JPH089108B2 - Joining method - Google Patents

Joining method

Info

Publication number
JPH089108B2
JPH089108B2 JP26400393A JP26400393A JPH089108B2 JP H089108 B2 JPH089108 B2 JP H089108B2 JP 26400393 A JP26400393 A JP 26400393A JP 26400393 A JP26400393 A JP 26400393A JP H089108 B2 JPH089108 B2 JP H089108B2
Authority
JP
Japan
Prior art keywords
bonding
joining
metal
ions
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26400393A
Other languages
Japanese (ja)
Other versions
JPH0796378A (en
Inventor
修 大橋
Original Assignee
科学技術庁金属材料技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁金属材料技術研究所長 filed Critical 科学技術庁金属材料技術研究所長
Priority to JP26400393A priority Critical patent/JPH089108B2/en
Publication of JPH0796378A publication Critical patent/JPH0796378A/en
Publication of JPH089108B2 publication Critical patent/JPH089108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、金属と金属、もしく
は金属とセラミックスからなる接合材料の新しい接合方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new joining method for joining materials made of metal and metal or metal and ceramics.

【従来の技術とその課題】従来、精密な部品の組立など
における、金属と金属の接合、あるいは金属とセラミッ
クスの接合に際しては、拡散接合あるいは常温接合が適
用されることが多い。この場合の拡散接合は、接合する
材料を密着させ、母材の融点以下の温度条件で塑性変形
ができるだけ生じない程度に加圧して、接合面間に生じ
る原子の拡散を利用して接合する方法であり、常温接合
は、常温で材料に大きな塑性変形を与えて接合する方法
である。この拡散接合および常温接合については、接合
する面の表面皮膜がその接合を妨げることから、接合面
の清浄化法や清浄面を維持するための方法が検討されて
おり、たとえば接合面を清浄化する目的で、接合面間に
超音波を照射する方法や、接合面間に摩擦を与える方
法、あるいは接合面にアルゴンイオンなどを照射する方
法などが試みられている。特に、接合面にアルゴンイオ
ンを照射してから接合する方法はよく試みられ、たとえ
ば、「溶接技術」1989.5、P.74、河野顕臣他2名:低温
接合技術の開発、「日本金属学会誌」55(1991)、P.100
2、高橋裕他5名:Al/Al 常温接合体組織的、機械的及
び電気特性に及ぼす接合環境の影響、「先進実装研究委
員会、第6回報告書」加柴良裕他1名:金属の常温接
合、など各種の報告がある。しかしながら、これらの報
告から明らかであるように、いずれもアルゴンイオン照
射により接合が容易となるが、接合する材料は融点の低
い金属材料に限定されるという問題がある。また、アル
ミニウムの接合においては接合部の性能が不安定である
ことが知られている。そこで、この発明は、以上の従来
技術の欠点を解消し、アルゴンイオン照射法の特徴を生
かしつつ、対象とする接合材料が従来のAlやPbや半田等
低融点材料に限定されることなく、難接合材料とされて
きた任意の材料であっても高強度に接合することを可能
とする新しい方法を提供することを目的としている。
2. Description of the Related Art Conventionally, diffusion bonding or room temperature bonding is often applied to metal-to-metal bonding or metal-ceramic bonding in the assembly of precision parts. Diffusion bonding in this case is a method in which the materials to be bonded are brought into close contact with each other, pressure is applied to a temperature below the melting point of the base material to the extent that plastic deformation does not occur as much as possible, and the diffusion of atoms generated between the bonding surfaces is used for bonding. The room temperature joining is a method of joining the materials by subjecting them to a large plastic deformation at room temperature. For this diffusion bonding and room temperature bonding, the surface film of the bonding surface hinders the bonding.Therefore, methods for cleaning the bonding surface and methods for maintaining a clean surface have been investigated. For that purpose, a method of irradiating ultrasonic waves between the joint surfaces, a method of giving friction between the joint surfaces, a method of irradiating the joint surfaces with argon ions or the like has been attempted. In particular, a method of irradiating the bonding surfaces with argon ions and then bonding is often tried. For example, “Welding Technology” 1989.5, P.74, Akemi Kono et al .: Development of low temperature bonding technology, “Journal of the Japan Institute of Metals” 55 (1991), P.100
2, Yutaka Takahashi et al. 5: Al / Al room temperature joints Influence of joining environment on structural, mechanical and electrical properties, “Advance Packaging Research Committee, 6th report” Yoshihiro Kashiba et al. 1: Metal There are various reports such as room temperature bonding. However, as is clear from these reports, in both cases, the bonding is facilitated by argon ion irradiation, but there is a problem that the bonding material is limited to a metal material having a low melting point. Further, it is known that the performance of the joint is unstable in the joining of aluminum. Therefore, the present invention eliminates the above-mentioned drawbacks of the prior art, while utilizing the characteristics of the argon ion irradiation method, the target bonding material is not limited to conventional Al or Pb or low melting point materials such as solder, It is an object of the present invention to provide a new method that enables high strength bonding of any material that has been regarded as a difficult-to-bond material.

