JPH0894448A - Ultrahigh speed optical waveform measuring equipment - Google Patents

Ultrahigh speed optical waveform measuring equipment

Info

Publication number
JPH0894448A
JPH0894448A JP25485294A JP25485294A JPH0894448A JP H0894448 A JPH0894448 A JP H0894448A JP 25485294 A JP25485294 A JP 25485294A JP 25485294 A JP25485294 A JP 25485294A JP H0894448 A JPH0894448 A JP H0894448A
Authority
JP
Japan
Prior art keywords
light
signal
gate
frequency
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25485294A
Other languages
Japanese (ja)
Inventor
Atsushi Kitamura
厚 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP25485294A priority Critical patent/JPH0894448A/en
Publication of JPH0894448A publication Critical patent/JPH0894448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE: To obtain an ultrahigh speed optical waveform measuring equipment for measuring the waveform of a signal light over a wide waveform range. CONSTITUTION: A signal light source 5 outputs a signal light 5a oscillating at an arbitrary angular frequency while a gate light source 6 outputs a gate light 6a oscillating at a constant angular frequency and a GT prism 7 polarizes the signal light 5a linearly. A PBS 8 polarizes the gate light 6a linearly and a BS 9 multiplexes both lights on a same optical axis. A nonlinear crystal 11 converts a part of both lights into a sum frequency light 11a and a waveform setting section 14 commands a ROM 13 to deliver a data. Based on the data, a control circuit 12 shifts the nonlinear crystal 11 through a shifting stage group 10. An optical HPF 15 takes out the sum frequency light 11a from the nonlinear crystal 11 and a light receiver 16 converts the sum frequency light into an electric signal proportional to the intensity of light. Upon receiving a trigger signal from a mixer 19, the waveform is reproduced at a display section 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主に光ソリトン通信
に使用される短パルス光源の評価装置として使用され、
短パルス光を広波長範囲で測定する超高速光波形測定装
置についてのものである。
BACKGROUND OF THE INVENTION The present invention is mainly used as an evaluation device for a short pulse light source used for optical soliton communication,
The present invention relates to an ultrafast optical waveform measuring device that measures short pulsed light in a wide wavelength range.

【0002】[0002]

【従来の技術】次に、従来技術による超高速光波形測定
装置の構成を図2に示す。図2の1・2は信号発生器、
3・4は駆動回路、5は信号光源、6はゲート光源、7
はグラン・テイラー偏光プリズム(以下、GTプリズム
という。)、8は偏光ビームスプリッタ(以下、PBS
という。)、9はビームスプリッタ(以下、BSとい
う。)、11は非線形結晶、15は光HPF、16は受
光器、17はアンプ、18は表示部、19はミキサであ
る。表示部18は、例えばオシロスコープを使用する。
2. Description of the Related Art Next, FIG. 2 shows the configuration of an ultrahigh-speed optical waveform measuring device according to the prior art. 2, 1 and 2 are signal generators,
3 and 4 are drive circuits, 5 is a signal light source, 6 is a gate light source, and 7
Is a Gran-Taylor polarizing prism (hereinafter referred to as GT prism), 8 is a polarizing beam splitter (hereinafter referred to as PBS)
Say. ), 9 is a beam splitter (hereinafter referred to as BS), 11 is a non-linear crystal, 15 is an optical HPF, 16 is a light receiver, 17 is an amplifier, 18 is a display unit, and 19 is a mixer. The display unit 18 uses, for example, an oscilloscope.

【0003】図2で、信号発生器1は繰り返し周波数f
0 の電気信号を発生する。信号発生器1からの電気信号
は駆動回路3により増幅された後、信号光源5を駆動す
る。なお、信号光源5は駆動回路3を含む構成のものを
使用してもよい。一方、信号発生器2は信号発生器1と
同期させた繰り返し周波数f0 −△fの電気信号を発生
する。信号発生器2からの電気信号は駆動回路4により
増幅された後、ゲート光源6を駆動する。なお、信号光
源5と同様に、ゲート光源6は駆動回路4を含む構成の
ものを使用してもよい。
In FIG. 2, the signal generator 1 has a repetition frequency f.
Generates a zero electrical signal. The electric signal from the signal generator 1 is amplified by the drive circuit 3 and then drives the signal light source 5. The signal light source 5 may be configured to include the drive circuit 3. On the other hand, the signal generator 2 generates an electric signal having a repetition frequency f 0 −Δf synchronized with the signal generator 1. The electric signal from the signal generator 2 is amplified by the drive circuit 4 and then drives the gate light source 6. As with the signal light source 5, the gate light source 6 may be configured to include the drive circuit 4.

