JPH088429A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH088429A
JPH088429A JP6140564A JP14056494A JPH088429A JP H088429 A JPH088429 A JP H088429A JP 6140564 A JP6140564 A JP 6140564A JP 14056494 A JP14056494 A JP 14056494A JP H088429 A JPH088429 A JP H088429A
Authority
JP
Japan
Prior art keywords
silicon carbide
semiconductor
layer
trench
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6140564A
Other languages
Japanese (ja)
Inventor
Masami Naito
正美 内藤
Norihito Tokura
規仁 戸倉
Hiroyuki Kano
浩之 加納
Hiroo Fuma
弘雄 夫馬
Hidemitsu Hayashi
秀光 林
Kazutoshi Miwa
和利 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, NipponDenso Co Ltd filed Critical Toyota Central R&D Labs Inc
Priority to JP6140564A priority Critical patent/JPH088429A/en
Publication of JPH088429A publication Critical patent/JPH088429A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To lower on-resistance by making the carrier moving direction of a channel formed on the side surface of a trench nearly coincide with the axial direction for which the carrier effective masses is the second smallest out of the axial directions of three-dimensional orthogonal coordinates in the crystal structure of silicon carbide. CONSTITUTION:The carrier moving direction of a channel formed on the side surface of a trench 6 is set as the <0001> axial direction of 4H silicon carbide (the direction vertical to the surface where a semiconductor substrate 14 comes into contact with a p-type epitaxial layer 3 is the <0001> axial direction of 4H silicon carbide). A current passes the channel part of the trench 6 side surface and flows in the longitudinal direction. The electron moving direction of the channel is that of the axial direction with second smallest of the effective electron masses out of the axial directions of the three-dimensional orthogonal coordinates in the crystal structure of silicon carbide. Since the effective electron mass is small and the electron mobility is large in the electron moving direction, characteristics of low on-resistance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置、例えば、
絶縁ゲート型電界効果トランジスタ、とりわけ大電力用
の縦型MOSFETに関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device, for example,
The present invention relates to an insulated gate field effect transistor, and more particularly to a vertical MOSFET for high power.

【0002】[0002]

【従来の技術】近年、電力用トランジスタとしてシリコ
ン単結晶材料を使用して作製される縦型パワーMOSF
ETが多用されている。電力用トランジスタの損失を低
減するためにはオン抵抗の低減が必要であり、効果的に
オン抵抗低減が可能な素子構造として図9に示すトレン
チゲート型パワーMOSFET(例えば、特開昭59−
8374号公報)が提案されている。トレンチゲート型
パワーMOSFETはn型半導体基板20上にn型エピ
タキシャル層21が形成され、n型エピタキシャル層2
1上にp型拡散層22が形成され、さらに、p型拡散層
22の所定領域にn型拡散層23が形成されている。
又、n型拡散層23とp型拡散層22を貫通してn型エ
ピタキシャル層21に達するトレンチ24が形成され、
トレンチ24内にはゲート酸化膜層25を介してポリシ
リコン層26が充填されている。ポリシリコン層26の
上面には酸化膜層27が形成され、酸化膜層27上を含
むn型拡散層23上にはアルミ層28が形成されてい
る。又、n型半導体基板20の裏面にはドレイン電極層
29が形成されている。そして、電流がトレンチ24側
面のチャネル部を通じて縦方向(表面に対して垂直方
向)に流れる。
2. Description of the Related Art In recent years, a vertical power MOSF manufactured by using a silicon single crystal material as a power transistor.
ET is heavily used. In order to reduce the loss of the power transistor, it is necessary to reduce the on-resistance, and as a device structure capable of effectively reducing the on-resistance, a trench gate type power MOSFET shown in FIG.
No. 8374) has been proposed. In the trench gate type power MOSFET, the n-type epitaxial layer 21 is formed on the n-type semiconductor substrate 20, and the n-type epitaxial layer 2 is formed.
1, a p-type diffusion layer 22 is formed, and an n-type diffusion layer 23 is further formed in a predetermined region of the p-type diffusion layer 22.
Further, a trench 24 penetrating the n-type diffusion layer 23 and the p-type diffusion layer 22 to reach the n-type epitaxial layer 21 is formed,
A polysilicon layer 26 is filled in the trench 24 via a gate oxide film layer 25. An oxide film layer 27 is formed on the upper surface of the polysilicon layer 26, and an aluminum layer 28 is formed on the n-type diffusion layer 23 including the oxide film layer 27. A drain electrode layer 29 is formed on the back surface of the n-type semiconductor substrate 20. Then, the current flows in the vertical direction (the direction perpendicular to the surface) through the channel portion on the side surface of the trench 24.

【0003】一方、図9に示したトレンチゲート型パワ
ーMOSFETを炭化珪素にて構成することが行われて
いる(例えば、特開平4−239778号公報)。この
場合、一般に面方位(0001)の6H炭化珪素が用い
られる。ここで、「H」は六方晶系であることを示し、
そのHの前の数値N(=6)は原子積層がN層で1周期
である結晶構造を示す。
On the other hand, the trench gate type power MOSFET shown in FIG. 9 is made of silicon carbide (for example, Japanese Patent Laid-Open No. 4-239778). In this case, 6H silicon carbide having a plane orientation (0001) is generally used. Here, “H” indicates that it is a hexagonal system,
The numerical value N (= 6) before the H indicates a crystal structure in which the atomic stack is an N layer and has one cycle.

【0004】[0004]

【発明が解決しようとする課題】ところが、面方位(0
001)の6H炭化珪素を用いたトレンチゲート型パワ
ーMOSFETにおいては、チャネル抵抗を含めた素子
全体のオン抵抗が高くなってしまう。
However, the plane orientation (0
In the trench gate type power MOSFET using 6H silicon carbide of (001), the ON resistance of the entire device including the channel resistance becomes high.

【0005】そこで、この発明の目的は、オン抵抗を低
くすることができる半導体装置を提供することにある。
Therefore, an object of the present invention is to provide a semiconductor device capable of reducing the on-resistance.