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、金属と金属、もしくは金属とセ
ラミックスからなる接合材料の接合面をイオンもしくは
中性原子で照射して清浄化した後、接合材料の融点
(K)の30%以上の温度(K)に加熱した後、拡散接
合もしくは常温接合することを特徴とする接合方法を提
供する。そしてこの発明は、照射した接合材料を接合材
料の融点(K)の30%以上の温度(K)への加熱は10
-3Torr以上の高真空度雰囲気中で行うことや、照射する
イオンもしくは中性原子はAr、He、Ne等の不活性ガスも
しくはH2の水素ガスのイオンもしくは中性原子とするこ
とを好ましい態様としてもいる。
In order to solve the above-mentioned problems, the present invention cleans the bonding surface of a bonding material composed of metal and metal or metal and ceramics by irradiating with ions or neutral atoms. Then, a joining method is provided, which comprises heating to a temperature (K) of 30% or more of the melting point (K) of the joining material, and then performing diffusion joining or room temperature joining. According to the present invention, the irradiated bonding material is heated to a temperature (K) of 30% or more of the melting point (K) of the bonding material.
It is preferable to carry out in a high vacuum atmosphere of -3 Torr or more, and the ion or neutral atom to be irradiated is an inert gas such as Ar, He or Ne, or an ion or neutral atom of H 2 hydrogen gas. There is also an aspect.

【作用】この発明の方法においては、金属と金属、金属
とセラミックスからなる接合材料どうしを加熱・加圧し
て接合する拡散接合あるいは常温で加圧して接合する常
温接合の際に、接合を確実にするために、アルゴンイオ
ンなどの元素イオンあるいは元素の中性原子で接合面に
照射して衝突させて接合面の表面皮膜を取り除き、接合
面が清浄化される。ただ、この照射においては、接合面
の清浄化と同時に、イオンや中性原子の照射によって接
合面に照射された元素が注入され、その結果、接合面の
材質が変質し、接合が阻害されやすい。そこで、この発
明では、イオンや中性原子を照射した材料を真空中で加
熱し、接合面の清浄さを維持したまま注入された元素を
放出させて接合面の材料の特性を回復させる。この真空
中の加熱処理は注入された元素の拡散現象を利用するこ
とから、10-3Torr以上の高真空度雰囲気中で加熱温度
(K)は接合材料の融点(Tm:K)の30%の温度(0.
3Tm :K)以上とするのが特に好ましい。もちろん、よ
り低い圧力条件でも可能である。この加熱処理により特
性が回復した接合材料どうしの接合面を接触させて接合
させる。この結果、この発明においては、従来方法のア
ルゴンイオンを照射するものと異なり、アルゴンイオン
の他にAr、He、Ne等の不活性ガスもしくはH2の水素ガス
のイオンもしくは中性原子を照射することができる。ま
た、金属と金属、金属とセラミックスなどの接合に際
し、従来方法より強い接合部を得ることができ、さらに
従来方法より低い温度と、低い圧力での接合が可能とな
る。材料性能の劣化がなく接合できる。接合できる材料
も従来のAlやPbや半田の他に、Cu、Ni、Fe、Zn等の任意
の金属や合金セラミックスへと適用範囲が拡大され、特
に異種金属、異種材料の接合において反応層の形成がな
く接合できる。そして、品質のよい接合が得られる。
According to the method of the present invention, the joining is ensured during the diffusion joining in which the joining materials made of metal and the metal or the joining material consisting of the metal and the ceramic are joined together by heating and pressurizing or the room temperature joining in which the joining materials are joined together under normal temperature. In order to do so, the bonding surface is cleaned by irradiating the bonding surface with elemental ions such as argon ions or neutral atoms of the element and colliding them to remove the surface coating on the bonding surface. However, in this irradiation, at the same time as the cleaning of the bonding surface, the element irradiated on the bonding surface by the irradiation of ions or neutral atoms is injected, and as a result, the material of the bonding surface is deteriorated and the bonding is likely to be disturbed. . Therefore, in the present invention, the material irradiated with ions or neutral atoms is heated in a vacuum to release the implanted element while maintaining the cleanliness of the bonding surface to restore the characteristics of the material of the bonding surface. Since this heat treatment in vacuum utilizes the diffusion phenomenon of the injected element, the heating temperature (K) is 30% of the melting point (Tm: K) of the bonding material in a high vacuum atmosphere of 10 -3 Torr or more. Temperature (0.
It is particularly preferable that it is 3 Tm: K) or more. Of course, lower pressure conditions are also possible. The joining surfaces of the joining materials whose properties have been restored by this heat treatment are brought into contact with each other to join them. As a result, in the present invention, unlike the conventional method of irradiating with argon ions, Ar, He, Ne or other inert gas or H 2 hydrogen gas ions or neutral atoms are irradiated in addition to argon ions. be able to. Further, when joining metals and metals, or metals and ceramics, it is possible to obtain stronger joints than the conventional method, and it is possible to perform joining at a lower temperature and lower pressure than the conventional method. Can be joined without deterioration of material performance. In addition to conventional Al, Pb and solder, the range of applicable materials is expanded to Cu, Ni, Fe, Zn and other arbitrary metals and alloy ceramics. Can be joined without formation. Then, a good quality joint is obtained.