【0004】信号光源5は任意の角周波数ωs で発振す
る信号光5aを出射し、信号光5aはGTプリズム7に
より直線偏光となる。GTプリズム7は、空間を保たせ
て向かい合わせた2つの直角プリズムで構成され、特定
の波長範囲の入射光は、第1のプリズムを透過すると、
第2のプリズムにほぼブリュースター角で入射され、第
2のプリズムの入射面に置ける反射損失がほとんど生じ
ないように設計されたものである。また、ゲート光源6
は一定の角周波数ωg で発振する短パルス状のゲート光
6aを出射し、ゲート光6aはPBS8により信号光5
aと直交した直線偏光となる。信号光5aとゲート光6
aはBS9に入射し同一光軸上に合波された後、非線形
結晶11に入射する。
The signal light source 5 emits a signal light 5a oscillating at an arbitrary angular frequency ω s , and the signal light 5a is linearly polarized by the GT prism 7. The GT prism 7 is composed of two right-angled prisms that face each other while maintaining a space. When incident light in a specific wavelength range passes through the first prism,
It is designed so that it is incident on the second prism at almost Brewster's angle and almost no reflection loss occurs on the incident surface of the second prism. Also, the gate light source 6
Emits a short pulsed gate light 6a that oscillates at a constant angular frequency ω g.
It becomes a linearly polarized light orthogonal to a. Signal light 5a and gate light 6
The light “a” is incident on the BS 9, is multiplexed on the same optical axis, and then is incident on the nonlinear crystal 11.

【0005】非線形結晶11は、信号光5aとゲート光
6aの両光の発振角周波数ωsとωgを加算した和周波数
ω=ωs +ωg で発振し、両光の光強度の積に比例した
光強度を有する和周波光11aが出射される。非線形結
晶11は例えばKTP結晶などを使用する。光HPF1
5は非線形結晶11を透過した信号光5a・ゲート光6
aを除去し、和周波光11aのみを透過する。受光器1
6は光HPF15を透過した和周波光11aの光強度に
比例した電気信号を出力し、アンプ17は出力された電
気信号を増幅する。
The non-linear crystal 11 oscillates at a sum frequency ω = ω s + ω g obtained by adding the oscillation angular frequencies ω s and ω g of both lights of the signal light 5a and the gate light 6a to obtain the product of the light intensities of both lights. The sum frequency light 11a having a proportional light intensity is emitted. As the nonlinear crystal 11, for example, a KTP crystal or the like is used. Optical HPF1
Reference numeral 5 is a signal light 5a and a gate light 6 transmitted through the nonlinear crystal 11.
a is removed and only the sum frequency light 11a is transmitted. Receiver 1
Reference numeral 6 outputs an electric signal proportional to the light intensity of the sum frequency light 11a transmitted through the optical HPF 15, and amplifier 17 amplifies the output electric signal.

【0006】ここで、信号光5aとゲート光6aは信号
発生器1・2の繰り返し周波数に依存するので、両光の
繰り返し周波数は△fずれることになる。したがって信
号光5aとゲート光6aは、時間に対する相対位置が図
3に示すように毎回△t=△f/f0 2だけずれ、△fの
周期が経過すると再び両光の相対位置が一致する。さら
に非線形結晶11から出射する和周波光11aの光強度
は信号光5aとゲート光6aの積に比例するので、両光
の繰り返し周波数を△fずらして掃引すると、信号光5
aはゲート光6aでサンプリングされ、その時の光波形
は図4のように表される。図4の光波形の包絡線は、信
号光5aの光波形の時間軸をf0 /△f倍に拡大したも
のと一致する。
Here, since the signal light 5a and the gate light 6a depend on the repetition frequency of the signal generators 1 and 2, the repetition frequencies of both lights are deviated by Δf. Therefore, the relative positions of the signal light 5a and the gate light 6a with respect to time are shifted by Δt = Δf / f 0 2 each time as shown in FIG. 3, and the relative positions of the two lights match again after the period of Δf elapses. . Further, the light intensity of the sum frequency light 11a emitted from the nonlinear crystal 11 is proportional to the product of the signal light 5a and the gate light 6a. Therefore, if the repetition frequency of both lights is shifted by Δf and swept, the signal light 5a
a is sampled by the gate light 6a, and the optical waveform at that time is represented as shown in FIG. The envelope of the optical waveform shown in FIG. 4 coincides with the time axis of the optical waveform of the signal light 5a magnified by f 0 / Δf.

