JPH0243786A - Laser device - Google Patents

Laser device

Info

Publication number
JPH0243786A
JPH0243786A JP19497088A JP19497088A JPH0243786A JP H0243786 A JPH0243786 A JP H0243786A JP 19497088 A JP19497088 A JP 19497088A JP 19497088 A JP19497088 A JP 19497088A JP H0243786 A JPH0243786 A JP H0243786A
Authority
JP
Japan
Prior art keywords
laser
optical resonator
air space
etalon
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19497088A
Other languages
Japanese (ja)
Inventor
Koichi Wani
和邇 浩一
Yasuhiro Shimada
恭博 嶋田
Hideto Kawahara
河原 英仁
Tadaaki Miki
三木 忠明
Yoshiro Ogata
尾形 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19497088A priority Critical patent/JPH0243786A/en
Priority to CA000578540A priority patent/CA1302548C/en
Priority to EP88115902A priority patent/EP0310000B1/en
Priority to DE3889831T priority patent/DE3889831T2/en
Publication of JPH0243786A publication Critical patent/JPH0243786A/en
Priority to US07/499,206 priority patent/US4991178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain a laser device capable of retaining the quality of a monochromized laser beam for a long period by a method wherein an optical resonator and a wavelength selecting element, installed inside the optical resonator and in a depressurized atmosphere whose pressure is lower than an atmospheric pressure, are provided. CONSTITUTION:A laser device of this design is provided with an optical resonator and a single or two or more wavelength selecting elements 4 which are installed inside the optical resonator and in a depressurized atmosphere whose pressure is lower than an atmospheric pressure. For instance, laser rays in an ultraviolet region are oscillated through a discharge tube 1, which employs a mixed gas of rare gas and halogen gas as a laser medium, together with an optical resonator composed of a total reflecting mirror 2 and an output mirror 3. An air space etalon 4 serving as a wavelength selecting element is provided to an optical axis of the optical resonator. The air space etalon is kind of a Fabry-Perot etalon, provided with two parallel plane quartz plates which have an adequate refractive index toward the laser wavelength and face each other at a very small gap, and installed in an hermetically sealed vessel 5. And, the inside of the hermetically sealed vessel 5 is depressurized through a pump 6 to make its pressure equal to about 1Pa or lower.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細加工等に用いるレーザ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser device used for microfabrication and the like.

従来の技術 近年、微細加工用の光源として紫外域で発振するレーザ
装置が注目されている。中でもエキシマレーザは、レー
ザ媒質であるクリプトン、キセノンなどの希ガスとふっ
素、塩素などのハロゲンガスの組み合わせによって、3
53nmから193nmの間のいくつかの波長で強力な
発振線を得ることができる。
BACKGROUND OF THE INVENTION In recent years, laser devices that oscillate in the ultraviolet region have attracted attention as light sources for microfabrication. Among these, excimer lasers use a combination of a rare gas such as krypton or xenon as a laser medium and a halogen gas such as fluorine or chlorine.
Strong oscillation lines can be obtained at several wavelengths between 53 nm and 193 nm.

これらエキシマレーザの利得バンド幅は約1 nmと広
く、光共振器と組み合わせて発振させた場合、発振線が
0.5nm程度の線幅(半値全幅)を持つ。
The gain bandwidth of these excimer lasers is as wide as about 1 nm, and when oscillated in combination with an optical resonator, the oscillation line has a line width (full width at half maximum) of about 0.5 nm.

