JPH0896994A - Method for measuring and regulating charged particle beam orbit, and measuring device therefor - Google Patents

Method for measuring and regulating charged particle beam orbit, and measuring device therefor

Info

Publication number
JPH0896994A
JPH0896994A JP23157694A JP23157694A JPH0896994A JP H0896994 A JPH0896994 A JP H0896994A JP 23157694 A JP23157694 A JP 23157694A JP 23157694 A JP23157694 A JP 23157694A JP H0896994 A JPH0896994 A JP H0896994A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
orbit
monitor plate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23157694A
Other languages
Japanese (ja)
Other versions
JP2839842B2 (en
Inventor
Eiichi Nishimura
榮一 西村
Takuro Sakai
卓郎 酒井
Takio Tomimasu
多喜夫 冨増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIYUU DENSHI LASER KENKYUSHO K
JIYUU DENSHI LASER KENKYUSHO KK
Original Assignee
JIYUU DENSHI LASER KENKYUSHO K
JIYUU DENSHI LASER KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIYUU DENSHI LASER KENKYUSHO K, JIYUU DENSHI LASER KENKYUSHO KK filed Critical JIYUU DENSHI LASER KENKYUSHO K
Priority to JP23157694A priority Critical patent/JP2839842B2/en
Publication of JPH0896994A publication Critical patent/JPH0896994A/en
Application granted granted Critical
Publication of JP2839842B2 publication Critical patent/JP2839842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Lasers (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE: To measure and correct a charged particle beam orbit without ensuring a long space base by providing a monitor plate in one point on the charged particle beam orbit, receiving the transition emitted light from the monitor plate, and determining the directional vector of the charged particle beam based on a standard light orbit. CONSTITUTION: A monitor 2 crossing a charged particle beam orbit 1 at an angle of 45 deg. in one point on the orbit 1 is provided, and the laser beam of standard light laid along the orbit 1 is reflected at a right angle to the orbit 1, and received by an optical means 4 to determine a standard light receiving point. A transition emitted light 3 emitted to and generated in one point crossing the monitor 2 of the orbit 1 is received by the means 4, the directional vector of the charged particle beam is calculated by an arithmetic control circuit 8 from the central position of the emitted light angle distribution image of the emitted light 3 and the standard light receiving position, and the charged particle beam orbit can be thus measured without ensuring a long space base, and corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、荷電粒子ビーム軌道の
計測方法および調整方法、ならびに荷電粒子ビーム軌道
の計測装置に関する。さらに詳しくは、荷電粒子ビーム
が誘電率の異なる物質間を通過する際に放射する遷移放
射光(Optical Transition Rad
iation)の放射中心を測定して荷電粒子ビームの
中心の位置を計測し、さらに、遷移放射光の角度分布を
測定し、その中心角を求めて荷電粒子ビームの方向ベク
トルを計測する方法、およびその結果を用いて荷電粒子
ビームの軌道を調整する方法、ならびにその計測装置に
関する。とくに、自由電子レーザ発振装置に使用する荷
電粒子ビームの軌道の計測および調整に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam orbit measuring method and adjusting method, and a charged particle beam orbit measuring device. More specifically, a transition radiant light (Optical Transition Rad) emitted when a charged particle beam passes between substances having different dielectric constants.
iation), the position of the center of the charged particle beam is measured to measure the angular distribution of the transition radiant light, and the central angle is obtained to measure the direction vector of the charged particle beam, and The present invention relates to a method for adjusting the trajectory of a charged particle beam using the result, and a measuring device therefor. In particular, it is suitable for measuring and adjusting the trajectory of the charged particle beam used in the free electron laser oscillator.

【0002】[0002]

【従来の技術】従来、荷電粒子ビームの軌道は、適当な
距離を隔てて2枚の蛍光板を軌道内に挿入し、これらの
蛍光板に衝突した荷電粒子ビームが発する蛍光の位置を
光学的に検出することにより測定されていた。すなわ
ち、荷電粒子ビームの軌道上の異なる2点で軌道の位置
を測定し、測定した2点間では軌道が直線であるとして
荷電粒子ビームの位置と方向ベクトルとを決定してい
た。この具体例として、R.W.Warren: SPIE vol.738 Fre
e-Electron Lasers (1987)) の記載がある。
2. Description of the Related Art Conventionally, the orbit of a charged particle beam is obtained by inserting two fluorescent plates into the orbit at an appropriate distance and optically detecting the position of the fluorescence emitted by the charged particle beam colliding with these fluorescent plates. It was measured by doing. That is, the position of the charged particle beam is measured at two different points on the orbit of the charged particle beam, and the position and direction vector of the charged particle beam are determined as a straight line between the measured two points. As an example of this, RW Warren: SPIE vol.738 Fre
There is a description of e-Electron Lasers (1987)).

【0003】[0003]

【発明が解決しようとする課題】しかし、前記の方法を
用いて荷電粒子ビーム軌道を高精度で測定するには、2
枚の蛍光板を挿入する位置が長い程よく、その測定位置
ををメートル単位で離す必要がある。しかも、メートル
単位で離した2枚の蛍光板の間に、ビームを偏光するビ
ーム調整用のQレンズなどを挿入することができないと
いう、装置上の厄介な制限があった。また、たとえば、
自由電子レーザ発振装置では、自由電子レーザを発振さ
せるために、まず、荷電粒子ビーム41をアンジュレー
タ42に導入して、その軌道を測定する必要がある。し
かし、図4に模式的に示したように、導入時、荷電粒子
ビーム軌道41は必ずしも直線ではなく、2枚の蛍光板
43を用い軌道の位置を検出するだけの従来法による推
定軌道41xとの間には、大きな隔りを生じていた。正
しい軌道の位置を測定し、軌道を調整するには、アンジ
ュレータ42への入射角(方向ベクトル)の測定を必要
としていた。
However, in order to measure the charged particle beam orbit with high accuracy using the above method, 2
The longer the position where the fluorescent plates are inserted, the better, and the measurement positions must be separated by a unit of meter. Moreover, there is a troublesome limitation on the apparatus that a Q lens for beam adjustment that polarizes the beam cannot be inserted between the two fluorescent plates separated by a unit of meter. Also, for example,
In the free electron laser oscillator, in order to oscillate the free electron laser, it is necessary to first introduce the charged particle beam 41 into the undulator 42 and measure its orbit. However, as schematically shown in FIG. 4, at the time of introduction, the charged particle beam orbit 41 is not necessarily a straight line, and an estimated orbit 41x by the conventional method that only detects the position of the orbit using two fluorescent plates 43. There was a great gap between them. In order to measure the correct trajectory position and adjust the trajectory, it was necessary to measure the incident angle (direction vector) on the undulator 42.