【0007】したがって、信号発生器1・2からの電気
信号をミキサ19に入力し、ミキサ19より繰り返し周
波数△fのトリガ信号を表示部18にトリガ入力として
与え、アンプ17からの増幅電気信号を波形再生するこ
とにより、信号光5aの光波形の時間軸はf0 /△f倍
に拡大され、受光器16の帯域に制限されることなく、
超高速な信号光5aの光波形を観測する。
Therefore, the electric signals from the signal generators 1 and 2 are input to the mixer 19, the trigger signal of the repeating frequency Δf is given from the mixer 19 to the display unit 18 as the trigger input, and the amplified electric signal from the amplifier 17 is supplied. By reproducing the waveform, the time axis of the optical waveform of the signal light 5a is expanded to f 0 / Δf times, and is not limited to the band of the photodetector 16,
The optical waveform of the ultrafast signal light 5a is observed.

【0008】[0008]

【発明が解決しようとする課題】非線形結晶11から出
射する和周波光11aの光強度は、図5に示すように、
非線形結晶11の結晶軸(X,Y,Z )が信号光とゲート光
の光軸に対して最適位相整合角度(θopt 、φopt )を
満足している場合に最大となる。しかし、信号光5aの
発振角周波数ωs が異なると、非線形結晶11の結晶軸
(X,Y,Z )に対する最適位相整合角度(θopt 、φ
opt )が異なってしまうので、信号光5aの波長が変化
する場合には、非線形結晶11の結晶軸(X,Y,Z )を信
号光5aとゲート光6aの光軸に対して常に最適となる
ように制御する必要がある。
The intensity of the sum frequency light 11a emitted from the nonlinear crystal 11 is as shown in FIG.
It becomes maximum when the crystal axes (X, Y, Z) of the nonlinear crystal 11 satisfy the optimum phase matching angles (θ opt , φ opt ) with respect to the optical axes of the signal light and the gate light. However, when the oscillation angular frequency ω s of the signal light 5a is different, the optimum phase matching angles (θ opt , φ) with respect to the crystal axes (X, Y, Z) of the nonlinear crystal 11 are generated.
Since opt) becomes different, when the wavelength of the signal light 5a is changed, the crystal axes of the nonlinear crystal 11 (X, Y, and always optimally with respect to the optical axis of the signal light 5a and the gate light 6a to Z) Need to be controlled.

【0009】しかし、図2の構成では非線形結晶が固定
されているため、信号光の発振波長が変化すると最適位
相整合角度(θopt、φopt)も変化し、和周波光の発生
効率が低下してしまうという問題がある。
However, since the nonlinear crystal is fixed in the configuration of FIG. 2, the optimum phase matching angle (θ opt , φ opt ) also changes when the oscillation wavelength of the signal light changes, and the generation efficiency of the sum frequency light decreases. There is a problem of doing.

【0010】図6は、例として非線形結晶11にKTP
結晶を使用し、ゲート光の波長を1560nm一定とし
た場合に、信号光5aの波長が1540nmと1310
nmの時の位相整合角度特性を示したものである。図6
で、信号光波長が1540nmと1310nmの時の位
相整合曲線は互いに平行位置であり、クロスポイントが
存在しない。したがって、両波長を同時に満足する最適
位相整合角度が存在しない状態を示している。すなわ
ち、非線形結晶11の結晶軸(X,Y,Z) が信号光とゲー
ト光の光軸に対して最適位相整合角度(θopt 、φ
opt )を満足するように、信号光の波長ごとに調整する
必要がある。
FIG. 6 shows, as an example, KTP on the nonlinear crystal 11.
When a crystal is used and the wavelength of the gate light is constant at 1560 nm, the wavelengths of the signal light 5a are 1540 nm and 1310.
It shows the phase-matching angle characteristic at the time of nm. Figure 6
At the signal light wavelengths of 1540 nm and 1310 nm, the phase matching curves are parallel to each other, and there is no cross point. Therefore, it shows a state in which there is no optimum phase matching angle that satisfies both wavelengths at the same time. That is, the crystal axes (X, Y, Z) of the nonlinear crystal 11 are optimal phase matching angles (θ opt , φ) with respect to the optical axes of the signal light and the gate light.
It is necessary to adjust for each wavelength of the signal light so that opt ) is satisfied.

