JPH08956A - Biological denitrification process for nitrogen oxides-containing exhaust gas - Google Patents

Biological denitrification process for nitrogen oxides-containing exhaust gas

Info

Publication number
JPH08956A
JPH08956A JP6163349A JP16334994A JPH08956A JP H08956 A JPH08956 A JP H08956A JP 6163349 A JP6163349 A JP 6163349A JP 16334994 A JP16334994 A JP 16334994A JP H08956 A JPH08956 A JP H08956A
Authority
JP
Japan
Prior art keywords
exhaust gas
nitrogen oxides
absorption tower
sodium thiosulfate
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6163349A
Other languages
Japanese (ja)
Other versions
JP3180174B2 (en
Inventor
Yasushi Kamori
裕史 嘉森
Makoto Kitano
誠 北野
Toshihiko Takagi
敏彦 高木
Kiyoshi Aritome
清 有留
Osamu Miki
理 三木
Hideaki Yabe
英昭 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16334994A priority Critical patent/JP3180174B2/en
Publication of JPH08956A publication Critical patent/JPH08956A/en
Application granted granted Critical
Publication of JP3180174B2 publication Critical patent/JP3180174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To provide a biological denitrification process for exhaust gas, in which nitrogen oxides-containing exhaust gas is treated in a biologically stabilized manner at low cost. CONSTITUTION:Nitrogen oxides-containing exhaust gas is brought into contact with sodium thiosulfate water solution in an absorption tower 1, and the nitrogen oxides in the exhaust gas are absorbed into the water solution, and oxidized by microbes carried on a solidifying carrier in the absorption tower, and further, the water solution is flowed into a fixed bed type reactor 2, and the nitrogen oxides are removed by microbes carried on a saddle type ceramic in the reactor in a biological denitrification process for exhaust gas. The nitrogen oxides can be treated stably at low cost from exhaust gas containing dilute nitrogen oxides of 10ppm or less, for example, exhaust gas in a tunnel from automobiles, by this process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、10ppm以下の希薄
窒素酸化物含有排ガス、例えば自動車用トンネル内のガ
ス等から窒素酸化物を除去する窒素酸化物含有排ガスの
生物学的脱硝方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically denitrifying an exhaust gas containing dilute nitrogen oxides of 10 ppm or less, for example, a nitrogen oxide-containing exhaust gas for removing nitrogen oxides from a gas in an automobile tunnel.

【0002】[0002]

【従来の技術】従来の窒素酸化物含有排ガスの生物学的
脱硝方法としては、特開昭52−120963号公報,
特開昭52−129677号公報に、窒素酸化物含有排
ガスを先ずオゾン (O3)と接触させ、窒素酸化物をNO
2 以上の酸化度に酸化し、このあと吸収塔に当該排ガス
を供給し、吸収液によって吸収した後、この吸収液と脱
窒菌および水素供与体を含有する混合液と接触すること
によって、窒素ガスの形態に還元する方法が記載されて
いる。
2. Description of the Related Art As a conventional biological denitration method for exhaust gas containing nitrogen oxides, Japanese Patent Laid-Open No. 52-120963,
In Japanese Unexamined Patent Publication No. 52-129677, exhaust gas containing nitrogen oxides is first contacted with ozone (O 3 ) to remove nitrogen oxides from NO.
Oxidation to a degree of oxidation of 2 or more, then the exhaust gas is supplied to the absorption tower, and after being absorbed by the absorption liquid, nitrogen gas is obtained by contacting this absorption liquid with a mixed liquid containing denitrifying bacteria and a hydrogen donor. The method of reducing to the form is described.

【0003】またチオ硫酸ナトリウム水溶液を吸収材と
し、微生物(チオバチルス・デナイトリフィカント : T
hiobacillus denitrificans )を固定化したカキ殻を充
填材とする吸収塔を用いて、生物学的に脱硝を行う方法
がすでに知られている。
In addition, an aqueous solution of sodium thiosulfate is used as an absorbent, and a microorganism (Thiobacillus denitrificant: T
There is already known a method for biologically denitration using an absorption tower having an oyster shell on which is immobilized Hiobacillus denitrificans) as a packing material.