【0006】[0006]

【課題を解決するための手段】トレンチゲート型MOS
FETにおいては、電流がトレンチ側面のチャネル部を
通じて縦方向に流れるので、チャネル抵抗を含めた素子
全体のオン抵抗は基板材料である炭化珪素の縦方向のキ
ャリア移動度に依存する。このため、トレンチゲート型
MOSFETのオン抵抗を低くするには縦方向のキャリ
ア移動度を大きくすればよい。
Means for Solving the Problems Trench gate type MOS
In the FET, a current flows in the vertical direction through the channel portion on the side surface of the trench, so that the on-resistance of the entire device including the channel resistance depends on the carrier mobility in the vertical direction of silicon carbide that is the substrate material. Therefore, in order to reduce the on-resistance of the trench gate type MOSFET, the carrier mobility in the vertical direction may be increased.

【0007】そこで、本発明者らは電子移動度の結晶方
位の依存性について調べた。それには、電子移動度に関
係する有効質量の結晶方位依存性を調べることから行っ
た。実験値や経験定数を参照しない第1原理計算(例え
ば、日本物理学会誌第48巻第6号(1993年)P4
25)により、2Hと4Hと6Hの炭化珪素の電子有効
質量を求めた。六方晶系炭化珪素の基本単位格子を図8
に示す三次元直交座標にて表し、その三次元直交座標の
各軸方向(x,y,z方向)の電子有効質量m xx * ,m
yy * ,mzz * と、真空中での電子の有効質量mo の比で
ある電子有効質量比m* /mo の値は、表1に示す結果
となった。尚、図8において、a,b,cは結晶軸を示
す。
[0007] Therefore, the present inventors have found that the crystallinity of electron mobility
I investigated the dependence of position. For that,
From investigating the crystal orientation dependence of the effective mass
It was First-principles calculations that do not refer to experimental values or empirical constants (eg
For example, P4, Vol. 48, No. 6 (1993) of the Physical Society of Japan
25), the electron effectiveness of 2H, 4H, and 6H silicon carbide
The mass was calculated. The basic unit cell of hexagonal silicon carbide is shown in FIG.
The three-dimensional rectangular coordinates shown in
Electron effective mass m in each axial direction (x, y, z direction) xx *, M
yy *, Mzz *And the effective mass m of electrons in vacuumoIn the ratio of
Certain electron effective mass ratio m*/ MoIs the result shown in Table 1.
Became. In FIG. 8, a, b, and c indicate crystal axes.
You

【0008】[0008]

【表1】 [Table 1]

【0009】又、有効質量m* と移動度μとの関係は、
衝突間隔τc を用いて、 μ=q・τc /m*・・・(1) と表すことができる(ただし、qは電気素量)。即ち、
有効質量m* が小さいほど移動度μが大きいと言える。
The relationship between the effective mass m * and the mobility μ is
Using the collision interval τ c , it can be expressed as μ = qτ c / m * ... (1) (where q is an elementary charge). That is,
It can be said that the smaller the effective mass m *, the larger the mobility μ.

【0010】従来の面方位(0001)の6H炭化珪素
を用いたトレンチゲート型MOSFETにおいては、チ
ャネルの電子移動方向が<0001>軸方向(z方向)
となり、電子有効質量比m* /mo は表1から「1.3
9」であり、大きな値となり電子移動度μが小さく、オ
ン抵抗は大きい。
In the conventional trench gate type MOSFET using 6H silicon carbide having a plane orientation (0001), the electron movement direction of the channel is the <0001> axis direction (z direction).
Therefore, the electron effective mass ratio m * / m o can be calculated from Table 1 as “1.3
9 ”, which is a large value, the electron mobility μ is small, and the on-resistance is large.

【0011】そこで、請求項1に記載の発明は、第1導
電型の低抵抗層と当該低抵抗層上にエピタキシャル成長
にて形成された第1導電型の高抵抗層の二層にて構成さ
れた炭化珪素よりなる半導体基板と、前記半導体基板の
表面上にエピタキシャル成長にて形成された炭化珪素よ
りなる第2導電型の半導体層と、前記半導体層内の所定
領域に前記半導体基板と隔てて形成された第1導電型の
半導体領域と、前記半導体領域と半導体層を貫通し前記
半導体基板に達する溝と、前記溝の内面に形成されたゲ
ート絶縁膜と、前記溝内における前記ゲート絶縁膜の内
側に形成されたゲート電極層と、前記半導体層表面およ
び半導体領域表面に形成されたソース電極層と、前記半
導体基板の裏面側に形成されたドレイン電極層とを備え
る半導体装置において、前記溝の側面に形成されるチャ
ネルのキャリア移動方向を、炭化珪素の結晶構造での三
次元直交座標の各軸方向におけるキャリア有効質量のう
ち最も小さい、あるいは2番目に小さい軸方向とほぼ一
致させた半導体装置をその要旨とする。
Therefore, the invention according to claim 1 is composed of two layers of a first conductivity type low resistance layer and a first conductivity type high resistance layer formed on the low resistance layer by epitaxial growth. A semiconductor substrate made of silicon carbide, a second conductivity type semiconductor layer made of silicon carbide formed on the surface of the semiconductor substrate by epitaxial growth, and formed in a predetermined region in the semiconductor layer separately from the semiconductor substrate. A first conductive type semiconductor region, a groove penetrating the semiconductor region and the semiconductor layer to reach the semiconductor substrate, a gate insulating film formed on an inner surface of the groove, and a gate insulating film in the groove. A semiconductor device comprising a gate electrode layer formed inside, a source electrode layer formed on the surface of the semiconductor layer and a semiconductor region surface, and a drain electrode layer formed on the back surface side of the semiconductor substrate. Then, the carrier movement direction of the channel formed on the side surface of the groove is almost the same as the smallest or second smallest axis of the effective carrier mass in each axial direction of the three-dimensional orthogonal coordinates in the silicon carbide crystal structure. The matched semiconductor devices will be the gist.

【0012】請求項2に記載の発明は、請求項1に記載
の発明における前記炭化珪素を六方晶系炭化珪素とした
半導体装置をその要旨とする。請求項3に記載の発明
は、請求項1に記載の発明における前記溝の側面に形成
されるチャネルのキャリア移動方向を、4H炭化珪素の
<0001>軸方向とほぼ一致させた半導体装置をその
要旨とする。
[0012] The gist of the invention described in claim 2 is a semiconductor device in which the silicon carbide in the invention described in claim 1 is hexagonal system silicon carbide. According to a third aspect of the present invention, in the semiconductor device according to the first aspect of the present invention, the carrier movement direction of the channel formed on the side surface of the groove is substantially aligned with the <0001> axis direction of 4H silicon carbide. Use as a summary.

