JPH0881279A - Carbon fiber-reinforced carbonaceous composite material and its production - Google Patents

Carbon fiber-reinforced carbonaceous composite material and its production

Info

Publication number
JPH0881279A
JPH0881279A JP6220236A JP22023694A JPH0881279A JP H0881279 A JPH0881279 A JP H0881279A JP 6220236 A JP6220236 A JP 6220236A JP 22023694 A JP22023694 A JP 22023694A JP H0881279 A JPH0881279 A JP H0881279A
Authority
JP
Japan
Prior art keywords
composite material
plate
preform
axial direction
rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6220236A
Other languages
Japanese (ja)
Inventor
Hiroshige Kikukawa
川 広 繁 菊
Hirofumi Tamura
村 裕 文 田
Hiroshi Miyahara
原 啓 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Three D Composites Research Corp
Subaru Corp
Original Assignee
Three D Composites Research Corp
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Three D Composites Research Corp, Fuji Heavy Industries Ltd filed Critical Three D Composites Research Corp
Priority to JP6220236A priority Critical patent/JPH0881279A/en
Publication of JPH0881279A publication Critical patent/JPH0881279A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain the subject composite material improved in the thermal conductivity in the thickness direction and erosion resistance and having adequate mechanical strength through such processes that large square rods are arranged in a, matrix- fashion with their axial direction toward the thickness direction, and small square rods are arranged rectangularly, in a lattice fashion in the planar direction to former a three-dimensional preform, then is impregnated with a thermosetting resin or pitch, etc., followed by carbonization. CONSTITUTION: This carbonaceous composite material is obtained by forming a preform with large square rods arranged, in matrix-fashion with their axial direction toward the thickness direction and small square rods arranged cumulatively and rectangularly in a, lattice fashion in the planar direction (i.e., rectangular to the thickness direction) followed by impregnation with e.g. a thermosetting resin. This manufacturing technology has been virtually established; therefore, existing techniques can be easily applied to obtain this composite material. The figure shows a C/C tile produced by this invention, which is composed of large square rods 3, small square rods 4,5 oriented planarly, carbonaceous matrix 7, carbon fiber bundles 8 and a thermoset resin, where the preform has been impregnated with a thermosetting resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維強化炭素複合
材及びその製造方法に係り、特に耐熱衝撃性及び耐久性
が要求される原子炉炉心あるいは核融合炉第一壁等の熱
防護タイルとして用いるのに好適な炭素繊維強化炭素複
合材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced carbon composite material and a method for producing the same, and particularly to a thermal protection tile for a reactor core or a first wall of a fusion reactor, which is required to have thermal shock resistance and durability. The present invention relates to a carbon fiber-reinforced carbon composite material suitable for use as a material and a method for producing the same.

【0002】[0002]

【従来の技術】現在、核融合による発電技術の実用化に
向けて核融合実験炉による研究が国内外の研究機関にお
いて進められている。その実験炉第一壁の熱防護タイル
は、プラズマに最初に晒されるため、高温高放射線環境
下に置かれる。それに加えて核融合炉反応で生じる高エ
ネルギーの各粒子による照射損傷の他、プラズマが不安
定に消滅するときに瞬時にプラズマエネルギーの一部を
第一壁に放射する現象プラズマディスラプションによっ
て非常に短時間の間に数百MW/m2 の熱負荷が入射する。
2. Description of the Related Art At present, research institutes of nuclear fusion experimental reactors are underway at domestic and overseas research institutes for the practical application of power generation technology by nuclear fusion. The thermal protection tile on the first wall of the experimental furnace is exposed to the plasma first and therefore is placed in a high temperature and high radiation environment. In addition to radiation damage caused by high-energy particles generated in the fusion reactor reaction, a phenomenon in which part of the plasma energy is instantaneously radiated to the first wall when the plasma is extinguished unstablely is caused by plasma disruption. A heat load of several hundred MW / m 2 is applied to the above for a short time.

【0003】このような苛酷な環境下で使用される熱防
護タイルの材料として、黒煙タイル及びC(炭素繊維)
/C(炭素マトリクス)複合材料が、現在稼働している
核融合実験炉の第一壁において多く用いられている。そ
の理由の一つとして炭素材料が低原子番号材料であるこ
とより、プラズマ中に不純物として混入してもプラズマ
温度低下等の悪影響の度合いが低いため、高温プラズマ
を保持するのに有効であることが挙げられる。また、熱
特性に関しても、昇華温度が高いことや、熱伝導率が高
温金属材料のインコネル合金、ステンレス鋼にくらべて
1桁から2桁大きいことによる耐熱衝撃性の高さ等の優
れた性質を持っていることが挙げられる。黒鉛タイル
は、1970年代後半より各国のトカマク装置で第一壁材と
して用いられ始め、それまで使われていたTiC コーティ
ングを施したモリブデンやインコネル合金に比べると、
プラズマのエネルギー閉じ込め特性が飛躍的に向上し
た。
Black smoke tiles and C (carbon fiber) are used as materials for thermal protection tiles used in such harsh environments.
A / C (carbon matrix) composite material is often used in the first wall of currently operating fusion experimental reactors. One of the reasons is that the carbon material is a low atomic number material, and even if it is mixed as an impurity in the plasma, the degree of adverse effects such as plasma temperature drop is low, so it is effective for holding high temperature plasma. Is mentioned. Also, regarding the thermal characteristics, it has excellent properties such as high thermal shock resistance due to its high sublimation temperature and its thermal conductivity being one to two orders of magnitude higher than that of high-temperature metal Inconel alloy and stainless steel. Something you have. Graphite tile began to be used as the first wall material in tokamak equipment in each country from the latter half of the 1970s, and compared to the TiC-coated molybdenum and Inconel alloys used until then,
The energy trapping characteristics of plasma have been dramatically improved.

