JPH08233662A - Light pulse waveform measuring instrument - Google Patents

Light pulse waveform measuring instrument

Info

Publication number
JPH08233662A
JPH08233662A JP6501195A JP6501195A JPH08233662A JP H08233662 A JPH08233662 A JP H08233662A JP 6501195 A JP6501195 A JP 6501195A JP 6501195 A JP6501195 A JP 6501195A JP H08233662 A JPH08233662 A JP H08233662A
Authority
JP
Japan
Prior art keywords
light
signal
gate
frequency
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6501195A
Other languages
Japanese (ja)
Inventor
Atsushi Kitamura
厚 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP6501195A priority Critical patent/JPH08233662A/en
Publication of JPH08233662A publication Critical patent/JPH08233662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE: To provide a light pulse waveform measuring instrument which can measure a light pulse waveform of the signal light having a wide wave length range. CONSTITUTION: A signal light source 6 outputs the signal light oscillating in an optional angular frequency ωs , and gate light sources 7 and 8 outputs the gate light 7a and 8a oscillating in angular frequencies ωg1 and ωg2 , and a GT prism 9 turns the signal light into the linearly polarized light, and a PBS 10 turns the gate light 7a and 8a into the linearly polarized light, and a BS 11 joins both light together on the same optical axis, and a nonlinear crystal 14 converts a part of both light into the sum frequency light 14a and second higher harmonic waves 14b and 14c, and a ROM 16 stores an optimal phase matching angle at which the nonlinear crystal 14 performs a first kind of phase matching, and outputs data by indication of a wave length setting part 17 to which a wave length λs corresponding to the oscillating angular frequency ωs of the signal light source 6 is inputted. By this data, a moving stage group 13 moves the nonlinear crystal 14 to the optimal phase matching angle, and the wave length setting part 17 varies a central wave length of a light variable BPF 19 to take out only the sum frequency light 14a, and switches the gate light sources 7 and 8 to/from each other by a switch 18, and it is coverted into an electric signal by a light receiving unit 20, and is reproduced in a display part 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主に光ソリトン通信
に使用される短パルス光源の短パルス光を広範囲な波長
で測定する光パルス波形測定器についてのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pulse waveform measuring instrument for measuring short pulse light of a short pulse light source mainly used for optical soliton communication in a wide range of wavelengths.

【0002】[0002]

【従来の技術】次に、従来技術による光パルス波形測定
器の構成を図2に示す。図2の1・2は信号発生器、3
・4は駆動回路、6は信号光源、7はゲート光源、9は
グラン・テイラー偏光プリズム(以下GTプリズムとい
う)、10は偏光ビームスプリッタ(以下PBSとい
う)、11はビームスプリッタ(以下BSという)、1
4は非線形結晶、20は受光器、21はアンプ、22は
表示部、23はミキサ、24は光BPFである。表示部
22は例えばオシロスコープを使用する。
2. Description of the Related Art Next, FIG. 2 shows the configuration of a conventional optical pulse waveform measuring device. 2, 1 and 2 are signal generators and 3
4 is a drive circuit, 6 is a signal light source, 7 is a gate light source, 9 is a Gran-Taylor polarizing prism (hereinafter referred to as GT prism), 10 is a polarizing beam splitter (hereinafter referred to as PBS), 11 is a beam splitter (hereinafter referred to as BS) 1
Reference numeral 4 is a nonlinear crystal, 20 is a light receiver, 21 is an amplifier, 22 is a display unit, 23 is a mixer, and 24 is an optical BPF. The display unit 22 uses, for example, an oscilloscope.

【0003】図2で、信号発生器1は繰り返し周波数f
0 の電気信号を発生する。信号発生器1からの電気信号
は駆動回路3により増幅された後、信号光源6を駆動す
る。なお信号光源6は駆動回路3を含む構成のものを使
用してもよい。一方、信号発生器2は信号発生器1と同
期した繰り返し周波数f0 −Δfの電気信号を発生す
る。信号発生器2からの電気信号は駆動回路4により増
幅された後、ゲート光源7を駆動する。なお信号光源6
と同様、ゲート光源7は駆動回路4を含む構成のものを
使用してもよい。
In FIG. 2, the signal generator 1 has a repetition frequency f.
Generates a zero electrical signal. The electric signal from the signal generator 1 is amplified by the drive circuit 3 and then drives the signal light source 6. Note that the signal light source 6 may be configured to include the drive circuit 3. On the other hand, the signal generator 2 generates an electric signal having a repetition frequency f 0 −Δf in synchronization with the signal generator 1. The electric signal from the signal generator 2 is amplified by the drive circuit 4 and then drives the gate light source 7. The signal light source 6
Similarly to the above, the gate light source 7 may be configured to include the drive circuit 4.

【0004】信号光源6は任意の角周波数ωs で発振す
る信号光6aを出射し、信号光6aはGTプリズム9に
より直線偏光となる。GTプリズムは空間を保たせて向
かい合わせた2つの直角プリズムで構成され、特定の波
長範囲の入射光は第1のプリズムを透過すると第2のプ
リズムにブリュースター角で入射され、第2のプリズム
の入射面における反射損失がほとんど生じないように設
計されたものである。また、ゲート光源7は一定の角周
波数ωg で発振する短パルス状のゲート光7aを出射
し、ゲート光7aはPBS10により信号光6aと同一
偏光方向の直線偏光となる。信号光6aとゲート光7a
はBS11に入射し、同一光軸上に合波された後、非線
形結晶14に入射する。
The signal light source 6 emits a signal light 6a oscillating at an arbitrary angular frequency ω s , and the signal light 6a is linearly polarized by the GT prism 9. The GT prism is composed of two right-angled prisms that face each other while maintaining a space. When the incident light of a specific wavelength range passes through the first prism, it is incident on the second prism at Brewster's angle, and the second prism It is designed so that the reflection loss on the incident surface of is hardly caused. The gate light source 7 emits a short pulsed gate light 7a that oscillates at a constant angular frequency ω g , and the gate light 7a is linearly polarized in the same polarization direction as the signal light 6a by the PBS 10. Signal light 6a and gate light 7a
Enters the BS 11, is multiplexed on the same optical axis, and then enters the nonlinear crystal 14.