【0013】請求項4に記載の発明は、請求項1に記載
の発明における前記溝の側面に形成されるチャネルのキ
ャリア移動方向を、2H炭化珪素の<0001>軸方向
とほぼ一致させた半導体装置をその要旨とする。
According to a fourth aspect of the present invention, in the semiconductor according to the first aspect of the present invention, the carrier movement direction of the channel formed on the side surface of the groove is made substantially coincident with the <0001> axis direction of 2H silicon carbide. The device is the gist.

【0014】[0014]

【作用】請求項1,2に記載の発明は、電流が溝側面の
チャネル部を通じて縦方向に流れる。このとき、チャネ
ルのキャリア移動方向が、炭化珪素の結晶構造での三次
元直交座標の各軸方向におけるキャリア有効質量のうち
最も小さい、あるいは2番目に小さな軸方向とほぼ一致
しているので、キャリア移動方向においてキャリア有効
質量が小さくキャリア移動度が大きいため、オン抵抗の
低い特性が得られる。
According to the present invention, the electric current flows in the vertical direction through the channel portion on the side surface of the groove. At this time, since the carrier moving direction of the channel is substantially the same as the smallest or second smallest axial effective mass of the carrier effective mass in each axial direction of the three-dimensional orthogonal coordinates in the silicon carbide crystal structure, Since the effective carrier mass is small and the carrier mobility is large in the moving direction, low on-resistance characteristics can be obtained.

【0015】請求項3に記載の発明は、請求項1に記載
の発明の作用に加え、溝の側面に形成されるチャネルの
キャリア移動方向が4H炭化珪素の<0001>軸方向
とほぼ一致しているので、キャリア移動方向においてキ
ャリア有効質量が小さくキャリア移動度が大きいため、
オン抵抗の低い特性が得られる。
According to the invention described in claim 3, in addition to the action of the invention described in claim 1, the carrier movement direction of the channel formed on the side surface of the groove is substantially coincident with the <0001> axis direction of 4H silicon carbide. Therefore, since the effective carrier mass is small and the carrier mobility is large in the carrier moving direction,
A characteristic with low on-resistance can be obtained.

【0016】請求項4に記載の発明は、請求項1に記載
の発明の作用に加え、溝の側面に形成されるチャネルの
キャリア移動方向が2H炭化珪素の<0001>軸方向
とほぼ一致しているので、キャリア移動方向においてキ
ャリア有効質量が小さくキャリア移動度が大きいため、
オン抵抗の低い特性が得られる。
According to the invention described in claim 4, in addition to the function of the invention described in claim 1, the carrier movement direction of the channel formed on the side surface of the groove is substantially coincident with the <0001> axis direction of 2H silicon carbide. Therefore, since the effective carrier mass is small and the carrier mobility is large in the carrier moving direction,
A characteristic with low on-resistance can be obtained.

【0017】[0017]

【実施例】【Example】

(第1実施例)以下、この発明を具体化した第1実施例
を図面に従って説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0018】図1に本実施例のトレンチゲート型パワー
MOSFET(縦型パワーMOSFET)の断面図を示
す。第1導電型の低抵抗層としてのn+ 型単結晶炭化珪
素(以下、SiC)基板1は、4HSiC(0001)
カーボン面を表面とし、かつ低抵抗でキャリア密度が5
×1018cm-3程度である。このn+ 型単結晶SiC基
板1上に、第1導電型の高抵抗層としてのn型エピタキ
シャル層2と、第2導電型の半導体層としてのp型エピ
タキシャル層3が順次積層されている。n型エピタキシ
ャル層2は、キャリア密度が1×1016cm-3程度で厚
さが10μm程度となっている。又、p型エピタキシャ
ル層3は、キャリア密度が1×1017cm-3程度で厚さ
が2μm程度となっており、該p型エピタキシャル層3
の表面4が素子表面となっている。
FIG. 1 is a sectional view of a trench gate type power MOSFET (vertical power MOSFET) of this embodiment. The n + -type single crystal silicon carbide (hereinafter referred to as SiC) substrate 1 as the first conductivity type low resistance layer is formed of 4HSiC (0001).
The carbon surface is the surface, and the resistance is low and the carrier density is 5
It is about 10 18 cm -3 . On this n + type single crystal SiC substrate 1, an n type epitaxial layer 2 as a first conductivity type high resistance layer and a p type epitaxial layer 3 as a second conductivity type semiconductor layer are sequentially laminated. The n-type epitaxial layer 2 has a carrier density of about 1 × 10 16 cm −3 and a thickness of about 10 μm. The p-type epitaxial layer 3 has a carrier density of about 1 × 10 17 cm −3 and a thickness of about 2 μm.
The surface 4 of is the element surface.

【0019】本実施例では、n+ 型単結晶SiC基板1
とn型エピタキシャル層2とから半導体基板14が構成
されている。p型エピタキシャル層3の表面4における
所定領域には、第1導電型の半導体領域としてのn+
ース領域5が形成され、n+ ソース領域5はキャリア濃
度が1×1019cm-3程度で接合深さが0.5μm程度
となっている。又、p型エピタキシャル層3の表面4の
所定位置にトレンチ6が形成されている。このトレンチ
6は、n+ ソース領域5とp型エピタキシャル層3を貫
通しn型エピタキシャル層2に達し、p型エピタキシャ
ル層3の表面にほぼ垂直な側面6aおよびp型エピタキ
シャル層3の表面に平行な底面6bを有する。つまり、
トレンチ6の側面6aは4HSiCの<0001>軸方
向となっている。
In this embodiment, an n + type single crystal SiC substrate 1 is used.
And the n-type epitaxial layer 2 form a semiconductor substrate 14. An n + source region 5 as a semiconductor region of the first conductivity type is formed in a predetermined region on the surface 4 of the p-type epitaxial layer 3, and the n + source region 5 has a carrier concentration of about 1 × 10 19 cm −3 . The junction depth is about 0.5 μm. A trench 6 is formed at a predetermined position on the surface 4 of the p-type epitaxial layer 3. The trench 6 penetrates the n + source region 5 and the p-type epitaxial layer 3 to reach the n-type epitaxial layer 2, and is parallel to the side surface 6 a substantially perpendicular to the surface of the p-type epitaxial layer 3 and the surface of the p-type epitaxial layer 3. A bottom surface 6b. That is,
The side surface 6a of the trench 6 is in the <0001> axis direction of 4HSiC.