【0011】また、図7は信号光波長が1540nmの
時に最適位相整合角度が得られるような角度で非線形結
晶11を固定した後、信号光5aの波長を1300nm
から1600nmまで変化させた時の和周波光発生効率
特性を示したものである。図7で、信号波長が1540
nmから遠ざかるにしたがい、和周波光発生効率が低下
してしまうことがわかる。この発明は、広波長範囲の信
号光の光波形を測定する超高速光波形測定装置の提供を
目的とする。
Further, FIG. 7 shows that the wavelength of the signal light 5a is set to 1300 nm after the nonlinear crystal 11 is fixed at an angle such that the optimum phase matching angle is obtained when the signal light wavelength is 1540 nm.
3 shows the sum frequency light generation efficiency characteristic when the wavelength is varied from 1 to 1600 nm. In FIG. 7, the signal wavelength is 1540
It can be seen that the sum frequency light generation efficiency decreases with increasing distance from nm. An object of the present invention is to provide an ultra-high-speed optical waveform measuring device that measures the optical waveform of signal light in a wide wavelength range.

【0012】[0012]

【課題を解決するための手段】この目的を達成するた
め、この発明は、繰り返し周波数f0 の電気信号を発生
する信号発生器1と、信号発生器1と同期して繰り返し
周波数f0 −△fの電気信号を発生する信号発生器2
と、信号発生器1の出力を入力とし、任意の角周波数ω
s で発振して信号光5aを出射する信号光源5と、信号
光5aを直線偏光にするグラン・テイラー偏光プリズム
7と、信号発生器2の出力を入力とし、一定の角周波数
ωg で発振してゲート光6aを出射するゲート光源6
と、ゲート光6aを直線偏光にする偏光ビームスプリッ
タ8と、信号光5aとゲート光6aを同一光軸上に合波
するビームスプリッタ9と、ビームスプリッタ9の出射
光を入射し、信号光5aとゲート光6aおよび和周波光
11aを出射する非線形結晶11と、非線形結晶11を
透過する信号光5aとゲート光6aを除去して和周波光
11aだけを透過する光HPF15と、光HPF15を
透過した和周波光11aの光強度に比例した電気信号を
出力する受光器16と、信号発生器1・2からの電気信
号を入力とし、繰り返し周波数△fのトリガ信号を発生
するミキサ19と、ミキサ19からのトリガ信号をトリ
ガ入力とし、電気信号を波形再生する表示部18を備え
る超高速光波形測定装置において、信号光源5の発振角
周波数ωs に対応した波長λs を入力する波長設定部1
4と、信号光5aとゲート光6aの光軸に対し、非線形
結晶11が最適に位相整合した和周波光11aを発生す
る最適位相整合角度(θoptopt) を記憶し、波長設定
部14の指示によりデータを出力するROM13と、非
線形結晶11を装着し、信号光5aとゲート光6aの光
軸に対し、非線形結晶11を任意の位相整合角度に移動
する移動ステージ群10と、ROM13の出力を入力と
し、移動ステージ群10を位置制御する制御回路12を
設ける。
To achieve Means for Solving the Problems] This object, the present invention is the repetition frequency signal generator 1 for generating an electric signal of f 0, the signal generator 1 in synchronization with the repetition frequency f 0 - △ signal generator 2 for generating an electric signal of f
And an output of the signal generator 1 as an input, and an arbitrary angular frequency ω
The signal light source 5 which oscillates at s to emit the signal light 5a, the Glan-Taylor polarizing prism 7 which makes the signal light 5a linearly polarized, and the output of the signal generator 2 are input, and oscillates at a constant angular frequency ω g . And a gate light source 6 for emitting the gate light 6a
A polarization beam splitter 8 for converting the gate light 6a into linearly polarized light, a beam splitter 9 for combining the signal light 5a and the gate light 6a on the same optical axis, and a light emitted from the beam splitter 9 to enter the signal light 5a. And the non-linear crystal 11 that emits the gate light 6a and the sum-frequency light 11a, the light HPF 15 that removes the signal light 5a and the gate light 6a that pass through the non-linear crystal 11, and that only passes the sum-frequency light 11a, and the light HPF 15. The photodetector 16 that outputs an electric signal proportional to the light intensity of the sum-frequency light 11a, the mixer 19 that receives the electric signal from the signal generators 1 and 2 and that generates a trigger signal with a repetition frequency Δf, and a mixer In the ultra-high-speed optical waveform measuring device including the display unit 18 for reproducing the waveform of the electric signal by using the trigger signal from 19 as the trigger input, it corresponds to the oscillation angular frequency ω s of the signal light source 5. Wavelength setting unit 1 for inputting the wavelength λ s
4 and the optimum phase matching angles (θ opt , φ opt ) for generating the sum frequency light 11a in which the nonlinear crystal 11 optimally phase-matches the optical axes of the signal light 5a and the gate light 6a are stored. 14, a ROM 13 for outputting data according to the instruction of 14, and a non-linear crystal 11, a moving stage group 10 for moving the non-linear crystal 11 to an arbitrary phase matching angle with respect to the optical axes of the signal light 5a and the gate light 6a, and the ROM 13. A control circuit 12 for controlling the position of the moving stage group 10 is provided with the output of the above as an input.