【0004】[0004]

【課題を解決するための手段】本発明は、従来法の持つ
欠点を解決するために研究した結果、完成された、荷電
粒子ビームの軌道上の1点で、その位置と方向ベクトル
とを検出、測定して、軌道を計測し調整することのでき
る方法と装置とである。
As a result of research to solve the drawbacks of the conventional method, the present invention detects the position and direction vector at one point on the trajectory of a charged particle beam, which has been completed. , A method and a device capable of measuring, measuring and adjusting a trajectory.

【0005】前記の目的を達成するために、本発明は、
荷電粒子の衝突によって入射側に遷移放射光を放射する
モニター板52を、荷電粒子の走行軌道と交差させて挿
入し、(A)一定軌道51上に照射したレーザをモニタ
ー板52で反射させ、反射光を固定平面53で受光し、
固定平面03上で反射光の受光位置を測定し、レーザと
モニター板面との交差角度をステップ状に変化させつ
つ、反射光の受光位置を固定平面03上で測定し、ステ
ップの調整幅と、レーザの反射光の受光位置の変位D1
との定量的な関係を求め、(B)前記(A)と同様に、
ただし、反射光を光学的手段4で受光し、演算制御装置
8の表示画面上で反射光の受光位置を測定し、ステップ
の調整幅と、表示画面上で反射光の受光位置の変位D2
との定量的な関係を求め、(C)レーザ軌道とモニター
板面との交差角度の変位αと、表示画面上の位置の変位
D2との定量的な関係を求め、(D)所望の軌道上に荷
電粒子を走行させ、放射される遷移放射光を光学的手段
4を介して演算制御装置8の表示画面により測定し、基
準位置及び基準方向28を特定し、(E)前記(C)で
求めた関係を用い、荷電粒子ビームの軌道を求める、こ
とを特徴とする、荷電粒子ビーム軌道の計測方法を提供
する。
To achieve the above object, the present invention provides
A monitor plate 52, which emits transition radiant light to the incident side due to collision of charged particles, is inserted so as to cross the traveling orbit of the charged particles, and (A) the laser irradiated on the constant orbit 51 is reflected by the monitor plate 52, The reflected light is received by the fixed plane 53,
The light receiving position of the reflected light is measured on the fixed plane 03, the light receiving position of the reflected light is measured on the fixed plane 03 while the crossing angle between the laser and the monitor plate surface is changed stepwise, and the adjustment width of the step is set. , Displacement D1 of the receiving position of the reflected light of the laser
(B) As in (A) above,
However, the reflected light is received by the optical means 4, the light receiving position of the reflected light is measured on the display screen of the arithmetic and control unit 8, the adjustment width of the step and the displacement D2 of the light receiving position of the reflected light on the display screen are measured.
And (C) a quantitative relationship between the displacement α of the intersection angle between the laser trajectory and the monitor plate surface and the displacement D2 of the position on the display screen, (D) the desired trajectory The charged particles are caused to travel upward, and the emitted transition radiation light is measured via the optical means 4 on the display screen of the arithmetic and control unit 8 to specify the reference position and the reference direction 28, and (E), (C) above. There is provided a method for measuring a charged particle beam orbit, which is characterized in that a trajectory of a charged particle beam is obtained by using the relationship obtained in.

【0006】また、荷電粒子ビーム軌道中に、荷電粒子
ビームと衝突して入射側に遷移放射光を放射するモニタ
ー板を、軌道と交差させて挿入し、モニター板面の遷移
放射光の放射中心の位置を光学的に測定して荷電粒子ビ
ームの位置を特定し、さらに、遷移放射光の放射角度の
分布を光学的に測定し、測定した放射角度分布の中心を
求め、(1)式によって荷電粒子ビームの方向ベクトル
を求めることを特徴とする、荷電粒子ビーム軌道の計測
方法を提供する。荷電粒子ビーム軌道とモニター板面と
の交差角は45度が好ましい。
Further, a monitor plate which collides with the charged particle beam and emits transition radiant light to the incident side is inserted in the charged particle beam orbit so as to intersect the orbit, and the emission center of the transition radiant light on the monitor plate surface is inserted. Is optically measured to identify the position of the charged particle beam, the distribution of the radiation angle of the transition radiation is optically measured, and the center of the measured radiation angle distribution is obtained. Provided is a method for measuring a trajectory of a charged particle beam, which is characterized in that a direction vector of the charged particle beam is obtained. The angle of intersection between the charged particle beam trajectory and the monitor plate surface is preferably 45 degrees.

【0007】 θp =2/γ [rad] (1) ただし、θp :遷移放射光(OTR光)の放射角
[rad] γ=(1−β2 -1/2 [1/rad] β=v/c v:荷電粒子速度 [m/sec] c:光の速度 [m/sec] また、予め、参照用レーザを既知の軌道上に照射し、前
記のモニター板面で反射させ、反射した参照用レーザの
位置を光学的に測定して基準位置および方向として特定
し、請求項2または3に記載の荷電粒子ビーム軌道の計
測方法で求めた荷電粒子ビームの位置および方向ベクト
ルと対比して、荷電粒子ビームの位置および方向ベクト
ルを調整することを特徴とする荷電粒子ビーム軌道の調
整方法を提供する。
Θ p = 2 / γ [rad] (1) where θ p is the emission angle of the transition radiation (OTR light)
[Rad] γ = (1-β 2 ) −1/2 [1 / rad] β = v / c v: charged particle velocity [m / sec] c: speed of light [m / sec] See also in advance. The laser for use is radiated on a known orbit and is reflected by the monitor plate surface, and the position of the reflected reference laser is optically measured and specified as the reference position and direction, and Provided is a method for adjusting a charged particle beam trajectory, which comprises adjusting the position and direction vector of a charged particle beam in comparison with the position and direction vector of the charged particle beam obtained by a method for measuring a charged particle beam trajectory.

【0008】さらに本発明は、荷電粒子ビーム軌道1中
に挿入して遷移放射光を放射させるモニター板2、およ
びモニター板の移動手段5と、遷移放射光を放射するモ
ニター板面と無限遠とにそれぞれ焦点を合わせ、モニタ
ー板面の像と遷移放射光とをそれぞれ受像することので
きる光学的手段4と、前記のモニター板の移動手段5と
前記の光学的手段4とを制御し、かつ、受像したモニタ
ー板面の像と遷移放射光とをそれぞれ処理して、荷電粒
子ビーム1の位置と、遷移放射光の放射角度分布および
/または荷電粒子ビームの方向ベクトルとを算出し、表
示する機能を有する演算制御装置8とからなる荷電粒子
ビーム軌道の計測装置を提供する。モニター板には金属
板が好ましく使用され、また、上述の光学的手段として
は光学レンズ、中でもズームレンズを用いて受像するこ
とが便利である。
Further, according to the present invention, the monitor plate 2 which is inserted into the charged particle beam orbit 1 to emit the transition radiant light, the moving means 5 of the monitor plate, the monitor plate surface radiating the transition radiant light and the infinite distance. And controlling the optical means 4 capable of respectively receiving the image of the monitor plate surface and the transition radiation, the monitor plate moving means 5 and the optical means 4, and , The received image of the monitor plate surface and the transition radiation are respectively processed to calculate and display the position of the charged particle beam 1, the radiation angle distribution of the transition radiation and / or the direction vector of the charged particle beam. Provided is a charged particle beam trajectory measuring device including an arithmetic and control unit 8 having a function. A metal plate is preferably used for the monitor plate, and it is convenient to use an optical lens, particularly a zoom lens, as the above-mentioned optical means to receive an image.