このように比較的広い線幅を持つレーザ装置を光源とし
て用いた場合、光の伝送系に色収差を補正した光学系を
採用する必要がある。ところが、波長が350nm以下
の紫外域では、光学系に用いるレンズの光学材料の選択
の幅が限られ、色収差補正が困難となる。したがって、
波長35Qnm以下のエキシマレーザを利用する場合、
発振線の線幅を0.005 nm程度にまで単色化する
ことが行なわれている。これによって、色収差補正しな
い光学系を採用できることから、装置の簡略化、さらに
は小型化、価格の低減を実現できる。また、集光したレ
ーザビームのパターンを極限まで小さくすることができ
、超微細加工用光源としての用途が開けてくる。
When a laser device having such a relatively wide line width is used as a light source, it is necessary to employ an optical system that corrects chromatic aberration for the light transmission system. However, in the ultraviolet region where the wavelength is 350 nm or less, the range of selection of optical materials for lenses used in the optical system is limited, making it difficult to correct chromatic aberration. therefore,
When using an excimer laser with a wavelength of 35 Qnm or less,
The line width of the oscillation line is made monochromatic to about 0.005 nm. As a result, it is possible to employ an optical system that does not correct chromatic aberration, which makes it possible to simplify the apparatus, further downsize it, and reduce its cost. Additionally, the pattern of the focused laser beam can be made as small as possible, opening up applications as a light source for ultrafine processing.

レーザの発振線幅を狭める、すなわち単色化するKuグ
レーティング、エタロンなどの波長選択素子を共振器中
に置けばよい。第3図はエアスペ−スエタロン4を用い
て発振線幅を狭めたレーザ装置の一例を示したものであ
る。エアスペースエタロンは2枚の平行・平面板を対向
させ、その間の干渉効果によって特定の波長だけを透過
させるように構成したファプリ・ベローエタロンの一種
である。エアスペースエタロンは対向する反射面の精度
、反射率によって透過帯域幅が変わるので、目的とする
発振線幅が得られるように設計、製作すればよい。対向
する面の反射率を調整するためには、使用するレーザ波
長で特定の反射率をもつコーティングが施される。エキ
シマレーザの波長域では金属酸化物の多層輔コーティン
グが一般的である。
A wavelength selection element such as a Ku grating or an etalon that narrows the oscillation line width of the laser, that is, makes it monochromatic, may be placed in the resonator. FIG. 3 shows an example of a laser device using an air space etalon 4 to narrow the oscillation line width. The air space etalon is a type of Fabry-Berrot etalon that consists of two parallel planar plates facing each other and configured to transmit only specific wavelengths due to the interference effect between them. Since the transmission band width of the air space etalon changes depending on the accuracy and reflectance of the opposing reflecting surfaces, it is only necessary to design and manufacture it so that the desired oscillation line width can be obtained. To adjust the reflectance of opposing surfaces, a coating is applied that has a specific reflectance at the laser wavelength used. Multilayer metal oxide coatings are common in the excimer laser wavelength range.

発明が解決しようとする課題 ところがレーザ共振器内では強力なレーザ光が波長選択
素子を通過するため、反射面のコーティングが損傷して
、レーザビームの形状の変化や出力の低下、さらには発
振線幅の広がり等を生じやすいという課題があった。
Problems to be Solved by the Invention However, in a laser resonator, a powerful laser beam passes through a wavelength selection element, which damages the coating on the reflective surface, causing changes in the shape of the laser beam, a decrease in output, and even damage to the oscillation line. There was a problem that it was easy to cause the width to expand.

本発明はこのような課題を解決するためなされたもので
、単色化したレーザビームの品質を長期間保持できるレ
ーザ装置を提供するものである。
The present invention was made to solve these problems, and provides a laser device that can maintain the quality of a monochromatic laser beam for a long period of time.

課題を解決するための手段 この課題を解決するため本発明のレーザ装置は、光共振
器と、前記光共振器中に設置され大気圧より減圧された
雰囲気中におかれた単一または複数の波長選択素子とを
具備したものである。
Means for Solving the Problem In order to solve this problem, the laser device of the present invention includes an optical resonator, and a single or plural laser beam installed in the optical resonator and placed in an atmosphere reduced from atmospheric pressure. It is equipped with a wavelength selection element.