【0013】[0013]

【作用】次に、この発明による実施例の構成を図1に示
す。図1の10は移動ステージ群、12は制御回路、1
3はROM、14は波長設定部であり、他は図2と同じ
である。すなわち、図1の構成は、図2の非線形結晶1
1に移動ステージ群10と制御回路12とROM13と
波長設定部14を追加したものである。移動ステージ群
10は、θステージとφステージを備えている。
The structure of an embodiment according to the present invention is shown in FIG. In FIG. 1, 10 is a moving stage group, 12 is a control circuit, 1
Reference numeral 3 is a ROM, reference numeral 14 is a wavelength setting unit, and the others are the same as those in FIG. That is, the configuration of FIG. 1 is similar to that of the nonlinear crystal 1 of FIG.
1, a moving stage group 10, a control circuit 12, a ROM 13 and a wavelength setting unit 14 are added. The moving stage group 10 includes a θ stage and a φ stage.

【0014】図2で、信号発生器1は繰り返し周波数f
0 の電気信号を発生する。信号発生器1からの電気信号
は駆動回路3により増幅された後、信号光源5を駆動す
る。なお、信号光源5は駆動回路3を含む構成のものを
使用してもよい。一方、信号発生器2は信号発生器1と
同期させた繰り返し周波数f0 −△fの電気信号を発生
する。信号発生器2からの電気信号は駆動回路4により
増幅された後、ゲート光源6を駆動する。なお、信号光
源5と同様に、ゲート光源6は駆動回路4を含む構成の
ものを使用してもよい。
In FIG. 2, the signal generator 1 has a repetition frequency f.
Generates a zero electrical signal. The electric signal from the signal generator 1 is amplified by the drive circuit 3 and then drives the signal light source 5. The signal light source 5 may be configured to include the drive circuit 3. On the other hand, the signal generator 2 generates an electric signal having a repetition frequency f 0 −Δf synchronized with the signal generator 1. The electric signal from the signal generator 2 is amplified by the drive circuit 4 and then drives the gate light source 6. As with the signal light source 5, the gate light source 6 may be configured to include the drive circuit 4.

【0015】信号光源5は任意の角周波数ωs で発振す
る信号光5aを出射し、信号光5aはGTプリズム7に
より直線偏光となる。また、ゲート光源6は一定の角周
波数ωg で発振する短パルス状のゲート光6aを出射
し、ゲート光6aはPBS8により信号光5aと直交し
た直線偏光となる。信号光5aとゲート光6aはBS9
に入射し同一光軸上に合波された後、非線形結晶11に
入射する。
The signal light source 5 emits a signal light 5a which oscillates at an arbitrary angular frequency ω s , and the signal light 5a is linearly polarized by the GT prism 7. The gate light source 6 emits a short pulsed gate light 6a which oscillates at a constant angular frequency ω g , and the gate light 6a becomes a linearly polarized light orthogonal to the signal light 5a by the PBS 8. The signal light 5a and the gate light 6a are BS9
Incident on the same optical axis and are then incident on the nonlinear crystal 11.