【0004】[0004]

【発明が解決しようとする課題】排ガス中に含有される
窒素酸化物が、NO2 あるいはそれ以上の酸化度の窒素
形態に酸化する場合、オゾンを用いるとコストが高くな
る問題がある。
When the nitrogen oxides contained in the exhaust gas oxidize to NO 2 or a nitrogen form having an oxidation degree of NO 2 or higher, the use of ozone causes a problem of high cost.

【0005】またチオ硫酸ナトリウム水溶液を吸収材と
し、カキ殻を充填材とする生物学的脱硝方法では、充填
材として用いたカキ殻の閉塞および耐久力が問題であ
る。また脱窒を行う細菌として、チオバチルス・デナイ
トリフィカントを集積培養して用いるが、当該細菌の大
量培養など、コストが高くなる等の問題がある。
Further, in the biological denitration method using an aqueous sodium thiosulfate solution as an absorbent and an oyster shell as a filler, there is a problem of clogging and durability of the oyster shell used as the filler. Further, as a bacterium for denitrification, Thiobacillus denitrificant is used in an integrated culture, but there is a problem such as a large culture of the bacterium, which results in an increase in cost.

【0006】本発明は上記課題に鑑み、窒素酸化物を含
有する排ガスを、硝化細菌,脱窒細菌を用いて生物学的
に安定して、かつ低コストに処理する排ガスの生物学的
脱硝方法を提供する。
In view of the above problems, the present invention provides a method for biologically denitrifying exhaust gas containing nitrogen oxides, which treats the exhaust gas biologically stable and at low cost using nitrifying bacteria and denitrifying bacteria. I will provide a.

【0007】[0007]

【課題を解決するための手段】本発明は、排ガス中の窒
素酸化物を生物学的に除去する方法において、排ガスを
吸収塔内のチオ硫酸ナトリウム水溶液と接触させ、排ガ
ス中の窒素酸化物をチオ硫酸ナトリウム水溶液に吸収さ
せて吸収塔内の固定化担体に担持させた微生物で酸化し
た後、該チオ硫酸ナトリウム水溶液を固定床型リアクタ
ーに流入させて、固定床型リアクター内のサドル型セラ
ミックスに担持させた微生物により酸化した窒素酸化物
を除去することを特徴とする窒素酸化物含有排ガスの生
物学的脱硝方法である。
The present invention provides a method for biologically removing nitrogen oxides in exhaust gas by contacting exhaust gas with an aqueous sodium thiosulfate solution in an absorption tower to remove nitrogen oxides in exhaust gas. After being absorbed in an aqueous sodium thiosulfate solution and oxidized by the microorganisms supported on the immobilization carrier in the absorption tower, the aqueous sodium thiosulfate solution is allowed to flow into the fixed bed reactor to form saddle type ceramics in the fixed bed reactor. A biological denitration method for exhaust gas containing nitrogen oxides, characterized in that nitrogen oxides oxidized by the carried microorganisms are removed.

【0008】[0008]

【作用】下水活性汚泥中には、種々雑多な微生物が生息
しており、窒素酸化物を酸化する亜硝酸菌( Nitrosomo
nas )および硝酸菌( Nitrobactor)、また還元性の硫
黄化合物(例えば硫黄,チオ硫酸等)の酸化時に生ずる
水素イオンを用いて脱窒を行う細菌であるチオバチルス
・デナイトリフィカントもまた、若干であるが存在して
いる。
[Function] A variety of microorganisms inhabit sewage activated sludge, and nitrite bacteria that oxidize nitrogen oxides (Nitrosomo
nas) and nitrobactor, and Thiobacillus denifrificant, a bacterium that denitrifies with hydrogen ions generated during the oxidation of reducing sulfur compounds (eg, sulfur and thiosulfate) Exists.