【0020】トレンチ6の内部には、ゲート絶縁膜とし
てのゲート熱酸化膜7を介してゲート電極層8が配置さ
れている。ここで、ゲート熱酸化膜7は1100℃で5
時間程度の一度の熱酸化工程により形成され、トレンチ
6の側面6aに位置する厚さが50nm程度の薄いゲー
ト熱酸化膜7aと、トレンチ6の底面6bに位置する厚
さが500nm程度の厚いゲート熱酸化膜7bからな
る。さらに、ゲート熱酸化膜7はn+ ソース領域5上に
も形成され、この領域におけるゲート熱酸化膜7cも厚
さが500nm程度に厚くなっている。
Inside the trench 6, a gate electrode layer 8 is arranged via a gate thermal oxide film 7 as a gate insulating film. Here, the gate thermal oxide film 7 is 5 at 1100 ° C.
A thin gate thermal oxide film 7a having a thickness of about 50 nm located on the side surface 6a of the trench 6 and a thick gate having a thickness of about 500 nm located on the bottom surface 6b of the trench 6, which are formed by a single thermal oxidation process for about an hour. The thermal oxide film 7b is used. Further, the gate thermal oxide film 7 is also formed on the n + source region 5, and the gate thermal oxide film 7c in this region is also thickened to about 500 nm.

【0021】又、ゲート電極層8は、ゲート熱酸化膜7
に接しリンをドープした第1のポリシリコン層8aと第
2のポリシリコン層8bからなる。ゲート電極層8上に
は、厚さが1μm程度の層間絶縁膜9が配置されてい
る。さらに、層間絶縁膜9上を含めたn+ ソース領域5
の表面およびp型エピタキシャル層3の表面には、ソー
ス電極層10が配置され、このソース電極層10はn+
ソース領域5とp型エピタキシャル層3に共に接してい
る。n+ 型単結晶SiC基板1の裏面には、同基板1に
接するドレイン電極層11が設けられている。
The gate electrode layer 8 is the gate thermal oxide film 7
Of the first polysilicon layer 8a and the second polysilicon layer 8b which are in contact with each other and are doped with phosphorus. An interlayer insulating film 9 having a thickness of about 1 μm is arranged on the gate electrode layer 8. Furthermore, the n + source region 5 including the interlayer insulating film 9 is also included.
The surface and the p-type epitaxial layer 3 on the surface, is arranged a source electrode layer 10, the source electrode layer 10 is n +
Both the source region 5 and the p-type epitaxial layer 3 are in contact with each other. On the back surface of the n + type single crystal SiC substrate 1, a drain electrode layer 11 that is in contact with the substrate 1 is provided.

【0022】ここで、トレンチ6の側面6aのゲート熱
酸化膜7aは薄いために閾電圧を低くでき(例えば2
V)、しかもトレンチ6の底面6bのゲート熱酸化膜7
bは厚いためにゲート・ドレイン間の耐圧を高く(例え
ば500V以上)できる。
Since the gate thermal oxide film 7a on the side surface 6a of the trench 6 is thin, the threshold voltage can be lowered (for example, 2
V) and the gate thermal oxide film 7 on the bottom surface 6b of the trench 6
Since b is thick, the breakdown voltage between the gate and the drain can be increased (for example, 500 V or more).

【0023】このトレンチゲート型パワーMOSFET
の製造工程を、図2〜6を用いて、詳細に説明する。ま
ず、図2に示すように、表面の面方位が(0001)カ
ーボン面である低抵抗のn+ 型単結晶4H−SiC基板
1を用意する。そして、そのn+ 型単結晶4H−SiC
基板1の表面に、キャリア密度が1×1016cm-3程度
で厚さが10μm程度のn型エピタキシャル層2と、キ
ャリア密度が1×1017cm-3程度で厚さが2μm程度
のp型エピタキシャル層3を順次積層する。
This trench gate type power MOSFET
The manufacturing process of will be described in detail with reference to FIGS. First, as shown in FIG. 2, a low-resistance n + -type single crystal 4H—SiC substrate 1 whose surface orientation is a (0001) carbon face is prepared. Then, the n + type single crystal 4H-SiC
On the surface of the substrate 1, an n-type epitaxial layer 2 having a carrier density of about 1 × 10 16 cm −3 and a thickness of about 10 μm, and a p-type layer having a carrier density of about 1 × 10 17 cm −3 and a thickness of about 2 μm. The type epitaxial layers 3 are sequentially laminated.

【0024】このようにして、n+ 型単結晶4H−Si
C基板1とn型エピタキシャル層2とからなる半導体基
板14を形成する。続いて、図3に示すように、p型エ
ピタキシャル層3に対しマスク材12を用いてイオン注
入法により表面のキャリア濃度が1×1019cm-3程度
で接合深さが0.5μm程度のn+ ソース領域5を形成
する。
In this way, the n + -type single crystal 4H--Si
A semiconductor substrate 14 including the C substrate 1 and the n-type epitaxial layer 2 is formed. Subsequently, as shown in FIG. 3, a mask material 12 is used for the p-type epitaxial layer 3 by an ion implantation method so that the carrier concentration on the surface is about 1 × 10 19 cm −3 and the junction depth is about 0.5 μm. The n + source region 5 is formed.

【0025】次に、図4に示すように、マスク材13を
用いて反応性イオンエッチング(RIE)法により、n
+ ソース領域5とp型エピタキシャル層3を貫通しn型
エピタキシャル層2に達するトレンチ6を形成する。こ
のトレンチ6は、p型エピタキシャル層3の表面にほぼ
垂直な側面6aおよびp型エピタキシャル層3の表面に
平行な底面6bを有する。
Next, as shown in FIG. 4, n is formed by a reactive ion etching (RIE) method using a mask material 13.
A trench 6 penetrating the source region 5 and the p-type epitaxial layer 3 and reaching the n-type epitaxial layer 2 is formed. The trench 6 has a side surface 6 a substantially perpendicular to the surface of the p-type epitaxial layer 3 and a bottom surface 6 b parallel to the surface of the p-type epitaxial layer 3.