【0004】現在稼働している中・大型トカマク装置
(アメリカのプリンストン大学にある臨界核融合実験装
置)では、そのほとんどに第一壁の熱防護タイルとして
等方性黒鉛タイルが使われている。
Most of the currently operating medium- and large-sized tokamak devices (critical fusion experimental device at Princeton University, USA) use an isotropic graphite tile as a thermal protection tile for the first wall.

【0005】C/C複合材料は、黒鉛の耐熱性に加えて
機械的及び破壊力学的性質を著しく改善するものとして
第一壁材への適用が期待されており、一部の実験炉では
熱衝撃の激しいダイバータ部にフェルト状C/C複合材
料が使用されている。フェルト状C/C複合材料は、フ
ェルト状炭素繊維を強化材としたC/C複合材料であ
り、成形が比較的簡単で若干の3次元性を有するところ
に特徴がある。
The C / C composite material is expected to be applied to the first wall material as a material that remarkably improves mechanical and fracture mechanical properties in addition to the heat resistance of graphite. A felt-like C / C composite material is used in the diverter section where the impact is severe. The felt-like C / C composite material is a C / C composite material in which felt-like carbon fibers are used as a reinforcing material, and is characterized in that it is relatively easy to mold and has some three-dimensionality.

【0006】今後、自己点火条件や工学的な有用性の実
証を目指して大型トカマク装置の改造や次期核融合装置
が計画されており、それに伴い第一壁に課せられる環境
条件もより苛酷なものに推移していくと考えられてい
る。そのような環境条件に対応するために、黒鉛及びC
/C複合材料の特性改良が国内外で急速に進められてい
る。現在稼働中の実験炉においても、黒鉛及びC/C複
合材料の局部的な減肉が報告されており、この原因とし
て高温域における炭素材料の熱伝導性の低下が挙げられ
ている。黒鉛及びC/C複合材料も室温では大きな熱伝
導率を持つが、高温になると熱伝導率が室温時の1/2
以下に下がってしまうため、急速に加熱されると局部的
に高温となり、エロージョン(損耗)による減肉を引き
起こしてしまう。したがって、耐エロージョン性を高め
るためには、第一壁材の熱伝導性を高めることが絶対条
件になる。
[0006] In the future, remodeling of a large tokamak device and the next fusion device are planned with the aim of demonstrating self-ignition conditions and engineering utility, and the environmental conditions imposed on the first wall will be severer accordingly. It is thought that it will change to. In order to cope with such environmental conditions, graphite and C
The properties of C / C composite materials are being rapidly improved in Japan and overseas. Even in the experimental furnace currently in operation, local thinning of graphite and C / C composite materials has been reported, and a cause of this is a decrease in thermal conductivity of the carbon material in a high temperature range. Graphite and C / C composite materials also have large thermal conductivity at room temperature, but at high temperature the thermal conductivity is 1/2 that at room temperature.
If the temperature is rapidly lowered, the temperature will locally rise to a high temperature, which will cause the thickness reduction due to erosion (wear). Therefore, in order to improve the erosion resistance, it is an absolute requirement to increase the thermal conductivity of the first wall material.

【0007】熱伝導性を高める方法の一つとして、熱分
解黒鉛をC/C複合材料のマトリックスに適用する方法
が考えられている。熱分解黒鉛は炭化水素ガス特にメタ
ン、プロパンガスを高温で熱分解させることにより生成
され、選択的な配向をしているため特定方向の熱伝導性
に高い異方性をもつ。また、C/C複合材料の炭素繊維
や製法の改良、フェルト状炭素繊維の他に一方向材また
は、2次元、3次元の織物の適用によって、炭素繊維の
高い熱伝導性を有効に生かし、特定方向の熱伝導性を炭
素繊維の軸方向の値に近づける試みがなされている。
As one of the methods for increasing the thermal conductivity, a method of applying pyrolytic graphite to a matrix of C / C composite material is considered. Pyrolytic graphite is produced by thermally decomposing a hydrocarbon gas, especially methane and propane gas at high temperature, and has a highly anisotropic thermal conductivity in a specific direction because it is selectively oriented. In addition, the high thermal conductivity of the carbon fiber can be effectively utilized by improving the carbon fiber of the C / C composite material, improving the manufacturing method, applying a unidirectional material or a two-dimensional or three-dimensional woven fabric in addition to the felt-like carbon fiber, Attempts have been made to bring the thermal conductivity in a particular direction closer to the axial value of the carbon fiber.

【0008】炭素繊維の高熱伝導性を利用したC/C複
合材料の製法としては、特開平3‐164415号公報
に開示されているように、強化材である3次元織物の繊
維の配列比率、種類、含有率等を変化させることによっ
て熱伝導特性のコントロールを狙ったものがある。
As a method for producing a C / C composite material utilizing the high thermal conductivity of carbon fiber, as disclosed in Japanese Patent Application Laid-Open No. 3-164415, the arrangement ratio of the fibers of the three-dimensional woven fabric which is a reinforcing material, Some aim to control the heat conduction characteristics by changing the type and content.