【0005】非線形結晶14は信号光6aとゲート光7
aの両光の角周波数ωs とωg を加算した角周波数ω=
ωs +ωg の和周波光14aと、信号光6aとゲート光
7aの両光の角周波数ωs 、ωg の2倍の角周波数2ω
s 、2ωg に相当する2種類の第2高調波14b・14
cを出射する。非線形結晶14は例えば無機系のKTP
結晶や有機系のNPP結晶等を使用する。光BPF24
は非線形結晶14を出射した信号光6a・ゲート光7a
と両光の第2高調波14b・14cを除去し、和周波光
14aのみを透過する。受光器20は光BPF24を透
過した和周波光14aの光強度に比例した電気信号を出
力し、アンプ21は出力された電気信号を増幅する。
The nonlinear crystal 14 has a signal light 6a and a gate light 7
Angular frequency ω = sum of angular frequencies ω s and ω g of both lights of a
The sum frequency light 14a of ω s + ω g and the angular frequencies ω s and ω g twice the angular frequencies ω s and ω g of both the signal light 6a and the gate light 7a.
s, the second harmonic 14b · 14 two corresponding to 2 [omega g
Emit c. The nonlinear crystal 14 is, for example, an inorganic KTP.
Crystals or organic NPP crystals are used. Optical BPF24
Is the signal light 6a and the gate light 7a emitted from the nonlinear crystal 14.
The second harmonics 14b and 14c of both lights are removed, and only the sum frequency light 14a is transmitted. The light receiver 20 outputs an electric signal proportional to the light intensity of the sum frequency light 14a transmitted through the light BPF 24, and the amplifier 21 amplifies the outputted electric signal.

【0006】ここで、信号光6aとゲート光7aは信号
発生器1・2の繰り返し周波数f0・f0 −Δfに依存
するので、両光の繰り返し周波数はΔfずれることにな
る。したがって信号光6aとゲート光7aは時間に対す
る相対位置が、図3に示すように毎回Δt(=Δf/f
0 2)だけずれ、Δfの周期が経過すると再び両光の相対
位置が一致する。さらに非線形結晶14から出射する和
周波光14aの光強度は、信号光6aとゲート光7aの
光強度の積に比例するので、両光の繰り返し周波数をΔ
fずらして掃引すると信号光6aはゲート光7aでサン
プリングされ、その時の光パルス波形は図4のように表
される。そして図4の光パルス波形の包絡線は、信号光
6aの光パルス波形の時間軸をf0 /Δf倍に拡大した
ものと一致する。
Here, since the signal light 6a and the gate light 7a depend on the repetition frequency f 0 · f 0 −Δf of the signal generators 1 and 2, the repetition frequencies of both lights are deviated by Δf. Therefore, the relative positions of the signal light 6a and the gate light 7a with respect to time are Δt (= Δf / f) each time as shown in FIG.
0 2) shifted, relative position of both again the cycle of Δf elapses light matches. Furthermore, since the light intensity of the sum frequency light 14a emitted from the nonlinear crystal 14 is proportional to the product of the light intensity of the signal light 6a and the light intensity of the gate light 7a, the repetition frequency of both lights is Δ.
The signal light 6a is sampled by the gate light 7a when swept by shifting f, and the optical pulse waveform at that time is represented as shown in FIG. Then, the envelope of the optical pulse waveform of FIG. 4 coincides with the time axis of the optical pulse waveform of the signal light 6a enlarged by f 0 / Δf times.

【0007】したがって、信号発生器1・2からの電気
信号をミキサ23に入力し、ミキサ23より繰り返し周
波数Δfのトリガ信号を表示部22にトリガ入力として
与え、アンプ21からの増幅電気信号を波形再生するこ
とにより、信号光6aの光パルス波形の時間軸はf0
Δf倍に拡大され、受光器20の帯域に制限されること
なく高速な信号光6aの光パルス波形を観測する。
Therefore, the electric signals from the signal generators 1 and 2 are input to the mixer 23, the trigger signal of the repeating frequency Δf is given from the mixer 23 to the display unit 22 as the trigger input, and the amplified electric signal from the amplifier 21 is waveformd. By reproducing, the time axis of the optical pulse waveform of the signal light 6a is f 0 /
The optical pulse waveform of the high-speed signal light 6a, which is expanded by Δf times and is not limited to the band of the light receiver 20, is observed.

【0008】[0008]

【発明が解決しようとする課題】非線形結晶14から出
射する和周波光の角周波数ωは信号光の角周波数ωs
ゲート光の角周波数ωg の和周波数となるので、信号光
の角周波数ωs が変化する場合には、光BPF24の中
心波長を信号光の角周波数ωs に対応した和周波光の角
周波数ωと一致するように可変させる必要がある。
Since the INVENTION Problems to be Solved] sum frequency of the angular frequency omega g of the nonlinear crystal 14 the angular frequency of the sum frequency light emitted from omega signal light having an angular frequency omega s and the gate light, the angular frequency of the signal light When ω s changes, it is necessary to change the center wavelength of the optical BPF 24 so as to match the angular frequency ω of the sum frequency light corresponding to the angular frequency ω s of the signal light.

【0009】さらに、非線形結晶14から出射する和周
波光ωの光強度は、図5に示す非線形結晶の結晶軸(X,
Y,Z )が信号光とゲート光の光軸に対して最適位相整合
角度(θoptopt )を満足している場合に最大となる
が、信号光の角周波数ωs が変化すると、非線形結晶の
結晶軸(X,Y,Z )に対する最適位相整合角度(θopt
opt )も変化してしまうため、信号光の波長λs が変わ
り角周波数ωs が変化する場合には、非線形結晶の結晶
軸(X,Y,Z )を信号光とゲート光の光軸に対して常に最
適となるように角度制御する必要がある。
Further, the light intensity of the sum frequency light ω emitted from the nonlinear crystal 14 is determined by the crystal axis (X,
Y, Z) is the maximum when the optimum phase matching angles (θ opt , φ opt ) with respect to the optical axes of the signal light and the gate light are satisfied, but when the angular frequency ω s of the signal light changes, Optimal phase matching angle (θ opt , φ for the crystal axis (X, Y, Z) of the nonlinear crystal
opt ) also changes, so when the wavelength λ s of the signal light changes and the angular frequency ω s changes, the crystal axes (X, Y, Z) of the nonlinear crystal become the optical axes of the signal light and the gate light. On the other hand, it is necessary to control the angle so that it is always optimum.