【0009】従って、この亜硝酸菌,硝酸菌およびチオ
バチルス・デナイトリフィカントを適正な環境(酸化還
元電位:OPR ,pH ,基質等)に生息させることによ
り、下水活性汚泥中から安価に大量に増殖させることが
可能である。
Therefore, by allowing these nitrite bacteria, nitric acid bacteria and Thiobacillus denitrificant to live in an appropriate environment (oxidation-reduction potential: OPR, pH, substrate, etc.), they can be grown inexpensively and in large quantities from sewage activated sludge. It is possible to

【0010】つまり、排ガス中の窒素酸化物の吸収液を
チオ硫酸ナトリウム水溶液とし、先ず吸収塔内に生息す
る亜硝酸菌および硝酸菌に窒素酸化物をNO3 + 以上の
酸化物に酸化した後、この窒素酸化物を含有する吸収液
を下水処理場から大量培養した当該チオバチルス・デナ
イトリフィカントに接触させることにより、チオ硫酸を
酸化するときに生じる水素イオンを用いて脱窒を行うこ
とが可能である。
That is, the absorption liquid of nitrogen oxides in the exhaust gas was changed to an aqueous solution of sodium thiosulfate, and the nitrous acid bacteria and nitric acid bacteria inhabiting the absorption tower were first oxidized to nitrogen oxides of NO 3 + or higher. , It is possible to perform denitrification by using hydrogen ions generated when thiosulfuric acid is oxidized by contacting the absorption liquid containing this nitrogen oxide with the Thiobacillus denitrificant that has been cultured in large quantities from a sewage treatment plant. Is.

【0011】なお文献「 Lawrence,A.W.: Autotrophic
Denitrification Using Sulphur Electron Donors, U.
S.EPA-600/2-78-113 (1978), Bisogni,J.J.Jr.,Driscol
l,C.T.Jr.: Denitrification Using Thiosulfate and S
ulfide, J.En.Eng., ASCE,103,593 (1977) 」による
と、チオ硫酸イオンを電子供与体とした場合のイオウ脱
窒における化学量論式は、次の(1)式で示される
In addition, the document “Lawence, AW: Autotrophic
Denitrification Using Sulfur Electron Donors, U.
S.EPA-600 / 2-78-113 (1978), Bisogni, JJJr., Driscol
l, CTJr .: Denitrification Using Thiosulfate and S
ulfide, J.En.Eng., ASCE, 103,593 (1977) ”, the stoichiometric formula for sulfur denitrification when thiosulfate ion is used as an electron donor is represented by the following formula (1).

【0012】[0012]

【数1】 0.844S2O 3 2・+ NO3 +0.347 CO2 + 0.0865 HCO3 +0.0865 NH4 + +0.434 H2O → 0.0865 C5H7O2N + 0.5 N2 + 1.689 SO4 2・+ 0.697 H+ ……(1)[Equation 1] 0.844S 2 O 3 2 ・ + NO 3 +0.347 CO 2 +0.0865 HCO 3 +0.0865 NH 4 + +0.434 H 2 O → 0.0865 C 5 H 7 O 2 N +0.5 N 2 +1.689 SO 4 2 +0.697 H + …… (1)

【0013】吸収塔内で十分に窒素ガスに還元されなか
った窒素酸化物は、吸収塔と接続されるサドル型セラミ
ックスを充填した固定床型リアクターに生息する上記同
様下水活性汚泥から大量培養したチオバチルス・デナイ
トリフィカントによって完全に窒素ガスに還元される。
固定床型リアクターはチオバチルス・デナイトリフィカ
ントを増殖させるため、嫌気状態に保たれている。
Nitrogen oxides that have not been sufficiently reduced to nitrogen gas in the absorption tower are thiobacillus that has been mass-cultured from sewage activated sludge in the fixed bed type reactor filled with saddle type ceramics connected to the absorption tower. -Completely reduced to nitrogen gas by denitrificant.
The fixed-bed reactor is kept anaerobic because it grows Thiobacillus denitrificant.