【0009】また、特開平3‐88771号公報に開示
されているように、繊維の束を板厚方向に並べることに
よって、板厚方向の熱伝導率の向上を図ったC/C複合
材料がある。
Further, as disclosed in Japanese Patent Laid-Open No. 3-88771, there is provided a C / C composite material which improves thermal conductivity in the plate thickness direction by arranging fiber bundles in the plate thickness direction. is there.

【0010】[0010]

【発明が解決しようとする課題】等方性黒鉛タイル及び
C/C複合材料は、高温下にさらされるとエロージョン
(損耗)による表面消耗を起し、高温時のタイルの熱伝
導率が常温時に比べて、1/2以下に低下することによ
り、タイル表面から入った熱が速やかに裏面に接してい
る冷却装置まで伝わらず、タイル表面が局部的に高温と
なり昇華してしまう。耐エロージョン性を向上させるた
めには、板厚方向に高い熱伝導性を持つ必要がある。
Isotropic graphite tiles and C / C composite materials cause surface wear due to erosion (wear) when exposed to high temperatures, and the thermal conductivity of the tiles at high temperatures is at room temperature. On the other hand, when the temperature is reduced to ½ or less, the heat entering from the tile surface is not immediately transmitted to the cooling device in contact with the back surface, and the tile surface locally becomes high temperature and is sublimated. In order to improve the erosion resistance, it is necessary to have high thermal conductivity in the plate thickness direction.

【0011】また、熱分解黒鉛タイルは、板厚方向の熱
伝導性を高めることが可能であり、耐エロージョン性を
向上させることができるが、生成速度が遅いために高密
度化に時間がかかることと、マトリックスを織物中に均
一に含浸するためにかなりの条件出しが必要である等、
製造性に問題がある。
Further, the pyrolytic graphite tile can increase the thermal conductivity in the plate thickness direction and can improve the erosion resistance, but it takes a long time to increase the density because of its slow generation rate. And that considerable conditioning is necessary to uniformly impregnate the fabric with the matrix, etc.
There is a problem with manufacturability.

【0012】また、1次元繊維、2次元繊維を配向した
C/C複合材料(UD:UNIDIRECTION、2D)は、繊維方向
の熱伝導性を生かすことができ、繊維含有率も高く維持
できるので特定方向の熱伝導性向上には適した構造を持
っている。しかしながら、積層面に垂直な方向に入熱が
あった場合、層間の熱伝導が非常に悪いため表面で激し
いエロージョンが生じる等の問題がある。
C / C composite materials (UD: UNIDIRECTION, 2D) in which one-dimensional fibers and two-dimensional fibers are oriented can take advantage of the thermal conductivity in the fiber direction, and the fiber content can be kept high. It has a structure suitable for improving the thermal conductivity in the direction. However, when heat is input in a direction perpendicular to the laminated surface, there is a problem that the heat conduction between the layers is very poor and severe erosion occurs on the surface.

【0013】また、3次元繊維を配向したC/C複合材
料(3D)は、3軸方向に繊維が通っているため、各方向
に熱伝導性が保たれている。また、特開平3‐1644
15号公報に記載されている製造法で、タイルの板厚方
向の熱伝導性を高めたC/C複合材料を製造することが
可能である。しかし、核融合炉第一壁用熱防護タイルに
要求される高い熱伝導率を満足するためには、3次元織
物の繊維配向比率を極端な異方性にする必要があること
と、C/C複合材料(UD、2D)並の繊維含有率を有する
3次元織物を製作する必要があるため、製造する技術を
獲得することが困難である。
Further, the C / C composite material (3D) in which the three-dimensional fibers are oriented has the fibers passing in the three axial directions, so that the thermal conductivity is maintained in each direction. In addition, Japanese Patent Laid-Open No. 3-1644
It is possible to manufacture a C / C composite material in which the thermal conductivity in the plate thickness direction of the tile is enhanced by the manufacturing method described in JP-A-15. However, in order to satisfy the high thermal conductivity required for the thermal protection tile for the first wall of the fusion reactor, it is necessary to make the fiber orientation ratio of the three-dimensional fabric extremely anisotropic, and C / Since it is necessary to manufacture a three-dimensional fabric having a fiber content similar to that of C composite material (UD, 2D), it is difficult to acquire a manufacturing technology.

【0014】さらに、特開平3‐88771号公報に記
載されているC/C複合材は、炭素繊維の束が板厚方向
に並べられているために、板厚方向の熱伝導率の向上は
可能であるが、束間の炭素繊維をからませるという複雑
な工程があり製造が面倒である。また、板厚方向と平面
方向の繊維配向比率を選択する必要がある場合に、事前
に設定して製造することが難しい。
Further, in the C / C composite material described in Japanese Patent Laid-Open No. 3-88771, since the bundle of carbon fibers is arranged in the plate thickness direction, the thermal conductivity in the plate thickness direction is not improved. Although possible, it is complicated to manufacture because of the complicated process of entanglement of carbon fibers between bundles. Further, when it is necessary to select the fiber orientation ratio in the plate thickness direction and the plane direction, it is difficult to set and manufacture in advance.

【0015】本発明は、かかる現況に鑑みてなされたも
ので、板厚方向の熱伝導性を向上させて耐エロージョン
性を高めることができ、しかも充分な強度が得られる炭
素繊維強化炭素複合材を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a carbon fiber reinforced carbon composite material capable of improving the thermal conductivity in the plate thickness direction to enhance the erosion resistance and obtaining sufficient strength. The purpose is to provide.