【0010】しかし、図2の構成では、信号光の波長λ
s が変わり角周波数ωs が変化しても、光BPF24の
中心波長が固定されているので和周波光までも除去され
てしまうという問題がある。
However, in the configuration of FIG. 2, the wavelength λ of the signal light is
Even if s changes and the angular frequency ω s changes, the central wavelength of the optical BPF 24 is fixed and therefore the sum frequency light is also removed.

【0011】また、信号光の波長λs が変わり角周波数
ωs が変化して非線形結晶の最適位相整合角度(θopt,
φopt )が変化しても、非線形結晶が固定されているた
め和周波光の発生効率が低下してしまうという問題があ
る。例として図6と図10を参照して説明する。図10
は角度φに対する和周波光発生の変換効率を示す図であ
る。図10は例として非線形結晶14として長さ3mm
のKTP結晶を使用し、ゲート光の波長を1560nm
一定とした場合に、信号光の波長が1540nmと13
10nmの時の第1種位相整合角度特性と変換効率η特
性を示したものである。
Further, the wavelength λ s of the signal light changes, the angular frequency ω s changes, and the optimum phase matching angle (θ opt ,
Even if φ opt ) changes, there is a problem that the generation efficiency of the sum frequency light decreases because the nonlinear crystal is fixed. An example will be described with reference to FIGS. 6 and 10. Figure 10
FIG. 4 is a diagram showing conversion efficiency of sum frequency light generation with respect to an angle φ. FIG. 10 shows, as an example, a nonlinear crystal 14 having a length of 3 mm.
Using KTP crystal of, the wavelength of the gate light is 1560nm
When fixed, the wavelengths of the signal light are 1540 nm and 13
9 shows the first-type phase matching angle characteristic and the conversion efficiency η characteristic at 10 nm.

【0012】図10で、信号光の波長が1540nmと
1310nmの時の変換効率ηが最大となる角度φは4
1.0deg となる。図6は異なる信号光波長に対する非
線形結晶の位相整合角度(θ,φ)を示す図であるが、
図6によれば、信号光波長が1540nmと1310n
mの時の2本の第1種位相整合曲線は互いに平行位置に
あり、クロスポイントが存在しない。したがって波長の
異なる信号光を同時に満足する2つの最適位相整合角度
(θoptopt )が存在しない状態を示している。
In FIG. 10, the angle φ at which the conversion efficiency η is maximum when the signal light wavelengths are 1540 nm and 1310 nm is 4
It becomes 1.0 deg. FIG. 6 is a diagram showing the phase matching angles (θ, φ) of the nonlinear crystal for different signal light wavelengths.
According to FIG. 6, the signal light wavelengths are 1540 nm and 1310 n.
When m, the two type I phase matching curves are parallel to each other and there is no cross point. Therefore, there is shown a state where there are no two optimum phase matching angles (θ opt , φ opt ) that simultaneously satisfy the signal lights having different wavelengths.

【0013】すなわち信号光波長が変化する場合は非線
形結晶の結晶軸(X,Y,Z )が信号光とゲート光に対して最
適位相整合角度(θoptopt )を満足するように信号
光の波長ごとに角度調整する必要がある。さらに変換効
率ηが半分となるθ・φの角度許容量は図9よりそれぞ
れ1deg 、0.2deg であることから、角度調整には
0.2deg 以下の分解能が必要となる。
That is, when the wavelength of the signal light changes, the signal is generated so that the crystal axes (X, Y, Z) of the nonlinear crystal satisfy the optimum phase matching angles (θ opt , φ opt ) for the signal light and the gate light. It is necessary to adjust the angle for each wavelength of light. Furthermore, since the angle permissible amounts of θ and φ at which the conversion efficiency η is halved are 1 deg and 0.2 deg, respectively, as shown in FIG. 9, a resolution of 0.2 deg or less is required for angle adjustment.

【0014】図7は信号光波長が1310nmと154
0nmの時の最適位相整合角度で非線形結晶を固定した
後、信号光波長を1300nmから1600nmまで変
化させた時の和周波光発生の変換効率特性を示したもの
である。図7で信号波長が1310nmと1540nm
からそれぞれ離れるにしたがって、和周波光発生の変換
効率ηが低下してしまうことがわかる。
FIG. 7 shows that the signal light wavelengths are 1310 nm and 154.
It shows conversion efficiency characteristics of sum frequency light generation when the wavelength of the signal light is changed from 1300 nm to 1600 nm after the nonlinear crystal is fixed at the optimum phase matching angle of 0 nm. In FIG. 7, the signal wavelengths are 1310 nm and 1540 nm.
It is understood that the conversion efficiency η of the sum frequency light generation decreases with increasing distance from each.

【0015】さらに、信号光の波長λs とゲート光の波
長λg が等しく、両光の角周波数ωs ・ωg が等しい場
合には、非線形結晶から出射する両光の第2高調波の角
周波数2ωs ・2ωg が和周波光の角周波数ωと等しく
なるので、光BPFにより第2高調波だけを除去するこ
とができないという問題がある。例として、図8を参照
して説明する。図8はゲート光波長を1560nmと1
300nmの2種類とした時の信号光の波長変化に対す
る和周波光と、第2高調波の波長関係を示したものであ
る。図8で信号光波長がゲート光波長と一致すると両光
の第2高調波と和周波光の波長が同一となってしまうこ
とがわかる。この発明は広波長範囲の信号光の光パルス
波形を測定する光パルス波形測定器の提供を目的とす
る。
Further, when the wavelength λ s of the signal light and the wavelength λ g of the gate light are equal and the angular frequencies ω s ω g of both lights are equal, the second harmonics of both lights emitted from the nonlinear crystal. Since the angular frequency 2ω s · 2ω g becomes equal to the angular frequency ω of the sum frequency light, there is a problem that only the second harmonic cannot be removed by the optical BPF. An example will be described with reference to FIG. Figure 8 shows that the gate light wavelength is 1560 nm and 1
It shows the wavelength relationship between the sum frequency light and the second harmonic with respect to the wavelength change of the signal light when two types of 300 nm are used. It can be seen from FIG. 8 that if the signal light wavelength matches the gate light wavelength, the second harmonic of both lights and the sum frequency light have the same wavelength. An object of the present invention is to provide an optical pulse waveform measuring device that measures the optical pulse waveform of signal light in a wide wavelength range.