【0009】[0009]

【作用と実施態様例】本発明を、本発明の実施態様例を
示す図面を参照しながら説明する。図1は、本発明の実
施態様例の概略図、図2は、ズームレンズの焦点を無限
遠の位置に合わせ、方向ベクトルを計測する場合の概略
説明図、図3は、荷電粒子ビームをアンジュレータに導
入する際の模式図、図4は、遷移放射光の放射角θp
強度、図5は、本発明にかかる荷電粒子ビーム軌道の計
測方法の一実施態様例である。
The present invention will be described with reference to the drawings showing the embodiments of the present invention. FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is a schematic explanatory diagram in the case where a focus of a zoom lens is set to a position at infinity and a direction vector is measured, and FIG. 3 is an undulator of a charged particle beam. FIG. 4 is a schematic diagram for introduction into the device, FIG. 4 is an emission angle θ p and intensity of the transition radiation, and FIG. 5 is an example of one embodiment of the charged particle beam trajectory measuring method according to the present invention.

【0010】本発明は基本的に、荷電粒子ビームが、誘
電率の異なる物質間を通過するときに遷移放射光を放射
することを利用し、荷電粒子ビーム軌道内にモニター板
を挿入して遷移放射光を放射させ、その位置や状態を観
察し、荷電粒子ビームの位置や状態を知るのである。す
なわち、荷電粒子ビーム軌道の位置は、荷電粒子ビーム
1軌道にモニター板2を交差させて挿入し、荷電粒子ビ
ーム1がモニター板面(入射側a面:以下、モニター板
面という)に衝突する際の遷移放射光3の放射中心の位
置を軌道外から光学的手段4で観察して測定する。そし
て、荷電粒子ビーム1の方向ベクトルは、モニター板2
の後側面、すなわち荷電粒子ビーム1の入射側aにおい
て放射される遷移放射光3が、鏡面で反射する光と同じ
ように、荷電粒子ビーム1の入射角cに対する反射角の
方向を中心に放射することを利用し、遷移放射光3を光
学的手段4で受像し、遷移放射光3の放射角度分布を測
定し、その中心角を求め、さらには、別途求めておいた
基準線の位置と対比して荷電粒子ビーム1の軌道を調整
するのである。
The present invention basically utilizes the fact that a charged particle beam emits transition radiation when passing between substances having different permittivities, and a transition is made by inserting a monitor plate in the trajectory of the charged particle beam. The synchrotron radiation is emitted, and the position and state of the beam are observed to know the position and state of the charged particle beam. That is, at the position of the charged particle beam orbit, the monitor plate 2 is inserted so as to intersect the charged particle beam 1 orbit, and the charged particle beam 1 collides with the monitor plate surface (incident side a surface: hereinafter referred to as monitor plate surface). The position of the radiation center of the transition radiation 3 at this time is observed from outside the orbit by the optical means 4 and measured. The direction vector of the charged particle beam 1 is the monitor plate 2
The transition radiation light 3 emitted on the rear side surface, that is, on the incident side a of the charged particle beam 1, is emitted around the direction of the reflection angle with respect to the incident angle c of the charged particle beam 1 as in the case of the light reflected on the mirror surface. Using the above, the transition radiant light 3 is received by the optical means 4, the radiant angle distribution of the transition radiant light 3 is measured, the central angle thereof is determined, and further, the position of the reference line which is separately determined In contrast, the trajectory of the charged particle beam 1 is adjusted.

【0011】以下、より具体的に説明する。モニター板
2の材質は、遷移放射光3を入射側aに放射させる素
材、たとえば金属板、好ましくはアルミニューム板を使
用する。モニター板2は、入射側aにむけて挿入する。
モニター板2の移動手段5は、機械的手段、または電気
的手段のいずれでもよいが、例えばステッピングモータ
のように、通常、両者を組合せて用い、モニター板2の
挿入と取出、位置、方向、姿勢などを調整する作用を有
する。これらの調整は、極めて正確に実施する必要があ
る。例えば、自由電子レーザ発振装置に装着する場合に
は、荷電粒子ビーム軌道とモニター板との交差角度bは
45度を180万段階程度に微調整できることが好まし
い。交差角度bは、入射角cが45度になるようにセッ
トすることが好ましい。遷移放射光3の放射角度の中心
が荷電粒子ビーム1に対し90度の方向になるので、比
較的容易に遷移放射光3を受像し、演算処理することが
できるからである。
A more specific description will be given below. As the material of the monitor plate 2, a material that emits the transition radiation 3 to the incident side a, for example, a metal plate, preferably an aluminum plate is used. The monitor plate 2 is inserted toward the incident side a.
The moving means 5 of the monitor plate 2 may be either mechanical means or electric means, but usually, for example, a stepping motor, a combination of both is used to insert and remove the monitor board 2, position, direction, It has the function of adjusting posture. These adjustments need to be performed very accurately. For example, when it is mounted on a free electron laser oscillator, it is preferable that the crossing angle b between the charged particle beam orbit and the monitor plate can be finely adjusted from 45 degrees to about 1.8 million steps. The intersection angle b is preferably set so that the incident angle c is 45 degrees. This is because the center of the emission angle of the transition radiation 3 is in the direction of 90 degrees with respect to the charged particle beam 1, so that the transition radiation 3 can be relatively easily received and processed.