【実施例】実施例 1 接合材料には無酸素銅を使用し、照射ガス元素としてア
ルゴンを使用した。照射時間を2時間に一定として、照
射する際のアルゴンイオンのエネルギーは、加速電圧
(0.5〜5kV)によって制御した。照射した接合面
の清浄度をオージェ分析装置で、照射した材料を真空中
で加熱(200℃、10分間)した際のアルゴンの放出
の有無を質量分析器で分析した。加速電圧が0.5kV
では、接合材料の接合面の表面皮膜の構成元素、酸素、
炭素を完全に取り除くことは難しかったが、1kV以上
では接合面上の表面皮膜を完全に取り除くことができる
ことが確認された。ただ、この状態では表面には照射さ
れたアルゴンが検出され、表面はアルゴンで汚染されて
いた。そこで、さらに、アルゴン照射材料を加熱すると
表面からアルゴンが放出され、その表面にはアルゴンは
検出されなかった。実施例 2 接合材料に直径12cmの無酸素銅を使用し、照射ガス元
素としてアルゴンを使用した。イオン照射条件として、
加速電圧:5kV、照射時間:2hで無酸素銅接合材料を
イオン照射した。イオン照射後に接合材料を200℃で
5分間加熱した後、接合温度:300℃、接合圧力:2
0MPa 、接合時間:1min で接合を行った。この結果、
表1に示した通り、無酸素銅は接合した。比較例 1 イオン照射後の加熱は行わずに、他は実施例1と同一条
件にして接合を行った。実施例2と異なり、無酸素銅は
接合しなかった。
EXAMPLES Example 1 Oxygen-free copper was used as a bonding material, and argon was used as an irradiation gas element. The irradiation time was kept constant at 2 hours, and the energy of the argon ions during irradiation was controlled by the acceleration voltage (0.5 to 5 kV). The cleanliness of the irradiated joint surface was analyzed by an Auger analyzer, and the presence or absence of release of argon when the irradiated material was heated in vacuum (200 ° C., 10 minutes) was analyzed by a mass spectrometer. Accelerating voltage is 0.5kV
Then, the constituent elements of the surface film of the bonding surface of the bonding material, oxygen,
It was difficult to completely remove carbon, but it was confirmed that the surface coating on the joint surface could be completely removed at 1 kV or higher. However, in this state, irradiated argon was detected on the surface, and the surface was contaminated with argon. Therefore, when the argon irradiation material was further heated, argon was released from the surface, and argon was not detected on the surface. Example 2 Oxygen-free copper having a diameter of 12 cm was used as a bonding material, and argon was used as an irradiation gas element. As ion irradiation conditions,
The oxygen-free copper bonding material was ion-irradiated at an accelerating voltage of 5 kV and an irradiation time of 2 h. After heating the bonding material at 200 ° C. for 5 minutes after the ion irradiation, the bonding temperature: 300 ° C., the bonding pressure: 2
Bonding was performed at 0 MPa and bonding time: 1 min. As a result,
As shown in Table 1, the oxygen free copper was bonded. Comparative Example 1 Bonding was performed under the same conditions as in Example 1 except that heating after ion irradiation was not performed. Unlike Example 2, oxygen-free copper did not bond.