【0026】続いて、図5に示すように、マスク材13
を除去した後、熱酸化法によりゲート熱酸化膜7を11
00℃で5時間程度の一度の熱酸化工程により形成す
る。この熱酸化によりトレンチ6の側面6aに位置する
厚さが50nm程度の薄いゲート熱酸化膜7aと、トレ
ンチ6の底面6bに位置する厚さが500nm程度の厚
いゲート熱酸化膜7bが形成される。さらに、n+ ソー
ス領域5上には厚さが500nm程度の厚いゲート熱酸
化膜7cが形成される。
Subsequently, as shown in FIG. 5, the mask material 13
After removing the film, the gate thermal oxide film 7 is removed by thermal oxidation.
It is formed by a single thermal oxidation step at 00 ° C. for about 5 hours. By this thermal oxidation, a thin gate thermal oxide film 7a having a thickness of about 50 nm located on the side surface 6a of the trench 6 and a thick gate thermal oxide film 7b having a thickness of about 500 nm located on the bottom surface 6b of the trench 6 are formed. . Further, a thick gate thermal oxide film 7c having a thickness of about 500 nm is formed on n + source region 5.

【0027】続いて、図6に示すように、トレンチ6内
を、第1及び第2ポリシリコン層8a,8bにより順次
埋め戻す。しかる後、図1に示すように、第1及び第2
ポリシリコン層8a,8b上を含めたゲート熱酸化膜7
上に、CVD法により層間絶縁層9を形成し、ソースコ
ンタクト予定位置のn+ ソース領域5とp型エピタキシ
ャル層3の表面上にあるゲート熱酸化膜7と層間絶縁層
9を除去する。その後、n+ ソース領域5とp型エピタ
キシャル層3及び層間絶縁層9上にソース電極層10を
形成するとともに、n+ 型単結晶4H−SiC基板1の
裏面にドレイン電極層11を形成し、トレンチゲート型
SiCパワーMOSFETを完成する。
Subsequently, as shown in FIG. 6, the inside of the trench 6 is sequentially backfilled with the first and second polysilicon layers 8a and 8b. Then, as shown in FIG. 1, the first and second
Gate thermal oxide film 7 including on the polysilicon layers 8a and 8b
An interlayer insulating layer 9 is formed thereon by the CVD method, and the gate thermal oxide film 7 and the interlayer insulating layer 9 on the surface of the n + source region 5 at the source contact planned position and the p-type epitaxial layer 3 are removed. Then, the source electrode layer 10 is formed on the n + source region 5, the p-type epitaxial layer 3 and the interlayer insulating layer 9, and the drain electrode layer 11 is formed on the back surface of the n + -type single crystal 4H—SiC substrate 1. A trench gate type SiC power MOSFET is completed.

【0028】このように製造されたトレンチゲート型S
iCパワーMOSFETにおいては次のように動作す
る。図7に示すように、ゲート電極層8に正の電圧を印
加することにより、電子電流はソース電極層10からn
+ ソース領域5、トレンチ6の側面6aでのp型エピタ
キシャル層3の端面に形成されるチャネル領域、n型エ
ピタキシャル層2、n+ 型単結晶4H−SiC基板1、
ドレイン電極層11の経路で流れる。このように、トレ
ンチ6の側面6aでのp型エピタキシャル層3の端面が
チャネルになり、ソース・ドレイン間に電流が流れる。
このとき、チャネルは縦方向、即ち、4HSiCにおけ
る<0001>軸方向に形成される。その結果、チャネ
ル部では電子は<0001>軸方向に流れ、又、n型エ
ピタキシャル層2とn+ 型単結晶4H−SiC基板1で
も電子は<0001>軸方向に流れる。従って、トレン
チゲート型パワーMOSFETのオン抵抗を考えた場
合、オン抵抗を占めるチャネル抵抗とエピタキシャル抵
抗は<0001>軸方向の電子移動度に依存する。4H
SiCの<0001>軸方向の電子移動度は表1の電子
有効質量比の値から6HSiCの<0001>軸方向の
電子移動度に比べ4倍(≒1.39/0.31)大き
く、表面の面方位が(0001)である4HSiCを用
いることにより6HSiCを用いた場合に比べオン抵抗
は1/4以下になる。
The trench gate type S manufactured as described above
The iC power MOSFET operates as follows. By applying a positive voltage to the gate electrode layer 8 as shown in FIG.
+ Source region 5, a channel region formed on the end face of the p-type epitaxial layer 3 on the side surface 6a of the trench 6, an n-type epitaxial layer 2, an n + -type single crystal 4H—SiC substrate 1,
It flows in the route of the drain electrode layer 11. In this way, the end surface of the p-type epitaxial layer 3 on the side surface 6a of the trench 6 serves as a channel, and a current flows between the source and drain.
At this time, the channel is formed in the vertical direction, that is, in the <0001> axis direction of 4HSiC. As a result, electrons flow in the <0001> axis direction in the channel portion, and also in the n-type epitaxial layer 2 and the n + -type single crystal 4H—SiC substrate 1, electrons flow in the <0001> axis direction. Therefore, when considering the on-resistance of the trench gate type power MOSFET, the channel resistance and the epitaxial resistance occupying the on-resistance depend on the electron mobility in the <0001> axis direction. 4H
The electron mobility in the <0001> axis direction of SiC is 4 times (≈1.39 / 0.31) larger than the electron mobility in the <0001> axis direction of 6HSiC from the value of the electron effective mass ratio in Table 1, By using 4HSiC whose plane orientation is (0001), the on-resistance becomes 1/4 or less as compared with the case of using 6HSiC.