【0014】この考えに基づいて、窒素酸化物を含有す
る排ガスからの脱硝を行う。すなわち図1に示すような
吸収塔1,固定床型リアクター2に充填した表1,表2
にその物理的性状および成分組成の例を示すサドル型セ
ラミックス固定化担体に、下水活性汚泥を固定化するた
め固定床型リアクター2に下水活性汚泥を入れ、1〜2
日程度循環ポンプ10を用いて下水活性汚泥を循環し、
固定化する。
Based on this idea, denitration from exhaust gas containing nitrogen oxides is performed. That is, Table 1 and Table 2 filled in an absorption tower 1 and a fixed bed reactor 2 as shown in FIG.
An example of its physical properties and component composition is shown in Fig. 1. Saddle-type ceramics-immobilized carrier was charged with sewage activated sludge in a fixed bed reactor 2 for immobilizing sewage activated sludge.
Circulate the sewage activated sludge using the circulation pump 10 for about a day,
Fix it.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】循環液が透明になり、下水活性汚泥が固定
化された後、循環液にチオ硫酸ナトリウムと、アンモニ
ア性窒素を含有する水溶液を少量混合し、固定床型リア
クター2の酸化還元電位(ORP)が−150〜−20
0mV(vs.Ag/AgCl),pHが6.5〜7.5となる
ようORPセンサー3,ORP制御装置4,pHセンサ
ー5,pH制御装置6を用いて制御する。なおチオ硫酸
ナトリウム水溶液の濃度は、100〜500mg/リッ
トルにすることが好ましい。
After the circulating liquid becomes transparent and the sewage activated sludge has been fixed, a small amount of sodium thiosulfate and an aqueous solution containing ammoniacal nitrogen are mixed with the circulating liquid, and the redox potential of the fixed bed reactor 2 ( ORP) is -150 to -20
The ORP sensor 3, the ORP control device 4, the pH sensor 5, and the pH control device 6 are controlled so that the pH is 0 mV (vs. Ag / AgCl) and 6.5 to 7.5. The concentration of the sodium thiosulfate aqueous solution is preferably 100 to 500 mg / liter.

【0018】pHが設定値から外れた場合、酸・アルカ
リ供給ポンプ7によって酸あるいはアルカリを添加し、
制御範囲になるよう制御する。またORPが設定値より
低くなった場合、ブロワー9を稼動させ空気を曝気する
ことによって、ORPを上昇させる。
When the pH is out of the set value, acid or alkali is added by the acid / alkali supply pump 7,
Control to reach the control range. When the ORP becomes lower than the set value, the blower 9 is operated to aerate the air to raise the ORP.

【0019】このようにしてさらに数日間循環を続ける
と、吸収塔1内においては、排ガス中の酸素による好気
的な部分と、固定化担体と微生物によって酸素が行き届
かない嫌気的部分が形成され、約一週間程度で吸収塔1
の中で好気条件に近い雰囲気において亜硝酸菌および硝
酸菌が増殖し、吸収塔の中で嫌気条件に近い雰囲気でチ
オバチルス・デナイトリフィカントが優先的に増殖し、
また固定床型リアクター2の嫌気雰囲気においてはチオ
バチルス・デナイトリフィカントが優先的に増殖し、循
環液中の窒素濃度は、ほぼ検出限界値以下(検出管:
0.04ppm以下)となる。
When the circulation is continued for several more days in this way, in the absorption tower 1, an aerobic part due to oxygen in the exhaust gas and an anaerobic part to which oxygen cannot reach due to the immobilized carrier and the microorganisms are formed. Absorption tower 1 in about 1 week
Nitrate bacteria and nitric acid bacteria grow in an atmosphere close to aerobic conditions, and Thiobacillus denitrificant preferentially grows in an atmosphere close to anaerobic conditions in an absorption tower,
Further, in the anaerobic atmosphere of the fixed bed reactor 2, Thiobacillus denitrificant preferentially grows, and the nitrogen concentration in the circulating fluid is almost below the detection limit value (detection tube:
0.04 ppm or less).

【0020】上記手法による微生物の馴養の後、窒素酸
化物を10ppm程度含有する排ガスを吸収塔の空間速
度(SV)が50h-1程度となるよう通気する。吸収塔
出口における排ガス中の窒素酸化物の濃度が検出限界値
以下になったら、SVを50h-1程度づつ上昇させる
と、最大SVが400h-1程度で、吸収塔出口における
排ガス中の窒素酸化物の濃度は検出限界値以下となる。
After acclimatizing the microorganisms by the above-mentioned method, exhaust gas containing about 10 ppm of nitrogen oxides is aerated so that the space velocity (SV) of the absorption tower is about 50 h -1 . When the concentration of nitrogen oxides in the exhaust gas in the absorption tower outlet becomes less than the detection limit, increasing increments of about 50h -1 to SV, a maximum SV is at about 400h -1, nitrogen oxides in the exhaust gas in the absorption tower outlet The concentration of the substance is below the detection limit.