【表1】 表1に見られるとおり、イオン照射してそのまま接合を
行っても、接合しなかった無酸素銅(比較例1)が、実
施例2のように、イオン照射後、加熱することによっ
て、接合された。実施例 3 接合材料には直径12cmのアルミニウムを使用し、照射
ガス元素としてアルゴンを使用した。イオン照射条件と
して、加速電圧:5kV、照射時間:2hでアルミニウム
接合材料をイオン照射した。イオン照射後に接合材料を
100℃で5分間加熱した後、接合温度:30℃、接合
圧力:20MPa 、接合時間:1min で接合を行った。こ
の結果、表2に示した通り、アルミニウムは接合した。実施例 4 加熱温度150℃、加熱時間3分とする以外は、実施例
3と全く同じ接合条件で接合を行った。実施例3と同様
にアルミニウムは接合した。比較例 2 イオン照射後の加熱は行わないで、他は実施例3と同一
条件にして接合を行った。アルミニウムは接合しなかっ
た。比較例 3 比較例2と全く同じ接合材料、同じ条件で接合を行っ
た。アルミニウムは接合した。しかし、状態は不安定
で、容易に破断した。
[Table 1] As can be seen from Table 1, oxygen-free copper (Comparative Example 1) which was not joined even if the ion irradiation was performed and the joining was performed as it was, was joined by heating after the ion irradiation as in Example 2. It was Example 3 Aluminum having a diameter of 12 cm was used as a bonding material, and argon was used as an irradiation gas element. As the ion irradiation conditions, the aluminum bonding material was ion-irradiated at an acceleration voltage of 5 kV and an irradiation time of 2 hours. After the bonding material was heated at 100 ° C. for 5 minutes after the ion irradiation, bonding was performed at a bonding temperature: 30 ° C., a bonding pressure: 20 MPa, and a bonding time: 1 min. As a result, as shown in Table 2, aluminum was joined. Example 4 Joining was performed under exactly the same joining conditions as in Example 3 except that the heating temperature was 150 ° C. and the heating time was 3 minutes. Aluminum was bonded in the same manner as in Example 3. Comparative Example 2 Bonding was performed under the same conditions as in Example 3 except that heating after ion irradiation was not performed. Aluminum did not bond. Comparative Example 3 Bonding was performed under exactly the same bonding material and conditions as in Comparative Example 2. Aluminum bonded. However, the condition was unstable and it was easily broken.

【表2】 表2の比較例2〜3に見られるとおり、イオン照射後に
加熱処理を行わないで、直接そのまま接合を行っても、
イオン照射したアルミニウムは接合しなかった。しか
し、実施例3および実施例4のようにイオン照射後加熱
することによって、アルミニウムは接合した。
[Table 2] As seen in Comparative Examples 2 to 3 in Table 2, even if the heat treatment is not performed after the ion irradiation and the bonding is directly performed,
Ion-irradiated aluminum did not bond. However, as in Examples 3 and 4, the aluminum was bonded by heating after ion irradiation.

【発明の効果】この発明により、接合する材料の表面を
イオンまたは中性原子を照射して接合表面の構成皮膜を
取り除き接合面を清浄化した後、さらに真空中で加熱処
理をすることにより、イオン照射または中性原子照射に
より接合表面に注入された照射したイオンまたは中性原
子の元素を、接合表面から放出させて、接合面の清浄化
を維持したまま変質していた接合面の材質を回復させ
て、従来法では接合しなかつたり、接合しにくかった金
属と金属、あるいは金属とセラミックスの接合を容易、
かつ確実なものとする。この結果、従来のものに比して
接合品質のよい接合が得られる。さらに、適応できる接
合材料もAlやPbや半田などからCu、Ni、Fe、Znなど任意
の接合材料に範囲を拡大し得ると共に、また、照射でき
るイオン又は中性原子の元素の種類も、従来のArに限ら
ず、He、Ne等の希ガス( 不活性ガス)やH2等の水素ガス
に適用範囲を拡大することができる。
According to the present invention, by irradiating the surfaces of the materials to be bonded with ions or neutral atoms to remove the constituent coatings on the bonding surfaces and cleaning the bonding surfaces, heat treatment is further performed in a vacuum. Irradiated ions or elements of neutral atoms injected into the bonding surface by ion irradiation or neutral atom irradiation are released from the bonding surface, and the material of the bonding surface that has been deteriorated while maintaining the cleaning of the bonding surface is removed. It is possible to recover and easily bond metal to metal, or metal to ceramic, which was difficult or difficult to bond by the conventional method,
And ensure. As a result, joining with good joining quality can be obtained as compared with the conventional one. Furthermore, the applicable bonding material can be expanded from Al, Pb, solder, etc. to any bonding material such as Cu, Ni, Fe, and Zn, and the type of ion or neutral atom element that can be irradiated is also conventional. In addition to Ar, the applicable range can be expanded to rare gases (inert gas) such as He and Ne and hydrogen gas such as H 2 .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属と金属、もしくは金属とセラミック
スからなる接合材料の接合面をイオンもしくは中性原子
で照射して清浄化した後、接合材料の融点(K)の30
%以上の温度(K)に加熱した後、拡散接合若しくは常
温接合することを特徴とする接合方法。
1. The melting point (K) of the bonding material is 30 after the bonding surface of the bonding material composed of metal and metal or metal and ceramic is irradiated with ions or neutral atoms to be cleaned.
% Of the temperature (K) and then diffusion bonding or room temperature bonding.
【請求項2】 10-3Torr以上の高真空度雰囲気中で加熱
する請求項1の接合方法。
2. The bonding method according to claim 1, wherein the heating is performed in an atmosphere of a high vacuum degree of 10 −3 Torr or more.
【請求項3】 イオンもしくは中性原子がAr、He、Ne等
の不活性ガスもしくはH2の水素ガスのイオンもしくは中
性原子である請求項1または請求項2の接合方法。
3. The bonding method according to claim 1, wherein the ions or neutral atoms are ions or neutral atoms of an inert gas such as Ar, He or Ne or a hydrogen gas of H 2 .
JP26400393A 1993-09-29 1993-09-29 Joining method Expired - Lifetime JPH089108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26400393A JPH089108B2 (en) 1993-09-29 1993-09-29 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26400393A JPH089108B2 (en) 1993-09-29 1993-09-29 Joining method