【0029】このように本実施例では、n+ 型単結晶S
iC基板1(第1導電型の低抵抗層)と当該SiC基板
1上にエピタキシャル成長にて形成されたn型エピタキ
シャル層2(第1導電型の高抵抗層)の二層にて構成さ
れた炭化珪素よりなる半導体基板14と、半導体基板1
4の表面上にエピタキシャル成長にて形成された炭化珪
素よりなるp型エピタキシャル層3(第2導電型の半導
体層)と、p型エピタキシャル層3内の所定領域に半導
体基板14と隔てて形成されたn+ ソース領域5(第1
導電型の半導体領域)と、n+ ソース領域5とp型エピ
タキシャル層3を貫通し半導体基板14に達するトレン
チ6と、トレンチ6の内面に形成されたゲート熱酸化膜
7(ゲート絶縁膜)と、トレンチ6内におけるゲート熱
酸化膜7の内側に形成されたゲート電極層8と、p型エ
ピタキシャル層3およびn+ ソース領域5表面に形成さ
れたソース電極層10と、半導体基板14の裏面側に形
成されたドレイン電極層11とを備えるトレンチゲート
型パワーMOSFETにおいて、トレンチ6の側面に形
成されるチャネルのキャリア移動方向を、4H炭化珪素
の<0001>軸方向とした(半導体基板14とp型エ
ピタキシャル層3とが接する面に垂直な方向を4H炭化
珪素の<0001>軸方向とした)。即ち、トレンチ6
の側面に形成されるチャネルの電子移動方向を、表1に
おいて4H炭化珪素の結晶構造での三次元直交座標の各
軸方向における電子有効質量のうち2番目に小さな軸方
向とした。よって、電流がトレンチ側面のチャネル部を
通じて縦方向に流れるが、チャネルの電子移動方向が、
炭化珪素の結晶構造での三次元直交座標の各軸方向にお
ける電子有効質量のうち2番目に小さい軸方向としてい
るので、電子移動方向において電子有効質量が小さく電
子移動度が大きいため、オン抵抗の低い特性が得られ
る。 (第2実施例)次に、第2実施例を第1実施例との相違
点を中心に説明する。
As described above, in this embodiment, the n + -type single crystal S
Carbonization consisting of two layers, iC substrate 1 (first conductivity type low resistance layer) and n type epitaxial layer 2 (first conductivity type high resistance layer) formed on the SiC substrate 1 by epitaxial growth Semiconductor substrate 14 made of silicon, and semiconductor substrate 1
P type epitaxial layer 3 (second conductivity type semiconductor layer) made of silicon carbide formed by epitaxial growth on the surface of No. 4 and a semiconductor substrate 14 formed in a predetermined region in p type epitaxial layer 3. n + source region 5 (first
A conductive type semiconductor region), a trench 6 penetrating the n + source region 5 and the p type epitaxial layer 3 to reach the semiconductor substrate 14, and a gate thermal oxide film 7 (gate insulating film) formed on the inner surface of the trench 6. , The gate electrode layer 8 formed inside the gate thermal oxide film 7 in the trench 6, the source electrode layer 10 formed on the surfaces of the p-type epitaxial layer 3 and the n + source region 5, and the back surface side of the semiconductor substrate 14. In the trench gate type power MOSFET including the drain electrode layer 11 formed on the side surface of the trench 6, the carrier moving direction of the channel formed on the side surface of the trench 6 is the <0001> axis direction of 4H silicon carbide (the semiconductor substrate 14 and p The direction perpendicular to the surface in contact with the type epitaxial layer 3 was defined as the <0001> axis direction of 4H silicon carbide). That is, the trench 6
In Table 1, the electron transfer direction of the channel formed on the side surface is defined as the second smallest axial direction of the electron effective mass in each axial direction of the three-dimensional rectangular coordinates in the 4H silicon carbide crystal structure. Therefore, current flows vertically through the channel portion on the side surface of the trench, but the electron transfer direction of the channel is
Since the second smallest axis of the electron effective mass in each axis direction of the three-dimensional Cartesian coordinate in the crystal structure of silicon carbide is used, the electron effective mass is small and the electron mobility is large in the electron moving direction. Low characteristics are obtained. (Second Embodiment) Next, the second embodiment will be described focusing on the differences from the first embodiment.

【0030】本実施例では、図1におけるn+ 型単結晶
SiC基板1とn型エピタキシャル層2およびp型エピ
タキシャル層3は、2H炭化珪素で、かつ、表面の面方
位が(0001)カーボン面を用いている。
In the present embodiment, the n + type single crystal SiC substrate 1, the n type epitaxial layer 2 and the p type epitaxial layer 3 in FIG. 1 are 2H silicon carbide and the surface plane orientation is (0001) carbon plane. Is used.

【0031】よって、n+ 型単結晶SiC基板1とn型
エピタキシャル層2とが接する面に垂直な方向が2H炭
化珪素の<0001>軸方向となっている。その結果、
トレンチ6の側面に形成されるチャネルの電子移動方向
が、表1において、2H炭化珪素の結晶構造での三次元
直交座標の各軸方向における電子有効質量のうち最も小
さい軸方向となっている。
Therefore, the direction perpendicular to the surface where n + type single crystal SiC substrate 1 and n type epitaxial layer 2 are in contact is the <0001> axis direction of 2H silicon carbide. as a result,
In Table 1, the electron movement direction of the channel formed on the side surface of the trench 6 is the smallest axial direction of the electron effective masses in each axial direction of the three-dimensional orthogonal coordinates in the 2H silicon carbide crystal structure.

【0032】このように本実施例では、トレンチ6の側
面に形成されるチャネルのキャリア移動方向を、2H炭
化珪素の結晶構造での三次元直交座標の各軸方向におけ
る電子有効質量のうち最も小さい軸方向とした。その結
果、電流が流れる方向において電子有効質量が小さく、
電子移動度が大きいため、オン抵抗の低い特性が得られ
る。
As described above, in the present embodiment, the carrier moving direction of the channel formed on the side surface of the trench 6 is the smallest among the electron effective masses in the respective axial directions of the three-dimensional orthogonal coordinates in the 2H silicon carbide crystal structure. Axial direction. As a result, the electron effective mass is small in the direction of current flow,
Since the electron mobility is high, the characteristics of low on-resistance can be obtained.

【0033】尚、この発明は上記各実施例に限定される
ものではなく、上記各実施例では半導体基板として表面
の面方位が(0001)カーボン面を用いたが、表面の
面方位が(0001)シリコン面でもよい。さらに、上
記各実施例ではnチャネルMOSFETに具体化した
が、導電型のnとpを入れ換えたpチャネルMOSFE
Tとし、正孔をキャリアとして使用する場合に適用して
もよい。
The present invention is not limited to the above-mentioned embodiments. In each of the above-mentioned embodiments, a carbon face having a surface orientation of (0001) was used as a semiconductor substrate, but the surface orientation of the surface was (0001). ) It may be a silicon surface. Further, in each of the above-mentioned embodiments, the n-channel MOSFET is embodied, but the p-channel MOSFE in which the conductivity types n and p are exchanged is used.
This may be applied when T is used and holes are used as carriers.

【0034】又、トレンチ6の側面に形成されるチャネ
ルのキャリア移動方向と、炭化珪素の結晶構造での三次
元直交座標の各軸方向におけるキャリア有効質量のうち
最も小さい、あるいは2番目に小さな軸方向とは、完全
に一致させる必要はなく数度(7〜8度)ズレていても
よい。つまり、トレンチ6の側面6aが、炭化珪素の結
晶構造での三次元直交座標の各軸方向におけるキャリア
有効質量のうち最も小さい、あるいは2番目に小さな軸
方向に対し数度(7〜8度)ズレていてもよい。
The smallest or second smallest axis of carrier effective mass in the carrier movement direction of the channel formed on the side surface of trench 6 and in each axis direction of the three-dimensional orthogonal coordinates in the crystal structure of silicon carbide. The direction does not have to be completely the same, and may be shifted by several degrees (7 to 8 degrees). That is, the side surface 6a of the trench 6 has the smallest or the second smallest carrier effective mass in each axial direction of the three-dimensional orthogonal coordinates in the crystal structure of silicon carbide, or several degrees (7 to 8 degrees) with respect to the second smallest axial direction. It may be off.

【0035】尚、上記各実施例では、溝として基板表面
に垂直な側面をもつトレンチの場合について示したが、
これに限られるものではなく、エッチング条件やエッチ
ング方法(例えば、ケミカルエッチング法やLOCOS
酸化法等)を変更して、溝側面が垂直でない傾斜した側
面をもつ溝に適用してもよい。
In each of the above embodiments, the trench having the side surface perpendicular to the substrate surface is shown as the groove.
It is not limited to this, but the etching conditions and etching method (for example, chemical etching method and LOCOS
The oxidation method, etc.) may be modified to apply to a groove having inclined side surfaces where the groove side surfaces are not vertical.

【0036】[0036]

【発明の効果】以上詳述したように、請求項1,2,
3,4に記載の発明によれば、オン抵抗を低くできる優
れた効果を発揮する。
As described in detail above, claims 1, 2, and
According to the inventions of 3 and 4, an excellent effect that the on-resistance can be lowered is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device of an example.

【図2】実施例の半導体装置の製造工程を説明するため
の断面図である。
FIG. 2 is a cross-sectional view for explaining the manufacturing process of the semiconductor device of the example.

【図3】実施例の半導体装置の製造工程を説明するため
の断面図である。
FIG. 3 is a cross-sectional view for explaining the manufacturing process of the semiconductor device of the example.

【図4】実施例の半導体装置の製造工程を説明するため
の断面図である。
FIG. 4 is a cross-sectional view illustrating the manufacturing process of the semiconductor device of the example.

【図5】実施例の半導体装置の製造工程を説明するため
の断面図である。
FIG. 5 is a cross-sectional view for explaining the manufacturing process for the semiconductor device of the example.

【図6】実施例の半導体装置の製造工程を説明するため
の断面図である。
FIG. 6 is a cross-sectional view for explaining the manufacturing process for the semiconductor device of the example.

【図7】実施例の半導体装置の作用を説明するための断
面図である。
FIG. 7 is a cross-sectional view for explaining the operation of the semiconductor device of the example.

【図8】SiCでの基本単位格子を説明するための説明
図である。
FIG. 8 is an explanatory diagram for explaining a basic unit cell of SiC.

【図9】従来の半導体装置の断面図である。FIG. 9 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…n+ 型単結晶SiC基板、2…n型エピタキシャル
層、3…p型エピタキシャル層、5…n+ ソース領域、
6…トレンチ、7…ゲート熱酸化膜、8…ゲート電極
層、10…ソース電極層、11…ドレイン電極層、14
…半導体基板
1 ... n + type single crystal SiC substrate, 2 ... n type epitaxial layer, 3 ... p type epitaxial layer, 5 ... n + source region,
6 ... Trench, 7 ... Gate thermal oxide film, 8 ... Gate electrode layer, 10 ... Source electrode layer, 11 ... Drain electrode layer, 14
... Semiconductor substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸倉 規仁 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 (72)発明者 加納 浩之 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 夫馬 弘雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 林 秀光 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 三輪 和利 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Norihito Tokura, 1-chome, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Hiroyuki Kano, 41, Nagakute, Nagakute-cho, Aichi-gun, Aichi prefecture No.1 Toyota Central Research Institute Co., Ltd. (72) Hiroo Ozuma Inoue Hiroo Azuma 41 Nagakute-cho, Aichi-gun, Aichi Pref. 1 Yokota Central Research Institute Ltd. (72) Inventor Hidemitsu Hayashi Nagakute-cho, Aichi-gun Aichi 1 in Toyota Central Research Institute Co., Ltd. at 41 Nagayoji Yokodori (72) Inventor Miwa Wari 1 in Toyota Central Research Institute, Ltd. at 41 Nagayoke Yokoido, Aichi-gun, Aichi-gun