【0012】一方、モニター板面の遷移放射光3の放射
中心の位置や遷移放射光3の放射角度の分布を荷電粒子
ビーム1の軌道外から光学的に測定する手段として、具
体的にはモニター板面に焦点を合わせ受像することので
きるズームレンズ4を使用するとよい。ズームレンズ4
の光軸を、所望の荷電粒子ビームの入射に対する反射角
の方向に合わせて装着する。例えば、図1に示すよう
に、モニター板2の挿入角度が荷電粒子ビーム1に対し
て45度であれば、ズームレンズ4の光軸を所望する荷
電粒子ビーム軌道に対し90度の、すなわち遷移放射光
3の放射中心の方向に装着する。光学的手段4は、ズー
ムレンズ以外にも、少なくともモニター板面と実質的な
無限遠との二か所に焦点を合わせ、それぞれ結像面で結
像できる機能があれば使用することができる。必要に応
じてモニター板2とズームレンズ4との間に補助レンズ
6を挿入し、ズームレンズ4に入る像の大きさを調整し
て焦点ぼけを防ぐことができる。また、受像面に入る遷
移放射光の強度を調整するために、光路にフィルタ7を
挿入してもよい。
On the other hand, as a means for optically measuring the position of the radiation center of the transition radiation 3 and the distribution of the radiation angle of the transition radiation 3 on the monitor plate surface from outside the orbit of the charged particle beam 1, specifically, a monitor is used. It is preferable to use the zoom lens 4 which can focus on the plate surface and receive an image. Zoom lens 4
The optical axis of is aligned with the direction of the reflection angle with respect to the incidence of the desired charged particle beam. For example, as shown in FIG. 1, when the insertion angle of the monitor plate 2 is 45 degrees with respect to the charged particle beam 1, the optical axis of the zoom lens 4 is 90 degrees with respect to the desired charged particle beam orbit, that is, a transition. It is mounted in the direction of the emission center of the emitted light 3. In addition to the zoom lens, the optical unit 4 can be used as long as it has a function of focusing on at least two positions, that is, the monitor plate surface and substantially infinity, and forming an image on each image forming surface. If necessary, an auxiliary lens 6 can be inserted between the monitor plate 2 and the zoom lens 4 to adjust the size of the image entering the zoom lens 4 to prevent defocusing. Further, a filter 7 may be inserted in the optical path in order to adjust the intensity of the transition radiation light entering the image receiving surface.

【0013】測定に際しては、参照用にレーザを利用し
て、予め、所望の荷電粒子ビームの位置や方向をシミュ
レーションし、基準にしておくとよい。具体的には、ま
ず、移動手段5を用い、モニター板2を、所望の荷電粒
子ビーム1が、例えば45度の入射角になるように挿入
し調整する。ズームレンズ4の焦点をモニター板面に合
わせ、所望の荷電粒子ビームと同じ軌道上に参照用レー
ザを照射する。レーザは、モニター板面によって入射光
に対し90度の方向に反射され、ズームレンズ4を通し
て結像面上で所望の荷電粒子ビーム軌道とされる位置と
同じ位置に結像するので、荷電粒子ビームの測定と調整
の標準に利用することができる。参照用レーザは、本発
明に使用する光学的手段4を調整する際にも利用するこ
とができる。
At the time of measurement, it is advisable to use a laser for reference and simulate the position and direction of a desired charged particle beam in advance and use it as a reference. Specifically, first, the moving means 5 is used to insert and adjust the monitor plate 2 so that the desired charged particle beam 1 has an incident angle of, for example, 45 degrees. The focus of the zoom lens 4 is adjusted to the monitor plate surface, and the reference laser is irradiated on the same orbit as the desired charged particle beam. The laser beam is reflected by the monitor plate surface in the direction of 90 degrees with respect to the incident light and forms an image at the same position as the desired charged particle beam trajectory on the image forming surface through the zoom lens 4. It can be used as a standard for measurement and adjustment. The reference laser can also be used in adjusting the optical means 4 used in the present invention.

【0014】参照用レーザ光を、荷電粒子ビームに切り
替えてモニター板面に対し45度で入射すると、遷移放
射光は、荷電粒子ビームの入射方向と直角な方向を中心
として放射され、その中心の位置は、モニター板面に焦
点を合わせたズームレンズ4を通して受像することがで
きる。受像した遷移放射光の中心位置を、たとえばカメ
ラやCRT受像機に表示し、また、必要に応じ、前記の
参照用レーザ光の位置と比較して荷電粒子ビーム軌道の
位置を計測できる。通常、これらの像は、画像処理して
ディスプレイなどに表示するが、直接座標などで表示し
てもよい。
When the reference laser light is switched to the charged particle beam and is incident on the monitor plate surface at 45 degrees, the transition radiation light is emitted centering on a direction perpendicular to the incident direction of the charged particle beam, and The position can be received through the zoom lens 4 focused on the monitor plate surface. The center position of the received transition radiation light can be displayed on, for example, a camera or a CRT receiver, and the position of the charged particle beam trajectory can be measured by comparing it with the position of the reference laser light, if necessary. Normally, these images are subjected to image processing and displayed on a display or the like, but may be displayed directly in coordinates or the like.

【0015】次に、図2の概略説明図に示すように、ズ
ームレンズ24の焦点を実質的にモニター板面22方向
の無限遠の位置に合わせると、モニター板面22に平行
に到達する一定の入射角の荷電粒子ビーム21によって
放射される遷移放射光23の放射方向の分布像26を得
ることができる。図2(a)は、所望の軌道上の荷電粒
子ビーム21が正確に所定の入射角、本実施態様例では
45度でモニター板面22に衝突し、遷移放射光23が
その放射方向に装着されたズームレンズ24の光軸に平
行に入射した場合を示している。像はリング状に均一に
分布し、結像面25であるXY平面上の像26は、同心
円のドーナツ状になる。像の中心28は、基準軸を走行
する荷電粒子ビームの方向を示している。遷移放射光の
強度を放射角度をパラメータとして測定し、放射角度を
Z軸方向として3次元的に表示するとクレータ状の図形
になる。この図形は、遷移放射光の放射角度の分布を示
すことになる。勿論、遷移放射光の強度や放射角度の分
布は、明暗や色彩を用いて平面的に表示することもでき
る。もし、荷電粒子ビーム21bの軌道が所望の方向ベ
クトルから、たとえばθ度ずれていた(図2(b)に示
す)とすると、たとえモニター板面22bの入射位置に
おいて軌道が所望の位置にあり、遷移放射光23bの放
射の中心位置が所望の位置であったとしても、遷移放射
光23bの放射方向は、ズームレンズ24bの光軸に対
し、θ度ずれることになる。従って、結像面25b上の
遷移放射光の放射角度分布像26bの中心位置は、θ度
に相当するΔだけ基準方向28からずれた位置27bに
移動し、前記のXY平面上の像は、いびつなドーナツ状
になる。
Next, as shown in the schematic explanatory view of FIG. 2, when the focus of the zoom lens 24 is substantially adjusted to a position at infinity in the direction of the monitor plate surface 22, the zoom lens 24 reaches a position parallel to the monitor plate surface 22. It is possible to obtain a distribution image 26 in the radiation direction of the transition radiation light 23 emitted by the charged particle beam 21 at an incident angle of. FIG. 2A shows that the charged particle beam 21 on a desired orbit collides with the monitor plate surface 22 at a predetermined incident angle, which is 45 degrees in this embodiment, and the transition radiant light 23 is mounted in the radiating direction. It shows a case where the light is incident parallel to the optical axis of the zoom lens 24 that has been set. The image is evenly distributed in a ring shape, and the image 26 on the XY plane, which is the image plane 25, has a concentric donut shape. The center 28 of the image shows the direction of the charged particle beam traveling on the reference axis. A crater-like figure is obtained by measuring the intensity of the transition radiation light with the radiation angle as a parameter and displaying the radiation angle three-dimensionally with the Z-axis direction. This figure will show the distribution of the emission angle of the transition radiation. Of course, the distribution of the intensity of the transition radiation and the distribution of the radiation angle can also be displayed in a plane by using the brightness and the color. If the trajectory of the charged particle beam 21b deviates from the desired direction vector by, for example, θ degrees (shown in FIG. 2B), even if the trajectory is at the desired position at the incident position of the monitor plate surface 22b, Even if the center position of the emission of the transition emission light 23b is a desired position, the emission direction of the transition emission light 23b is shifted by θ degrees with respect to the optical axis of the zoom lens 24b. Therefore, the center position of the radiation angle distribution image 26b of the transition radiation on the image plane 25b moves to the position 27b deviated from the reference direction 28 by Δ corresponding to θ degrees, and the image on the XY plane is It becomes a distorted donut shape.