【0016】本発明の他の目的は、製造が容易で製造時
間およびコストを低減することができる炭素繊維強化炭
素複合材の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing a carbon fiber reinforced carbon composite material which is easy to produce and can reduce the production time and cost.

【0017】[0017]

【課題を解決するための手段】本発明の炭素繊維強化炭
素複合材は、軸方向に炭素繊維を配向して角柱状に形成
され、軸方向に板厚方向に向けて板の縦横方向に一定間
隔でマトリクス状に整列配置された太角ロッドと、軸方
向に炭素繊維を配向して角柱状に形成され、軸方向を板
の縦方向に向けたものと板の横方向に向けたものとを交
互にして、前記太角ロッドの間に格子状に積み重ねられ
る細角ロッドとから形成されるプリフォームを設け、前
記プリフォームを、熱硬化性樹脂またはピッチを含浸さ
せて熱処理により炭化処理したことを特徴とする。
The carbon fiber reinforced carbon composite material of the present invention is formed into a prism shape by orienting carbon fibers in the axial direction, and is constant in the longitudinal and lateral directions of the plate in the axial direction in the plate thickness direction. Thick square rods arranged in a matrix at intervals, and rods formed by aligning carbon fibers in the axial direction to form a prism and having the axial direction oriented in the longitudinal direction of the plate and the transverse direction of the plate. Alternating with each other, a preform formed of fine square rods stacked in a grid pattern is provided between the thick square rods, and the preform is carbonized by heat treatment by impregnating a thermosetting resin or pitch. It is characterized by

【0018】本発明の炭素繊維強化炭素複合材の製造方
法は、繊維配向を軸方向にした角柱状太角ロッド及び細
角角柱状ロッドを、その軸方向を板厚方向に向けて板の
縦方向に一定間隔でマトリクス状に整列配置するととも
に、前記細角ロッドを、軸方向に板の縦方向に向けたも
のと板の横方向に向けたものとを交互にして、前記太角
ロッドの間に格子状に積み重ねてプリフォームを形成
し、このプリフォームを、熱硬化性樹脂またはピッチ等
を含浸させた後、不活性雰囲気中で熱処理により炭化さ
せることを特徴とする。
The method for producing a carbon fiber-reinforced carbon composite material according to the present invention comprises a prismatic thick rectangular rod and a fine prismatic rod whose fiber orientation is in the axial direction, and the longitudinal direction of the plate with the axial direction of the rod in the thickness direction. The thin rectangular rods are arranged in a matrix at regular intervals in a direction, and the narrow rods are oriented alternately in the longitudinal direction of the plate and in the lateral direction of the plate, and It is characterized in that it is stacked in a lattice pattern to form a preform, the preform is impregnated with a thermosetting resin or pitch, and then carbonized by heat treatment in an inert atmosphere.

【0019】[0019]

【作用】本発明の炭素繊維強化炭素複合材においては、
太角ロッドがその軸方向を板厚方向に向けてマトリクス
状に整列配置されているので、板厚方向の繊維配向比率
及び繊維含有率を高め、繊維の直線性を維持することが
できる。このため、板厚方向に高い熱伝導性を有し、高
温下においても充分な熱伝導性を維持することが可能と
なり、エロージョンによる減肉を防止することが可能と
なる。
In the carbon fiber reinforced carbon composite material of the present invention,
Since the thick-angled rods are arranged in a matrix with the axial direction of the rods oriented in the plate thickness direction, the fiber orientation ratio and the fiber content in the plate thickness direction can be increased and the linearity of the fibers can be maintained. Therefore, it has high thermal conductivity in the plate thickness direction, and it is possible to maintain sufficient thermal conductivity even at high temperatures, and it is possible to prevent thinning due to erosion.

【0020】本発明の炭素繊維強化炭素複合材の製造方
法においては、軸方向を板厚方向に向けてマトリクス状
に整列配置された太角ロッドと、軸方向を板の縦方向お
よび横方向にして太角ロッドの間に格子状に積み重ねら
れる細角ロッドとからプリフォームが形成され、このロ
ッド方式による3次元プリフォームの製作技術はほとん
ど確立されているので、既存技術を適用して容易に製造
することが可能となる。また、このプリフォームを、熱
硬化性樹脂またはピッチ等を含浸した後、不活性雰囲気
中で熱処理により炭化させてC/Cタイルを得るように
しているので、製織工程を単純化させ、製造時間・コス
トの低減が可能となる。
In the method for producing a carbon fiber reinforced carbon composite material according to the present invention, the thick square rods are arranged in a matrix with the axial direction facing the plate thickness direction, and the axial directions are the longitudinal and lateral directions of the plate. A preform is made up of thin square rods stacked in a grid between thick square rods, and the technology for producing a three-dimensional preform by this rod method is almost established. Therefore, it is easy to apply existing technology. It becomes possible to manufacture. Further, since this preform is impregnated with a thermosetting resin or pitch, and then carbonized by heat treatment in an inert atmosphere to obtain a C / C tile, the weaving process is simplified and the manufacturing time is shortened. -Cost can be reduced.

【0021】[0021]

【実施例】以下、本発明を図面を参照して説明する。図
1は、本発明により作られたC/Cタイルを示すもの
で、このC/Cタイル1は、図3に示すロッド方式の3
次元プリフォーム2を、熱硬化性樹脂またはピッチ等を
含浸させた後に熱処理により炭化させることで形成され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows a C / C tile made according to the present invention. This C / C tile 1 is a rod type 3 shown in FIG.
It is formed by impregnating the three-dimensional preform 2 with a thermosetting resin, pitch or the like, and then carbonizing it by heat treatment.