【0021】[0021]

【実施例】実施例1として、下水の活性汚泥を吸収塔1
および固定床型リアクター2の固定化担体量に対し、活
性汚泥菌体量が1g/リットルとなるよう固定床型リア
クターに入れ、約1日間循環した。
[Example] As Example 1, the activated sludge of the sewage is absorbed in the absorption tower 1
And, relative to the amount of the immobilized carrier of the fixed bed reactor 2, the activated sludge cells were put into the fixed bed reactor such that the amount was 1 g / liter, and circulated for about 1 day.

【0022】循環液が透明になり、下水活性汚泥が固定
化された後、循環液にチオ硫酸ナトリウムと、アンモニ
ア性窒素をそれぞれの濃度が200mg/リットル,1
0mg/リットルとなるよう添加した。このとき固定床
型リアクターの酸化還元電位(ORP)は、−150m
V(vs.Ag/AgCl),pHは7.0程度となるようOR
Pセンサー3,ORP制御装置4,pHセンサー5,p
H制御装置6を用いて制御した。
After the circulating liquid became transparent and the sewage activated sludge was fixed, sodium thiosulfate and ammonia nitrogen were added to the circulating liquid at respective concentrations of 200 mg / liter, 1
Added at 0 mg / liter. At this time, the redox potential (ORP) of the fixed bed reactor was -150 m.
V (vs. Ag / AgCl), pH is ORed to about 7.0
P sensor 3, ORP controller 4, pH sensor 5, p
Control was performed using the H control device 6.

【0023】即ち、pHが設定値から外れた場合、酸・
アルカリ供給ポンプ7によって酸あるいはアルカリを添
加し、制御範囲になるよう制御した。またORPが設定
値より低くなった場合、ブロワー9を稼動させ空気を曝
気することによって、ORPを上昇させた。
That is, when the pH is out of the set value, acid
Acid or alkali was added by the alkali supply pump 7 so that the control range was reached. When the ORP became lower than the set value, the blower 9 was operated to aerate the air to raise the ORP.

【0024】この後さらに数日間循環を続け、チオ硫酸
ナトリウムとアンモニア性窒素濃度が当初の濃度よりも
低下した場合、再び添加し初期濃度を維持した。
After this, circulation was continued for several more days, and when the concentrations of sodium thiosulfate and ammoniacal nitrogen were lower than the initial concentrations, they were added again to maintain the initial concentrations.

【0025】7日間の馴養期間が終了した後、窒素酸化
物を3ppm含有する排ガスを吸収塔の空間速度(S
V)が50h-1となるよう通気した。吸収塔出口におけ
る排ガス中の窒素酸化物の濃度は、2日後に検出限界値
以下(検出管:0.04ppm以下)になった。また循
環液中のチオ硫酸ナトリウム濃度は、100〜200m
g/リットルとなるよう調整した。
After the acclimation period of 7 days was completed, the exhaust gas containing 3 ppm of nitrogen oxides was passed through the space velocity (S
It was vented so that V) was 50 h -1 . The concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower was below the detection limit value (detection tube: 0.04 ppm or less) after 2 days. The concentration of sodium thiosulfate in the circulating fluid is 100 to 200 m.
It was adjusted to be g / liter.

【0026】さらにSVを50h-1づつ上昇させた結
果、最大SVが400h-1で吸収塔出口における排ガス
中の窒素酸化物の濃度は、検出限界値以下となった。
As a result of further increasing SV by 50 h −1 , the maximum SV was 400 h −1 and the concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower was below the detection limit value.

【0027】実施例2として、実施例1と同様に、下水
の活性汚泥を吸収塔1および固定床型リアクター2の固
定化担体量に対し、活性汚泥菌体量が1g/リットルと
なるよう固定床型リアクターに入れ、約1日間循環し
た。
As Example 2, as in Example 1, the activated sludge of sewage was fixed so that the amount of the activated sludge cells was 1 g / liter with respect to the amount of the immobilized carrier in the absorption tower 1 and the fixed bed reactor 2. It was placed in a bed reactor and circulated for about 1 day.

【0028】活性汚泥が固定化担体に固定化された後、
チオ硫酸ナトリウムおよびアンモニア性窒素による馴養
無しに窒素酸化物を3ppm含有する排ガスを吸収塔の
空間速度(SV)が50h-1となるよう通気した。
After the activated sludge is immobilized on the immobilization carrier,
Exhaust gas containing 3 ppm of nitrogen oxides was aerated without acclimatization with sodium thiosulfate and ammoniacal nitrogen so that the space velocity (SV) of the absorption tower was 50 h −1 .