【0016】所望の方向ベクトルからの荷電粒子ビーム
21bの軌道のずれ、すなわち角度θを、中心方向の位
置のずれΔから求めるための、本発明に係る第1の方法
を以下に述べる。まず、(A)段階として、一定軌道5
1上に照射したレーザをモニター板52で反射させる。
この反射光を固定平面53で受光し、受光位置を測定す
る。レーザとモニター板52との交差角度をステップ状
に変化させ、モニター板52を動かしたステップ数をカ
ウントしておく。モニター板52を動かすにつれて、反
射光の受光位置が移動する。この受光位置の変位を固定
平面53上で測定する。モニター板52のレーザ入射点
と固定平面53との距離L、及びレーザの反射光と固定
平面との角度βが既知であれば、受光位置の変位D1に
相当する交差角度の変位αを幾何学的に求めることがで
きる。カウントしたステップ数と、求めた交差角度の変
位αとから、ステップの調整幅とモニター板52の角度
変位との定量的な関係を求めることができる。1ステッ
プ当たりの角度変位が、前述したように45度/180
万程度であると好ましい。
A first method according to the present invention for obtaining the deviation of the trajectory of the charged particle beam 21b from the desired direction vector, that is, the angle θ from the deviation Δ of the position in the central direction will be described below. First, as the step (A), a constant orbit 5
The monitor plate 52 reflects the laser beam radiated on the surface 1.
The reflected light is received by the fixed plane 53, and the light receiving position is measured. The crossing angle between the laser and the monitor plate 52 is changed stepwise, and the number of steps of moving the monitor plate 52 is counted. As the monitor plate 52 is moved, the light receiving position of the reflected light moves. The displacement of this light receiving position is measured on the fixed plane 53. If the distance L between the laser incident point of the monitor plate 52 and the fixed plane 53 and the angle β between the reflected light of the laser and the fixed plane are known, the displacement α at the intersection angle corresponding to the displacement D1 of the light receiving position is geometrically determined. Can be asked for. A quantitative relationship between the adjustment width of the step and the angular displacement of the monitor plate 52 can be obtained from the counted number of steps and the obtained displacement α of the intersection angle. The angular displacement per step is 45 degrees / 180 as described above.
It is preferably about 10,000.

【0017】(B)段階では、前記(A)段階と同様
に、ただし、レーザの反射光を光学的手段4で受光し
て、演算制御装置8の表示画面により表示し、反射光の
受光位置の変位を表示画面上で測定する。そして、前記
(A)段階と同様、カウントしたステップ数と、表示画
面上での反射光の受光位置の変位D2とから、ステップ
の調整幅と表示画面における位置の変位との関係を求め
る。
In the step (B), as in the step (A), except that the reflected light of the laser is received by the optical means 4 and displayed on the display screen of the arithmetic and control unit 8, and the receiving position of the reflected light is obtained. The displacement of is measured on the display screen. Then, similarly to the step (A), the relationship between the adjustment width of the step and the displacement of the position on the display screen is obtained from the counted number of steps and the displacement D2 of the light receiving position of the reflected light on the display screen.

【0018】(C)段階では、(A)段階と(B)段階
とで求めた関係より、レーザの軌道の角度変位、言い換
えれば荷電粒子ビームの軌道の角度変位と、表示画面に
おける位置変位との定量的な関係を求める。この関係を
用いて、前記の中心方向の位置のずれΔから、荷電粒子
ビーム21bの軌道のずれ、すなわち角度θを求めるこ
とができる。
In step (C), the angular displacement of the laser trajectory, in other words, the angular displacement of the trajectory of the charged particle beam, and the positional displacement on the display screen are determined from the relationship obtained in steps (A) and (B). Seek the quantitative relationship of. Using this relationship, the deviation of the trajectory of the charged particle beam 21b, that is, the angle θ can be obtained from the deviation Δ of the position in the central direction.

【0019】(D)段階として、基準位置及び基準方向
28を次のようにして特定することが好ましい。まず、
所望の軌道上に荷電粒子を走行させ、遷移放射光を、前
記のように、光学的手段4を介して演算制御装置8によ
り計測する。遷移放射光の放射中心の位置を基準位置と
して特定し、放射角度分布象の中心位置を基準方向28
として特定する。このようにして基準位置及び基準方向
を特定すると、厳密な測定を行う上で好ましい。(E)
段階では、遷移放射光の放射角度分布象の中心と、基準
方向28とのずれを表示画面上で求め、前記の(C)段
階で求めた、荷電粒子ビームの軌道の角度変位と表示画
面の位置変位との関係を用いて、荷電粒子ビームの軌道
を求める。なお、(A)〜(D)段階の操作は、順序を
問わず、どの順序で行っても構わない。
In step (D), it is preferable to specify the reference position and the reference direction 28 as follows. First,
The charged particles are caused to travel on a desired orbit, and the transition radiation light is measured by the arithmetic and control unit 8 via the optical means 4 as described above. The position of the radiation center of the transition radiation is specified as the reference position, and the center position of the radiation angle distribution image is set as the reference direction 28.
Specify as. Specifying the reference position and the reference direction in this manner is preferable for strict measurement. (E)
In the stage, the deviation between the center of the radiation angle distribution image of the transition radiation and the reference direction 28 is obtained on the display screen, and the angular displacement of the trajectory of the charged particle beam and the display screen obtained in the step (C) are obtained. The trajectory of the charged particle beam is obtained using the relationship with the positional displacement. The operations in the steps (A) to (D) may be performed in any order regardless of the order.

【0020】次に、中心位置のずれΔから、荷電粒子ビ
ーム21bの軌道と所望の方向とのずれθ度を求めるた
めの、本発明に係る第2の方法を以下に述べる。
Next, a second method according to the present invention for obtaining the deviation θ degree between the trajectory of the charged particle beam 21b and a desired direction from the deviation Δ of the center position will be described below.