【0022】前記3次元プリフォーム2は、図3に示す
ように、軸方向を板厚方向(Z方向)に向けて板の縦横
方向に一定間隔でマトリクス状に整列配置された四角柱
状の太角ロッド3と、軸方向を板の横方向(X方向)に
むけて太角ロッド3の間に配置された四角柱状の横方向
細角ロッド4と、軸方向を板の縦方向(Y方向)に向け
て太角ロッド3の間に配置された四角柱状の縦方向細角
ロッド5とから構成されており、前記両細角ロッド4,
5は、格子状になるようにZ方向に交互に積み重ねられ
ている。そして、この3次元プリフォーム2は、図示し
ない既存のロッド方式3次元3軸自動織機を用いて組み
上げられる。
As shown in FIG. 3, the three-dimensional preform 2 has a rectangular columnar shape which is arranged in a matrix at regular intervals in the longitudinal and lateral directions of the plate with the axial direction facing the plate thickness direction (Z direction). The rectangular rods 3, the rectangular rod-shaped lateral fine rods 4 arranged between the thick rectangular rods 3 with the axial direction facing the lateral direction (X direction) of the plate, and the axial direction the longitudinal direction of the plate (Y direction). ) And a rectangular column-shaped vertical narrow rectangular rod 5 arranged between the thick rectangular rods 3,
5 are alternately stacked in the Z direction so as to form a lattice shape. The three-dimensional preform 2 is assembled by using an existing rod-type three-dimensional three-axis automatic loom (not shown).

【0023】前記各ロッド3,4,5には、図2に示す
ように、ピッチ系1次元の炭素繊維6を補強材として配
向して構成されており、太角ロッド3は、厚いCFRP
板(UD)から切り出され、また両細角ロッド4,5は、
薄いCFRP板(UD)から切り出される。また、これら
のロッドとして引き抜き成形法によって所要の太さと形
状に直接的に成形したものも用いることができる。そし
て、これら各ロッド3,4,5を用いて、図3に示す3
次元プリフォーム2を形成し、この3次元プリフォーム
2を、熱硬化性樹脂またはピッチ等の有機物を含浸させ
た後、不活性雰囲気中で熱処理により炭化させて、図1
に示すように炭素マトリクス7を形成することにより、
板厚方向および面内方向に直線的な炭素繊維の束8,
9,10を有し板厚方向に高い熱伝導性を有するC/C
タイル1が得られる。
As shown in FIG. 2, each of the rods 3, 4 and 5 is formed by orienting pitch-based one-dimensional carbon fibers 6 as a reinforcing material, and the thick rods 3 are made of thick CFRP.
It is cut out from the plate (UD), and both narrow rods 4 and 5 are
It is cut out from a thin CFRP plate (UD). Further, as these rods, those directly molded into a required thickness and shape by a pultrusion molding method can be used. Then, using each of these rods 3, 4, and 5, the rod shown in FIG.
The three-dimensional preform 2 is formed, and the three-dimensional preform 2 is impregnated with an organic substance such as thermosetting resin or pitch, and then carbonized by heat treatment in an inert atmosphere.
By forming the carbon matrix 7 as shown in
A bundle of carbon fibers that is linear in the thickness direction and the in-plane direction,
C / C having 9 and 10 and having high thermal conductivity in the plate thickness direction
Tile 1 is obtained.

【0024】このような方法で製作される3次元プリフ
ォーム2の繊維配向比率は、各ロッド3,4,5の断面
積比によって任意に設定することができるので、太角ロ
ッド3の総断面積を細角ロッド4,5の総断面積に比較
して大きく設定することにより、板厚方向の繊維配向比
率を特に高めた3次元プリフォーム2を製作することが
可能となる。ただし、各ロッド3,4,5のCFRP板
(UD)から切り出しや成形上ロッドの断面積には制限が
あり、ロッド3方向のロッド4及び5方向に対する繊維
配向比率は、1〜100倍程度が適当である。
Since the fiber orientation ratio of the three-dimensional preform 2 manufactured by such a method can be arbitrarily set by the cross-sectional area ratio of each rod 3, 4, 5, the total cutting of the thick square rod 3 is performed. By setting the area larger than the total cross-sectional area of the narrow rods 4 and 5, it becomes possible to manufacture the three-dimensional preform 2 in which the fiber orientation ratio in the plate thickness direction is particularly increased. However, there is a limit to the cross-sectional area of the rod that is cut out or molded from the CFRP plate (UD) of each rod 3, 4, and 5, and the fiber orientation ratio of the rod 3 direction to the rod 4 and 5 directions is about 1 to 100 times. Is appropriate.

【0025】この3次元プリフォーム2に、熱硬化性樹
脂やピッチ等の有機物を含浸・炭化させる含浸・炭化法
や、メタン・プロパン等の炭化水素ガスを蒸着・炭化さ
せる化学蒸着法(CVD法)を用いて、炭化マトリクス
7を形成させることにより、板厚方向に高い熱伝導性を
有するC/Cタイル1が得られる。
The three-dimensional preform 2 is impregnated / carbonized by impregnating / carbonizing an organic substance such as thermosetting resin or pitch, or a chemical vapor deposition method (CVD method) by vaporizing / carbonizing a hydrocarbon gas such as methane / propane. ) Is used to form the carbonized matrix 7, the C / C tile 1 having high thermal conductivity in the plate thickness direction is obtained.