【0016】[0016]

【課題を解決するための手段】この目的を達成するた
め、この発明は、繰り返し周波数f0 の電気信号を発生
する信号発生器1と、信号発生器1と同期して繰り返し
周波数f0 −Δfの電気信号を発生する信号発生器2
と、信号発生器1の出力を入力とし任意の角周波数ωs
で発振して信号光6aを出射する信号光源6と、信号光
6aを直線偏光にするGTプリズム9と、信号発生器2
の出力を入力とし一定の角周波数ωg で発振してゲート
光7aを出射するゲート光源7と、ゲート光7aを直線
偏光にする偏光ビームスプリッタ10と、信号光6aと
ゲート光7aを同一光軸上に合波するビームスプリッタ
11と、ビームスプリッタ11の出射光を入射し、信号
光6aとゲート光7aの第2高調波14b・14cと和
周波光14aを第1種位相整合により出射する非線形結
晶14と、中心波長が可変し、非線形結晶14の出力を
入力として、信号光6aとゲート光7aの両光の第2高
調波14b・14cを除去して和周波光14aだけを透
過する光可変BPF19と、非線形結晶14の角度を調
整する移動ステージ群13と、非線形結晶14が第1種
位相整合して信号光6aとゲート光7aの第2高調波1
4b・14cと和周波光14aを発生する最適位相整合
角度(θoptopt )を記憶するROM16と、ROM
16の出力を入力とし、移動ステージ群13を位置制御
する制御回路15と、信号光源6の角周波数ωs に対応
した波長λs を入力し、光可変BPF19の中心周波数
を可変させるとともに、制御回路15に与えるデータを
ROM16に設定する波長設定部17と、光可変BPF
19を透過した和周波光14aの光強度に比例した電気
信号を出力する受光器20と、信号発生器1・2からの
電気信号を入力とし、繰り返し周波数Δfのトリガ信号
を発生するミキサ23と、ミキサ23からのトリガ信号
をトリガ入力とし電気信号を波形再生する表示部22を
備える。
Means for Solving the Problems] To achieve this object, the present invention is repeated a signal generator 1 for generating an electric signal having a frequency f 0, the signal generator 1 in synchronization with the repetition frequency f 0 -.DELTA.f Signal generator 2 for generating electric signals of
And the output of the signal generator 1 as an input, an arbitrary angular frequency ω s
Signal light source 6 that oscillates with the signal light 6a and emits the signal light 6a, a GT prism 9 that linearly polarizes the signal light 6a, and a signal generator 2
The light source 7 that oscillates at a constant angular frequency ω g and outputs the gate light 7a, the polarization beam splitter 10 that makes the gate light 7a linearly polarized, and the signal light 6a and the gate light 7a are the same light. The beam splitter 11 that is multiplexed on the axis and the light emitted from the beam splitter 11 are incident, and the signal light 6a, the second harmonics 14b and 14c of the gate light 7a, and the sum frequency light 14a are emitted by the first type phase matching. The non-linear crystal 14 and the central wavelength thereof are variable, and the output of the non-linear crystal 14 is used as an input to remove the second harmonics 14b and 14c of both the signal light 6a and the gate light 7a and transmit only the sum frequency light 14a. The variable optical BPF 19, the moving stage group 13 that adjusts the angle of the nonlinear crystal 14, and the nonlinear crystal 14 are phase-matched with each other by the first kind, and the second harmonic wave 1 of the signal light 6a and the gate light 7a is obtained.
4b and 14c and ROM 16 for storing optimum phase matching angles (θ opt , φ opt ) for generating sum frequency light 14a;
A control circuit 15 for controlling the position of the moving stage group 13 and a wavelength λ s corresponding to the angular frequency ω s of the signal light source 6 are input by using the output of 16 as an input, and the center frequency of the variable optical BPF 19 is varied and controlled. A wavelength setting unit 17 for setting data to be provided to the circuit 15 in the ROM 16, and an optical variable BPF.
A light receiver 20 that outputs an electric signal proportional to the light intensity of the sum frequency light 14a that has passed through 19, and a mixer 23 that receives the electric signal from the signal generators 1 and 2 and that generates a trigger signal with a repetition frequency Δf. , And a display unit 22 for reproducing a waveform of an electric signal by using a trigger signal from the mixer 23 as a trigger input.

【0017】また、信号発生器2の出力を入力とし一定
の角周波数ωg1で発振してゲート光7aを出射するゲー
ト光源7と、信号発生器2の出力を入力とし一定の角周
波数ωg2で発振してゲート光8aを出射するゲート光源
8と、信号発生器2の出力を入力とし、第1の出力をゲ
ート光源7に接続し、第2の出力をゲート光源8に接続
して、波長設定部17の指示により信号光6aの角周波
数ωs に対応して駆動するゲート光源を切り換えるスイ
ッチ18と、ゲート光源7・8の出力を合波してPBS
10に出射する合波器12を備える。
Further, a gate light source 7 which receives the output of the signal generator 2 as an input and oscillates at a constant angular frequency ω g1 to emit the gate light 7a, and a constant angular frequency ω g2 which receives the output of the signal generator 2 as an input The gate light source 8 that oscillates at 8 to emit the gate light 8a and the output of the signal generator 2 are input, the first output is connected to the gate light source 7, and the second output is connected to the gate light source 8. In accordance with an instruction from the wavelength setting unit 17, the switch 18 that switches the gate light source to be driven corresponding to the angular frequency ω s of the signal light 6a and the output of the gate light sources 7 and 8 are combined to form a PBS.
A multiplexer 12 for emitting light to 10 is provided.

【0018】光スイッチ18は、信号光の波長λs とゲ
ート光の波長λg が等しく、両光の角周波数ωs ・ωg
が等しくなり、非線形結晶から出射する両光の第2高調
波の角周波数2ωs ・2ωg が和周波光の角周波数ωと
等しくなる時、ゲート光源を切り換える。
In the optical switch 18, the wavelength λ s of the signal light and the wavelength λ g of the gate light are equal, and the angular frequencies ω s · ω g of both lights are
Are equal to each other and the angular frequencies 2ω s · 2ω g of the second harmonics of both lights emitted from the nonlinear crystal are equal to the angular frequency ω of the sum frequency light, the gate light source is switched.