【0021】まず、基準軸に沿って荷電粒子ビームを照
射し、前記の方法で放射角度分布像を表示する。像の中
心41を含む直線上における、放射角度に対する発光強
度を測定する。発光強度がピークを示す点42を取り、
像の中心41からの長さRPを求める。放射角度分布像
の形状が同心円状に近いほど、また、出切る限り多くの
点をサンプリングするほど、測定誤差が少ない傾向があ
る。長さの単位として画素を用いると、演算処理が容易
となる。前記の(1)式を用い、発光強度がピークを示
す、遷移放射光の放射角θp を理論的に求める。前記で
求めた表示画面上の長さRP は、放射角θp に相当す
る。長さRP と放射角θp との関係を用い、遷移放射光
の放射角度分布像の中心方向の位置のずれΔから、荷電
粒子ビームと基準軸とがなす角度θを算出することがで
きる。
First, the charged particle beam is irradiated along the reference axis, and the radiation angle distribution image is displayed by the above method. The emission intensity with respect to the emission angle is measured on a straight line including the center 41 of the image. Taking the point 42 at which the emission intensity shows a peak,
Find the length R P from the center 41 of the image. The measurement error tends to be smaller as the shape of the radiation angle distribution image is closer to concentric circles and as many points as possible are sampled. When pixels are used as the unit of length, arithmetic processing becomes easy. Using the above formula (1), the emission angle θp of transition radiant light at which the emission intensity shows a peak is theoretically obtained. The length R P on the display screen obtained above corresponds to the radiation angle θ p . Using the relationship between the length R P and the radiation angle θ p , the angle θ between the charged particle beam and the reference axis can be calculated from the positional shift Δ in the central direction of the radiation angle distribution image of the transition radiation.

【0022】さらに、前記の荷電粒子ビームの位置およ
び方向ベクトルの測定結果と参照用レーザ光の受像位置
と比較しながら、磁場の強度などを調整して、荷電粒子
ビーム1の軌道を所望の位置へと移動、調整することが
できる。荷電粒子ビームの測定もしくは調整が終了した
後、モニター板2は荷電粒子ビーム1の軌道外に取り出
される。
Further, the orbit of the charged particle beam 1 is adjusted to a desired position by adjusting the intensity of the magnetic field while comparing the measurement result of the position and direction vector of the charged particle beam and the image receiving position of the reference laser beam. It can be moved to and adjusted. After the measurement or adjustment of the charged particle beam is completed, the monitor plate 2 is taken out of the trajectory of the charged particle beam 1.

【0023】前記のモニター板の移動手段5と前記の光
学的手段4とを制御し、かつ、受像したニター板上の像
と遷移放射光の像とをそれぞれ処理して遷移放射光の位
置と放射角度分布を算出し、そして好ましくは画像に表
示する機能を有する演算制御装置8を設ける。演算制御
装置8には、CPUのほか、必要に応じて画像表示装
置、関連する周辺装置などが含まれる。演算制御装置
は、本発明の実施のみを目的とするものに限定されず、
前記の制御または演算の一部または全部を、他の目的に
使用する演算制御装置と共用してもよい。また、本発明
の荷電粒子ビーム軌道の計測装置は、一の軌道に対し複
数台を取り付けることもできる。
By controlling the moving means 5 of the monitor plate and the optical means 4, and by processing the received image on the niter plate and the image of the transition radiation respectively, the position of the transition radiation can be determined. An arithmetic and control unit 8 having a function of calculating the radiation angle distribution and preferably displaying it on an image is provided. The arithmetic and control unit 8 includes, in addition to the CPU, an image display device and related peripheral devices as necessary. The arithmetic and control unit is not limited to one for the purpose of implementing the present invention,
A part or all of the above control or calculation may be shared with a calculation control device used for other purposes. Further, the charged particle beam orbit measuring device of the present invention may be equipped with a plurality of units for one orbit.

【0024】このようにして構成された本発明の荷電粒
子ビーム軌道の計測装置の実施態様例の概略構成を、図
1に模式的に示す。モニター板2は、荷電粒子ビーム軌
道1の測定に際し、軌道中に挿入され、アクチュエータ
5によって精密に移動・姿勢制御され、かつ遷移放射光
3を放射させる。モニター板面と無限遠とにそれぞれ焦
点を合わせ、結像することのできるズームレンズ4が、
所望の荷電粒子ビームによって放射される遷移放射光3
の中心方向に光軸を一致させて装着されている。ズーム
レンズ4の前面には、フィルタ7と焦点調整のためのレ
ンズ6とが必要に応じて光路に挿入できるように取り付
けられている。さらに、アクチュエータ5やズームレン
ズ4などを制御し、かつ、受像したモニター板面の像や
遷移放射光像などのデータをそれぞれ処理して、荷電粒
子ビーム1の位置と、遷移放射光3の放射角度分布およ
び/または荷電粒子ビームの方向ベクトルとを算出し、
表示するために、演算制御装置8が設けられている。9
は、ディスプレーである。
FIG. 1 schematically shows a schematic configuration of an embodiment of the charged particle beam trajectory measuring apparatus of the present invention thus constructed. When the charged particle beam trajectory 1 is measured, the monitor plate 2 is inserted into the trajectory, precisely moved and controlled in posture by the actuator 5, and emits the transition radiation light 3. The zoom lens 4 that can focus on the monitor plate surface and infinity to form an image,
Transition radiation 3 emitted by the desired charged particle beam
The optical axis is aligned with the center direction of the. A filter 7 and a lens 6 for focus adjustment are attached to the front surface of the zoom lens 4 so that they can be inserted into the optical path as needed. Further, the actuator 5, the zoom lens 4 and the like are controlled, and the received image data of the monitor plate surface and the transition radiant light image are respectively processed to detect the position of the charged particle beam 1 and the emission of the transition radiant light 3. Calculating the angular distribution and / or the direction vector of the charged particle beam,
An arithmetic and control unit 8 is provided for displaying. 9
Is the display.

【0025】[0025]

【発明の効果】本発明を利用すれば、荷電粒子ビームの
軌道上の一点で荷電粒子ビームの位置および方向ベクト
ルを測定できるので、長い空間スペースを確保する装置
上の制約が取り除かれ、Qレンズなどを荷電粒子ビーム
の軌道に挿入することができる。また、従来の2点間の
測定では解決できなかった、アンジュレータに導入する
際の荷電粒子ビームの非直線性に基づく問題も、本発明
の利用によって、方向ベクトルの測定が可能になり、解
決することができるようになった。荷電粒子ビームを利
用する装置、たとえば、自由電子レーザ発振装置に装着
すれば、レーザ発振の立上がりを迅速かつ効率よく実施
できる。
According to the present invention, since the position and direction vector of the charged particle beam can be measured at one point on the trajectory of the charged particle beam, the restriction on the device that secures a long space can be removed, and the Q lens can be removed. Etc. can be inserted in the trajectory of the charged particle beam. Further, the problem due to the non-linearity of the charged particle beam when it is introduced into the undulator, which could not be solved by the conventional measurement between two points, becomes possible and solved by the use of the present invention. I was able to do it. If it is attached to a device that uses a charged particle beam, for example, a free electron laser oscillator, the rise of laser oscillation can be performed quickly and efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施態様例の概略構成図。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.