【0026】図4は、このように得られたC/Cタイル
1を、核融合炉第1壁の熱防護用タイルに適用した一例
を示すもので、C/Cタイル1は、冷媒の流路11を有
する金属基体10の表面に固定されており、C/Cタイ
ル1表面から入射された熱量は、C/Cタイル1を通し
て金属基体10中を通る冷媒に伝えられる構造になって
いる。
FIG. 4 shows an example in which the C / C tile 1 thus obtained is applied to the thermal protection tile of the first wall of the fusion reactor, and the C / C tile 1 is a refrigerant flow. It is fixed to the surface of the metal substrate 10 having the passages 11, and the amount of heat incident from the surface of the C / C tile 1 is transmitted to the refrigerant passing through the metal substrate 10 through the C / C tile 1.

【0027】本発明者等は、以下の方法によりC/Cタ
イル1を製造し、その性能試験を行なった。まず、繊維
含有率が63%、マトリクスがフェノール樹脂からなる
板厚7.6mmの厚いCFRP板から、断面が5.67
mm角の太角ロッド3を切り出し、また繊維含有率が6
3%、マトリクスがフェノール樹脂からなる板厚0.9
mmの薄いCFRP板から、断面が0.81mm角の各細角
ロッド4,5を切り出した。そして、これら各ロッド
3,4,5を用い、図3に示す配列の3次元プリフォー
ム2を3次元3軸自動織機により作った。この3次元プ
リフォーム2は、Z方向のロッドの断面積(太角ロッド
3の総断面積)が、X方向及びY方向の各ロッドの断面
積(各細角ロッド4,5の総断面積)の49倍になり、
繊維配向比率は、X:Y:Z軸方向の断面積比と同一で
あるので、X:Y:Z=1:1:49となる。
The present inventors manufactured the C / C tile 1 by the following method and conducted the performance test. First, from a thick CFRP plate with a fiber content of 63% and a matrix of phenolic resin with a thickness of 7.6 mm, the cross section is 5.67.
A thick square rod 3 of mm mm is cut out, and the fiber content is 6
3%, the matrix is made of phenolic resin 0.9
Fine rods 4 and 5 each having a cross section of 0.81 mm square were cut out from a thin CFRP plate of mm. Then, using these rods 3, 4, and 5, the three-dimensional preform 2 having the arrangement shown in FIG. 3 was produced by a three-dimensional three-axis automatic loom. In this three-dimensional preform 2, the cross-sectional area of the rods in the Z direction (total cross-sectional area of the thick square rods 3) is the cross-sectional area of each rod in the X-direction and the Y-direction (total cross-sectional area of the thin square rods 4, 5). ) Of 49 times,
Since the fiber orientation ratio is the same as the cross-sectional area ratio in the X: Y: Z axis direction, X: Y: Z = 1: 1: 49.

【0028】この3次元プリフォーム2に、フェノール
樹脂を含浸・硬化させた後に炭化させ、略40mm角で厚
さ30mmのC/Cタイル1を得た。
The three-dimensional preform 2 was impregnated with a phenol resin, cured, and then carbonized to obtain a C / C tile 1 having a size of about 40 mm square and a thickness of 30 mm.

【0029】このC/Cタイル1は、Z方向の熱伝導率
が300W/m・Kで、X方向及びY方向の各熱伝導率
が50W/m・Kであって、板厚方向に高い熱伝導性を
有しており、しかも強度においても、従来の3次元織物
に樹脂を含浸・硬化させた後に炭化させたものと遜色が
ないことが判った。
The C / C tile 1 has a thermal conductivity of 300 W / m · K in the Z direction and a thermal conductivity of 50 W / m · K in the X and Y directions, which is high in the plate thickness direction. It has been found that it has thermal conductivity and, in terms of strength, is comparable to the conventional three-dimensional woven fabric impregnated with resin and cured and then carbonized.

【0030】しかして、異方性ロッド方式の3次元プリ
フォーム2を用いて製造されたC/Cタイル1は、板厚
方向の繊維配向比率及び繊維含有率が高く、繊維の直線
性が維持されるので、板厚方向に高い熱伝導性を持たせ
ることができる。このため、高温下においても充分な熱
伝導性を維持させることができ、タイル表面におけるエ
ロージョンによる減肉を防止することができ、核融合炉
第一壁の熱防護用として有効なタイルが得られた。
However, the C / C tile 1 manufactured using the anisotropic rod type three-dimensional preform 2 has a high fiber orientation ratio and a fiber content ratio in the plate thickness direction, and maintains the linearity of the fiber. Therefore, high heat conductivity can be provided in the plate thickness direction. Therefore, it is possible to maintain sufficient thermal conductivity even at high temperatures, prevent wall thinning due to erosion on the tile surface, and obtain a tile effective for thermal protection of the fusion reactor first wall. It was

【0031】また、3次元プリフォーム2の各方向のロ
ッド3,4,5の断面積をそれぞれ変化させることによ
り、炭素繊維の配向比率を容易に設定することができ
る。
Further, by changing the cross-sectional areas of the rods 3, 4, and 5 in each direction of the three-dimensional preform 2, the orientation ratio of the carbon fibers can be easily set.

【0032】また、ロッド方式による3次元プリフォー
ム2の製作技術はほとんど確立されており、その他のC
/Cタイル1の製作工程も既存技術が適用できるので、
容易に製造することができる。
Also, the manufacturing technique of the three-dimensional preform 2 by the rod system is almost established, and other C
Since existing technology can be applied to the manufacturing process of / C tile 1,
It can be easily manufactured.