作  用 この構成により、波長選択素子のコーテイング面にレー
ザ光が照射された時に、空気中の酸素などの活性ガスを
介して起こる劣化反応を抑制することができ、波長選択
素子の寿命を飛躍的に伸ばすことができる。
Effect: With this configuration, when the coating surface of the wavelength selection element is irradiated with laser light, it is possible to suppress the deterioration reaction that occurs through active gases such as oxygen in the air, dramatically extending the life of the wavelength selection element. can be extended to

実施例 第1図は本発明の一実施例であるエキシマレーザの構成
図である。第1図において本発明の実施例のレーザ装置
は希ガスとハロゲンガスの混合気体レーザ媒質とする放
電管1と、全反射繞2および出力鏡3からなる光共振器
によって、紫外域でレーザ発振する。光共振器の光軸上
には波長選択素子であるエアスペースエタロン4が置か
れている。エアスペースエタロン4は、レーザ波長ニオ
いて適当な反射率を持つ2枚の平行平面石英板を微小な
ギャップを保って向き合わせたファプリ・ペローエタロ
ンの一種であり、気密容器6中に設置されている。気密
容器5内部はポンプ6によって約I Pa以下に減圧さ
れている。
Embodiment FIG. 1 is a block diagram of an excimer laser which is an embodiment of the present invention. In FIG. 1, a laser device according to an embodiment of the present invention oscillates a laser in the ultraviolet region by an optical resonator consisting of a discharge tube 1 using a mixed gas laser medium of rare gas and halogen gas, a total reflection chamber 2, and an output mirror 3. do. An air space etalon 4, which is a wavelength selection element, is placed on the optical axis of the optical resonator. The air space etalon 4 is a type of Fapry-Perot etalon in which two parallel plane quartz plates having a reflectance appropriate for the laser wavelength are faced with a small gap, and is installed in an airtight container 6. There is. The pressure inside the airtight container 5 is reduced to about I Pa or less by a pump 6.

次に以上のような構成によるエキシマレーザの単色化の
原理を説明する。一般にエキシマレーザの利得バンド幅
は約1 nmに及び、単色化せずに発振させると0.5
 nm程度の発振線幅を持つ。共振器中にエアスペース
エタロン4を挿入すると、発振線幅はその透過特性に従
ってたとえば0.001nmオーダにまで単色化できる
Next, the principle of making the excimer laser monochromatic with the above configuration will be explained. Generally, the gain bandwidth of an excimer laser is about 1 nm, and when oscillated without monochromatic, the gain bandwidth is 0.5 nm.
It has an oscillation linewidth of about nm. When the air space etalon 4 is inserted into the resonator, the oscillation line width can be made monochromatic to, for example, the order of 0.001 nm according to its transmission characteristics.

第2図14エアスペースエタロンによって特定の波長が
選択される原理を示した図である。エアスペースエタロ
ンの対向する面は数10%の反射率を持っており、入射
したレーザ光は多重反射した末に元来の進行方向へ出て
いく。この時、N回反射した後に出射する光と、N+1
回反射後に出射する光との間には Δ=2ndcosθ   ・・・・・・・・・・・・・
・・(1)の光路差Δが生じるので、 mλ=2ndcosθ  ・・・・・・・・・・・・・
・・(2)の関係を満たす波長λを持つ光だけがエアス
ペースエタロンを透過でき不ことになる。ここで、nは
対向する面間の屈折率、dは対向する面の間隔、0は光
軸に対する入射光の傾き角、mは整数である。
FIG. 2 is a diagram showing the principle by which a specific wavelength is selected by the air space etalon. The opposing surfaces of the air space etalon have a reflectance of several tens of percent, and the incident laser beam undergoes multiple reflections before exiting in its original direction of travel. At this time, the light emitted after being reflected N times and N+1
Δ=2ndcosθ between the light emitted after the second reflection...
...Since the optical path difference Δ of (1) occurs, mλ=2ndcosθ ......
...Only light with a wavelength λ that satisfies the relationship (2) can pass through the air space etalon. Here, n is the refractive index between the opposing surfaces, d is the distance between the opposing surfaces, 0 is the inclination angle of the incident light with respect to the optical axis, and m is an integer.