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の低抵抗層と当該低抵抗層上
にエピタキシャル成長にて形成された第1導電型の高抵
抗層の二層にて構成された炭化珪素よりなる半導体基板
と、 前記半導体基板の表面上にエピタキシャル成長にて形成
された炭化珪素よりなる第2導電型の半導体層と、 前記半導体層内の所定領域に前記半導体基板と隔てて形
成された第1導電型の半導体領域と、 前記半導体領域と半導体層を貫通し前記半導体基板に達
する溝と、 前記溝の内面に形成されたゲート絶縁膜と、 前記溝内における前記ゲート絶縁膜の内側に形成された
ゲート電極層と、 前記半導体層表面および半導体領域表面に形成されたソ
ース電極層と、 前記半導体基板の裏面側に形成されたドレイン電極層と
を備える半導体装置において、 前記溝の側面に形成されるチャネルのキャリア移動方向
を、炭化珪素の結晶構造での三次元直交座標の各軸方向
におけるキャリア有効質量のうち最も小さい、あるいは
2番目に小さい軸方向とほぼ一致させたことを特徴とす
る半導体装置。
1. A semiconductor substrate made of silicon carbide composed of two layers of a first conductivity type low resistance layer and a first conductivity type high resistance layer formed on the low resistance layer by epitaxial growth. A second conductivity type semiconductor layer made of silicon carbide formed on the surface of the semiconductor substrate by epitaxial growth, and a first conductivity type semiconductor region formed in a predetermined region in the semiconductor layer separated from the semiconductor substrate. A groove penetrating the semiconductor region and the semiconductor layer to reach the semiconductor substrate; a gate insulating film formed on the inner surface of the groove; and a gate electrode layer formed inside the gate insulating film in the groove. A semiconductor device including a source electrode layer formed on the surface of the semiconductor layer and a surface of the semiconductor region, and a drain electrode layer formed on a back surface side of the semiconductor substrate. The semiconductor carrier characterized in that the carrier moving direction of the channel is substantially the same as the smallest or second smallest axial effective carrier mass in each axial direction of the three-dimensional orthogonal coordinates in the silicon carbide crystal structure. apparatus.
【請求項2】 前記炭化珪素を六方晶系炭化珪素とした
ことを特徴とする請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the silicon carbide is hexagonal silicon carbide.
【請求項3】 前記溝の側面に形成されるチャネルのキ
ャリア移動方向を、4H炭化珪素の<0001>軸方向
とほぼ一致させたことを特徴とする請求項1に記載の半
導体装置。
3. The semiconductor device according to claim 1, wherein the carrier movement direction of the channel formed on the side surface of the groove is made substantially coincident with the <0001> axis direction of 4H silicon carbide.
【請求項4】 前記溝の側面に形成されるチャネルのキ
ャリア移動方向を、2H炭化珪素の<0001>軸方向
とほぼ一致させたことを特徴とする請求項1に記載の半
導体装置。
4. The semiconductor device according to claim 1, wherein a carrier moving direction of a channel formed on a side surface of the groove is made substantially coincident with a <0001> axis direction of 2H silicon carbide.
JP6140564A 1994-06-22 1994-06-22 Semiconductor device Pending JPH088429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140564A JPH088429A (en) 1994-06-22 1994-06-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140564A JPH088429A (en) 1994-06-22 1994-06-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH088429A true JPH088429A (en) 1996-01-12

Family

ID=15271622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140564A Pending JPH088429A (en) 1994-06-22 1994-06-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH088429A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977564A (en) * 1996-10-16 1999-11-02 Kabushiki Kaisha Toshiba Semiconductor device
JP2000509559A (en) * 1996-06-06 2000-07-25 クリー リサーチ インコーポレイテッド Silicon carbide metal insulator semiconductor field effect transistor
JP2000312003A (en) * 1999-02-23 2000-11-07 Matsushita Electric Ind Co Ltd Insulated gate type semiconductor element and manufacture thereof
JP2007207935A (en) * 2006-01-31 2007-08-16 Fuji Electric Holdings Co Ltd Process for fabricating silicon carbide semiconductor element
JP2008147232A (en) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method therefor
JP2012099834A (en) * 2011-12-19 2012-05-24 Fuji Electric Co Ltd Method of manufacturing mos gate type silicon carbide semiconductor device
WO2012098861A1 (en) * 2011-01-17 2012-07-26 パナソニック株式会社 Semiconductor device and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509559A (en) * 1996-06-06 2000-07-25 クリー リサーチ インコーポレイテッド Silicon carbide metal insulator semiconductor field effect transistor
US5977564A (en) * 1996-10-16 1999-11-02 Kabushiki Kaisha Toshiba Semiconductor device
US6246077B1 (en) 1996-10-16 2001-06-12 Kabushiki Kaisha Toshiba Semiconductor device
JP2000312003A (en) * 1999-02-23 2000-11-07 Matsushita Electric Ind Co Ltd Insulated gate type semiconductor element and manufacture thereof
JP2007207935A (en) * 2006-01-31 2007-08-16 Fuji Electric Holdings Co Ltd Process for fabricating silicon carbide semiconductor element
JP2008147232A (en) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method therefor
WO2012098861A1 (en) * 2011-01-17 2012-07-26 パナソニック株式会社 Semiconductor device and method for manufacturing same
JP2012099834A (en) * 2011-12-19 2012-05-24 Fuji Electric Co Ltd Method of manufacturing mos gate type silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
US10727330B2 (en) Semiconductor device with diode region
US10700192B2 (en) Semiconductor device having a source electrode contact trench
JP3471473B2 (en) Semiconductor device and manufacturing method thereof
JP3620513B2 (en) Silicon carbide semiconductor device
US6107142A (en) Self-aligned methods of fabricating silicon carbide power devices by implantation and lateral diffusion
US7528040B2 (en) Methods of fabricating silicon carbide devices having smooth channels
TWI390637B (en) Silicon carbide devices with hybrid well regions and methods of fabricating silicon carbide devices with hybrid well regions
US6639273B1 (en) Silicon carbide n channel MOS semiconductor device and method for manufacturing the same
JPH1168097A (en) Manufacture of silicon carbide semiconductor device
JPH0447988B2 (en)
JPH0897412A (en) Semiconductor device and its manufacture
JP2006332199A (en) SiC SEMICONDUCTOR DEVICE
JPH088429A (en) Semiconductor device
JP2019129300A (en) Semiconductor device and method for manufacturing the same
JPH10125904A (en) Silicon carbide semiconductor device
JP2006086548A (en) Field effect transistor
JP3941641B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device manufactured by the manufacturing method
JP2003249652A (en) Silicon carbide semiconductor device and its manufacturing method
JP3893734B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3415340B2 (en) Silicon carbide semiconductor device
JP3541832B2 (en) Field effect transistor and method of manufacturing the same
JP4765175B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2002289551A (en) Production method for silicon carbide semiconductor device
JP2001352065A (en) Field effect transistor, and its manufacturing method
CN113140632A (en) Groove type MOSFET device and preparation method thereof