【0033】さらに、C/Cタイル1は、3次元プリフ
ォーム2に有機物を含浸させて炭化させることにより製
造されるので、製織檻工程が単純化され、製造時間・コ
ストを低減することができる。
Furthermore, since the C / C tile 1 is manufactured by impregnating the three-dimensional preform 2 with an organic substance and carbonizing it, the weaving and cage process is simplified, and the manufacturing time and cost can be reduced. .

【0034】なお、上記ロッドは断面形状が四角形で説
明したが、四角形状は性能上で最良形状であるが、多角
形状や、角部を面取りしたものあるいは角部に円みをも
たせたものでも適用可能である。
Although the rod has been described as having a quadrangular cross-sectional shape, the quadrilateral is the best shape in terms of performance, but a polygonal shape, a chamfered corner or a rounded corner may be used. Applicable.

【0035】[0035]

【発明の効果】以上説明したように本発明は、太角ロッ
ドを、その軸方向を板厚方向に向けてマトリクス状に整
列配置するとともに、板の面内方向に細角ロッドを格子
状に直交配置して3次元のプリフォームを形成し、この
プリフォームを熱硬化性樹脂またはピッチ等を含浸させ
た後に炭化させるようにしているので、板厚方向の熱伝
導性を向上させて耐エロージョン性を高めることがで
き、しかも充分な強度が得られる。
As described above, according to the present invention, the thick square rods are arranged in a matrix with the axial direction of the rods oriented in the plate thickness direction, and the fine rods are arranged in a grid in the in-plane direction of the plate. The three-dimensional preforms are formed by arranging them orthogonally, and the preforms are impregnated with a thermosetting resin or pitch and then carbonized, so that the thermal conductivity in the plate thickness direction is improved and the erosion resistance is improved. The property can be enhanced and sufficient strength can be obtained.

【0036】また、前記ロッド方式による3次元プリフ
ォームの製作技術はほとんど確立されており、またその
他のC/Cタイルの製作工程も、既存技術が適用できる
ので、容易に製造することができる。また、C/Cタイ
ルは、3次元プリフォームを、熱硬化性樹脂またはピッ
チ等を含浸させ炭化させることにより製造されるので、
製織工程が単純化され、製造時間・コストを低減させる
ことができる。
Further, most of the techniques for producing a three-dimensional preform by the rod method have been established, and the existing technique can be applied to other C / C tile production processes, so that the production can be easily performed. Further, since the C / C tile is manufactured by impregnating a three-dimensional preform with a thermosetting resin, pitch, or the like and carbonizing it,
The weaving process is simplified, and the manufacturing time and cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るC/Cタイルの一例を示す斜視図
である。
FIG. 1 is a perspective view showing an example of a C / C tile according to the present invention.

【図2】太角ロッド及び細角ロッドの構造を示す斜視図
である。
FIG. 2 is a perspective view showing a structure of a thick-angle rod and a thin-angle rod.

【図3】太角ロッド及び細角ロッドを用いて形成される
3次元のプリフォームを示す斜視図である。
FIG. 3 is a perspective view showing a three-dimensional preform formed using a thick rod and a thin rod.

【図4】図1のC/Cタイルを核融合炉第一壁の熱防護
用タイルに適用した一例を示す斜視図である。
FIG. 4 is a perspective view showing an example in which the C / C tile of FIG. 1 is applied to a thermal protection tile of the first wall of a fusion reactor.

【符号の説明】[Explanation of symbols]

1 C/Cタイル 2 3次元プリフォーム 3 太角ロッド 4 横方向細角ロッド 5 縦方向細角ロッド 6 炭素繊維 7 炭素マトリクス 8,9 炭素繊維の束 1 C / C tile 2 3 dimensional preform 3 Thick square rod 4 Horizontal narrow square rod 5 Longitudinal narrow square rod 6 Carbon fiber 7 Carbon matrix 8,9 Bundle of carbon fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮 原 啓 東京都新宿区西新宿一丁目7番2号 富士 重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kei Miyahara Kei 7-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Fuji Heavy Industries Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】軸方向に炭素繊維を配向して角柱状に形成
され、軸方向を板厚方向に向けて板の縦横方向に一定間
隔でマトリクス状に整列配置された太角ロッドと、軸方
向に炭素繊維を配向して角柱状に形成され、軸方向を板
の縦方向に向けたものと板の横方向に向けたものとを交
互にして、前記太角ロッドの間に格子状に積み重ねられ
る細角ロッドとから形成されるプリフォームを備え、前
記プリフォームは、熱硬化性樹脂またはピッチを含浸さ
せて熱処理により炭化処理されていることを特徴とする
炭素繊維強化炭素複合材。
1. A thick-angled rod formed by aligning carbon fibers in the axial direction into a prismatic shape and arranged in a matrix at regular intervals in the longitudinal and lateral directions of the plate with the axial direction facing the plate thickness direction, and a shaft. The carbon fibers are oriented in the direction to form a prism, and the axial direction of the plate is alternated with the lateral direction of the plate to form a grid between the thick square rods. A carbon fiber reinforced carbon composite material comprising a preform formed of stacked rectangular rods, wherein the preform is impregnated with a thermosetting resin or pitch and carbonized by heat treatment.
【請求項2】請求項1の炭素繊維強化炭素複合材を冷媒
の流路を有する金属基体に固着した核融合炉の熱防護用
タイル。
2. A thermal protection tile for a nuclear fusion reactor in which the carbon fiber reinforced carbon composite material according to claim 1 is fixed to a metal substrate having a flow path for a refrigerant.
【請求項3】繊維配向を軸方向にした角柱状太角ロッド
及び細角角柱状ロッドをその軸方向を板厚方向に向けて
板の縦方向に一定間隔でマトリスク状に整列配置すると
ともに、前記細角ロッドを、軸方向に板の縦方向に向け
たものと板の横方向に向けたものとを交互にして、前記
太角ロッドの間に格子状に積み重ねてプリフォームを形
成し、このプリフォームを、熱硬化性樹脂またはピッチ
等を含浸させた後、不活性雰囲気中で熱処理により炭化
させることを特徴とする炭素繊維強化炭素複合材の製造
方法。
3. A prismatic thick square rod and a fine prismatic rod with the fiber orientation in the axial direction are arranged in a matrisk shape at regular intervals in the longitudinal direction of the plate with the axial direction of the rod in the plate thickness direction, and Alternate between the thin rods directed in the longitudinal direction of the plate in the axial direction and those oriented in the horizontal direction of the plate, to form a preform by stacking in a grid pattern between the thick angle rods, A method for producing a carbon fiber-reinforced carbon composite material, which comprises impregnating this preform with a thermosetting resin, pitch or the like and then carbonizing the same by heat treatment in an inert atmosphere.
JP6220236A 1994-09-14 1994-09-14 Carbon fiber-reinforced carbonaceous composite material and its production Pending JPH0881279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6220236A JPH0881279A (en) 1994-09-14 1994-09-14 Carbon fiber-reinforced carbonaceous composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6220236A JPH0881279A (en) 1994-09-14 1994-09-14 Carbon fiber-reinforced carbonaceous composite material and its production

