
(図1b)。
As shown in FIG. 1 (a), the path through which electrons pass is in vacuum, and the shield plate 3 having a hole 4 behind the anode 2 facing the electron beam source 1 and further behind it. There is an electron collecting electrode 7 that can apply a positive voltage to the electron beam source 1. At this time, the hole 4 can apply a negative voltage to the electron beam source, and can change the region through which the electrons can pass to the extent that the energy of the electrons is quantized, as described below. it can. In the case of a square hole 4 whose one side length is d whose size is changed by voltage application, if the horizontal axis and the vertical axis along one side with the square hole are x axis and y axis, respectively, possible wavelengths can be obtained. Are the conditions 1 and 2 which are the conditions for standing waves (FIG. 1b).

【0006】[0006]

【数1】λx=2d/nx (nx=1,2,……)[Formula 1] λx = 2d / nx (nx = 1, 2, ...)

【0007】[0007]

【数2】λy=2d/ny (ny=1,2,……) このときλx,λyはそれぞれx軸,y軸方向の定在波
長、nx,nyはx軸,y軸方向の量子数である。実際
の孔の形は正方形とは限らないが、現象の理解のために
は問題はない。また、x軸,y軸に垂直なz軸を考え、
電子線源1に対して電子収集電極7に正の電圧Vを印加
するとき、フェルミエネルギEFからeV(eは電子の
素電荷)低いエネルギまでが電流に寄与するので、n
x,nyは数3を満たさなければならない。
## EQU00002 ## .lamda.y = 2d / ny (ny = 1, 2, ...) At this time, .lamda.x and .lamda.y are standing wavelengths in the x-axis and y-axis directions, and nx and ny are quantum numbers in the x-axis and y-axis directions. Is. The actual shape of the hole is not necessarily square, but this is not a problem for understanding the phenomenon. Also, consider the z-axis perpendicular to the x-axis and the y-axis,
When a positive voltage V is applied to the electron collection electrode 7 with respect to the electron beam source 1, energy from Fermi energy EF to eV (e is elementary electron charge) lower contributes to the current.
x and ny must satisfy the expression 3.

【0008】[0008]

【数3】EF−eV<h×h/(8×π×π×m)×(4
×π×π/(d×d)×(nx×nx+ny×ny)+kz
×kz)<EF ただし、hはプランク定数、mは電子の質量、kzはz
軸方向の波数である。ここで、孔4に印加する電圧の絶
対値を増し、dを非常に小さくすれば、この条件を満た
すnx,nyは存在しなくなり、したがって電流は流れ
なくなる。孔が一個でdが十分小さくnx,nyの取り
うる値が数個であり、それに対応する波長がλ1,λ2
……である場合、異なる波長間で干渉が起こり空間的な
電子の強度分布が生じる。また、印加電圧を変えるとd
が変わり、その結果、孔の中の定在波の波長が変わるた
め、空間的な電子の強度分布が変化する。そのため図1
(c)のように孔4に印加する電圧V4を変えると電子
収集電極7で得られる電流値Iが変わり、それを利用し
てスイッチ,増幅素子を構成できる。
EF-eV <h × h / (8 × π × π × m) × (4
× π × π / (d × d) × (nx × nx + ny × ny) + kz
Xkz) <EF, where h is Planck's constant, m is electron mass, and kz is z
It is the wave number in the axial direction. Here, if the absolute value of the voltage applied to the hole 4 is increased and d is made extremely small, nx and ny satisfying this condition do not exist, so that no current flows. There is one hole, d is sufficiently small, and there are several possible values for nx and ny, and the corresponding wavelengths are λ1 and λ2.
.., interference occurs between different wavelengths and a spatial electron intensity distribution occurs. When the applied voltage is changed, d
Changes, and as a result, the wavelength of the standing wave in the hole changes, resulting in a change in the spatial electron intensity distribution. Therefore,
When the voltage V4 applied to the hole 4 is changed as shown in (c), the current value I obtained at the electron collecting electrode 7 is changed, and the switch and the amplifying element can be constructed by utilizing this.