以上の考察かられかるように、エアスペースエタロンの
対向する面の間ではレーザ光が何往復もする結果、高い
エネルギーの紫外光が定常的に存在することになる。こ
のため、反射膜のコーティングが次第に劣化することは
避けられない。特に、エアスペースエタロンを気密容器
に入れずに大気中で用いた場合、1o ハルス程度エキ
シマレーザ装置を動作させた後に波長選択特性が変化し
て発振線幅が当初の値より広がったり、中心波長が変動
する現象が起こった。また、コーティングの表面が局所
的あるいは全体的に凹凸を生じる結果、ビーム形状の変
化や、レーザ出力の低下が見られた。
As can be seen from the above considerations, as a result of the laser light making many round trips between the opposing surfaces of the air space etalon, high energy ultraviolet light is constantly present. For this reason, it is inevitable that the reflective film coating will gradually deteriorate. In particular, if the air space etalon is used in the atmosphere without being placed in an airtight container, the wavelength selection characteristics may change after operating the excimer laser device to the extent of 10 Hals, and the oscillation linewidth may become wider than its original value, or the center wavelength A phenomenon occurred in which the In addition, as a result of local or overall unevenness on the surface of the coating, changes in beam shape and reduction in laser output were observed.

コーティングが劣化する一因としては、紫外光を吸収し
た酸素が活性種となり、同じく紫外光を吸収して反応性
を帯びているコーテイング膜と結合することが挙げられ
る。
One of the reasons why the coating deteriorates is that oxygen that absorbs ultraviolet light becomes an active species and combines with the coating film, which also absorbs ultraviolet light and becomes reactive.

そこで本実施例のレーザ装置においては、エアスペース
エタロン周囲の酸素を除去することによってこの問題を
解決した。すなわち、エアスペースエタロンを気密容器
に収め、気密容器内部を減圧することによって、酸素が
存在することによって起こる前記の反応を抑制している
。本発明者らの実験によれば、気密容器内部をI Pa
程度にまで減圧することで、コーティングの寿命は2桁
以上延長された。なお、気密室内は必ずしも上記の値に
1で減圧する必要はなく、これ以上であっても大気圧以
下であれば、コーティングの寿命を伸ばす効果があった
Therefore, in the laser device of this embodiment, this problem was solved by removing oxygen around the air space etalon. That is, the air space etalon is housed in an airtight container, and the pressure inside the airtight container is reduced to suppress the reaction that occurs due to the presence of oxygen. According to experiments conducted by the present inventors, the inside of the airtight container was heated to I Pa
By reducing the pressure to a certain extent, the life of the coating was extended by more than two orders of magnitude. Note that it is not necessarily necessary to reduce the pressure in the airtight chamber to the above value by 1, and even if the pressure is higher than this, as long as it is below atmospheric pressure, it is effective to extend the life of the coating.

なお、本実施例においては波長選択素子としてエアスペ
ースエタロンを用いた例を示シタが、−枚のガラス基板
の両面に反射膜をコーティングしたソリッドエタロンや
、基板表面に微細な溝加工を施したグレーティングなど
他の波長選択素子を用いた場合でも同様の効果が期待で
きる。
In addition, in this example, an example in which an air space etalon is used as a wavelength selection element is shown. Similar effects can be expected even when other wavelength selection elements such as gratings are used.

発明の詳細 な説明したように本発明によるレーザ装置は、波長選択
素子を大気圧より減圧された気密容器中に置くことによ
って波長選択素子の寿命を伸ばし、長期間にわたって単
色化したレーザビームの品質を安定に保つという優れた
効果を有するレーザ装置を提供することができる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the laser device according to the present invention extends the life of the wavelength selection element by placing the wavelength selection element in an airtight container with a pressure lower than atmospheric pressure, and improves the quality of a monochromatic laser beam over a long period of time. It is possible to provide a laser device that has an excellent effect of keeping the temperature stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるレーザ装置の構成図、
第2図はエアスペースエタロンの原理を説明する図、第
3図はレーザ光を単色化する方法の従来例を示す図であ
る。 1・・・・・・放電管、2・・・・・・全反射鏡、3・
・・・・・出力鏡、4・・・・・・エアスペースエタロ
ン、5・・・・・・K’S 容器、6・・・・・・ポン
プ。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名派 派
FIG. 1 is a configuration diagram of a laser device which is an embodiment of the present invention,
FIG. 2 is a diagram illustrating the principle of the air space etalon, and FIG. 3 is a diagram illustrating a conventional method of monochromating laser light. 1...discharge tube, 2...total reflection mirror, 3.
...Output mirror, 4...Air space etalon, 5...K'S container, 6...Pump. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (1)