【0016】非線形結晶11は、信号光5aとゲート光
6aの両光の発振角周波数ωs とωg を加算した和周波
数ω=ωs +ωg で発振し、両光の光強度の積に比例し
た光強度を有する和周波光11aが出射される。非線形
結晶11は例えばKTP結晶などを使用する。
The nonlinear crystal 11 oscillates at the sum frequency ω = ω s + ω g obtained by adding the oscillation angular frequencies ω s and ω g of both the signal light 5a and the gate light 6a, and the product of the light intensities of both lights is obtained. The sum frequency light 11a having a proportional light intensity is emitted. As the nonlinear crystal 11, for example, a KTP crystal or the like is used.

【0017】非線形結晶11は移動ステージ群10上に
固定され、移動ステージ群10は制御回路12により角
度制御される。ROM13は信号光5aの波長に対応し
た非線形結晶11の最適位相整合角度(θoptopt
をあらかじめ記憶する。ROM13への書き込みは、信
号光源5に可変波長光源等を用いて事前に実施される。
波長設定部14は波長設定信号を出力し、移動ステージ
群10の制御回路12へ最適位相整合角度信号を送る。
The nonlinear crystal 11 is fixed on the moving stage group 10, and the moving stage group 10 is angle-controlled by the control circuit 12. The ROM 13 is an optimum phase matching angle (θ opt , φ opt ) of the nonlinear crystal 11 corresponding to the wavelength of the signal light 5a.
Is stored in advance. Writing to the ROM 13 is performed in advance by using a variable wavelength light source or the like as the signal light source 5.
The wavelength setting unit 14 outputs a wavelength setting signal and sends an optimum phase matching angle signal to the control circuit 12 of the moving stage group 10.

【0018】光HPF15は非線形結晶11を透過した
信号光5a・ゲート光6aを除去し、和周波光11aだ
けを透過する。受光器16は光HPF15を透過した和
周波光11aの光強度に比例した電気信号を出力し、ア
ンプ17は出力された電気信号を増幅する。
The optical HPF 15 removes the signal light 5a and the gate light 6a transmitted through the nonlinear crystal 11 and transmits only the sum frequency light 11a. The light receiver 16 outputs an electric signal proportional to the light intensity of the sum frequency light 11a transmitted through the optical HPF 15, and the amplifier 17 amplifies the outputted electric signal.

【0019】以下、図2と同様の動作により、表示部1
8にミキサ19からのトリガ信号をトリガ入力として与
え、アンプ17からの増幅電気信号を波形再生すること
により、信号光5aの光波形の時間軸はf0 /△f倍に
拡大され、受光器17の帯域に制限されることなく、超
高速な信号光5aの光波形を観測する。
Thereafter, the display unit 1 is operated by the same operation as in FIG.
By applying the trigger signal from the mixer 19 to 8 as a trigger input and reproducing the amplified electric signal from the amplifier 17, the time axis of the optical waveform of the signal light 5a is expanded to f 0 / Δf times, and The optical waveform of the ultrafast signal light 5a is observed without being limited to 17 bands.

【0020】[0020]

【発明の効果】この発明によれば、ROMに信号光の波
長に対応した非線形結晶の最適位相整合角度(θopt
opt )をあらかじめ記憶し、波長設定部から波長設定信
号を与えて、ROMから制御回路へ最適位相整合角度信
号を送り、移動ステージ群を制御することにより、任意
の角周波数で発振する信号光源の信号光に対して、非線
形結晶を常に最適な位相整合角度で位相整合させ、効率
よく和周波光を発生させることができ、広波長範囲で超
高速な光波形測定を行うことができる。
According to the present invention, the optimum phase matching angle (θ opt , φ of the nonlinear crystal corresponding to the wavelength of the signal light is stored in the ROM.
opt ) is stored in advance, the wavelength setting signal is given from the wavelength setting unit, the optimum phase matching angle signal is sent from the ROM to the control circuit, and the movable stage group is controlled, whereby the signal light source oscillating at an arbitrary angular frequency The nonlinear crystal can always be phase-matched with the signal light at the optimum phase-matching angle to efficiently generate the sum-frequency light, and the ultra-high-speed optical waveform measurement can be performed in a wide wavelength range.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来技術による超高速光波形測定装置の構成図
である。
FIG. 2 is a configuration diagram of an ultrafast optical waveform measuring device according to a conventional technique.

【図3】繰り返し周波数が△fずれていた時の信号光と
ゲート光の関係図である。
FIG. 3 is a relationship diagram between signal light and gate light when the repetition frequency is deviated by Δf.

【図4】サンプリングされた信号光の光波形図である。FIG. 4 is an optical waveform diagram of sampled signal light.

【図5】入射ビームの光軸と位相整合角度との模式図
(θoptopt)である。
FIG. 5 is a schematic diagram (θ opt , φ opt ) of an optical axis of an incident beam and a phase matching angle.

【図6】異なる信号光波長に対する非線形結晶の位相整
合角度(θ,φ)である。
FIG. 6 is a phase matching angle (θ, φ) of a nonlinear crystal for different signal light wavelengths.

【図7】固定された非線形結晶の異なる信号光波長に対
する和周波光発生効率を示す図である。
FIG. 7 is a diagram showing the sum frequency light generation efficiency for different signal light wavelengths of a fixed nonlinear crystal.

【符号の説明】[Explanation of symbols]

1・2 信号発生器 3・4 駆動回路 5 信号光源 6 ゲート光源 7 GTプリズム 8 PBS 9 BS 10 移動ステージ群 11 非線形結晶 12 制御回路 13 ROM 14 波長設定部 15 光HPF 16 受光器 17 アンプ 18 表示部 19 ミキサ 1.2 Signal generator 3.4 Driving circuit 5 Signal light source 6 Gate light source 7 GT prism 8 PBS 9 BS 10 Moving stage group 11 Nonlinear crystal 12 Control circuit 13 ROM 14 Wavelength setting section 15 Optical HPF 16 Photodetector 17 Amplifier 18 Display Part 19 Mixer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繰り返し周波数f0 の電気信号を発生す
る第1の信号発生器(1) と、 信号発生器(1) と同期して繰り返し周波数f0 −△fの
電気信号を発生する第2の信号発生器(2) と、 信号発生器(1) の出力を入力とし、任意の角周波数ωs
で発振して信号光(5a)を出射する信号光源(5) と、 信号光(5a)を直線偏光にするグラン・テイラー偏光プリ
ズム(7) と、 信号発生器(2) の出力を入力とし、一定の角周波数ωg
で発振してゲート光(6A)を出射するゲート光源(6) と、 ゲート光(6a)を直線偏光にする偏光ビームスプリッタ
(8) と、 信号光(5a)とゲート光(6a)を同一光軸上に合波するビー
ムスプリッタ(9) と、 ビームスプリッタ(9) の出射光を入射し、信号光(5a)と
ゲート光(6a)および和周波光(11a)を出射する非線形結
晶(11)と、 非線形結晶(11)を透過する信号光(5a)とゲート光(6a)を
除去して和周波光(11a) だけを透過する光HPF(15)
と、 光HPF(15)を透過した和周波光(11a) の光強度に比例
した電気信号を出力する受光器(16)と、 信号発生器(1,2) からの電気信号を入力とし、繰り返し
周波数△fのトリガ信号を発生するミキサ(19)と、 ミキサ(19)からのトリガ信号をトリガ入力とし、電気信
号を波形再生する表示部(18)を備える超高速光波形測定
装置において、 信号光源(5) の発振角周波数ωs に対応した波長λs
入力する波長設定部(14)と、 信号光(5a)とゲート光(6a)の光軸に対し、非線形結晶(1
1)が最適に位相整合した和周波光(11a) を発生する最適
位相整合角度(θoptopt) を記憶し、波長設定部(14)
の指示によりデータを出力するROM(13)と、 非線形結晶(11)を装着し、信号光(5a)とゲート光(6a)の
光軸に対し、非線形結晶(11)を任意の位相整合角度に移
動する移動ステージ群(10)と、 ROM(13)の出力を入力とし、移動ステージ群(10)を位
置制御する制御回路(12)を設けることを特徴とする超高
速光波形測定装置。
1. A first signal generator (1) for generating an electric signal of a repetition frequency f 0 , and a first signal generator (1) for generating an electric signal of a repetition frequency f 0 -Δf in synchronization with the signal generator (1). The signal generator (2) of 2 and the output of the signal generator (1) are input, and the arbitrary angular frequency ω s
The signal light source (5) that oscillates with the signal light (5a) and emits the signal light (5a), the Glan-Taylor polarizing prism (7) that linearly polarizes the signal light (5a), and the output of the signal generator (2) are input. , Constant angular frequency ω g
Gate light source (6) that oscillates at and emits gate light (6A), and a polarization beam splitter that converts the gate light (6a) into linearly polarized light
(8), the beam splitter (9) that multiplexes the signal light (5a) and the gate light (6a) on the same optical axis, and the light emitted from the beam splitter (9) is incident on the signal light (5a). The nonlinear crystal (11) that emits the gate light (6a) and the sum frequency light (11a), the signal light (5a) and the gate light (6a) that pass through the nonlinear crystal (11) are removed, and the sum frequency light (11a ) Optical HPF (15) that transmits only
And a light receiver (16) that outputs an electric signal proportional to the light intensity of the sum frequency light (11a) that has passed through the optical HPF (15), and an electric signal from the signal generator (1, 2) as input, In the ultra-high-speed optical waveform measuring device provided with a mixer (19) that generates a trigger signal with a repetition frequency Δf and a display unit (18) that uses the trigger signal from the mixer (19) as a trigger input and reproduces a waveform of an electrical signal, The wavelength setting unit (14) that inputs the wavelength λ s corresponding to the oscillation angular frequency ω s of the signal light source (5) and the nonlinear crystal (1) with respect to the optical axes of the signal light (5a) and the gate light (6a)
1) stores the optimum phase matching angles (θ opt , φ opt ) that generate the sum frequency light (11a) with the optimum phase matching, and the wavelength setting unit (14)
The non-linear crystal (11) and the ROM (13) that outputs the data according to the instructions of the An ultrahigh-speed optical waveform measuring device comprising: a moving stage group (10) which moves to a position and a control circuit (12) which receives the output of a ROM (13) as an input and controls the position of the moving stage group (10).
JP25485294A 1994-09-22 1994-09-22 Ultrahigh speed optical waveform measuring equipment Pending JPH0894448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25485294A JPH0894448A (en) 1994-09-22 1994-09-22 Ultrahigh speed optical waveform measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25485294A JPH0894448A (en) 1994-09-22 1994-09-22 Ultrahigh speed optical waveform measuring equipment