【0009】また、同様の効果から、孔を二個以上設
け、各孔に印加する電圧V1,V2……を入力として各
孔の大きさを変化させ、各々から出る電子の干渉の結果
生じる空間的な電子の強度分布を利用し、電子収集電極
から得られる電流値を出力とした論理回路を構成でき
る。
Further, from the same effect, two or more holes are provided, and the size of each hole is changed by inputting the voltages V1, V2 ... Applied to each hole, and the space generated as a result of the interference of electrons emitted from each hole. A logical circuit can be constructed in which a current value obtained from the electron collecting electrode is used as an output by utilizing a specific electron intensity distribution.

【0010】さらに、この装置全体の寸法は数μmで構
成可能であるため超微細加工を必要とせず、さらに電子
は真空中を通るため液体ヘリウム程度の低温や、放射線
対策も不要である。
Furthermore, since the size of the entire device can be configured to be several μm, ultrafine processing is not required, and since electrons pass through a vacuum, low temperatures such as liquid helium and radiation measures are also unnecessary.

【0011】[0011]

【実施例】【Example】

(実施例1)図1(a)に、本発明に係わる第1の実施
例を示す。ただし、全体は10の−7乘Pa以上の高真
空度の容器に入っている。電界放出型電子線源1に対向
して2μm程度離れたところに配置された陽極2に、電
子線源の先端の電場が数V/nm程度になるように、正
の高電圧をかけると電子が陽極2に向かって真空中に取
り出される。電圧印加によって加速された電子は陽極2
より後方に進むように陽極2には2μm程度の孔が開い
ている。さらに、孔4を開けた厚さ0.1μmのWの板か
らなる遮蔽板3を電子の通る経路である陽極2の後方に
置く。また、孔4は電界放出型電子線源1に対して負の
電圧を印加することにより電子エネルギが量子化される
程度(図1b)にまで電子の通る領域を小さくすること
や電子の流れを完全に止めることも可能である。このと
き孔4は、加工が容易、かつ、電圧印加で量子準位がで
きるような、直径0.1μm 程度の円である。その結
果、孔4を通過した電子の波数は数個に限られるため、
異なる波数の電子の間の干渉効果により空間的な電子の
強度分布が生じる。したがって、孔4に印加する電圧V
4を変化させることにより、電子線源1から見て遮蔽板
3より後方に一つ置かれた電子収集電極7から得られる
電流値Iを変化させることができる(図1c)。このよう
な電流値変化を利用して、スイッチあるいは増幅素子と
して用いられる。電子波の干渉効果を用いているため、
極めて小さな入力信号でも敏感に反応する、あるいは、
極めて増幅率が高い素子が得られる。
(Embodiment 1) FIG. 1A shows a first embodiment according to the present invention. However, the whole is contained in a container having a high vacuum degree of 10 −7 Pa or more. When a positive high voltage is applied to the anode 2 placed at a position of about 2 μm facing the field emission electron beam source 1 so that the electric field at the tip of the electron beam source is about several V / nm, electrons are emitted. Are drawn into the vacuum towards the anode 2. Electrons accelerated by voltage application are anode 2
The anode 2 has a hole of about 2 μm so as to move further backward. Further, a shield plate 3 made of a 0.1 μm thick W plate having holes 4 is placed behind the anode 2 which is a path through which electrons pass. In addition, the hole 4 reduces the region through which electrons pass to the extent that electron energy is quantized by applying a negative voltage to the field emission electron beam source 1 (FIG. 1b), and reduces the flow of electrons. It is possible to stop it completely. At this time, the hole 4 is a circle having a diameter of about 0.1 μm, which is easy to process and has a quantum level when a voltage is applied. As a result, the wave number of the electron passing through the hole 4 is limited to a few,
A spatial electron intensity distribution occurs due to the interference effect between electrons of different wave numbers. Therefore, the voltage V applied to the hole 4
4 can be changed to change the current value I obtained from the electron collecting electrode 7 placed one behind the shield plate 3 as seen from the electron beam source 1 (FIG. 1c). It is used as a switch or an amplification element by utilizing such a change in current value. Because it uses the interference effect of electron waves,
Responsive even with extremely small input signals, or
An element having an extremely high amplification factor can be obtained.