【0019】[0019]

【作用】次に、この発明による実施例の構成を図1に示
す。図1の5は駆動回路、8はゲート光源、12は合波
器、13は移動ステージ群、15は制御回路、16はR
OM、17は波長設定部、18はスイッチ、19は光可
変BPFであり、他は図2と同じである。すなわち図1
の構成は、図2の光BPF24のかわりに光可変BPF
19を備え、非線形結晶14に移動ステージ群13を設
け、制御回路15とROM16と波長設定部17とスイ
ッチ18と駆動回路5とゲート光源8と合波器12を追
加したものである。移動ステージ群13はθステージと
φステージを備えており、角度分解能0.1deg 以下が
容易に得られるパルスステージ等を用いる。
The structure of an embodiment according to the present invention is shown in FIG. In FIG. 1, 5 is a drive circuit, 8 is a gate light source, 12 is a multiplexer, 13 is a moving stage group, 15 is a control circuit, and 16 is R.
OM, 17 is a wavelength setting unit, 18 is a switch, 19 is an optically variable BPF, and the others are the same as in FIG. That is, FIG.
The configuration of FIG. 2 is an optical variable BPF instead of the optical BPF 24 of FIG.
19, a moving stage group 13 is provided on the nonlinear crystal 14, and a control circuit 15, a ROM 16, a wavelength setting section 17, a switch 18, a drive circuit 5, a gate light source 8 and a multiplexer 12 are added. The moving stage group 13 includes a θ stage and a φ stage, and uses a pulse stage or the like that can easily obtain an angular resolution of 0.1 deg or less.

【0020】次に、この発明による光パルス波形測定器
の動作を図1を参照して説明する。図1で、信号発生器
1は繰り返し周波数f0 の電気信号を発生する。信号発
生器1からの電気信号は駆動回路3により増幅され、信
号光源6を駆動する。なお信号光源6は駆動回路3を含
む構成のものを使用してもよい。
Next, the operation of the optical pulse waveform measuring device according to the present invention will be described with reference to FIG. In FIG. 1, the signal generator 1 generates an electric signal having a repetition frequency f 0 . The electric signal from the signal generator 1 is amplified by the drive circuit 3 and drives the signal light source 6. Note that the signal light source 6 may be configured to include the drive circuit 3.

【0021】一方、信号発生器2は信号発生器1と同期
させた繰り返し周波数f0 −Δfの電気信号を発生す
る。信号発生器2からの電気信号はスイッチ18に入力
される。スイッチ18は、信号発生器2からの電気信号
を駆動回路4に入力するか駆動回路5に入力するか切り
換える。
On the other hand, the signal generator 2 generates an electric signal having a repetition frequency f 0 -Δf synchronized with the signal generator 1. The electric signal from the signal generator 2 is input to the switch 18. The switch 18 switches between inputting the electric signal from the signal generator 2 to the drive circuit 4 or the drive circuit 5.

【0022】信号発生器2の電気信号が駆動回路4に入
力された場合、駆動回路4は信号発生器2の電気信号を
増幅し、ゲート光源7を駆動する。ゲート光源7は一定
の角周波数ωg1で発振し、スイッチ18により選択され
たゲート光源7の短パルス状のゲート光7aを出射す
る。
When the electric signal of the signal generator 2 is input to the drive circuit 4, the drive circuit 4 amplifies the electric signal of the signal generator 2 and drives the gate light source 7. The gate light source 7 oscillates at a constant angular frequency ω g1 and emits the short pulsed gate light 7a of the gate light source 7 selected by the switch 18.

【0023】また、信号発生器2の電気信号が駆動回路
5に入力された場合、駆動回路5は信号発生器2の電気
信号を増幅し、ゲート光源8を駆動する。ゲート光源8
は一定の角周波数ωg2で発振し、スイッチ18により選
択されたゲート光源8の短パルス状のゲート光8aを出
射する。ゲート光源7・8の出射光は合波器12を介し
てPBS10に入射する。したがって、PBS10には
スイッチ18で接続されたゲート光源のゲート光が入射
される。PBS10に入射したゲート光7a・8aのど
ちらか一方は、PBS10により信号光源6の信号光6
aと同一偏光方向の直線偏光となる。なお、信号光源6
と同様、ゲート光源7は駆動回路4を含む構成のものを
使用してもよく、またゲート光源8は駆動回路5を含む
構成のものを使用してもよい。
When the electric signal of the signal generator 2 is input to the drive circuit 5, the drive circuit 5 amplifies the electric signal of the signal generator 2 and drives the gate light source 8. Gate light source 8
Oscillates at a constant angular frequency ω g2 and emits a short pulsed gate light 8a of the gate light source 8 selected by the switch 18. The light emitted from the gate light sources 7 and 8 enters the PBS 10 via the multiplexer 12. Therefore, the gate light of the gate light source connected by the switch 18 is incident on the PBS 10. Either one of the gate lights 7a and 8a incident on the PBS 10 is the signal light 6 of the signal light source 6 by the PBS 10.
It becomes linearly polarized light in the same polarization direction as a. The signal light source 6
Similarly to the above, the gate light source 7 may be configured to include the drive circuit 4, and the gate light source 8 may be configured to include the drive circuit 5.

【0024】信号光源6は任意の角周波数ωs で発振す
る信号光6aを出射し、信号光6aはGTプリズム9に
より直線偏光となる。信号光源6の信号光6aとPBS
10の出射光はBS11により同一光軸上に合波された
後、非線形結晶14に入射する。
The signal light source 6 emits the signal light 6a which oscillates at an arbitrary angular frequency ω s , and the signal light 6a is linearly polarized by the GT prism 9. Signal light 6a of signal light source 6 and PBS
The emitted light of 10 is combined on the same optical axis by BS 11, and then enters the nonlinear crystal 14.

【0025】非線形結晶14は、スイッチ18が駆動回
路4と接続された場合、角周波数ωs の信号光6aと角
周波数ωg1のゲート光7aを加算した角周波数ω=ωs
+ωg1の和周波光14aと、信号光6aとゲート光7a
の両光の角周波数の2倍の角周波数に相当する2種類の
第2高調波14b・14cを出射する。また、スイッチ
18が駆動回路5と接続された場合、角周波数ωg2のゲ
ート光8aの角周波数を加算した角周波数ω=ωs +ω
g2の和周波光14aと、信号光6aとゲート光8aの両
光の角周波数の2倍の角周波数に相当する2種類の第2
高調波14b・14cを出射する。なお、非線形結晶1
4は例えば無機系のKTP結晶や有機系のNPP結晶な
どを使用する。
The nonlinear crystal 14, when the switch 18 is connected to a driving circuit 4, the angular frequency omega angular frequency of the gate light 7a by adding the s of the signal light 6a and the angular frequency ω g1 ω = ω s
+ Ω g1 sum frequency light 14a, signal light 6a, and gate light 7a
Two kinds of second harmonic waves 14b and 14c corresponding to an angular frequency twice the angular frequency of the two lights are emitted. When the switch 18 is connected to the drive circuit 5, the angular frequency ω = ω s + ω, which is the sum of the angular frequencies of the gate light 8a having the angular frequency ω g2.
g2 sum-frequency light 14a and two types of second frequencies corresponding to an angular frequency that is twice the angular frequency of both the signal light 6a and the gate light 8a.
The harmonics 14b and 14c are emitted. The nonlinear crystal 1
4 uses, for example, an inorganic KTP crystal or an organic NPP crystal.