Publications (1)

Publication Number Publication Date
JPH0894448A true JPH0894448A (en) 1996-04-12

Family

ID=17270748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25485294A Pending JPH0894448A (en) 1994-09-22 1994-09-22 Ultrahigh speed optical waveform measuring equipment

Country Status (1)

Country Link
JP (1) JPH0894448A (en)

Similar Documents

Publication Publication Date Title
JP4753849B2 (en) Optical switch and optical waveform monitoring device
JP3810570B2 (en) Optical pulse generation method and apparatus
JP5023462B2 (en) THz wave generator
US5367529A (en) Apparatus and method for improved time synchronization of pulsed laser systems
JP2007086108A (en) Method of generating deep ultraviolet laser light and deep ultraviolet laser device
JP2010060751A (en) Terahertz wave generation device and generation method
JP2003035603A (en) Light sampling waveform observing apparatus
KR20180072687A (en) A non-linear optical system for generating or amplifying optical pulses by N-wave mixing,
JP2013068525A (en) Terahertz wave generation detector
JP3504592B2 (en) Pulse laser generator and X-ray generator using the same
JPH0894448A (en) Ultrahigh speed optical waveform measuring equipment
JPH08233662A (en) Light pulse waveform measuring instrument
US20070111111A1 (en) Light measurement apparatus and light measurement method
JP3059936B2 (en) Variable coherence length high brightness laser design
EP3729192B1 (en) Squeezed light generator and method for generating squeezed light
JP2001156368A (en) Time-division wavelength multiple pulse-light generator and multiple wavelength measuring system
US7760344B2 (en) Optical sampling apparatus
JP3092757B2 (en) Optical pulse laser frequency division synchronization signal generator
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
JPH09230292A (en) Light modulator
JP3055735B2 (en) Passive mode-locked semiconductor laser device
JP2003232906A (en) Method and device for pulse multiplication and optical block
JPH09246644A (en) Infrared-radiation emitting device
JPH03206428A (en) Light pulse train generating device
JP2617599B2 (en) Optical fiber dispersion characteristics measurement method