【0029】このとき固定床型リアクターの酸化還元電
位(ORP)は、−150mV(vs.Ag/AgCl),pH
は7.0程度となるようORPセンサー3,ORP制御
装置4,pHセンサー5,pH制御装置6を用いて制御
した。
At this time, the redox potential (ORP) of the fixed bed reactor was -150 mV (vs. Ag / AgCl), pH.
Was controlled by using the ORP sensor 3, the ORP control device 4, the pH sensor 5, and the pH control device 6 so as to be about 7.0.

【0030】即ち、pHが設定値から外れた場合、酸・
アルカリ供給ポンプ7によって酸あるいはアルカリを添
加し、制御範囲になるよう制御した。またORPが設定
値より低くなった場合、ブロワー9を稼動させ空気を曝
気することによって、ORPを上昇させた。循環液中の
チオ硫酸ナトリウム濃度は、実施例1同様に100〜2
00mg/リットルとなるよう調整した。
That is, when the pH is out of the set value, acid
Acid or alkali was added by the alkali supply pump 7 so that the control range was reached. When the ORP became lower than the set value, the blower 9 was operated to aerate the air to raise the ORP. The concentration of sodium thiosulfate in the circulating fluid was 100 to 2 as in Example 1.
It was adjusted to be 00 mg / liter.

【0031】吸収塔出口における排ガス中の窒素酸化物
の濃度は徐々に低下し、20日後は検出限界値以下とな
った。
The concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower gradually decreased, and was below the detection limit value after 20 days.

【0032】さらにSVを50h-1づつ上昇させた結
果、最大SVが400h-1で吸収塔出口における排ガス
中の窒素酸化物の濃度は、検出限界値以下となった。
As a result of further increasing SV by 50 h −1 , the maximum SV was 400 h −1 and the concentration of nitrogen oxides in the exhaust gas at the outlet of the absorption tower was below the detection limit value.

【0033】[0033]

【発明の効果】以上説明したように本発明は、排ガスを
吸収塔内のチオ硫酸ナトリウム水溶液と接触させて窒素
酸化物を吸収し、これを塔内に担持させた微生物で酸化
し、さらにこの水溶液を固定床型リアクターに流入さ
せ、リアクター内に担持させた微生物により酸化した窒
素酸化物を除去することにより、窒素酸化物含有排ガス
を低コストかつ高能率で処理できる方法であり、この方
法により10ppm以下の希薄窒素酸化物含有排ガス,
例えば自動車用トンネル内の排ガス等から、窒素酸化物
を生物学的に安定して、かつ低コストで処理することが
可能となる。
As described above, according to the present invention, the exhaust gas is brought into contact with the sodium thiosulfate aqueous solution in the absorption tower to absorb the nitrogen oxides, which are oxidized by the microorganisms carried in the tower. By flowing the aqueous solution into a fixed bed reactor and removing the nitrogen oxides oxidized by the microorganisms carried in the reactor, it is possible to treat the nitrogen oxide-containing exhaust gas at low cost and with high efficiency. Exhaust gas containing dilute nitrogen oxides of 10 ppm or less,
For example, it becomes possible to treat nitrogen oxides from an exhaust gas or the like in an automobile tunnel at a biologically stable and low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱硝方法を実施するに好適な窒素酸化
物含有排ガス処理装置の一例を示すブロック接続図であ
る。
FIG. 1 is a block connection diagram showing an example of a nitrogen oxide-containing exhaust gas treatment apparatus suitable for carrying out the denitration method of the present invention.