【特許請求の範囲】[Claims] 光共振器と、前記光共振器中に設置され大気圧より減圧
された雰囲気中におかれた単一または複数の波長選択素
子とを具備したことを特徴とするレーザ装置。
1. A laser device comprising: an optical resonator; and one or more wavelength selection elements installed in the optical resonator and placed in an atmosphere reduced in pressure from atmospheric pressure.
JP19497088A 1987-09-28 1988-08-04 Laser device Pending JPH0243786A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19497088A JPH0243786A (en) 1988-08-04 1988-08-04 Laser device
CA000578540A CA1302548C (en) 1987-09-28 1988-09-27 Laser apparatus
EP88115902A EP0310000B1 (en) 1987-09-28 1988-09-27 Laser apparatus
DE3889831T DE3889831T2 (en) 1987-09-28 1988-09-27 Laser apparatus.
US07/499,206 US4991178A (en) 1987-09-28 1990-03-19 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19497088A JPH0243786A (en) 1988-08-04 1988-08-04 Laser device

Publications (1)

Publication Number Publication Date
JPH0243786A true JPH0243786A (en) 1990-02-14

Family

ID=16333373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19497088A Pending JPH0243786A (en) 1987-09-28 1988-08-04 Laser device

Country Status (1)

Country Link
JP (1) JPH0243786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848720A1 (en) 2013-09-12 2015-03-18 3M Innovative Properties Company Use of a lubricant in a mounting mat, method for making such a mat and mounting mat
US9494071B2 (en) 2003-06-30 2016-11-15 3M Innovative Properties Company Mounting mat for mounting monolith in a pollution control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494071B2 (en) 2003-06-30 2016-11-15 3M Innovative Properties Company Mounting mat for mounting monolith in a pollution control device
EP2848720A1 (en) 2013-09-12 2015-03-18 3M Innovative Properties Company Use of a lubricant in a mounting mat, method for making such a mat and mounting mat

Similar Documents

Publication Publication Date Title
US6424666B1 (en) Line-narrowing module for high power laser
US7245420B2 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
US6856638B2 (en) Resonator arrangement for bandwidth control
JP5382975B2 (en) High power gas laser equipment
JP2000236130A (en) Molecular fluorine (f2) laser and method of generating and outputting f2 laser beam
US6567451B2 (en) Narrow band excimer or molecular fluorine laser having an output coupling interferometer
US11217962B2 (en) Laser system
EP1041689A1 (en) Excimer laser
JP2002198588A (en) Fluorine molecular element
US6426966B1 (en) Molecular fluorine (F2) laser with narrow spectral linewidth
JP5337848B2 (en) High power gas laser equipment
JP2002094160A (en) F2 laser
JPH0243786A (en) Laser device
US20170149199A1 (en) Laser device
WO2001001530A1 (en) Narrow band excimer laser with a prism-grating as line-narrowing optical element
US10965087B2 (en) Laser device
JPH0243787A (en) Laser device
US6553050B1 (en) Narrow band excimer or molecular fluorine laser having an output coupling interferometer
JP2586661B2 (en) Wavelength stabilized laser device
JP2586656B2 (en) Wavelength stabilized laser device
JPH01173680A (en) Excimer laser apparatus
JP2002151776A (en) Vacuum ultraviolet laser system
Kostritsa et al. Tunable narrow-band moderate-power laser system pumped by copper-vapor lasers
JPH01186685A (en) Narrow band laser device
JP2001094185A (en) Band ultra-narrowing fluorine laser system