Publications (2)

Publication Number Publication Date
JPH0796378A JPH0796378A (en) 1995-04-11
JPH089108B2 true JPH089108B2 (en) 1996-01-31

Family

ID=17397202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26400393A Expired - Lifetime JPH089108B2 (en) 1993-09-29 1993-09-29 Joining method

Country Status (1)

Country Link
JP (1) JPH089108B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541976A1 (en) * 1995-11-10 1997-05-15 Ego Elektro Blanc & Fischer Electrical circuit
TW450861B (en) * 1998-05-13 2001-08-21 Toyo Kohan Co Ltd Manufacturing method of a combination material of metal foil and ceramic, and metal foil laminated ceramic substrate
JP4162094B2 (en) * 2006-05-30 2008-10-08 三菱重工業株式会社 Devices by room temperature bonding, device manufacturing method and room temperature bonding apparatus
JP4172806B2 (en) 2006-09-06 2008-10-29 三菱重工業株式会社 Room temperature bonding method and room temperature bonding apparatus
JP4801752B2 (en) * 2009-02-27 2011-10-26 三菱重工業株式会社 Wafer bonding apparatus and wafer bonding method
JP5624777B2 (en) * 2010-03-05 2014-11-12 昭和電工株式会社 Method for fixing silicon carbide seed crystal and method for producing silicon carbide single crystal
WO2013133320A1 (en) * 2012-03-09 2013-09-12 株式会社ニコン Laminated piezoelectric element and method for manufacturing same

Also Published As

Publication number Publication date
JPH0796378A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
JPH089108B2 (en) Joining method
US2800710A (en) Method of bonding metal to ceramic
JP2999760B2 (en) Method for producing beryllium-copper alloy HIP joint and HIP joint
JPH0229634B2 (en)
CN112457041B (en) Ceramic connection method based on laser surface activation
JPS60166165A (en) Joining method of metal and ceramics
JPS59225893A (en) Joining method of ti or ti alloy to al or al alloy
JPH07330455A (en) Method for joining ceramic material and metallic material
JPH0520392B2 (en)
JPH0623583A (en) Brazing material for aluminium alloy and brazing joined body
JPS58185761A (en) Diffusion bonding method for material comprising aluminum mainly
JPH0699317A (en) Splicing method
JPS63112095A (en) Material and method for joining graphite to metallic material
US2838390A (en) Method of making metal-to-ceramic seals
JP2854619B2 (en) Joining method
JPS63212077A (en) Solid phase joining method
JP2676413B2 (en) Method for joining graphite and titanium or titanium alloy
JP3215554B2 (en) Method of joining materials with different coefficients of thermal expansion
JPS6281268A (en) Soldering method
JPH0337166A (en) Adhesion between ceramics and metal
JPS60166275A (en) Bonding of ceramic and metal
JPS6027481A (en) Low-pressure diffusion joining method
JPS61103685A (en) Method for diffused junction
JP3061077B2 (en) Manufacturing method of composite electrical contact material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term