【符号の説明】[Explanation of symbols]

1 吸収塔 2 固定床型リアクター 3 ORPセンサー 4 ORP制御装置 5 pHセンサー 6 pH制御装置 7 酸・アルカリ添加ポンプ 8,9 ブロワー 10 循環ポンプ 11 ガス流量計 12 散気管 1 absorption tower 2 fixed bed reactor 3 ORP sensor 4 ORP controller 5 pH sensor 6 pH controller 7 acid / alkali addition pump 8, 9 blower 10 circulation pump 11 gas flow meter 12 air diffuser

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 ZAB C02F 3/34 ZAB 101 D // C12M 1/00 Z (72)発明者 有留 清 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 三木 理 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 矢部 英昭 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location B01D 53/34 ZAB C02F 3/34 ZAB 101 D // C12M 1/00 Z (72) Inventor Yes Toru Kiyoshi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Co., Ltd.Technology Development Division (72) Inventor Ri Miki 20-1 Shintomi, Futtsu-shi, Chiba Prefecture Nippon Steel Co., Ltd.Technology Development Division (72) Inventor Hideaki Yabe 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の窒素酸化物を生物学的に除去
する方法において、排ガスを吸収塔内のチオ硫酸ナトリ
ウム水溶液と接触させ、排ガス中の窒素酸化物をチオ硫
酸ナトリウム水溶液に吸収させて吸収塔内の固定化担体
に担持させた微生物で酸化した後、該チオ硫酸ナトリウ
ム水溶液を固定床型リアクターに流入させて、固定床型
リアクター内のサドル型セラミックスに担持させた微生
物により酸化した窒素酸化物を除去することを特徴とす
る窒素酸化物含有排ガスの生物学的脱硝方法。
1. A method for biologically removing nitrogen oxides in exhaust gas, wherein the exhaust gas is contacted with an aqueous sodium thiosulfate solution in an absorption tower, and the nitrogen oxide in the exhaust gas is absorbed by the aqueous sodium thiosulfate solution. After being oxidized by the microorganisms supported on the immobilized carrier in the absorption tower, the aqueous sodium thiosulfate solution was allowed to flow into the fixed bed reactor, and the nitrogen oxidized by the microorganisms supported on the saddle type ceramics in the fixed bed reactor was used. A method for biologically denitrifying exhaust gas containing nitrogen oxides, which comprises removing oxides.
JP16334994A 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides Expired - Fee Related JP3180174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16334994A JP3180174B2 (en) 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16334994A JP3180174B2 (en) 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH08956A true JPH08956A (en) 1996-01-09
JP3180174B2 JP3180174B2 (en) 2001-06-25

Family

ID=15772201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16334994A Expired - Fee Related JP3180174B2 (en) 1994-06-23 1994-06-23 Biological denitration method for exhaust gas containing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP3180174B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2201219T3 (en) 1996-05-06 2004-03-16 F. Hoffmann-La Roche Ag FERMENTATIVE BIOTIN PRODUCTION.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159993A (en) * 2000-11-27 2002-06-04 Nitchitsu Co Ltd Nitric acid removal treatment equipment

Also Published As

Publication number Publication date
JP3180174B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
CN107055760A (en) A kind of method that efficient nitrosation is realized based on ammonia nitrogen waste water
JP2003010883A (en) Nitration method of ammonia nitrogen-containing water
Wei et al. Performance and mechanism of nitric oxide removal using a thermophilic membrane biofilm reactor
JPH10128389A (en) Method and apparatus for waste water treatment
JP3180174B2 (en) Biological denitration method for exhaust gas containing nitrogen oxides
JP4104311B2 (en) How to remove nitrogen from wastewater
JPH09299988A (en) Nitrificating and denitrificating method and device therefor
JP2000117291A (en) Treatment of waste water and waste water treating device
JP2004305980A (en) Biological denitrification treatment method
JP3358388B2 (en) Treatment method for selenium-containing water
JP2002018479A (en) Method for removing nitrogen from water
JP3837757B2 (en) Method for treating selenium-containing water
JP2614580B2 (en) Wastewater biological treatment method
JPS6055200B2 (en) Organic wastewater treatment method
JP2001070747A (en) Method and apparatus for treating nitrogen compound- containing waste gas
JPH06496A (en) Advanced treatment of sewage
JP3134145B2 (en) Wastewater biological denitrification method
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
JP2003094096A (en) Method for treating organic waste, apparatus therefor, and sludge
JP3755167B2 (en) Method for treating selenium-containing water
JPH091184A (en) Treatment of waste water
JP3837763B2 (en) Method for treating selenium-containing water
JPH0630784B2 (en) Treatment method for human waste
JP2509099B2 (en) Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

LAPS Cancellation because of no payment of annual fees