【0026】移動ステージ群13は非線形結晶14を固
定し、制御回路15により角度制御される。ROM16
は、あらかじめ信号光源に可変波長光源等を用いて、信
号光6aの波長に対応した非線形結晶14の最適位相整
合角度(θoptopt )を記憶させる。
The moving stage group 13 fixes the non-linear crystal 14 and the angle is controlled by the control circuit 15. ROM16
Uses a variable wavelength light source or the like as the signal light source in advance to store the optimum phase matching angle (θ opt , φ opt ) of the nonlinear crystal 14 corresponding to the wavelength of the signal light 6a.

【0027】光可変BPF19は、外部信号により中心
波長が可変でき、非線形結晶14から出射される信号光
6aおよびゲート光7a(あるいはゲート光8a)の両
光の第2高調波14b・14cを除去して和周波光14
aだけを透過する。
The variable optical BPF 19 can change the center wavelength by an external signal and removes the second harmonics 14b and 14c of both the signal light 6a and the gate light 7a (or the gate light 8a) emitted from the nonlinear crystal 14. Then sum frequency light 14
Only a is transmitted.

【0028】波長設定部17は図示を省略した外部入力
手段により信号光源6の角周波数ωs に対応した波長λ
s を入力し、移動ステージ群13を制御する制御回路1
5へ信号光源6の波長変化に対応した最適位相整合角度
信号を出力するようにROM16にデータを設定すると
ともに、光可変BPF19に信号光源6の波長λs に対
応した中心波長の設定信号を送り、さらに、スイッチ1
8に信号光源6の波長λs に対応したゲート光源7・8
の切り換え信号を送る。
The wavelength setting unit 17 uses a wavelength λ corresponding to the angular frequency ω s of the signal light source 6 by external input means (not shown).
Control circuit 1 for inputting s and controlling the moving stage group 13
5 sets the data in the ROM 16 so as to output the optimum phase matching angle signal corresponding to the wavelength change of the signal light source 6, and sends the setting signal of the central wavelength corresponding to the wavelength λ s of the signal light source 6 to the optical variable BPF 19. , And switch 1
8 is a gate light source 7.8 corresponding to the wavelength λ s of the signal light source 6.
Send the switching signal of.

【0029】受光器20は光可変BPF19を透過した
和周波光14aの光強度に比例した電気信号を出力し、
アンプ21は出力された電気信号を増幅する。以下、図
2と同様の動作により、表示部22にミキサ23からの
トリガ信号をトリガ入力として与え、アンプ21からの
増幅電気信号を波形再生することにより、信号光6aの
光パルス波形の時間軸はf0 /Δf倍に拡大され、受光
器20の帯域に制限されることなく、高速な信号光6a
の光パルス波形を観測する。
The light receiver 20 outputs an electric signal proportional to the light intensity of the sum frequency light 14a transmitted through the light variable BPF 19,
The amplifier 21 amplifies the output electric signal. Hereinafter, by the same operation as in FIG. 2, the trigger signal from the mixer 23 is applied to the display unit 22 as a trigger input, and the amplified electric signal from the amplifier 21 is waveform-reproduced, whereby the time axis of the optical pulse waveform of the signal light 6a is obtained. Is expanded to f 0 / Δf times, and the high-speed signal light 6a is not limited to the band of the photodetector 20.
Observe the optical pulse waveform of.

【0030】[0030]

【発明の効果】この発明によれば、ROMに信号光の波
長に対応した非線形結晶の最適位相整合角度(θopt
opt )をあらかじめ記憶し、波長設定部から波長設定信
号を与えて、ROMから制御回路へ最適位相整合角度信
号を送り、移動ステージ群を制御することにより、少な
くとも1310nmから1540nmの波長に対応した
任意の角周波数で発振する信号光源の信号光に対して、
非線形結晶を常に最適位相整合角度で第1種位相整合さ
せ、効率よく和周波光を発生させるとともに、光可変B
PFに波長設定部から外部信号を与えて中心波長を制御
することにより、任意の角周波数で発振する信号光に対
して和周波光だけをとりだすことが可能となるので、広
波長範囲で高速な光パルス波形の測定が可能となる。
According to the present invention, the optimum phase matching angle (θ opt , φ of the nonlinear crystal corresponding to the wavelength of the signal light is stored in the ROM.
opt ) is stored in advance, the wavelength setting signal is given from the wavelength setting unit, the optimum phase matching angle signal is sent from the ROM to the control circuit, and the movable stage group is controlled, so that an arbitrary wavelength corresponding to at least 1310 nm to 1540 nm can be obtained. For the signal light of the signal light source that oscillates at the angular frequency of
The nonlinear crystal is always phase-matched with the first kind at the optimum phase-matching angle to efficiently generate the sum frequency light, and the optical variable B
By giving an external signal to the PF from the wavelength setting unit to control the center wavelength, it is possible to take out only the sum frequency light from the signal light oscillating at an arbitrary angular frequency, so that it is possible to achieve high speed in a wide wavelength range. It is possible to measure the optical pulse waveform.

【0031】さらに波長の異なるゲート光源を2台設置
し、波長設定部からの切り替え信号によりゲート光源の
切り替えが可能となるため、ゲート光と同一波長の信号
光についても測定が可能となる。
Furthermore, since two gate light sources having different wavelengths are installed and the gate light source can be switched by the switching signal from the wavelength setting section, it is possible to measure the signal light having the same wavelength as the gate light.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来の実施例を示す構成図である。FIG. 2 is a configuration diagram showing a conventional embodiment.

【図3】繰り返し周波数がΔf(Hz)ずれていた時の信号
光とゲート光の関係図である。
FIG. 3 is a relationship diagram between signal light and gate light when the repetition frequency is deviated by Δf (Hz).