【0012】本実施例では、電子線源として電界放射型
電子線源を用いたが、指向性が良く、輝度が高く、エネ
ルギ幅の狭い電子線源であれば良く、例えば、共鳴トン
ネル効果あるいはCs及びCsOを半導体表面に吸着さ
せ負の電子親和力を利用した電子線源等のエネルギの単
色性の良いものを用いるといっそう効果がある。
Although the field emission type electron beam source is used as the electron beam source in the present embodiment, any electron beam source having good directivity, high brightness and narrow energy width may be used. It is even more effective to use Cs and CsO adsorbed on the semiconductor surface and use an electron beam source having a good monochromaticity of energy, such as an electron beam source utilizing a negative electron affinity.

【0013】また、ここでは遮蔽板3としてW板を用い
たが導電体であれば、Au,Al,Ag,Mg,Mo等
の金属でも良く、遮蔽板3としてSiO2 ,SiN等の
絶縁体を用いても、孔の周囲に前記導電体を真空蒸着等
の手段によりコーティングすれば同様の効果がある。
Although the W plate is used as the shielding plate 3 here, a metal such as Au, Al, Ag, Mg, Mo or the like may be used as long as it is a conductor, and the shielding plate 3 is made of an insulator such as SiO 2 or SiN. Even if the above is used, the same effect can be obtained by coating the conductor around the hole by means such as vacuum deposition.

【0014】一方、ここでは孔4として直径0.1μm
程度の円を用いたが、孔4に印加する電圧により孔4の
中に量子準位ができれば、孔の形状は楕円でも多角形で
も良い。
On the other hand, here, the hole 4 has a diameter of 0.1 μm.
Although a circle having a size of about 4 is used, the shape of the hole may be an ellipse or a polygon as long as a quantum level can be formed in the hole 4 by the voltage applied to the hole 4.

【0015】さらに、電子収集電極7を複数個配置すれ
ば、一つの入力に対して複数個に応答するスイッチある
いは増幅素子として用いられる。
Further, if a plurality of electron collecting electrodes 7 are arranged, they can be used as a switch or an amplifying element which responds to a plurality of inputs.

【0016】(実施例2)図2に本発明に係わる第2の
実施例として論理回路を構成するのに必要かつ十分であ
るNANDゲートの構成,動作を示す。
(Embodiment 2) FIG. 2 shows the construction and operation of a NAND gate necessary and sufficient for constructing a logic circuit as a second embodiment according to the present invention.

【0017】構成を図2(a)に示す。ただし、全体は
10の−7乘Pa以上の高真空度の容器に入っている。
電界放射型電子線源1に対向して2μm程度離れたとこ
ろに配置された陽極2に、電子線源の先端の電場が数V
/nm程度になるように、正の高電圧をかけると電子が
陽極2に向かって真空中に取り出される。電圧印加によ
って加速された電子は陽極2より後方に進むように陽極
2には2μm程度の孔を開けておく。さらに、孔24,
25を開けた厚さ0.1μmのSiO2からなる遮蔽板2
3を電子の通る経路である陽極2の後方に置く。孔2
4,25の周囲は電圧を印加できるようにAuを真空蒸
着によってコーティングしてある。
The structure is shown in FIG. However, the whole is contained in a container having a high vacuum degree of 10 −7 Pa or more.
The electric field at the tip of the electron beam source is several V at the anode 2 arranged at a position of about 2 μm facing the field emission electron beam source 1.
When a positive high voltage is applied so as to be about / nm, electrons are extracted into the vacuum toward the anode 2. A hole of about 2 μm is formed in the anode 2 so that the electrons accelerated by the voltage application will travel backward from the anode 2. In addition, the holes 24,
Shield plate 2 made of SiO 2 having a thickness of 0.1 μm and opening 25
3 is placed behind the anode 2, which is a path of electrons. Hole 2
The periphery of 4, 25 is coated with Au by vacuum evaporation so that a voltage can be applied.

【0018】また、遮蔽板23に開けた孔24,25は
それぞれ独立に電圧を印加できるように絶縁体26で絶
縁してあり、電子線源1に対して負の電圧を印加するこ
とにより電子のエネルギが量子化される程度にまで電子
の通る領域を小さくすることが可能である。このとき孔
24,25は、加工が容易、かつ、電圧印加で量子準位
ができるような、直径0.1μm 程度の円である。ま
た、絶縁体26の電子線によるチャージアップを防ぐた
めに、電子線が絶縁体26に当たらぬよう接地された金
属の遮蔽板(図示略)を絶縁体26の前方に置いてあ
る。さらに、遮蔽板23の後方には孔24,25を通過
した電子を収集する電子収集電極7を一つ置く。
Further, the holes 24 and 25 formed in the shield plate 23 are insulated by an insulator 26 so that a voltage can be independently applied, and by applying a negative voltage to the electron beam source 1, electrons are emitted. It is possible to make the region through which electrons pass so small that the energy of is quantized. At this time, the holes 24 and 25 are circles with a diameter of about 0.1 μm, which are easy to process and have a quantum level when a voltage is applied. In order to prevent the insulator 26 from being charged up by the electron beam, a metal shield plate (not shown) that is grounded so that the electron beam does not hit the insulator 26 is placed in front of the insulator 26. Further, one electron collecting electrode 7 for collecting electrons passing through the holes 24 and 25 is placed behind the shield plate 23.

【0019】孔24に電圧V4を、孔25に電圧V5を
印加するとき、V4及びV5が、1.0Vと低い(L)と
きのz軸(遮蔽板に垂直な軸)方向の波動関数ψ分布は
図2(b)の曲線28となり、1.2Vと高い(H)とき
は同図の曲線29となる。このとき点線の位置に電子収
集電極7があるので、両者の干渉の結果、電子収集電極
7から得られる出力(OUT)は図2(c)の表にな
る。これはNANDゲートの真理表であり、このゲート
によりあらゆる論理回路が作成可能となる。
When a voltage V4 is applied to the hole 24 and a voltage V5 is applied to the hole 25, the wave function ψ in the z-axis (axis perpendicular to the shielding plate) direction when V4 and V5 are as low as 1.0 V (L). The distribution becomes the curve 28 in FIG. 2B, and when it is as high as 1.2 V (H), it becomes the curve 29 in the figure. At this time, since the electron collecting electrode 7 is located at the position indicated by the dotted line, the output (OUT) obtained from the electron collecting electrode 7 as a result of the interference between the two is shown in the table of FIG. This is a truth table of a NAND gate, which enables the creation of any logic circuit.

【0020】また、ここでは遮蔽板23としてSiO2
板に孔を開けたものを用いたが、絶縁体であればSiN
等でも良い。さらに、孔の周囲にAuを真空蒸着した
が、導電体であればAl,Ag,Mg,Mo,W等の金
属でも良いし、孔の周囲にコーティングする手段もスパ
ッタ等を用いても良い。
Further, here, as the shielding plate 23, SiO 2 is used.
I used a plate with holes, but if it is an insulator, it is SiN
And so on. Further, Au was vacuum-deposited around the holes, but a metal such as Al, Ag, Mg, Mo, W or the like may be used as a conductor, and a means for coating around the holes may be sputtering.

【0021】ここでは、孔24,25として直径0.1
μm 程度の円を用いたが、各孔に印加する電圧によ
り、孔の中に量子準位ができれば孔の形状は楕円でも、
多角形でも良い。
Here, the holes 24 and 25 have a diameter of 0.1.
A circle of about μm was used, but if the quantum level can be created in the hole by the voltage applied to each hole, the shape of the hole may be elliptical,
It may be polygonal.

【0022】一方、電子収集電極7を複数個配置すれ
ば、複数のNANDゲート等のゲートが作成可能とな
る。
On the other hand, if a plurality of electron collecting electrodes 7 are arranged, a plurality of gates such as NAND gates can be formed.

【0023】(実施例3)基板上に形成する例を図3,
図4に示す。まず、Si(100)基板31にSiN層
32をCVD法で2.5μm の厚さに堆積する(図3
a)。次に直径2μmのレジスト33を付け、SF6
スでSiN層32をプラズマエッチングする(図3
b)。この後、KOH:H2O:IPA(isopropyl alc
ohol)=40:400:100の異方性エッチング液を
用いてSi(100)基板31に図3(c)のように円
錐状の電子線源34を形成する。
(Embodiment 3) An example of formation on a substrate is shown in FIG.
As shown in FIG. First, the SiN layer 32 is deposited on the Si (100) substrate 31 by CVD to a thickness of 2.5 μm (FIG. 3).
a). Next, a resist 33 having a diameter of 2 μm is attached, and the SiN layer 32 is plasma-etched with SF 6 gas (FIG. 3).
b). After this, KOH: H 2 O: IPA (isopropyl alc
ohol) = 40: 400: 100 is used to form a conical electron beam source 34 on the Si (100) substrate 31 as shown in FIG. 3C.

【0024】さらにCVD法でSiO2 層35(厚さ1.
5μm),W層36(厚さ0.3μm),SiO2 層37
(厚さ0.5μm)を順に堆積する(図3d)。次に、超
音波洗浄でSiN層32のマスクを除去し、異方性エッ
チング液で電子線源34先端を曲率0.1μm 以下に最
終加工し、さらにSiO2 層35,37の内壁を軽いH
Fエッチングして、レジスト38を流し込み、その上に
CVD法でSiO2 層39(厚さ0.1μm)を堆積する
(図3e)。
Further, the SiO 2 layer 35 (thickness 1.
5 μm), W layer 36 (thickness 0.3 μm), SiO 2 layer 37
(Thickness 0.5 μm) are sequentially deposited (FIG. 3d). Next, the mask of the SiN layer 32 is removed by ultrasonic cleaning, the tip of the electron beam source 34 is finally processed with an anisotropic etching solution to a curvature of 0.1 μm or less, and the inner walls of the SiO 2 layers 35 and 37 are lightly H.
After F etching, a resist 38 is poured, and a SiO 2 layer 39 (thickness 0.1 μm) is deposited thereon by a CVD method (FIG. 3e).

【0025】次に直径0.1μm 程度の孔を二つ開けた
レジスト40をマスクとしてHF−NH4OF混合水溶
液によりSiO2 層39に孔41,42を開ける(図4
a)。レジストを除去後それぞれの孔の周囲にAu蒸着
膜43を二つの孔の開いたマスクを通して蒸着し形成す
る(図4b)。その後、直径2μm,厚さ2μmのレジ
スト44を堆積(図4c)、さらにCVD法でSiO2
層45(厚さ1.0μm),W層46(厚さ0.05μ
m),SiO2 層47(厚さ0.5μm)を順に堆積する
(図4d)。最後にレジスト38、44を除去して、図
4(e)のような真空電子線干渉装置が得られる。
Next, using the resist 40 having two holes having a diameter of about 0.1 μm as a mask, holes 41 and 42 are made in the SiO 2 layer 39 with an HF-NH4OF mixed aqueous solution (FIG. 4).
a). After removing the resist, an Au vapor deposition film 43 is formed around each hole by vapor deposition through a mask having two holes (FIG. 4B). After that, a resist 44 having a diameter of 2 μm and a thickness of 2 μm is deposited (FIG. 4c), and further SiO 2 is formed by the CVD method.
Layer 45 (thickness 1.0 μm), W layer 46 (thickness 0.05 μm)
m), and a SiO 2 layer 47 (thickness 0.5 μm) are sequentially deposited (FIG. 4d). Finally, the resists 38 and 44 are removed to obtain a vacuum electron beam interference device as shown in FIG.

【0026】各電極には引き出し配線が設けられ、これ
を真空容器中で用いる。W層36の電極に電子線源34
に対して300V程度の電圧を印加すると、電子線源3
4から電子が放出される。放出された電子は孔41,4
2を通り、W層46の電子収集電極に達する。また、電
子線源34に対してAu蒸着膜43に負の電圧を印加す
ることにより孔41,42の電子の通りうる大きさを電
子線の干渉効果があらわれる程度にまで変化可能であ
り、その結果、W層46の電子収集電極から得られる電
流値を変化させることができる。
Each electrode is provided with a lead wire, which is used in a vacuum container. The electron beam source 34 is attached to the electrode of the W layer 36.
When a voltage of about 300 V is applied to the electron beam source 3,
Electrons are emitted from 4. The emitted electrons have holes 41, 4
2 to reach the electron collecting electrode of the W layer 46. Further, by applying a negative voltage to the Au vapor deposition film 43 with respect to the electron beam source 34, the size of electrons passing through the holes 41 and 42 can be changed to such an extent that the electron beam interference effect appears. As a result, the current value obtained from the electron collecting electrode of the W layer 46 can be changed.

【0027】この素子を基板上に二つ以上集積すること
で所望の回路が得られる。
A desired circuit can be obtained by integrating two or more of these elements on the substrate.

【0028】なお、ここでは真空容器中で用いたが、素
子形成後、真空度10の−7乘Pa以上の高真空中で全
体にふたをすると、極めてコンパクトな回路が得られ
る。
Although the device is used in a vacuum vessel here, an extremely compact circuit can be obtained by covering the entire device in a high vacuum of -7 Pa or more with a vacuum degree of 10 after forming the element.

【0029】[0029]

【発明の効果】本発明によれば、電子線源から取り出さ
れた電子の通る経路に、印加電圧によって電子の通りう
る大きさを制御可能な遮蔽板を有する電子線干渉装置
で、電子の通る経路が全て真空中であるように構成され
た装置や、それを組み合わせた装置によって室温,放射
線下でも正常に動作可能なスイッチ,増幅素子や論理回
路を構成できる。
According to the present invention, in the electron beam interference device having the shield plate capable of controlling the size of the electrons which can be passed by the applied voltage, in the path through which the electrons taken out from the electron beam source pass. A switch, an amplification element, and a logic circuit that can operate normally at room temperature and under radiation can be configured by a device configured so that all paths are in vacuum, or a device that is a combination thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の真空電子線干渉装置の説明
図。
FIG. 1 is an explanatory diagram of a vacuum electron beam interference device according to an embodiment of the present invention.

【図2】本発明の真空電子線干渉装置でNANDゲート
を構成した実施例を示す説明図。
FIG. 2 is an explanatory diagram showing an embodiment in which a NAND gate is formed by the vacuum electron beam interference device of the present invention.

【図3】本発明の一実施例の真空電子線干渉装置の製作
工程を示す断面図。
FIG. 3 is a cross-sectional view showing a manufacturing process of the vacuum electron beam interference device in one embodiment of the present invention.

【図4】本発明の一実施例の真空電子線干渉装置の製作
工程を示す断面図。
FIG. 4 is a cross-sectional view showing a manufacturing process of the vacuum electron beam interference device in one embodiment of the present invention.

【図5】従来の電子干渉素子の説明図。FIG. 5 is an explanatory diagram of a conventional electronic interference element.

【符号の説明】[Explanation of symbols]

1…電界放射型電子線源、2…陽極、3…遮蔽板、4…
孔、7…電子収集電極。
DESCRIPTION OF SYMBOLS 1 ... Field emission type electron beam source, 2 ... Anode, 3 ... Shielding plate, 4 ...
Hole, 7 ... Electron collecting electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 政邦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 北川 明弘 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakuni Okamoto 1-280 Higashi Koikeku, Kokubunji City, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Akihiro Kitagawa 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】電子線源とこれに対向して配置された陽極
と、前記電子線源から放出された電子の通る経路に電子
の通る孔が少なくとも一つ開いた遮蔽板を少なくとも一
つ置き、さらに、前記遮蔽板の後方に電子収集電極を少
なくとも一つ有する電子線装置において、前記孔の周囲
は導電性の物質で構成、もしくはコーティングされてお
り、各孔に前記電子線源に対して負の電圧を独立に、も
しくは同時に加えることにより、前記孔の電子の通るこ
とができる有効的な大きさを電子のエネルギが量子化さ
れる程度、電子を全く通さなくする程度にまで変化させ
ることが可能であり、さらに、前記電子線源から放出さ
れた電子の通る経路は全て真空中であることを特徴とす
る真空電子線干渉装置。
1. An electron beam source, an anode arranged to face the electron beam source, and at least one shield plate having at least one hole through which electrons pass in a path through which electrons emitted from the electron beam source pass. Further, in the electron beam apparatus having at least one electron collecting electrode behind the shielding plate, the peripheries of the holes are composed of or coated with a conductive material, and each hole is provided with respect to the electron beam source. By applying a negative voltage independently or simultaneously, the effective size of electrons that can pass through the hole is changed to the extent that the energy of the electrons is quantized, or the electrons are completely blocked. The vacuum electron beam interference device is characterized in that all the paths of the electrons emitted from the electron beam source are in vacuum.
【請求項2】請求項1において、前記遮蔽板に開けた孔
に電圧を印加する手段と、前記電子収集電極に入る電流
の検出手段からなり、前記孔に電圧を印加し、前記孔の
電子の通ることのできる有効的な大きさを電子のエネル
ギが量子化される程度以下にすることによって、前記電
子収集電極から得られる電流値を変化させ出力とする信
号処理機能を設けた真空電子線干渉装置。
2. The device according to claim 1, comprising means for applying a voltage to a hole formed in the shielding plate and means for detecting a current flowing into the electron collecting electrode, wherein a voltage is applied to the hole to cause electrons in the hole. A vacuum electron beam provided with a signal processing function for changing the current value obtained from the electron collecting electrode to output it by setting the effective size through which the energy of the electron is quantized to be less than that Interference device.
【請求項3】請求項1または請求項2において、電界放
出効果、もしくは共鳴トンネル効果等を利用した電子線
源を使用する真空電子線干渉装置。
3. A vacuum electron beam interference device according to claim 1 or 2, which uses an electron beam source utilizing a field emission effect, a resonance tunnel effect, or the like.
【請求項4】請求項1,2または3において、前記電子
線源先端と前記陽極との距離が0.0〜5.0μm であ
り、前記電子線源から見て前記陽極より後方0.1〜5.
0μmの距離に前記遮蔽板を有し、前記遮蔽板は0.0
1〜2.0μmの厚さであり、さらに後方0.1〜5.0
μmに前記電子収集電極を有する真空電子線干渉装置。
4. The electron beam source tip according to claim 1, wherein a distance between the electron beam source tip and the anode is 0.0 to 5.0 μm, and the electron beam source is seen to be rearward from the anode by 0.1 to 5 μm. .
The shielding plate is provided at a distance of 0 μm, and the shielding plate is 0.0
It has a thickness of 1 to 2.0 μm, and 0.1 to 5.0 rearward.
A vacuum electron beam interferometer having the electron collecting electrode at μm.
【請求項5】請求項1,2,3もまたは4において、遮
蔽板がSiO2 等の絶縁体から成り、前記遮蔽板に開け
た孔に電圧を加えられるよう、前記孔の周囲にAu,A
l,Ag,Mg,Mo,W等の導電体材料膜を蒸着等の
手段で設けた、もしくは、遮蔽板そのものが前記導電体
から構成されている真空電子線干渉装置。
5. The structure according to claim 1, 2, 3 or 4, wherein the shield plate is made of an insulator such as SiO 2 and Au, is provided around the hole so that a voltage can be applied to the hole formed in the shield plate. A
A vacuum electron beam interference device in which a conductive material film such as 1, Ag, Mg, Mo, W is provided by means such as vapor deposition, or the shield plate itself is made of the conductive material.
【請求項6】請求項1,2,3,4または5において、
遮蔽板に開けた孔の形状が円,楕円、もしくは、多角形
であり、円の直径,楕円の長軸,短軸,多角形の一辺,
対角線の長さが0.01〜2.0μmである真空電子線干
渉装置。
6. The method according to claim 1, 2, 3, 4 or 5.
The shape of the hole formed in the shielding plate is a circle, an ellipse, or a polygon, and the diameter of the circle, the major axis of the ellipse, the minor axis, one side of the polygon,
A vacuum electron beam interference device having a diagonal length of 0.01 to 2.0 μm.
【請求項7】基板表面上に電子線源を構成する工程と、
前記電子線源に対向する位置に陽極を形成する工程と、
前記陽極の後方に電子の通ることの可能な、導電性の物
質で構成、もしくはコーティングされた孔が少なくとも
一つ開いた遮蔽板を少なくとも一つ形成する工程と、さ
らに後方に電子収集電極を少なくとも一つ形成する工程
とを有することを特徴とする真空電子線干渉装置の製造
方法。
7. A step of forming an electron beam source on the surface of the substrate,
Forming an anode at a position facing the electron beam source,
Forming at least one shield plate having at least one hole formed or coated with a conductive material through which electrons can pass behind the anode, and further including at least an electron collecting electrode behind the shield plate. A method of manufacturing a vacuum electron beam interference device, comprising the step of forming one.
JP23478294A 1994-09-29 1994-09-29 Vacuum electron beam interference device Pending JPH0897400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23478294A JPH0897400A (en) 1994-09-29 1994-09-29 Vacuum electron beam interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23478294A JPH0897400A (en) 1994-09-29 1994-09-29 Vacuum electron beam interference device

Publications (1)

Publication Number Publication Date
JPH0897400A true JPH0897400A (en) 1996-04-12

Family

ID=16976296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23478294A Pending JPH0897400A (en) 1994-09-29 1994-09-29 Vacuum electron beam interference device

Country Status (1)

Country Link
JP (1) JPH0897400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017694A (en) * 2015-06-24 2017-01-19 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニーBritish Telecommunications Public Limited Company Printed logic gate
US10428465B2 (en) 2016-10-27 2019-10-01 Kimberly-Clark Worldwide, Inc. High strength and low stiffness agave tissue
US11261568B2 (en) 2016-10-27 2022-03-01 Kimberly-Clark Worldwide, Inc. High bulk wet-pressed agave tissue

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017694A (en) * 2015-06-24 2017-01-19 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニーBritish Telecommunications Public Limited Company Printed logic gate
US10428465B2 (en) 2016-10-27 2019-10-01 Kimberly-Clark Worldwide, Inc. High strength and low stiffness agave tissue
US11261568B2 (en) 2016-10-27 2022-03-01 Kimberly-Clark Worldwide, Inc. High bulk wet-pressed agave tissue

Similar Documents

Publication Publication Date Title
JP3235172B2 (en) Field electron emission device
KR101907223B1 (en) Electron multiplier device having a nanodiamond layer
Bouclier et al. The gas electron multiplier (GEM)
US5054047A (en) Circuits responsive to and controlling charged particles
US5249340A (en) Field emission device employing a selective electrode deposition method
US5148461A (en) Circuits responsive to and controlling charged particles
US7176452B2 (en) Microfabricated beam modulation device
US6025591A (en) Quadrupole mass spectrometers
JPH09293654A (en) Transmissive mask for charged particle beam aligner use and aligner utilizing that
US5408098A (en) Method and apparatus for detecting low loss electrons in a scanning electron microscope
DE4426594C2 (en) switching device
JPH04298948A (en) Charged particie extractor
US2416720A (en) Electrooptical device
US5159231A (en) Conductively cooled microchannel plates
US20210398769A1 (en) On-chip miniature x-ray source and manufacturing method therefor
JPH0897400A (en) Vacuum electron beam interference device
US4845364A (en) Coaxial reentrant ion source for surface mass spectroscopy
JP3194552B2 (en) Charged particle beam exposure system
US3706920A (en) Tunnel electron emitter cathode
GB2262649A (en) Energy analyser
JPH07320681A (en) High sensitivity hybrid photomultiplier tube
JP3407289B2 (en) Electron emission device and driving method thereof
JPH0696712A (en) Focused ion beam device
JP4773460B2 (en) Multi-beam microelectronic electron emission device
Fomani et al. Low-voltage field ionization of gases up to torr-level pressures using massive arrays of self-aligned gated nanoscale tips