【図2】 ズームレンズの焦点を無限遠の位置に合わ
せ、方向ベクトルを計測する場合の概略説明図。
FIG. 2 is a schematic explanatory diagram of a case where a focus of a zoom lens is adjusted to a position at infinity and a direction vector is measured.

【図3】 荷電粒子ビームをアンジュレータに導入する
際の模式図。
FIG. 3 is a schematic diagram when introducing a charged particle beam into an undulator.

【図4】 遷移放射光の放射角度に対する強度。FIG. 4 is an intensity of transition synchrotron radiation with respect to an emission angle.

【図5】 本発明に係る荷電粒子ビーム軌道の計測方法
の一実施態様例。
FIG. 5 shows an example of an embodiment of a method of measuring a charged particle beam trajectory according to the present invention.

【符号の説明】[Explanation of symbols]

1:荷電粒子ビーム 2:モニター板(面) 3:遷移放射光 4:光学的手段 5:アクチュエ
ータ 6:レンズ 7:フィルタ 8:演算制御装置 9:ディスプレ
ー 21,21b:荷電粒子ビーム 22,22b:モニ
ター板面 23,23b:遷移放射光 24,24b:ズームレ
ンズ 25,25b:結像面 26,26b:放射角度分布
像 27,27b:放射角度分布像の中心位置 28:基
準の中心位置 31:荷電粒子ビーム軌道 31x:従来法による推
定軌道 32:アンジュレータ 33:測定用蛍光板 41:遷移放射光の放射中心方向 42:発光強度の強い1点 51:一定軌道 52:モニター板 53:固定平
面 a:荷電粒子ビームの入射側 b:荷電粒子ビームとモニター板面との交差角度 c:荷電粒子ビームのモニター板面への入射角 θ:所望の入射角からずれた角度 L:レーザ入射点と固定平面との距離 D1:固定平面上での受光位置の変位 D2:表示画面上での受光位置の変位 α:レーザ軌道とモニター板との交差角度の変位 β:反射光と固定平面との角度
1: Charged Particle Beam 2: Monitor Plate (Surface) 3: Transition Radiation Light 4: Optical Means 5: Actuator 6: Lens 7: Filter 8: Operation Control Device 9: Display 21, 21b: Charged Particle Beam 22, 22b: Monitor plate surface 23, 23b: Transition radiation light 24, 24b: Zoom lens 25, 25b: Imaging surface 26, 26b: Radiation angle distribution image 27, 27b: Center position of radiation angle distribution image 28: Reference center position 31: Charged particle beam orbit 31x: Estimated orbit by conventional method 32: Undulator 33: Fluorescent plate for measurement 41: Radiation center direction of transition radiant light 42: One point with strong emission intensity 51: Constant orbit 52: Monitor plate 53: Fixed plane a: Incident side of charged particle beam b: Angle of intersection between charged particle beam and monitor plate surface c: Incident angle of charged particle beam to monitor plate surface θ: Angle deviated from desired incident angle L: Distance between laser incident point and fixed plane D1: Displacement of light receiving position on fixed plane D2: Displacement of light receiving position on display screen α: Laser orbit and monitor plate Displacement of intersection angle β: Angle between reflected light and fixed plane

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子の衝突によって入射側に遷移放射
光を放射するモニター板52を、荷電粒子の走行軌道と
交差させて挿入し、(A)一定軌道51上に照射したレ
ーザをモニター板52で反射させ、 反射光を固定平面53で受光し、固定平面03上で反射
光の受光位置を測定し、 レーザとモニター板面との交差角度をステップ状に変化
させつつ、反射光の受光位置を固定平面03上で測定
し、 ステップの調整幅と、レーザの反射光の受光位置の変位
D1との定量的な関係を求め、(B)前記(A)と同様
に、ただし、反射光を光学的手段4で受光し、演算制御
装置8の表示画面上で反射光の受光位置を測定し、 ステップの調整幅と、表示画面上で反射光の受光位置の
変位D2との定量的な関係を求め、(C)レーザ軌道と
モニター板面との交差角度の変位αと、表示画面上の位
置の変位D2との定量的な関係を求め、(D)所望の軌
道上に荷電粒子を走行させ、 放射される遷移放射光を光学的手段4を介して演算制御
装置8の表示画面により測定し、 基準位置及び基準方向28を特定し、(E)前記(C)
で求めた関係を用い、荷電粒子ビームの軌道を求める、
ことを特徴とする、荷電粒子ビーム軌道の計測方法。
1. A monitor plate 52, which emits transition radiant light toward the incident side by collision of charged particles, is inserted so as to intersect with the traveling orbit of charged particles, and (A) a laser beam irradiated on a constant orbit 51 is monitored. The reflected light is reflected by 52, the reflected light is received by the fixed plane 53, the light receiving position of the reflected light is measured on the fixed plane 03, and the reflected light is received while changing the crossing angle of the laser and the monitor plate surface stepwise. The position is measured on the fixed plane 03, and a quantitative relationship between the adjustment width of the step and the displacement D1 of the light receiving position of the reflected light of the laser is obtained. (B) As in (A) above, Is received by the optical means 4, the light receiving position of the reflected light is measured on the display screen of the arithmetic and control unit 8, and the step adjustment width and the displacement D2 of the light receiving position of the reflected light on the display screen are quantitatively measured. (C) Laser orbit and monitor plate surface The quantitative relationship between the displacement α of the intersection angle with and the displacement D2 of the position on the display screen is obtained, and (D) the charged particles are caused to travel on a desired orbit, and the emitted transition radiation is emitted by optical means. Measurement is performed on the display screen of the arithmetic and control unit 8 via 4, and the reference position and the reference direction 28 are specified, and (E) and (C)
Calculate the trajectory of the charged particle beam using the relationship obtained in
A method of measuring the trajectory of a charged particle beam, which is characterized in that
【請求項2】荷電粒子ビーム軌道中に、荷電粒子ビーム
と衝突して入射側に遷移放射光を放射するモニター板
を、軌道と交差させて挿入して、 モニター板面の遷移放射光の放射中心の位置を光学的に
測定して荷電粒子ビームの位置を特定し、 さらに、遷移放射光の放射角度の分布を光学的に測定
し、測定した放射角度分布の中心を求め、(1)式を用
いて荷電粒子ビームの方向ベクトルを求めることを特徴
とする、荷電粒子ビーム軌道の計測方法。 θp =2/γ [rad] (1) ただし、θp :遷移放射光(OTR光)の放射角
[rad] γ=(1−β2 -1/2 [1/rad] β=v/c v:荷電粒子速度 [m/sec] c:光の速度 [m/sec]
2. A transition radiant light emitted from the surface of the monitor plate is inserted in the orbit of the charged particle beam by inserting a monitor plate which collides with the charged particle beam and radiates the transition radiant light on the incident side, crossing the orbit. The position of the charged particle beam is specified by optically measuring the center position, and the distribution of the emission angle of the transition radiation is optically measured to find the center of the measured radiation angle distribution. A method for measuring the trajectory of a charged particle beam, characterized in that the direction vector of the charged particle beam is obtained using. θ p = 2 / γ [rad] (1) where θ p : Radiation angle of transition radiation (OTR light)
[Rad] γ = (1−β 2 ) −1/2 [1 / rad] β = v / c v: charged particle velocity [m / sec] c: speed of light [m / sec]
【請求項3】荷電粒子ビーム軌道とモニター板面との交
差角が45度であることを特徴とする請求項2に記載
の、荷電粒子ビーム軌道の計測方法。
3. The method for measuring a charged particle beam trajectory according to claim 2, wherein the intersection angle between the charged particle beam trajectory and the monitor plate surface is 45 degrees.
【請求項4】予め、参照用レーザを既知の軌道上に照射
し、 前記のモニター板面で反射させ、反射した参照用レーザ
の位置を光学的に測定して基準位置および方向として特
定し、 請求項2または3に記載の荷電粒子ビーム軌道の計測方
法で求めた荷電粒子ビームの位置および方向ベクトルと
対比して、 荷電粒子ビームの位置および方向ベクトルを調整するこ
とを特徴とする荷電粒子ビーム軌道の調整方法。
4. A reference laser is previously radiated on a known orbit, reflected on the monitor plate surface, and the position of the reflected reference laser is optically measured and specified as a reference position and direction, The position and direction vector of the charged particle beam are adjusted in comparison with the position and direction vector of the charged particle beam obtained by the method for measuring the charged particle beam orbit according to claim 2 or 3. How to adjust the orbit.
【請求項5】荷電粒子ビーム軌道1中に挿入して遷移放
射光3を放射させるモニター板2、およびモニター板の
移動手段5と、 遷移放射光を放射するモニター板面と無限遠とにそれぞ
れ焦点を合わせ、モニター板面の像と遷移放射光とをそ
れぞれ受像することのできる光学的手段4と、 前記のモニター板の移動手段5と前記の光学的手段4と
を制御し、かつ、受像したモニター板面の像と遷移放射
光とをそれぞれ処理して、荷電粒子ビーム1の位置と、
遷移放射光の放射角度分布および/または荷電粒子ビー
ムの方向ベクトルとを算出し、表示する機能を有する演
算制御装置8と、からなる荷電粒子ビーム軌道の計測装
置。
5. A monitor plate 2 which is inserted into a charged particle beam orbit 1 to emit a transition radiation 3 and a moving means 5 of the monitor plate, and a monitor plate which emits the transition radiation and an infinite distance, respectively. Optical means 4 capable of focusing and receiving the image of the monitor plate surface and the transition radiation, respectively, and controlling the monitor plate moving means 5 and the optical means 4 and receiving an image. The position of the charged particle beam 1 and
A charged particle beam trajectory measuring device comprising: an arithmetic control unit 8 having a function of calculating and displaying a radiation angle distribution of transition radiation and / or a direction vector of a charged particle beam.
JP23157694A 1994-09-27 1994-09-27 Measurement and adjustment method of charged particle beam trajectory, and its measurement device Expired - Lifetime JP2839842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23157694A JP2839842B2 (en) 1994-09-27 1994-09-27 Measurement and adjustment method of charged particle beam trajectory, and its measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23157694A JP2839842B2 (en) 1994-09-27 1994-09-27 Measurement and adjustment method of charged particle beam trajectory, and its measurement device

Publications (2)

Publication Number Publication Date
JPH0896994A true JPH0896994A (en) 1996-04-12
JP2839842B2 JP2839842B2 (en) 1998-12-16

Family

ID=16925689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23157694A Expired - Lifetime JP2839842B2 (en) 1994-09-27 1994-09-27 Measurement and adjustment method of charged particle beam trajectory, and its measurement device

Country Status (1)

Country Link
JP (1) JP2839842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286405A (en) * 2019-07-10 2019-09-27 中国科学院近代物理研究所 A kind of caliberating device of deep space probe system and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286405A (en) * 2019-07-10 2019-09-27 中国科学院近代物理研究所 A kind of caliberating device of deep space probe system and application
CN110286405B (en) * 2019-07-10 2020-09-15 中国科学院近代物理研究所 Application of calibration device of deep space detector system

Also Published As

Publication number Publication date
JP2839842B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
JP3208902B2 (en) Lens system optical axis adjusting device and lens system optical axis adjusting method
JP3141732B2 (en) Charged particle beam equipment
US5220169A (en) Surface analyzing method and apparatus
JP2839842B2 (en) Measurement and adjustment method of charged particle beam trajectory, and its measurement device
US5079430A (en) Ultraviolet radiation projector and optical image forming apparatus
JP2689137B2 (en) Charged particle beam measuring device
JP2002228609A (en) Monochromatic x-ray photoelectron spectroscopic instrument
KR102336453B1 (en) Apparatus for Discriminating Defects Capable of Implementing Multiple FOV
JPH04118843A (en) Charged particle beam adjuster
EP4390306A1 (en) Surveying system and method of operating a surveying system
JP2004045092A (en) Position adjusting device
JPH0617098Y2 (en) Particle accelerator screen monitor
JP2003124093A (en) Gap adjusting apparatus and method therefor
JPH01153908A (en) Three-dimensional measuring instrument
JPH1080192A (en) Pulse motor control equipment, wheel alignment measuring equipment, pulse motor control method and wheel alignment measuring method
JP3018042B2 (en) Fluorescent X-ray film thickness measuring device
JP2002218504A (en) Method for adjusting compound eye camera and adjustment method
JPH11160495A (en) Charged particle beam optical element, exposure device thereof, and its adjustment
RU2421949C1 (en) Laser centraliser for x-ray emitter
JP2840303B2 (en) Exposure equipment
JP3195940B2 (en) Semiconductor laser device inspection method and inspection device
JP2004259490A (en) Method and device for measuring phosphor forming position of cathode-ray tube panel and manufacturing method of cathode-ray tube
JPH10242248A (en) Method and apparatus for measuring position of moving stage
JP2005309314A (en) Optical axis adjustment device for optical unit
JPH0618446A (en) Adjustment method for x-ray optical system