【図4】サンプリングされた信号光の光波形図である。FIG. 4 is an optical waveform diagram of sampled signal light.

【図5】入射ビームの光軸と位相整合角度との模式図
(θoptopt)である。
FIG. 5 is a schematic diagram (θ opt , φ opt ) of an optical axis of an incident beam and a phase matching angle.

【図6】異なる信号光波長に対する非線形結晶の位相整
合角度(θ,φ)である。
FIG. 6 is a phase matching angle (θ, φ) of a nonlinear crystal for different signal light wavelengths.

【図7】固定された非線形結晶の異なる信号光波長に対
する和周波光発生の変換効率を示す図である。
FIG. 7 is a diagram showing conversion efficiency of sum frequency light generation for different signal light wavelengths of a fixed nonlinear crystal.

【図8】信号光波長に対する和周波光と第2高調波の関
係図である。
FIG. 8 is a relationship diagram of the sum frequency light and the second harmonic with respect to the signal light wavelength.

【図9】θ、φの許容角度特性を示す図である。FIG. 9 is a diagram showing allowable angle characteristics of θ and φ.

【図10】φに対する和周波光発生の変換効率を示す図
である。
FIG. 10 is a diagram showing conversion efficiency of sum frequency light generation with respect to φ.

【符号の説明】[Explanation of symbols]

1・2 信号発生器 3・4・5 駆動回路 6 信号光源 7・8 ゲート光源 9 GTプリズム 10 PBS 11 BS 12 合波器 13 移動ステージ群 14 非線形結晶 15 制御回路 16 ROM 17 波長設定部 18 スイッチ 19 光可変BPF 20 受光器 21 アンプ 22 表示部 23 ミキサ 1.2 signal generator 34.5 driving circuit 6 signal light source 7/8 gate light source 9 GT prism 10 PBS 11 BS 12 multiplexer 13 moving stage group 14 nonlinear crystal 15 control circuit 16 ROM 17 wavelength setting unit 18 switch 19 Optically variable BPF 20 Optical receiver 21 Amplifier 22 Display unit 23 Mixer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繰り返し周波数f0 の電気信号を発生す
る第1の信号発生器(1) と、 信号発生器(1) と同期して繰り返し周波数f0 −Δfの
電気信号を発生する第2の信号発生器(2) と、 信号発生器(1) の出力を入力とし任意の角周波数ωs
発振して信号光(6a)を出射する信号光源(6) と、 信号光(6a)を直線偏光にするグラン・テイラー偏光プリ
ズム(9) と、 信号発生器(2) の出力を入力とし、一定の角周波数ωg
で発振してゲート光(7a)を出射するゲート光源(7) と、 ゲート光(7a)を直線偏光にする偏光ビームスプリッタ(1
0)と、 信号光(6a)とゲート光(7a)を同一光軸上に合波するビー
ムスプリッタ(11)と、 ビームスプリッタ(11)の出射光を入射し、信号光(6a)と
ゲート光(7a)の第2高調波(14b,14c) と和周波光(14a)
を第1種位相整合により出射する非線形結晶(14)と、 中心波長が可変し、非線形結晶(14)の出力を入力とし
て、信号光(6a)とゲート光(7a・8a) の両光の第2高調波
(14b・14c) を除去して和周波光(14a) だけを透過する光
可変BPF(19)と、 非線形結晶(14)の角度を調整する移動ステージ群(13)
と、非線形結晶(14)が第1種位相整合して信号光(6a)と
ゲート光(7a)の第2高調波(14b・14c) と和周波光(14a)
を発生する最適位相整合角度(θoptopt )を記憶す
るROM(16)と、ROM(16)の出力を入力とし、移動ス
テージ群(13)を位置制御する制御回路(15)と、 信号光源(6) の角周波数ωs に対応した波長λs を入力
し、光可変BPF(19)の中心周波数を可変させるととも
に、制御回路(15)に与えるデータをROM(16)に設定す
る波長設定部(17)と、 光可変BPF(19)を透過した和周波光(14a) の光強度に
比例した電気信号を出力する受光器(20)と、 信号発生器(1・2) からの電気信号を入力とし、繰り返し
周波数Δfのトリガ信号を発生するミキサ(23)と、 ミキサ(23)からのトリガ信号をトリガ入力とし電気信号
を波形再生する表示部(22)を備えることを特徴とする光
パルス波形測定器。
1. A first signal generator (1) for generating an electric signal of a repetition frequency f 0 , and a second signal generator (1) for generating an electric signal of a repetition frequency f 0 -Δf in synchronization with the signal generator (1). Signal light source (6) that oscillates at the arbitrary angular frequency ω s and emits the signal light (6a), and the signal light (6a) and the Gran Taylor polarizing prism to linearly polarized light (9), receives the output of the signal generator (2), a constant angular frequency omega g
The gate light source (7) that oscillates at and emits the gate light (7a) and the polarization beam splitter (1
0), the signal light (6a) and the gate light (7a) are combined on the same optical axis, the beam splitter (11) and the light emitted from the beam splitter (11) are incident, and the signal light (6a) and the gate are input. Second harmonic (14b, 14c) of light (7a) and sum frequency light (14a)
The non-linear crystal (14) that emits light by the first-type phase matching, and the central wavelength is variable, and the output of the non-linear crystal (14) is used as an input for both the signal light (6a) and the gate light (7a ・ 8a). Second harmonic
Optical variable BPF (19) that removes (14b ・ 14c) and transmits only sum frequency light (14a), and moving stage group (13) that adjusts the angle of the nonlinear crystal (14)
And the nonlinear crystal (14) is phase-matched to the first kind and the second harmonics (14b and 14c) of the signal light (6a) and the gate light (7a) and the sum frequency light (14a)
ROM (16) that stores the optimum phase matching angle (θ opt , φ opt ) that generates the, and a control circuit (15) that controls the position of the moving stage group (13) by using the output of the ROM (16) as an input, The wavelength λ s corresponding to the angular frequency ω s of the signal light source (6) is input, the center frequency of the variable optical BPF (19) is changed, and the data to be given to the control circuit (15) is set in the ROM (16). From the wavelength setting part (17), the light receiver (20) that outputs an electrical signal proportional to the light intensity of the sum frequency light (14a) that has passed through the variable optical BPF (19), and the signal generator (1 ・ 2) It is equipped with a mixer (23) which receives the electric signal of (3) as an input and generates a trigger signal of a repetition frequency Δf, and a display section (22) which receives the trigger signal from the mixer (23) as a trigger input and reproduces the waveform of the electric signal. And optical pulse waveform measuring instrument.
【請求項2】 信号発生器(2) の出力を入力とし一定の
角周波数ωg1で発振してゲート光(7a)を出射する第1の
ゲート光源(7) と、 信号発生器(2) の出力を入力とし一定の角周波数ωg2
発振してゲート光(8a)を出射する第2のゲート光源(8)
と、 信号発生器(2) の出力を入力とし、第1の出力を第1の
ゲート光源(7) に接続し、第2の出力を第2のゲート光
源(8) に接続して、波長設定部(17)の指示により信号光
(6a)の角周波数ωs に対応して駆動するゲート光源を切
り換えるスイッチ(18)と、 ゲート光源(7・8) の出力を合波してPBS(10)に出射す
る合波器(12)を備えることを特徴とする請求項1に記載
の光パルス波形測定器。
2. A first gate light source (7) which receives the output of a signal generator (2) as an input and oscillates at a constant angular frequency ω g1 to emit a gate light (7a), and a signal generator (2). Gate light source (8) that oscillates at a constant angular frequency ω g2 and emits gate light (8a) with the output of
, The output of the signal generator (2) is input, the first output is connected to the first gate light source (7), the second output is connected to the second gate light source (8), Signal light according to the setting section (17)
The switch (18) that switches the gate light source to be driven corresponding to the angular frequency ω s of (6a) and the multiplexer (12) that multiplexes the outputs of the gate light sources (7, 8) and outputs them to the PBS (10). ) Is provided, The optical pulse waveform measuring instrument of Claim 1 characterized by the above-mentioned.
【請求項3】 信号光の波長λs とゲート光の波長λg
が等しく、両光の角周波数ωs ・ωg が等しくなり、非
線形結晶から出射する両光の第2高調波の角周波数2ω
s ・2ωg が和周波光の角周波数ωと等しくなる時、ス
イッチ(18)によりゲート光源を切り換えることを特徴と
する請求項2に記載の光パルス波形測定器。
3. The wavelength of signal light λ s and the wavelength of gate light λ g
Are equal, the angular frequencies ω s · ω g of both lights are equal, and the angular frequency 2ω of the second harmonic of both lights emitted from the nonlinear crystal is
When s · 2 [omega g is equal to the angular frequency ω of the sum frequency light, the optical pulse waveform measuring device according to claim 2, wherein the switching the gate source by the switch (18).
JP6501195A 1995-02-28 1995-02-28 Light pulse waveform measuring instrument Pending JPH08233662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6501195A JPH08233662A (en) 1995-02-28 1995-02-28 Light pulse waveform measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6501195A JPH08233662A (en) 1995-02-28 1995-02-28 Light pulse waveform measuring instrument

Publications (1)

Publication Number Publication Date
JPH08233662A true JPH08233662A (en) 1996-09-13

Family

ID=13274622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6501195A Pending JPH08233662A (en) 1995-02-28 1995-02-28 Light pulse waveform measuring instrument

Country Status (1)

Country Link
JP (1) JPH08233662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980290B2 (en) 2001-08-28 2005-12-27 Yokogawa Electric Corporation Optical sampling waveform measuring apparatus
WO2008146684A1 (en) * 2007-05-25 2008-12-04 Anritsu Corporation Optical signal sampling device and its method, and optical monitor device using same and its method
CN101876571A (en) * 2010-06-08 2010-11-03 中国科学院上海光学精密机械研究所 Pulse replicating loop device used for improving single nanosecond pulse measurement dynamic range

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980290B2 (en) 2001-08-28 2005-12-27 Yokogawa Electric Corporation Optical sampling waveform measuring apparatus
WO2008146684A1 (en) * 2007-05-25 2008-12-04 Anritsu Corporation Optical signal sampling device and its method, and optical monitor device using same and its method
JPWO2008146684A1 (en) * 2007-05-25 2010-08-19 アンリツ株式会社 Optical signal sampling apparatus and method, and optical signal monitoring apparatus and method using the same
US8050558B2 (en) 2007-05-25 2011-11-01 Anritsu Corporation Optical signal sampling apparatus and method and optical signal monitor apparatus and method using the same
JP5380647B2 (en) * 2007-05-25 2014-01-08 アンリツ株式会社 Optical signal sampling apparatus and method, and optical signal monitoring apparatus and method using the same
CN101876571A (en) * 2010-06-08 2010-11-03 中国科学院上海光学精密机械研究所 Pulse replicating loop device used for improving single nanosecond pulse measurement dynamic range

Similar Documents

Publication Publication Date Title
US9407056B2 (en) Controllable multi-wavelength laser source
US7853145B2 (en) Optical switch and optical waveform monitoring apparatus
JP2002311467A (en) Device and method for generating laser light
JP2010060751A (en) Terahertz wave generation device and generation method
JP2003035603A (en) Light sampling waveform observing apparatus
US20040227942A1 (en) Active control of two orthogonal polarizations for heterodyne interferometry
JP3996815B2 (en) Optical frequency synthesizer
CN111600188A (en) Fourier mode-locked laser
JPH0815742A (en) Optical frequency stabilizer and optical frequency selector
US4569593A (en) Rotation rate measuring instrument
JPH08233662A (en) Light pulse waveform measuring instrument
US6720548B2 (en) Optical sampling waveform measuring apparatus aiming at achieving wider band
US20070111111A1 (en) Light measurement apparatus and light measurement method
JP3504592B2 (en) Pulse laser generator and X-ray generator using the same
JPH0894448A (en) Ultrahigh speed optical waveform measuring equipment
JPH09107147A (en) Design of variable coherence length high-brightness laser
JPH0716070B2 (en) Method and apparatus for stabilizing oscillation frequency intervals of a plurality of laser devices
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
JP3092757B2 (en) Optical pulse laser frequency division synchronization signal generator
EP0297556B1 (en) Emission spectral width measuring apparatus for light source
JP2011095609A (en) Optical control delay device and spectral device
JP3539931B2 (en) Sum frequency light generation method and sum frequency light generation device
JP2005091130A (en) Measuring method free from polarization dependence in optical measuring equipment, device used therefor, and compensation module for measurement
JP2549823Y2 (en) Optical frequency shifter
JPH09246644A (en) Infrared-radiation emitting device