Publications (1)

Publication Number Publication Date
JPH0881279A true JPH0881279A (en) 1996-03-26

Family

ID=16748031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6220236A Pending JPH0881279A (en) 1994-09-14 1994-09-14 Carbon fiber-reinforced carbonaceous composite material and its production

Country Status (1)

Country Link
JP (1) JPH0881279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241576A (en) * 1999-02-23 2000-09-08 Japan Atom Energy Res Inst Method for forming armor tile slit of blanket first wall
JP2001163669A (en) * 1999-12-09 2001-06-19 Kawasaki Heavy Ind Ltd Carbon/carbon composite material and its manufacturing method
JP2015059083A (en) * 2013-09-20 2015-03-30 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method for applying heat resistant protection components onto surface of heat exposed component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241576A (en) * 1999-02-23 2000-09-08 Japan Atom Energy Res Inst Method for forming armor tile slit of blanket first wall
JP2001163669A (en) * 1999-12-09 2001-06-19 Kawasaki Heavy Ind Ltd Carbon/carbon composite material and its manufacturing method
JP2015059083A (en) * 2013-09-20 2015-03-30 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method for applying heat resistant protection components onto surface of heat exposed component

Similar Documents

Publication Publication Date Title
US10882749B2 (en) High strength ceramic fibers and methods of fabrication
Ai et al. Multi-scale modeling of thermal expansion coefficients of C/C composites at high temperature
WO2011118757A1 (en) Carbon/carbon composite material and method of manufacture for same
KR20020022646A (en) Chordal preforms for fiber-reinforced articles and method for the production thereof
Boddu et al. Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes
Chen et al. Interphase degradation of three‐dimensional Cf/SiC–ZrC–ZrB2 composites fabricated via reactive melt infiltration
Manocha et al. Thermophysical properties of densified pitch based carbon/carbon materials—II. Bidirectional composites
Feng et al. Increasing the thermal conductivity of 2D SiC/SiC composites by heat-treatment
Zou et al. Fabrication and properties of Cf/Ta4HfC5‐SiC composite via precursor infiltration and pyrolysis
Li et al. Preparation, microstructure and properties of three-dimensional carbon/carbon composites withhigh thermal conductivity
Feng et al. Irradiation induced interface modification of carbon fiber/carbon composite revealed by in-situ transmission electron microscopy
JPH0881279A (en) Carbon fiber-reinforced carbonaceous composite material and its production
Sun Multi-scale nonlinear stress analysis of Nb3Sn superconducting accelerator magnets
Li et al. The positive role of mesophase-pitch-based carbon fibers in enhancing thermal response behavior in Carbon/Carbon composites
Li et al. High-performance Cf/SiC composites with a novel needle-punched carbon fiber fabric fabricated by PIP process
CN104478461A (en) Preparation method of whisker modified carbon/carbon composite material
Lv et al. Highly compressible graphene aerogel with high thermal conductivity along both in-plane and through-plane directions
Tang et al. Fabrication and study on thermal conductivity, electrical properties, and mechanical properties of the lightweight carbon/carbon fiber composite
Wu et al. Overview of EU CFCs development for plasma facing materials
Gonzalez‐Julian et al. Multifunctional performance of Ti2AlC MAX phase/2D braided alumina fiber laminates
Shaheen et al. Design and analysis of carbon-epoxy composite rocket motor casing
Noda et al. Recent progress of SiC-fibers and SiC/SiC-composites for fusion applications
Burchell et al. Material properties data for fusion reactor plasma facing carbon-carbon composites
JPH03164415A (en) Production of three-dimensional fabric c-c composite capable of freely controlling direction of heat conductivity
Giancarli et al. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor