JPH0880539A - Manufacture of resin laminated plate and metal-clad laminated plate - Google Patents

Manufacture of resin laminated plate and metal-clad laminated plate

Info

Publication number
JPH0880539A
JPH0880539A JP6219658A JP21965894A JPH0880539A JP H0880539 A JPH0880539 A JP H0880539A JP 6219658 A JP6219658 A JP 6219658A JP 21965894 A JP21965894 A JP 21965894A JP H0880539 A JPH0880539 A JP H0880539A
Authority
JP
Japan
Prior art keywords
fiber cloth
resin
laminated
base material
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6219658A
Other languages
Japanese (ja)
Inventor
Sadao Kajiura
貞夫 梶浦
Akira Yoshizumi
章 善積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6219658A priority Critical patent/JPH0880539A/en
Publication of JPH0880539A publication Critical patent/JPH0880539A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To manufacture a metal-clad laminated plate having excellent heat resistance and metal foil peel strength at the time of solder of high temperature and excellent electric property by a method wherein a fiber cloth base material can be impregnated with resin easily and uniformly and slippage among layers of the fiber cloth base material and defect in the fiber cloth base material do not occur. CONSTITUTION: (n+1) layers of silica particle-containing thermoplastic resin film 11 and p sheets n layers of sheet-like fiber cloth base material 12 are layered alternately so as to arrange the thermoplastic resin film as an utmost layer and form a layer structure 13. Successively, the layer structure 13 is heated and contracted so as to integrate in a state that it is inserted in between a pair of heating boards through a presser plate, so that a metal-clad laminated plate 14 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は樹脂積層板の製造方法及
び金属張り積層板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a resin laminate and a method for producing a metal-clad laminate.

【0002】[0002]

【従来の技術】プリント配線基板用の樹脂積層板は、従
来熱硬化性樹脂を基材に含浸させ一次乾燥させて形成し
たプリプレグを積層形成することによって製造されてい
る。かかる樹脂積層板に適用される材料としては、例え
ば、紙基材−フェノール系樹脂、ガラス布(Eガラス)
基材−エポキシ系樹脂、ガラス布(Eガラス)基材−ポ
リイミド系樹脂などの組み合わせが知られている。しか
しながら、フェノール系樹脂を用いた樹脂積層板は、耐
熱性が劣り、最近の電気機器に求められている高集積化
に対応することができない。また、エポキシ系樹脂やポ
リイミド系樹脂を用いた樹脂積層板では、最近の移動通
信機器用のプリント配線基板や、高速演算回路用のプリ
ント配線基板に求められている低比誘電率及び低誘電正
接等の誘電特性を満足しない。(ガラス布基材−エポキ
シ系樹脂の積層板で比誘電率4.5前後、誘電正接0.
02前後、ガラス布基材−ポリイミド系樹脂の積層板で
比誘電4.5前後、誘電正接0.006前後)。
2. Description of the Related Art A resin laminated board for a printed wiring board is conventionally manufactured by laminating a prepreg formed by impregnating a base material with a thermosetting resin and then drying the prepreg. As a material applied to such a resin laminated board, for example, a paper base material-phenolic resin, glass cloth (E glass)
Combinations of base material-epoxy resin, glass cloth (E glass) base material-polyimide resin, etc. are known. However, the resin laminated plate using the phenolic resin is inferior in heat resistance and cannot support high integration required for recent electric devices. In addition, resin laminates using epoxy resin or polyimide resin have low relative permittivity and low dielectric loss tangent required for printed wiring boards for recent mobile communication devices and printed wiring boards for high-speed arithmetic circuits. Etc. do not satisfy the dielectric properties. (Glass cloth base material-epoxy resin laminate, relative dielectric constant of about 4.5, dielectric loss tangent of 0.
02, a relative dielectric constant of about 4.5 and a dielectric loss tangent of about 0.006 in a laminated plate of a glass cloth base material-polyimide resin.

【0003】近年、このような点に鑑みて各種配線基板
用の樹脂積層板に用いる樹脂材料として、ポリフェニレ
ンスフィド、ポリエーテルケトン、及びフッ素系樹脂な
どの低比誘電率の熱可塑性樹脂が提案されている。一
方、基材としても、EガラスのSiO2 含有量を増加さ
せて低比誘電率化を図ったSガラス(誘電率5.4)、
Dガラス(誘電率4.2)等の新しいガラス布基材、ま
た低比誘電率に特徴のある芳香アラミド系繊維布基材な
どの有機系基材が開発されている。
In recent years, in view of such a point, a thermoplastic resin having a low relative dielectric constant such as polyphenylene sulfide, polyether ketone, and fluorine resin has been proposed as a resin material used for a resin laminated board for various wiring boards. Has been done. On the other hand, as a base material, S glass (dielectric constant 5.4), which has a low relative dielectric constant by increasing the SiO 2 content of E glass,
New glass cloth base materials such as D glass (dielectric constant 4.2) and organic base materials such as aromatic aramid fiber cloth base material characterized by low relative dielectric constant have been developed.

【0004】上述した熱可塑性樹脂を使用した樹脂積層
板は、樹脂の特性に応じて、種々の方法によって製造さ
れ得る。例えばポリテトラフルオロエチレン等の実質的
に熱不融性のフッ素系樹脂を用いた樹脂積層板の場合、
熱硬化性樹脂を用いる場合と同様に、樹脂をエマルジョ
ン化して高濃度のワニスを調整し、このワニスをシート
状繊維布基材中に含浸させ一次乾燥してプリプレグを形
成した後、プリプレグを加熱圧縮することによって樹脂
積層板を得る。また、テトラフルオロエチレン−パーフ
ルオロアルキルビニルエーテル共重合体等の熱溶融性の
フッ素系樹脂を用いる場合では、樹脂フィルムとシート
上繊維布基材を交互積層し得られた交互積層体を加熱圧
縮することによって樹脂積層板を得る。
The resin laminated board using the above-mentioned thermoplastic resin can be manufactured by various methods depending on the characteristics of the resin. For example, in the case of a resin laminate using a substantially heat-insoluble fluorine-based resin such as polytetrafluoroethylene,
Similar to the case of using a thermosetting resin, the resin is emulsified to prepare a high-concentration varnish, and the varnish is impregnated into a sheet-shaped fiber cloth base material and primary dried to form a prepreg, and then the prepreg is heated. A resin laminate is obtained by compression. When a heat-melting fluororesin such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer is used, the resin film and the fiber cloth base material on the sheet are alternately laminated, and the obtained alternate laminate is heated and compressed. By doing so, a resin laminated plate is obtained.

【0005】更に、これらの方法で得られた樹脂積層板
の片面または両面に、金属箔を張り合わせて成形するこ
とによって金属張り積層板を形成し、エッチング等の所
定の加工を施してプリント配線基板を製造することがで
きる。
Further, a metal-clad laminate is formed by laminating and molding a metal foil on one side or both sides of the resin laminate obtained by these methods, and the metal-clad laminate is subjected to predetermined processing such as etching to obtain a printed wiring board. Can be manufactured.

【0006】しかしながら、上述したプリプレグを経て
樹脂積層板を製造する場合、プリプレグを経て樹脂積層
板を製造する場合、プリプレグ形成時にワニスの調整、
ワニスの基材への含浸、一次乾燥などの多段階工程を要
するため、生産性が劣り、工業的に不利である。
However, in the case of producing a resin laminated plate through the above prepreg, in the case of producing a resin laminated plate through the prepreg, adjustment of varnish at the time of forming the prepreg,
Since a multi-step process such as impregnation of the varnish into the base material and primary drying is required, productivity is poor and industrially disadvantageous.

【0007】また、樹脂フィルム及び繊維布基材の交互
積層体を経て樹脂積層板を製造する場合では、溶融粘度
の高い樹脂を布基材中に均一に含浸させるべく、布基材
の空隙率に対して過剰量の樹脂を加熱圧縮によって布基
材中に強制的に押し込むことが必要となる。この際、樹
脂の強い流動によって、繊維布基材の層間のずれ、樹脂
の充填不良、及び繊維布基材における織り目のずれ、糸
の切断、ボイド等が生じ、強度などの特性、形状に関し
て、再現性をもって樹脂積層板を得ることができない。
Further, in the case of manufacturing a resin laminated plate through an alternate laminate of a resin film and a fiber cloth base material, in order to uniformly impregnate the cloth base material with a resin having a high melt viscosity, the porosity of the cloth base material is increased. On the other hand, it is necessary to force an excessive amount of resin into the cloth base material by heating and compression. At this time, due to the strong flow of the resin, misalignment between the layers of the fiber cloth base material, poor filling of the resin, misalignment of the weave of the fiber cloth base material, thread cutting, voids, etc. occur, and with respect to the characteristics such as strength and shape, A resin laminate cannot be obtained with reproducibility.

【0008】ここで、図3に、交互積層体を経て樹脂積
層板を形成し、更にこれを用いて金属張り積層板を得る
従来の製造プロセスを縦断面的に示し、以下同図を参照
してこのような従来の方法について説明する。
Here, FIG. 3 is a longitudinal sectional view showing a conventional manufacturing process of forming a resin laminated plate through an alternate laminated body and further obtaining a metal-clad laminated plate by using the resin laminated plate. Such a conventional method will be described.

【0009】すなわち、従来の方法では図3(a)に示
す如く、まず熱可塑性樹脂フィルム31及び繊維布基材
32を各々1枚ずつ交互積層し、層構成体33を得る。
続いて、層構成体33を加熱圧縮して、同図(b)に示
すごとく樹脂積層板34を形成する。更に、この樹脂積
層板34の上面及び下面に金属箔35を張り合わせるこ
とによって、同図(c)に示す如く金属張り積層板36
を得る。
That is, in the conventional method, as shown in FIG. 3 (a), first, the thermoplastic resin film 31 and the fiber cloth base material 32 are alternately laminated one by one to obtain a layer structure 33.
Subsequently, the layer structure 33 is heated and compressed to form a resin laminated plate 34 as shown in FIG. Further, by laminating the metal foil 35 on the upper surface and the lower surface of this resin laminated plate 34, as shown in FIG.
To get

【0010】しかし、当該方法によれば、樹脂積層板3
4において、特に繊維布基材の層間のずれ、糸の切断、
樹脂の充填不良などが生じる。また、金属張り積層板3
6においては、樹脂積層板34と金属箔35との界面に
微細なボイドが生じ、当該界面での密着性が損なわれる
という恐れがある。
However, according to this method, the resin laminated plate 3
4, especially the gap between the layers of the fiber cloth substrate, the cutting of the thread,
Poor filling of resin may occur. Also, metal-clad laminate 3
In No. 6, fine voids may occur at the interface between the resin laminated plate 34 and the metal foil 35, and the adhesion at the interface may be impaired.

【0011】一方、プリント配線基板においては、基板
上に形成される回路の微細化、高集積化に併ない、回路
材料の線熱膨脹係数により近い線熱膨脹係数を有するこ
とが望まれている。
On the other hand, in the printed wiring board, it is desired that the circuit formed on the board has a linear thermal expansion coefficient which is closer to that of the circuit material due to miniaturization and high integration of the circuit.

【0012】しかしながら、熱可塑性樹脂を用いた樹脂
積層板を用いると特に基板の厚み方向における線熱膨脹
係数の抑制が十分ではない。したがってスルーホールめ
っきに用いる回路材料の線熱膨脹係数と積層板のZ軸方
向の線熱膨脹係数が著しく異なるためスルーホールめっ
きの信頼性、すなわち高温時の導通性が十分確保できな
いという不都合が生じる。一方、繊維布基材の厚みを大
きくし、基板全体に占める繊維布基材の体積割合を多く
すると、基板の線熱膨脹係数は小さくなる。しかしなが
ら、基板全体に占める繊維布基材の体積割合を多くする
と、比誘電率及び誘電正接が高くなり、最近の移動通信
機器用のプリント配線基板や、高速演算回路用のプリン
ト配線基板に求められている低比誘電率、低誘電正接を
満足しない。従来、厚み方向の低い線熱膨脹係数と低比
誘電率を共に満足する樹脂積層板及び金属張り積層板が
求められていた。
However, when the resin laminated plate using the thermoplastic resin is used, the coefficient of linear thermal expansion in the thickness direction of the substrate is not sufficiently suppressed. Therefore, since the linear thermal expansion coefficient of the circuit material used for through-hole plating and the linear thermal expansion coefficient of the laminated plate in the Z-axis direction are significantly different, the reliability of through-hole plating, that is, the conductivity at high temperature, cannot be sufficiently ensured. On the other hand, when the thickness of the fiber cloth base material is increased and the volume ratio of the fiber cloth base material to the entire substrate is increased, the linear thermal expansion coefficient of the board becomes smaller. However, if the volume ratio of the fiber cloth base material to the entire substrate is increased, the relative permittivity and dielectric loss tangent become high, and it is required for the printed wiring boards for recent mobile communication devices and the printed wiring boards for high-speed arithmetic circuits. Low dielectric constant and low dielectric loss tangent are not satisfied. Conventionally, there has been a demand for a resin laminated plate and a metal-clad laminated plate which satisfy both a low linear thermal expansion coefficient in the thickness direction and a low relative dielectric constant.

【0013】[0013]

【発明が解決しようとする課題】本発明は、上記問題点
を鑑みて成されたもので、その課題は、熱可塑性樹脂及
び繊維布基材から構成される、プリント配線基板用とし
て好適な樹脂積層板の製造方法であって、樹脂を繊維布
基材中に無理無く均一に含浸させることが可能であり、
また繊維布基材の層間のずれ、及び繊維布基材における
欠陥が生じること無く、特性、形状などの関して再現性
良く、更に作業性良く樹脂積層板を形成でき、さらに
は、厚み方向の低い線熱膨脹係数と低比誘電率、低誘電
正接を共に満足する樹脂積層板を容易に提供し得る方法
を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object is to provide a resin suitable for a printed wiring board, which is composed of a thermoplastic resin and a fiber cloth base material. A method of manufacturing a laminated plate, which allows a resin to be uniformly impregnated into a fiber cloth base material,
In addition, a resin laminated plate can be formed with good reproducibility in terms of characteristics and shape, workability, etc. without causing misalignment between layers of the fiber cloth base material and defects in the fiber cloth base material. It is an object of the present invention to provide a method capable of easily providing a resin laminated plate satisfying both a low linear thermal expansion coefficient, a low relative dielectric constant, and a low dielectric loss tangent.

【0014】[0014]

【課題を解決するための手段及び作用】本発明は、熱可
塑性樹脂及び繊維布基材から構成される樹脂積層板の製
造方法であって、複数枚のシート上繊維布基材と、シリ
カ粒子を含有する熱可塑性樹脂フィルムとが、最外層が
熱可塑性フィルムとなるように積層されてなる層構成体
を形成し、該層構成体を加熱圧縮して一体化させること
を特徴とする樹脂積層板の製造方法である。
The present invention is a method for producing a resin laminate comprising a thermoplastic resin and a fiber cloth base material, which comprises a plurality of sheet fiber cloth base materials and silica particles. And a thermoplastic resin film containing, to form a layered structure in which the outermost layer is laminated so as to be a thermoplastic film, a resin laminate characterized by heating and compressing the layered structure to integrate. It is a method of manufacturing a plate.

【0015】係る樹脂積層板の製造方法では、一対の熱
可塑性樹脂フィルムの間に、複数枚のシート状繊維布基
材を積層させた状態で加熱圧縮する。ここで、熱可塑性
樹脂フィルム間の繊維布基材が積層された部分には十分
な厚みがあり、また繊維布基材の織り目の目開きの部分
からなる空隙が多く存在する。このため、加熱圧縮によ
って溶融した樹脂が、まず、繊維布基材の織り目に侵入
し、流動抵抗の小さい厚み方向に十分に流動した後、流
動抵抗の大きい面方向に、すなわち繊維布基材の周辺部
に向かって流動する。また、溶融した樹脂が流動する
際、繊維布基材の空隙がエアベントとして機能し、溶融
樹脂や繊維布基材中に不可避的に存在する空気を外部に
逃す。したがって、当該方法によれば、熱溶融状態の樹
脂を繊維布基材全体に渡って無理な力を付加すること無
く均一に含浸させることができ、繊維布基材の層間のズ
レ、樹脂の充填不良、及び繊維布基材における織り目の
ずれ、糸の切断、ボイドなどの欠陥等を防止することが
できる。
In the method for producing a resin laminated plate, a plurality of sheet-shaped fiber cloth base materials are laminated between a pair of thermoplastic resin films and heated and compressed. Here, the portion where the fiber cloth base material is laminated between the thermoplastic resin films has a sufficient thickness, and there are many voids formed by the mesh openings of the fiber cloth base material. Therefore, the resin melted by heat compression first penetrates into the texture of the fiber cloth base material and sufficiently flows in the thickness direction with small flow resistance, and then in the surface direction with large flow resistance, that is, with respect to the fiber cloth base material. Flow toward the periphery. Further, when the molten resin flows, the voids of the fiber cloth base material function as air vents, and the air unavoidably present in the molten resin and the fiber cloth base material escapes to the outside. Therefore, according to the method, the resin in the heat-melted state can be uniformly impregnated over the entire fiber cloth base material without applying an undue force, the gap between the layers of the fiber cloth base material, and the filling of the resin. It is possible to prevent defects, deviations of the weave of the fiber cloth substrate, cutting of threads, defects such as voids, and the like.

【0016】さらに、本発明係るシリカ粒子を含有する
熱可塑性樹脂フィルムを使用することにより得られる樹
脂積層板は比誘電率、誘電正接を上げること無く厚み方
向の線熱膨脹係数を抑えることができる。
Further, the resin laminate obtained by using the thermoplastic resin film containing the silica particles according to the present invention can suppress the linear thermal expansion coefficient in the thickness direction without increasing the relative dielectric constant and dielectric loss tangent.

【0017】また、上記方法では、複数枚の繊維布基材
について、その織り目に対する相対的な積層方向を適宜
調節することによって樹脂積層板における補強効果をよ
り高めることができる。
In the above method, the reinforcing effect of the resin laminated plate can be further enhanced by appropriately adjusting the relative laminating direction with respect to the weave of the plurality of fiber cloth base materials.

【0018】次に本発明の樹脂積層板の製造方法につい
て詳述する。本発明に係る熱可塑性樹脂フィルムに使用
される熱可塑性樹脂としては、特に限定されないが、熱
溶融性のフッ素系樹脂のフィルムを特に好ましく用いる
ことができる。かかるフッ素系樹脂にはプリント配線基
板の半田処理温度以上の融点を有するものが好適であ
り、その具体例としては、テトラフルオロエチレン−パ
ーフルオロアルキルビニルエーテル共重合体(FPA:
融点約305〜310℃)、テトラフルオロエチレン−
ヘキサフルオロプロピレン共重合体(融点270℃)が
挙げられる。
Next, the method for producing the resin laminate of the present invention will be described in detail. The thermoplastic resin used for the thermoplastic resin film according to the present invention is not particularly limited, but a film of a heat-meltable fluororesin can be particularly preferably used. A resin having a melting point equal to or higher than the soldering temperature of the printed wiring board is suitable for the fluorine-based resin, and a specific example thereof is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (FPA:
Melting point about 305 to 310 ° C.), tetrafluoroethylene-
Hexafluoropropylene copolymer (melting point 270 ° C.) may be mentioned.

【0019】また、熱可塑性樹脂フィルムに含有される
シリカ粒子は、繊維布基材の繊維の目の大きさ、熱可塑
性樹脂の粘度にもよるが、形状が球状であり、平均粒径
が0.1〜40μmのものを使用することが好ましい。
この範囲であると、熱可塑性樹脂の流動性を損ないにく
く、繊維布基材へ含浸されやすい。平均粒径が小さすぎ
ると、シリカ粒子含有熱可塑性樹脂フィルムの流動性が
悪くなり繊維布基材中への含浸不良が生じやすくなり、
大きすぎると、繊維布基材を破壊する恐れがある。
The silica particles contained in the thermoplastic resin film are spherical in shape and have an average particle diameter of 0, depending on the size of the fibers of the fiber cloth base material and the viscosity of the thermoplastic resin. It is preferable to use those having a thickness of 1 to 40 μm.
Within this range, the fluidity of the thermoplastic resin is less likely to be impaired and the fiber cloth base material is likely to be impregnated. If the average particle size is too small, the fluidity of the silica particle-containing thermoplastic resin film becomes poor, and impregnation into the fiber cloth base material easily occurs,
If it is too large, the fiber cloth substrate may be destroyed.

【0020】熱可塑性樹脂に対するシリカ粒子の配合割
合は、熱可塑性樹脂100重量部に対し、シリカ粒子が
10〜50重量部であることが好ましく、20〜40重
量部であるとさらに好ましい。シリカ粒子が少なすぎる
補強効果すなわち線熱膨脹の低減が不十分であり、多す
ぎると繊維布基材を破壊する恐れがある。
The mixing ratio of the silica particles to the thermoplastic resin is preferably 10 to 50 parts by weight, more preferably 20 to 40 parts by weight, based on 100 parts by weight of the thermoplastic resin. If the silica particles are too small, the reinforcing effect, that is, the reduction of linear thermal expansion is insufficient, and if the silica particles are too large, the fiber cloth substrate may be destroyed.

【0021】シリカ粒子としては、その表面をフッ素シ
ラン処理したものを用いることが好ましい。それにより
シリカ粒子とフッ素樹脂とのなじみが良くなるからであ
る。さて、本発明の一構成要素であるシリカ粒子を含ん
だ熱可塑性樹脂フィルムは粉体状の熱可塑性樹脂とシリ
カ粒子をヘンシェルミキサー中で混合し、さらに二軸押
し出し機で均一混合し、さらにTダイおよび圧延、冷却
ロールを通して製造される。
As the silica particles, it is preferable to use those whose surfaces are treated with fluorine silane. This is because the silica particles are better compatible with the fluororesin. A thermoplastic resin film containing silica particles, which is one of the constituent elements of the present invention, is prepared by mixing powdery thermoplastic resin and silica particles in a Henschel mixer, and further uniformly mixing them with a twin-screw extruder. Manufactured through dies, rolling and chill rolls.

【0022】あるいは、二軸押し出し機で均一混合した
後、丸棒に成形しこれをスカイブ加工により薄葉に削り
取ることによってもシリカ粒子を含んだ熱可塑性樹脂フ
ィルムの製造は可能である。
Alternatively, the thermoplastic resin film containing silica particles can also be produced by uniformly mixing with a twin-screw extruder, molding into a round bar, and skiving this into thin leaves.

【0023】前記繊維布基材(クロス)には、種々の無
機系または有機系の繊維布を用いることができる。その
具体例としては、Sガラス、Dガラス等のガラス布;ケ
ブラー(商品名:デュポン・東レ・ケブラー社製)、テ
クノーラ(商品名:帝人社製)、コーネックス(商品
名:帝人社製)に代表されるポリ−p−フェニレンフタ
ルアミド、ポリ−m−フェニレンフタルアミド、及び
3,4´−ジフェニルエーテルフタルアミドの共重合体
などからなる芳香族ポリアミド系繊維布やアラミド系繊
維布があげられる。また、これらの繊維布を構成するフ
ィラメントの表面が、フッ素シラン処理されたものを用
いても良い。それにより誘電特性を向上させることがで
きる。
As the fiber cloth substrate (cloth), various inorganic or organic fiber cloths can be used. Specific examples thereof include glass cloths such as S glass and D glass; Kevlar (trade name: manufactured by DuPont Toray Kevlar), Technora (trade name: manufactured by Teijin), Conex (trade name: manufactured by Teijin) Aromatic polyamide fiber cloth and aramid fiber cloth made of poly-p-phenylenephthalamide, poly-m-phenylenephthalamide, and copolymer of 3,4'-diphenyletherphthalamide. . The surface of the filaments forming these fiber cloths may be treated with fluorine silane. This can improve the dielectric characteristics.

【0024】前記熱可塑性フィルムの厚み(t)、およ
び熱可塑性樹脂フィルム間に積層する繊維布基材の枚数
(p)は繊維布の空隙率(v)、すなわち繊維布の織り
目の空隙および糸中のフィラメント間の空隙の総体積の
比率に基づいて設定され得る。具体的には、熱可塑性樹
脂フィルムの厚みtは、複数枚の繊維布基材の空隙率p
vに相当する空間を確保し得る理想的な膜厚の、好まし
くは約1.1〜2倍、とくに好ましくは1.2〜1.7
倍の範囲に調整される。
The thickness (t) of the thermoplastic film and the number (p) of the fiber cloth base materials laminated between the thermoplastic resin films are the void ratio (v) of the fiber cloth, that is, the voids and threads of the texture of the fiber cloth. It can be set based on the ratio of the total volume of voids between the filaments therein. Specifically, the thickness t of the thermoplastic resin film is the porosity p of the plurality of fiber cloth base materials.
It is preferably about 1.1 to 2 times, and particularly preferably 1.2 to 1.7 times the ideal film thickness that can secure a space corresponding to v.
Adjusted to double range.

【0025】なお、繊維布の空隙率vは、次のようにし
て求められる。すなわち、まず融点以上の温度でも低粘
度であるポリエチレンワックスを液状化し、この液槽内
に所定の枚数の繊維布基材を侵漬してワックスを含浸さ
せる。続いて目的とする樹脂積層板を製造する際の加熱
圧縮時とほぼ同様の加圧条件で、得られた含浸体を加圧
し、さらに冷却した後、固化した含浸体から所定形状の
布片を切り出し、その重量を測定すれば、この重量、繊
維布基材の目つけ量(単位面積当たりの重量)および使
用したポリエチレンワックスの比重から空隙率vを算出
できる。
The porosity v of the fiber cloth is obtained as follows. That is, first, a polyethylene wax having a low viscosity even at a temperature equal to or higher than the melting point is liquefied, and a predetermined number of fiber cloth base materials are immersed in the liquid tank to impregnate the wax. Subsequently, the impregnated body obtained is pressed under substantially the same pressure conditions as the heating and compression in the production of the target resin laminate, and after further cooling, a cloth piece of a predetermined shape is formed from the solidified impregnated body. By cutting out and measuring the weight, the porosity v can be calculated from this weight, the basis weight of the fiber cloth substrate (weight per unit area) and the specific gravity of the polyethylene wax used.

【0026】次に図1に本発明の樹脂積層板の製造プロ
セスを縦断面的に示し、同図を参照して本発明の樹脂積
層板の製造方法を具体的に説明する。まず、図1(a)
に示すごとく熱可塑性樹脂フィルム11とp枚のシート
状繊維布基材12とを、最外層が熱可塑性樹脂フィルム
11となるように交互積層して、熱可塑性樹脂フィルム
11が、(n+1)層、p枚のシート状繊維布基材がn
層各々積層された層構成体13を形成する。ここで、層
構成体13は、最終的に図示のごとき構造であれば良
く、その形成過程はとくに限定されない。例えば、熱可
塑性樹脂11上に繊維布基材12を1枚ずつp枚まで積
層した後、熱可塑性樹脂フィルム11を積層し、さらに
この操作を繰り返すことによって交互積層を行っても良
い。また、あらかじめシート状繊維布基材12をp枚積
層して1ブロックとし、このブロックと熱可塑性樹脂フ
ィルム11とを交互に積層しても良い。続いて、層構成
体13を例えば一対の熱盤間に押え板を介して挟装した
状態で加熱圧縮して一体化させる(図示せず)。こうし
て同図(b)に示す如く、繊維布材に12に熱可塑性樹
脂を含浸させ、繊維布基材12のプライ数がn×pであ
る樹脂積層板14を得る。なお、同図では各段における
シート状基材12の枚数が全てp枚となっているが本発
明においては、各段におけるシート状繊維布基材12の
枚数が各々異なっていても何等差し支えはない。
Next, a manufacturing process of the resin laminated plate of the present invention is shown in a longitudinal section in FIG. 1, and the manufacturing method of the resin laminated plate of the present invention will be specifically described with reference to the same drawing. First, FIG. 1 (a)
The thermoplastic resin film 11 and p sheet-like fiber cloth base materials 12 are alternately laminated so that the outermost layer is the thermoplastic resin film 11, and the thermoplastic resin film 11 has (n + 1) layers. , P sheet-like fiber cloth substrate is n
The layer structure 13 in which each layer is laminated is formed. Here, the layered structure 13 may have any structure as shown finally, and the forming process thereof is not particularly limited. For example, the fiber cloth substrates 12 may be laminated one by one on the thermoplastic resin 11, then the thermoplastic resin film 11 may be laminated, and this operation may be repeated to perform alternate lamination. Alternatively, p sheet-like fiber cloth base materials 12 may be previously laminated to form one block, and the blocks and the thermoplastic resin film 11 may be alternately laminated. Subsequently, the layered structure 13 is heated and compressed to be integrated, for example, in a state of being sandwiched between a pair of hot plates via a holding plate (not shown). In this way, as shown in FIG. 3B, the fiber cloth material 12 is impregnated with the thermoplastic resin to obtain the resin laminated plate 14 in which the number of plies of the fiber cloth base material 12 is n × p. In the figure, the number of the sheet-shaped base materials 12 in each stage is p, but in the present invention, even if the number of the sheet-shaped fiber cloth base materials 12 in each stage is different, it does not matter. Absent.

【0027】かかる加熱圧縮操作において、加熱温度
は、用いる熱可塑性樹脂および繊維布基材の耐熱性、熱
可塑性樹脂の溶融温度に応じて適宜選択され得るが、熱
可塑性樹脂フィルムの融点より30〜60℃、より好ま
しくは30〜50℃高い温度であることが好ましい。成
形温度が低すぎると樹脂の流動性が小さくなり、欠陥の
少ない積層板が得られにくくなる。一方成形温度が高す
ぎると熱可塑性樹脂の熱分解が生じ、基板特性への影響
が生じる恐れがある。
In the heating and compressing operation, the heating temperature can be appropriately selected according to the heat resistance of the thermoplastic resin and the fiber cloth base material to be used and the melting temperature of the thermoplastic resin. The temperature is preferably 60 ° C, more preferably 30 to 50 ° C higher. If the molding temperature is too low, the fluidity of the resin will be low, and it will be difficult to obtain a laminate having few defects. On the other hand, if the molding temperature is too high, thermal decomposition of the thermoplastic resin occurs, which may affect the substrate characteristics.

【0028】また、圧力は好ましくは約10〜150k
g/cm2 の範囲で設定される。この理由は当該圧力は
10kg/cm2 未満である場合、樹脂および繊維布基
材中に混入した空気が十分に脱気され得ない恐れがあ
り、150kg/cm2 を越える場合、繊維布基材が過
度の損傷を受ける恐れがあるためである。より好ましく
は10〜100kg/cm2 の範囲である。さらに成形
時間は、30分〜180分、好ましくは60分〜120
分の範囲から選択される。成形時間が短かすぎると樹脂
の流動距離が十分ではなく、また長すぎると樹脂の熱分
解が生じる恐れがある。
The pressure is preferably about 10 to 150 k.
It is set within the range of g / cm 2 . The reason is that if the pressure is less than 10 kg / cm 2 , the air mixed in the resin and the fiber cloth base material may not be sufficiently degassed, and if it exceeds 150 kg / cm 2 , the fiber cloth base material. Is likely to be excessively damaged. More preferably, it is in the range of 10 to 100 kg / cm 2 . Further, the molding time is 30 minutes to 180 minutes, preferably 60 minutes to 120 minutes.
Selected from the range of minutes. If the molding time is too short, the flow distance of the resin will be insufficient, and if it is too long, the resin may be thermally decomposed.

【0029】なお、上記のごとく得られた樹脂積層板1
4は、好ましくは熱盤間に挟装した状態で適切な条件で
冷却した後取り出される。このとき、上下の熱盤間の温
度差を好ましくは約50℃以内、とくに好ましくは30
℃以内に維持し、樹脂積層板14自体を約50℃以下に
まで冷却することによって、反りの発生を低減させるこ
とができる。本発明の方法によって得られた樹脂積層板
では、樹脂の体積含有率が約20〜50体積%の範囲に
あることが好ましい。当該含有率が20体積%未満であ
ると、樹脂が各層を充分に結着させることができないこ
とがあり、50体積%を越えると、繊維布基材の補強効
果が不充分になることがあり、いずれの場合も樹脂積層
版の機械的強度が低下する恐れがある。したがって、最
終的な樹脂の体積含有率が上記範囲内となるように、熱
可塑性樹脂フィルムの種類、厚み、シート状繊維布基材
の種類、枚数、層構成体の加熱圧縮の条件等を総合的に
調整することが好ましい。
The resin laminated plate 1 obtained as described above
4 is preferably taken out after being cooled between the hot plates under appropriate conditions. At this time, the temperature difference between the upper and lower heating plates is preferably within about 50 ° C, particularly preferably 30.
By maintaining the temperature within 0 ° C. and cooling the resin laminated plate 14 itself to about 50 ° C. or less, the occurrence of warpage can be reduced. In the resin laminate obtained by the method of the present invention, the resin volume content is preferably in the range of about 20 to 50% by volume. If the content is less than 20% by volume, the resin may not be able to sufficiently bind each layer, and if it exceeds 50% by volume, the reinforcing effect of the fiber cloth substrate may be insufficient. In either case, the mechanical strength of the resin laminated plate may decrease. Therefore, in order to keep the final resin volume content within the above range, the type of thermoplastic resin film, the thickness, the type of sheet-like fiber cloth base material, the number of sheets, the conditions of heat compression of the layered structure, etc. are comprehensive. It is preferable to adjust it.

【0030】本願発明により得られた樹脂積層板の片面
または両面に金属箔を貼り合わせて成形することによっ
て金属張積層板を形成し、エッチング等の所定の加工を
施してプリント配線基板を得ることができる。
To obtain a printed wiring board by forming a metal-clad laminate by laminating and molding a metal foil on one side or both sides of the resin laminate obtained by the present invention, and subjecting it to a predetermined process such as etching. You can

【0031】また、金属張積層板は、以下の方法でも得
ることができる。すなわち、熱可塑性樹脂、繊維布基
材、および金属箔から構成される金属張り積層板の製造
方法であって、複数枚のシート状繊維布基材とシリカ粒
子を含有する熱可塑性樹脂フィルムとが、最外層が熱可
塑性樹脂フィルムとなるように交互積層されるととも
に、該最外層の上面および/または下面に、予め少なく
とも一表面が耐候処理され且つ該耐候処理された表面に
熱可塑性樹脂フィルムがラミネートされた金属箔が、該
ラミネートされた熱可塑性樹脂フィルム側から積層され
てなる層構成体を形成し、該層構成体を加熱圧縮して一
体化させることを特徴とする金属張り積層板の製造方法
である。
The metal-clad laminate can also be obtained by the following method. That is, a method for producing a metal-clad laminate comprising a thermoplastic resin, a fiber cloth base material, and a metal foil, wherein a plurality of sheet-shaped fiber cloth base materials and a thermoplastic resin film containing silica particles are used. , The outermost layer is alternately laminated so as to be a thermoplastic resin film, the upper surface and / or the lower surface of the outermost layer, at least one surface is weather-treated in advance and the thermoplastic resin film on the weather-treated surface. A laminated metal foil, wherein a laminated metal foil is laminated from the side of the laminated thermoplastic resin film to form a layered structure, and the layered structure is heated and compressed to be integrated. It is a manufacturing method.

【0032】かかる金属張り積層板の製造方法では、熱
可塑性樹脂フィルムおよび複数枚のシート上繊維布基材
が、前述した樹脂積層板の製造方法と同様に交互積層お
よび一体化されるため、繊維布基材の層間のズレ、樹脂
の充填不良、および繊維布基材における欠陥の発生等が
防止されている。
In the method for producing such a metal-clad laminate, the thermoplastic resin film and the plurality of fibrous base materials on sheets are alternately laminated and integrated in the same manner as in the above-mentioned method for producing a resin laminate, so that the fiber Misalignment between layers of the cloth base material, defective filling of the resin, and occurrence of defects in the fiber cloth base material are prevented.

【0033】また、上記方法では、金属箔の一表面、即
ち接着面において、熱可塑性樹脂フィルムがラミネート
されており、その微細な凹凸にまで樹脂が充填されてい
る。従って、当該金属箔は、熱可塑性樹脂フィルムと繊
維布基材とを交互積層した後、その最外層に樹脂フィル
ム側から張り合わせられるため、特に高温における密着
性が著しく向上する。更に、当該金属箔の表面は、耐候
処理が施された上に熱可塑性樹脂フィルムがラミネート
されているため、特に耐熱性が向上し、高温での酸化劣
化が防止される。従って、上記方法によれば、高温での
半田処理時における耐熱性および金属箔のピール強度の
ような、プリント配線基板に要求される特性に非常に優
れた金属張り積層板を製造することができる。また、シ
リカ粒子を含有する熱可塑性樹脂フィルムを使用するた
め得られる金属張積層板の樹脂積層部は、比誘電率、誘
電正接を上げることなく厚み方向の線熱膨脹係数を抑え
ることができる。
Further, in the above method, the thermoplastic resin film is laminated on one surface of the metal foil, that is, the adhesive surface, and the resin is filled even in the minute irregularities. Therefore, since the metal foil is laminated on the outermost layer of the thermoplastic resin film and the fiber cloth substrate alternately from the resin film side, the adhesion is improved remarkably at high temperature. Further, since the surface of the metal foil is weather-treated and laminated with a thermoplastic resin film, the heat resistance is particularly improved, and oxidative deterioration at high temperature is prevented. Therefore, according to the above method, it is possible to manufacture a metal-clad laminate having excellent properties required for a printed wiring board, such as heat resistance during soldering at high temperature and peel strength of a metal foil. . Further, the resin-laminated portion of the metal-clad laminate obtained by using the thermoplastic resin film containing silica particles can suppress the linear thermal expansion coefficient in the thickness direction without increasing the relative dielectric constant and dielectric loss tangent.

【0034】前記熱可塑性樹脂シリカ粒子および繊維布
基材の種類、厚み等の設定に関しては、前記樹脂積層板
の製造方法の場合と同様である。一方、前記金属箔に
は、プリント配線基板の部材として一般的な金属材料を
用いることができる。その具体例としては、銅箔、真鍮
箔、鉄箔、ステンレス箔、ニッケル箔、ケイ素鋼箔等が
挙げられる。当該金属箔の厚みは、最終的に得られる積
層板を多層プリント配線基板に適用する場合を考慮して
可能な限り薄くすることが好ましく、例えば、約18〜
35μmの範囲で適宜設定され得る。
The setting of the types and thicknesses of the thermoplastic resin silica particles and the fiber cloth substrate are the same as in the case of the method for producing the resin laminated plate. On the other hand, for the metal foil, a general metal material can be used as a member of a printed wiring board. Specific examples thereof include copper foil, brass foil, iron foil, stainless foil, nickel foil, silicon steel foil and the like. The thickness of the metal foil is preferably as thin as possible in consideration of the case where the finally obtained laminate is applied to a multilayer printed wiring board, for example, about 18 to
It can be appropriately set within the range of 35 μm.

【0035】前記金属箔の少なくとも一表面にラミネー
トされる熱可塑性樹脂フィルムには、繊維布基材と交互
積層する熱可塑性樹脂フィルムとして適用可能なものを
用いることができる。更に、金属箔にラミネートする熱
可塑性樹脂フィルムと、繊維布基材と交互積層する熱可
塑性樹脂フィルムとは、熱溶融特性が近似しており、相
互に密着可能であれば、同種であっても異種であっても
よい。
As the thermoplastic resin film laminated on at least one surface of the metal foil, one applicable as a thermoplastic resin film alternately laminated with the fiber cloth substrate can be used. Further, the thermoplastic resin film to be laminated on the metal foil and the thermoplastic resin film to be alternately laminated with the fiber cloth base material have similar heat melting characteristics, and even if they are of the same kind as long as they can adhere to each other. It may be different.

【0036】当該熱可塑性樹脂フィルムの厚みは、金属
箔の未処理の粗面を充分に平滑化することが可能な範囲
でできるだけ薄く設定され得るが、好ましくは、約10
〜30μmの範囲に設定される。
The thickness of the thermoplastic resin film can be set as thin as possible within a range capable of sufficiently smoothing the untreated rough surface of the metal foil, but preferably about 10
It is set in the range of ˜30 μm.

【0037】また、金属箔表面への熱可塑性樹脂フィル
ムのラミネートは、例えば、熱可塑性樹脂の融点より約
20〜40℃程度高い温度で、圧力約1〜10kg/c
2、時間約5〜20分の条件で行うことができる。
尚、このラミネートは、最終的に製造する積層板が小型
であれば、熱プレスを用いて行うことができるが、工業
的には熱ロールを用いて行うことが好ましい。
For laminating the thermoplastic resin film on the surface of the metal foil, for example, the temperature is higher by about 20 to 40 ° C. than the melting point of the thermoplastic resin and the pressure is about 1 to 10 kg / c.
m 2 and the time may be about 5 to 20 minutes.
Note that this lamination can be performed using a hot press if the finally manufactured laminated plate is small, but industrially it is preferable to use a hot roll.

【0038】前記金属箔の一表面に施す耐候処理として
は、当該表面に被膜等を形成し、防食効果を付与するも
のであれば特に限定されない。例えば、ニッケル鍍金、
亜鉛鍍金、クロム鍍金等の鍍金処理が適用され得る。
尚、このような鍍金処理を行う場合、形成する鍍金層の
厚みは0.5〜1.5μmであることが好ましい。
The weathering treatment applied to one surface of the metal foil is not particularly limited as long as it forms a coating film or the like on the surface and imparts an anticorrosion effect. For example, nickel plating,
A plating treatment such as zinc plating or chrome plating can be applied.
When such a plating process is performed, the thickness of the plating layer formed is preferably 0.5 to 1.5 μm.

【0039】次に、図2に、本発明の金属張り積層板の
製造プロセスを縦断面的に示し、同図を参照して、本発
明の金属張り積層板の製造方法を具体的に説明する。ま
ず、同図(a)に示す如く、熱可塑性樹脂フィルム21
と、シート状繊維布基材22p枚とを、最外層が熱可塑
性樹脂フィルム21となるように交互に積層するととも
に、熱可塑性樹脂フィルム21が(n+1)層、シート
状繊維布基材22p枚がn層夫々積層された交互積層部
分の最外層である熱可塑性樹脂フィルム21に、一表面
が耐候処理され(図示せず)且つ耐候処理された表面に
熱可塑性樹脂フィルム24がラミネートされた金属箔2
3を、熱可塑性樹脂フィルム24側で接するように積層
して層構成体25を形成する。尚、層構成体25は、最
終的に図示の如き構造であればよく、その形成過程は特
に限定されない。例えば、金属箔23上に、熱可塑性樹
脂フィルム21および繊維布基材22p枚を交互に積層
し、最後に金属箔23を積層して、層構成体25を形成
してもよい。また、予め前述した方法に従って熱可塑性
樹脂フィルム21および繊維布基材22p枚を交互に積
層し、更に一体化して樹脂積層板を形成した後、この樹
脂積層板の両面に熱可塑性樹脂フィルム24がラミネー
トされた金属箔23を積層して層構成体25を形成して
もよい。
Next, FIG. 2 is a longitudinal sectional view showing a manufacturing process of the metal-clad laminate of the present invention, and the manufacturing method of the metal-clad laminate of the present invention will be specifically described with reference to FIG. . First, as shown in FIG.
And the sheet-shaped fiber cloth base material 22p sheets are alternately laminated so that the outermost layer is the thermoplastic resin film 21, and the thermoplastic resin film 21 is (n + 1) layers, and the sheet-shaped fiber cloth base material 22p sheets. Is a thermoplastic resin film 21 that is the outermost layer of the alternating laminated layers in which n layers are laminated, and one surface is weather-treated (not shown), and the thermoplastic resin film 24 is laminated on the weather-treated surface. Foil 2
3 are laminated so that they are in contact with each other on the thermoplastic resin film 24 side to form a layer structure 25. The layered structure 25 may have any structure as shown finally, and the forming process thereof is not particularly limited. For example, the layer structure 25 may be formed by alternately stacking the thermoplastic resin film 21 and 22p of the fiber cloth base material on the metal foil 23, and finally stacking the metal foil 23. In addition, the thermoplastic resin film 21 and 22p pieces of the fiber cloth base material are alternately laminated according to the above-described method, and further integrated to form a resin laminated plate, and then the thermoplastic resin film 24 is formed on both surfaces of the resin laminated plate. The layered structure 25 may be formed by laminating the laminated metal foils 23.

【0040】続いて、層構成体25を、例えば一対の熱
盤間に押え板を介して挟装した状態で加熱圧縮して一体
化させる(図示せず)。こうして、同図(b)に示す如
く、繊維布基材22に熱可塑性樹脂が含浸した金属張り
積層板26を得る。
Subsequently, the layer structure 25 is heated and compressed to be integrated (for example, not shown) in a state of being sandwiched between a pair of heating plates via a holding plate. Thus, as shown in FIG. 2B, the metal-clad laminate 26 in which the fiber cloth base material 22 is impregnated with the thermoplastic resin is obtained.

【0041】かかる加熱圧縮操作の条件は、用いる熱可
塑性樹脂および繊維布基材の耐熱性、熱可塑性樹脂の溶
融粘度に応じて適宜設定され得る。好ましくは、加熱温
度は、熱可塑性樹脂の融点より30〜60℃程度高い温
度範囲に、圧力は約10〜150kg/cm2 より好ま
しくは10〜100kg/cm2 の範囲に、加熱圧縮時
間は約30〜180分より好ましくは60〜120分の
範囲で夫々設定される。
The conditions of such heating and compression operation can be appropriately set according to the heat resistance of the thermoplastic resin and the fiber cloth base material used, and the melt viscosity of the thermoplastic resin. Preferably, the heating temperature is about 30 to 60 ° C. higher than the melting point of the thermoplastic resin, the pressure is about 10 to 150 kg / cm 2, more preferably 10 to 100 kg / cm 2 , and the heating and compression time is about. It is set in the range of 30 to 180 minutes, preferably 60 to 120 minutes, respectively.

【0042】尚、上記の如く得られた金属張り積層板2
6は、好ましくは熱盤間に挟装した状態で、適切な条件
で冷却された後取り出される。更に、この積層板にエッ
チング等の所定の加工を施すことによって、プリント配
線基板を得ることができる。
The metal-clad laminate 2 obtained as described above
6 is preferably sandwiched between heating plates and is taken out after being cooled under appropriate conditions. Furthermore, a printed wiring board can be obtained by subjecting this laminated plate to a predetermined process such as etching.

【0043】[0043]

【実施例】【Example】

(実施例1)三井デュポンフロロケミカル社製の弗素樹
脂(テトラフルオロチエレン−パーフルオロアルキルビ
ニルエーテル共重合体、略称PFA)の粉体(テフロン
MP−102(製品名))を400重量部、シリカ粒子
として、東芝セラミックス社製の球状シリカ平均粒径5
μm(USG−5A(製品名))を100重量部とり、
ヘンシェルミキサー中で混合した。さらに380℃に加
熱した二軸押し出し機でさらに均一混合した。取り出し
たブロックをTダイ、圧延ロールおよび冷却ロールを用
いて厚さ175μmのPFA樹脂フィルムを作成した。
(Example 1) 400 parts by weight of powder (Teflon MP-102 (product name)) of a fluororesin (tetrafluorothielen-perfluoroalkyl vinyl ether copolymer, abbreviated as PFA) manufactured by Mitsui DuPont Fluorochemicals, silica. As particles, the average particle size of spherical silica 5 made by Toshiba Ceramics Co., Ltd.
Take 100 parts by weight of μm (USG-5A (product name)),
Mixed in a Henschel mixer. Further, the mixture was further uniformly mixed with a twin-screw extruder heated to 380 ° C. A 175 μm thick PFA resin film was prepared from the block taken out by using a T die, a rolling roll and a cooling roll.

【0044】一方、旭シュエーベル社の50μm厚の平
織りのフッ素シラン処理したDガラスクロスを繊維布基
材として用意した。上から下に向けて、上記の175μ
m厚のPFA樹脂フィルム/Dガラスクロスを16枚/
上記の175μm厚のPFA樹脂フィルム/Dガラスク
ロスを16枚/上記の175μm厚のPFA樹脂フィル
ムの順序で積層し、層構成体を形成した。次いでこの層
構成体を一対の熱盤間に押え板を介して挟装し、圧力8
0kg/cm2 、温度350℃、時間2.5時間の成形
条件で、加熱圧縮して一体化させ樹脂積層板を作成し
た。
On the other hand, a 50 μm thick plain weave fluorosilane-treated D glass cloth from Asahi Schebel was prepared as a fiber cloth substrate. From top to bottom, above 175μ
16 pieces of m thick PFA resin film / D glass cloth /
The above 175 μm thick PFA resin film / D glass cloth was laminated in the order of 16 sheets / the above 175 μm thick PFA resin film to form a layer structure. Next, this layered structure is sandwiched between a pair of heating plates via a holding plate, and pressure 8
Under a molding condition of 0 kg / cm 2 , a temperature of 350 ° C., and a time of 2.5 hours, the resin laminate was prepared by heating and compressing to integrate.

【0045】続いてこの樹脂積層板を熱盤間に挟装した
状態で冷却した後、取り出した。上記の加熱圧縮操作で
は、熱盤(押え板)間からのクロスの層間ズレは発生し
なかった。また冷却後、取り出された樹脂積層板には、
クロスの織り目のズレ、糸の切断等の欠陥は見られなか
った。 (実施例2)シリカ粒子が、実施例1で用いたシリカ粒
子の表面Siをプラズマ処理で弗素シラン処理したもの
に変えた以外は実施例1と同様にして樹脂積層板を作成
した。
Subsequently, this resin laminated plate was cooled while being sandwiched between hot plates, and then taken out. In the above heating and compressing operation, interlayer displacement of the cloth from between the heating plates (pressing plates) did not occur. Also, after cooling, the resin laminated plate taken out,
No defects such as a shift in the texture of the cloth and a break in the thread were observed. (Example 2) A resin laminated plate was prepared in the same manner as in Example 1 except that the silica particles used in Example 1 were replaced with those obtained by subjecting the surface Si of the silica particles to fluorine silane treatment by plasma treatment.

【0046】実施例2においても、加熱圧縮操作におけ
る熱盤(押え板)間からのクロスの層間ずれは発生しな
かった。また冷却後、取り出された樹脂積層板には、ク
ロスの織り目のズレ、糸の切断等の欠陥は見られなかっ
た。 (実施例3)三井デュポンフロロケミカル社製の弗素樹
脂(テトラフルオロエチレンパーフルオロアルキルビニ
ルエーテル共重合体、略称PFA)の粉体(テフロンM
P−102(製品名))を400重量部と、シリカ粒子
として東芝セラミックス社製の球状シリカ(USG5A
(製品名))を100重量部とり、ヘンシェルミキサー
中で混合した。
In Example 2 as well, the interlayer displacement of the cloth from between the heating plates (pressing plates) in the heating and compressing operation did not occur. Further, after cooling, the resin laminated plate taken out did not show any defects such as deviation of the weave of the cloth or cutting of the yarn. (Example 3) Powder of a fluororesin (tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, abbreviated as PFA) manufactured by DuPont Mitsui Fluorochemicals (Teflon M)
400 parts by weight of P-102 (product name) and spherical silica (USG5A manufactured by Toshiba Ceramics Co., Ltd.) as silica particles.
100 parts by weight of (product name)) were mixed in a Henschel mixer.

【0047】さらに380℃に加熱した二軸押出機でさ
らに均一混合した。取り出したブロックをTダイ、圧延
ロール及び冷却ロールを用いて厚さ25μm、及び厚さ
175μmのPFA樹脂フィルムを作成した。
Further, uniform mixing was carried out with a twin-screw extruder heated to 380 ° C. The block taken out was made into a PFA resin film having a thickness of 25 μm and a thickness of 175 μm using a T die, a rolling roll and a cooling roll.

【0048】次に福田金属箔粉社製の表面がニッケルめ
っき処理された銅箔に上記厚さ25μmのPFA樹脂フ
ィルム、およびカプトンフィルム(商品名:東レ社製、
膜厚20μm)を順次積層して積層体を形成した。
Next, a 25 μm thick PFA resin film and a Kapton film (trade name: manufactured by Toray Industries, Inc., manufactured by Fukuda Metal Foil & Powder Co., Ltd.
A film thickness of 20 μm) was sequentially laminated to form a laminated body.

【0049】次いで、この積層体を一対の熱盤間のガス
抜きを行った後、熱盤間の温度を再度350℃まで昇温
させ、圧力10kg/cm2 で10分間加熱圧縮して、
層間を圧着させた。続いて、この積層体を熱盤間に挟装
した状態で冷却した後取り出し、カプトンフィルムを剥
離して、一方の表面にPFA樹脂フィルムがラミネート
された銅箔を得た。
Next, after degassing between the pair of hot plates, the temperature of the hot plates was again raised to 350 ° C., and the laminate was heated and compressed at a pressure of 10 kg / cm 2 for 10 minutes.
The layers were pressed together. Subsequently, this laminate was cooled while sandwiched between hot plates, taken out, the Kapton film was peeled off, and a copper foil having a PFA resin film laminated on one surface thereof was obtained.

【0050】次に、前記PFA樹脂フィルムがラミネー
トされた銅箔/PFA樹脂フィルム(膜厚175μm)
1枚/フッ素シラン処理のDガラスクロス 16枚/
PFA樹脂フィルム(膜厚175μm) 1枚/フッ素
シラン処理のDガラスクロス16枚/PFA樹脂フィル
ム(膜厚175μm) 1枚/前記PFA樹脂フィルム
がラミネートされた銅箔の順で積層し、層構成体を形成
した。次いで、この層構成体を、一対の熱盤間に押え板
を介して挟装し、温度350℃、圧力80kg/cm2
で2.5時間加熱圧縮して一体化させ、両面銅張り積層
板を得た。続いて、得られた銅張り積層板を、熱盤間に
挟装した状態で冷却した後、熱盤より取り出した。
Next, a copper foil / PFA resin film laminated with the PFA resin film (film thickness 175 μm)
1 sheet / Fluorosilane treated D glass cloth 16 sheets /
PFA resin film (thickness 175 μm) 1 sheet / Fluorine silane-treated D glass cloth 16 sheets / PFA resin film (thickness 175 μm) 1 sheet / Copper foil laminated with the PFA resin film in this order Formed body. Next, this layered structure is sandwiched between a pair of heating plates via a pressing plate, and the temperature is 350 ° C. and the pressure is 80 kg / cm 2.
Then, it was heated and compressed for 2.5 hours to be integrated to obtain a double-sided copper-clad laminate. Subsequently, the obtained copper-clad laminate was cooled while sandwiched between the heating plates and then taken out from the heating plates.

【0051】実施例3においては、加熱圧縮操作では、
熱盤(押え板)間からのクロスの層間ズレは発生しなか
った。また冷却後取り出された銅張り積層板にはクロス
の織り目のズレ、糸の切断等の欠陥は見られなかった。 (実施例4)シリカ粒子として、実施例3で用いたシリ
カ粒子の表面のSiをプラズマ処理によりフッ素シラン
処理したものに変えた以外は、実施例3と同様にして、
銅張り積層板を得た。
In Example 3, in the heat compression operation,
No inter-layer displacement of the cloth between the hot plates (holding plates) occurred. In addition, the copper-clad laminate taken out after cooling did not show any defects such as deviation of the weave of the cloth or cutting of the yarn. (Example 4) In the same manner as in Example 3 except that the silica particles used in Example 3 were replaced with those obtained by subjecting Si on the surface of the silica particles to fluorine silane treatment by plasma treatment.
A copper-clad laminate was obtained.

【0052】実施例4においても、加熱圧縮操作では、
熱盤(押え板)間からのクロスの層間ズレは発生しなか
った。また冷却後取出された銅張り積層板にはクロスの
織り目のズレ、糸の切断等の欠陥は見られなかった。 (参考例1)東レ−オー−エス−シー社製の弗素樹脂
(テトラフルオロエチレン−パーフルオロアルキルビニ
ルエーテル共重合体、略称PFA)のフィルム(25P
X,50PX,100PX,125PX(商品名))を
組み合わせて175μm厚のPFA樹脂フィルムを用意
した。
Also in Example 4, in the heat compression operation,
No inter-layer displacement of the cloth between the hot plates (holding plates) occurred. In addition, the copper-clad laminate taken out after cooling did not show any defects such as deviation of the weave of the cloth or cutting of the yarn. Reference Example 1 A film (25P) of a fluororesin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, abbreviated as PFA) manufactured by Toray OSC Co., Ltd.
X, 50PX, 100PX, 125PX (trade name) were combined to prepare a 175 μm thick PFA resin film.

【0053】一方、旭シュエーベル社の50μm厚の平
織りのフッ素シラン処理したDガラスクロスを繊維布基
材として用意した。上から下に向けて、上記の175μ
m厚のPFA樹脂フィルム/Dガラスクロス 16枚/
上記の175μm厚のPFA樹脂フィルム/Dガラスク
ロスを16枚/上記の175μm厚のPFA樹脂フィル
ム、の順序で積層し、層構成体を形成した。次いでこの
層構成体を一対の熱盤間に押え板を界して挟装し、圧力
80kg/cm2 、温度350℃、時間2.5時間の成
形条件で、加熱圧縮して一体化させ樹脂積層板を作成し
た。
On the other hand, a 50 μm thick plain weave fluorosilane-treated D glass cloth from Asahi Schebel was prepared as a fiber cloth substrate. From top to bottom, above 175μ
m thick PFA resin film / D glass cloth 16 sheets /
The above 175 μm thick PFA resin film / D glass cloth was laminated in the order of 16 sheets / the above 175 μm thick PFA resin film to form a layer structure. Next, this layered structure is sandwiched between a pair of heating plates with a holding plate in between, and is heated and compressed under the molding conditions of a pressure of 80 kg / cm 2 , a temperature of 350 ° C. and a time of 2.5 hours to integrate the resin. A laminate was created.

【0054】続いてこの樹脂積層板を、熱盤間に挟装し
た状態で冷却した後、取り出した。上記の加熱圧縮操作
では、熱盤(押え板)間からのクロスの層間ズレは発生
しなかった。また冷却後、取り出された樹脂積層板に
は、クロスの織り目のズレ、糸の切断等の欠陥は見られ
なかった。 (参考例2)東レ−オー−エス−シー社製の弗素樹脂
(テトラフルオロエチレン−パーフルオロアルキルビニ
ルエーテル共重合体、略称PFA)のフィルム(25P
X,50PX,100PX,125PX(商品名))を
組み合わせて175μm厚さのPFA樹脂フィルムを用
意した。
Subsequently, this resin laminated plate was cooled in a state of being sandwiched between hot plates and then taken out. In the above heating and compressing operation, interlayer displacement of the cloth from between the heating plates (pressing plates) did not occur. Further, after cooling, the resin laminated plate taken out did not show any defects such as deviation of the weave of the cloth or cutting of the yarn. (Reference Example 2) Film (25P) of fluororesin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, abbreviated as PFA) manufactured by Toray OSC
X, 50PX, 100PX, 125PX (trade name) were combined to prepare a PFA resin film having a thickness of 175 μm.

【0055】次に福田金属箔粉社製の表面がニッケルめ
っき処理された銅箔に上記厚さ25μmの樹脂フィル
ム、およびカプトンフィルム(商品名:東レ社製、膜厚
20μm)を順次積層して積層体を形成した。
Next, a 25 μm thick resin film and a Kapton film (trade name: Toray, film thickness 20 μm) made of Fukuda Metal Foil & Powder Co., Ltd. on the surface of which was nickel-plated on the surface were sequentially laminated. A laminate was formed.

【0056】次いで、この積層体を一対の熱盤間に挟装
し、温度350℃、圧力10kg/cm2 で繰り返して
圧縮して層間のガス抜きを行った後、熱盤間の温度を再
度35℃まで昇温させ、圧力10kg/cm2 で10分
間加熱圧縮して、層間を圧着させた。続けて、この積層
体を熱盤間に挟装した状態で冷却した後取り出し、カプ
トンフィルムを剥離して、一方の表面にPFA樹脂フィ
ルムがラミネートされた銅箔を得た。
Next, the laminated body was sandwiched between a pair of heating plates and repeatedly compressed at a temperature of 350 ° C. and a pressure of 10 kg / cm 2 to degas the layers, and then the temperature between the heating plates was changed again. The temperature was raised to 35 ° C., and the mixture was heat-compressed at a pressure of 10 kg / cm 2 for 10 minutes to press-bond the layers. Subsequently, this laminate was cooled in a state of being sandwiched between hot plates and then taken out, and the Kapton film was peeled off to obtain a copper foil having a PFA resin film laminated on one surface.

【0057】次に、前記PFA樹脂フィルムがラミネー
トされた銅箔/PFA樹脂フィルム(膜厚175μm)
1枚/弗素シラン処理したDガラスクロス16枚/P
FA樹脂フィルム(膜厚175μm) 1枚/フッ素シ
ラン処理したDガラスクロス16枚/PFA樹脂フィル
ム(膜厚175μm) 1枚/前記PFA樹脂フィルム
がラミネートされた銅箔の順で積層し、層構成体を形成
した。次いで、この層構成体を、一対の熱盤間に押え板
を介して挟装し、温度350℃、圧力80kg/cm2
で2.5時間加熱圧縮して一体化させ、両面銅張り積層
板を得た。続いて、得られた銅張り積層板を、熱盤間に
挟装した状態で冷却した後、熱盤より取り出した。
Next, a copper foil / PFA resin film (film thickness 175 μm) laminated with the PFA resin film
1 sheet / 16 pieces of D-glass cloth treated with fluorosilane / P
FA resin film (thickness 175 μm) 1 sheet / fluorinated silane-treated D glass cloth 16 sheets / PFA resin film (thickness 175 μm) 1 sheet / copper foil laminated with the PFA resin film in this order Formed body. Next, this layered structure is sandwiched between a pair of heating plates via a pressing plate, and the temperature is 350 ° C. and the pressure is 80 kg / cm 2.
Then, it was heated and compressed for 2.5 hours to be integrated to obtain a double-sided copper-clad laminate. Subsequently, the obtained copper-clad laminate was cooled while sandwiched between the heating plates and then taken out from the heating plates.

【0058】参考例2においては、加熱圧縮操作では、
熱盤(押え板)間からのクロスの層間ズレは発生しなか
った。また冷却後取り出された銅張り積層板にはクロス
の織り目のズレ、糸の切断等の欠陥は見られなかった。 (比較例1)PFAフィルム25P−X(商品名:東レ
社−オーイーエス社製、膜厚25μm)33枚と、フッ
素シラン処理のDガラスクロス32枚とを、夫々1枚ず
つ、最外層がPFA樹脂フィルムとなるように交互積層
し層構成体を形成した。次いで、この層構成体を、一対
の熱盤間に押え板を介して挟装し、温度350℃、圧力
80kg/cm2 で2.5時間加熱圧縮して一体化さ
せ、樹脂積層板を得た。続いて、この樹脂積層板を、熱
盤間に挟装した状態で冷却した後、取り出した。
In Reference Example 2, in the heat compression operation,
No inter-layer displacement of the cloth between the hot plates (holding plates) occurred. In addition, the copper-clad laminate taken out after cooling did not show any defects such as deviation of the weave of the cloth or cutting of the yarn. (Comparative Example 1) 33 sheets of PFA film 25P-X (trade name: manufactured by Toray Industries, Inc.-OS Co., Ltd., film thickness: 25 μm) and 32 sheets of D-glass cloth treated with fluorinated silane, one sheet each, the outermost layer The PFA resin film was alternately laminated to form a layer structure. Next, this layered structure is sandwiched between a pair of hot plates via a holding plate, and heated and compressed at a temperature of 350 ° C. and a pressure of 80 kg / cm 2 for 2.5 hours to be integrated to obtain a resin laminated plate. It was Subsequently, this resin laminated plate was cooled while being sandwiched between hot plates, and then taken out.

【0059】この場合、加熱圧縮操作中にクロスの層間
ズレが発生した上、冷却後の樹脂積層板には、クロスの
織り目のズレ、糸の切断が生じていた。このためこれ以
後の評価はできなかった。
In this case, interlayer displacement of the cloth occurred during the heating and compression operation, and the weave of the cloth and the cutting of the yarn occurred in the resin laminated plate after cooling. Therefore, no further evaluation was possible.

【0060】更に、以上の実施例1〜2および参考例1
で得られた樹脂積層板および銅張り積層板の評価を行な
った。すなわち樹脂含有率(体積%)、ボイドの発生状
況(体積%)、比誘電率(1MHz)、誘電正接(1M
Hz)、24時間吸水率(重量%)、30〜150℃で
の線熱膨張係数(X,Y軸方向,Z軸方向)、ドリル穴
開け加工性、難燃性を、JIS C 6481-1900
に従って測定した。結果を表1に記す。
Further, the above-mentioned Examples 1 and 2 and Reference Example 1
The resin laminate and the copper-clad laminate obtained in 1. were evaluated. That is, resin content (volume%), occurrence of voids (volume%), relative dielectric constant (1 MHz), dielectric loss tangent (1 M
Hz), 24-hour water absorption (% by weight), coefficient of linear thermal expansion at 30 to 150 ° C (X, Y axis direction, Z axis direction), drilling workability, flame retardancy according to JIS C 6481 -1900. And the like. The results are shown in Table 1.

【0061】[0061]

【表1】 [Table 1]

【0062】以上の結果より、本発明の実施例1〜2、
参考例1では、樹脂が繊維布基材中に無理なく均一に含
浸され、且つ繊維布基材間の層間ズレ、および繊維布基
材における欠陥を生じることなく容易に樹脂積層板を得
ることができた。更に、この樹脂積層板に対し銅張り等
の適切な加工を施すことによって、電気的特性および機
械的特性等の各種物性に優れた、金属張り積層板が提供
され得ることが判った。 また本発明の如くシリカ粒子
を含有した樹脂を用いた場合Z軸方向の線熱膨脹係数が
抑えられる。
From the above results, Examples 1 and 2 of the present invention,
In Reference Example 1, the resin can be easily and uniformly impregnated into the fiber cloth base material, and a resin laminated plate can be easily obtained without causing interlayer deviation between the fiber cloth base materials and defects in the fiber cloth base material. did it. Further, it has been found that a metal-clad laminate excellent in various physical properties such as electrical characteristics and mechanical characteristics can be provided by subjecting the resin laminated board to appropriate processing such as copper-clad coating. Further, when a resin containing silica particles is used as in the present invention, the coefficient of linear thermal expansion in the Z-axis direction can be suppressed.

【0063】このためスルーホール穴開け加工後のスル
ーホールメッキによる導通性の確保が容易になる。更
に、以上の実施例3〜4及び参考例2で得られた金属張
り積層板(銅張り積層板)について、半田処理耐熱性
(常態300℃)、銅箔ピール強度(室温、200℃)
を測定した。結果を表1に併記する。
Therefore, it becomes easy to secure conductivity by through-hole plating after through-hole drilling. Furthermore, regarding the metal-clad laminates (copper-clad laminates) obtained in the above Examples 3 to 4 and Reference Example 2, soldering heat resistance (normal state 300 ° C.), copper foil peel strength (room temperature, 200 ° C.)
Was measured. The results are also shown in Table 1.

【0064】以上の結果より、本発明の実施例3〜4で
は、樹脂が繊維布基材中に無理なく均一に含浸され、且
つ繊維布基材間の層間ズレ、および繊維布基材における
欠陥を生じることなく、半田処理耐熱性、銅箔ピール強
度に優れた金属張り積層板を得ることができた。
From the above results, in Examples 3 to 4 of the present invention, the resin was uniformly and uniformly impregnated into the fiber cloth base material, the interlayer deviation between the fiber cloth base materials and the defects in the fiber cloth base material were observed. It was possible to obtain a metal-clad laminate excellent in soldering heat resistance and copper foil peeling strength without causing the occurrence of the above.

【0065】[0065]

【発明の効果】以上詳述したように、本発明によれば、
繊維布基材の層間のズレ、および繊維布基材における欠
陥が生じることなく、樹脂を繊維布基材中に無理なく均
一に含浸させることが可能であり、特性、形状等に関し
て再現性よく、また作業性よくまた低い線熱膨脹係数と
優れた誘電特性を示す樹脂積層板を製造することができ
る。更には、上記の改善に加えて高温での半田処理時等
における耐熱性および金属箔のピール強度等にも優れた
金属張り積層板を製造することができる。従って、本発
明の方法は、プリント配線基盤の製造プロセスに組み入
れられて顕著な効果を奏するものであり、その工業的価
値は極めて大きい。
As described in detail above, according to the present invention,
It is possible to reasonably and uniformly impregnate the resin into the fiber cloth base material without causing misalignment between layers of the fiber cloth base material and defects in the fiber cloth base material, and with good reproducibility in terms of characteristics, shape, etc. In addition, it is possible to manufacture a resin laminate having good workability, a low coefficient of linear thermal expansion, and excellent dielectric properties. Furthermore, in addition to the above improvements, it is possible to manufacture a metal-clad laminate having excellent heat resistance during soldering at high temperatures and peel strength of metal foil. Therefore, the method of the present invention has a remarkable effect by being incorporated into the manufacturing process of the printed wiring board, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の樹脂積層板の製造プロセスを示す縦
断面図。
FIG. 1 is a vertical sectional view showing a manufacturing process of a resin laminated plate of the present invention.

【図2】 本発明の金属張り積層板の製造プロセスを示
す縦断面図。
FIG. 2 is a vertical sectional view showing a manufacturing process of the metal-clad laminate according to the present invention.

【図3】 従来の樹脂積層板および金属張り積層板の製
造プロセスを示す縦断面図。
FIG. 3 is a vertical cross-sectional view showing a manufacturing process of a conventional resin laminate and a metal-clad laminate.

【符号の説明】[Explanation of symbols]

11,21,24,31…熱可塑性樹脂フィルム 12,22,32…繊維布基材 13,25,33…層構成体 14,34…樹脂積層板 23,35…金属箔 26,36…金属張り積層板 11, 21, 24, 31 ... Thermoplastic resin film 12, 22, 32 ... Fiber cloth base material 13, 25, 33 ... Layer structure 14, 34 ... Resin laminated plate 23, 35 ... Metal foil 26, 36 ... Metal-clad Laminate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:34 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29L 31:34

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂および繊維布基材から構成さ
れる樹脂積層板の製造方法であって、複数枚のシート状
繊維布機材と、シリカ粒子を含有する熱可塑性樹脂フィ
ルムとが、最外層が熱可塑性樹脂フィルムとなるように
交互積層されてなるように交互積層体を形成し、該層構
成体を加熱圧縮して一体化させることを特徴とする樹脂
積層板の製造方法。
1. A method for producing a resin laminate comprising a thermoplastic resin and a fiber cloth base material, which comprises a plurality of sheet-like fiber cloth materials and a thermoplastic resin film containing silica particles. A method for producing a resin laminated plate, characterized in that an alternating laminated body is formed such that outer layers are alternately laminated so as to be a thermoplastic resin film, and the layer constituting body is heated and compressed to be integrated.
【請求項2】熱可塑性樹脂および繊維布の基材および金
属箔から構成される金属張り樹脂積層板の製造方法であ
って、複数枚のシート状繊維布基材と、シリカ粒子を含
有する熱可塑性樹脂フィルムとが、最外層が熱可塑性樹
脂フィルムとなるように交互積層されると共に、最外層
の上面および/または下面に、あらかじめ少なくとも一
表面が耐候処理され且つ該耐候処理された表面に熱可塑
性樹脂フィルムがラミネートされた金属箔が、該ラミネ
ートされた熱可塑性樹脂フィルム側から積層されてなる
層構成体を形成し、該層構成体を加熱圧縮して一体化さ
せることを特徴とする金属張り積層板の製造方法。
2. A method for producing a metal-clad resin laminate comprising a thermoplastic resin, a fiber cloth base material and a metal foil, which comprises a plurality of sheet-shaped fiber cloth base materials and heat containing silica particles. The plastic resin film and the outermost layer are alternately laminated so that the outermost layer is a thermoplastic resin film, and at least one surface of the outermost layer is previously subjected to weathering treatment and the heat-treated surface is heat-treated. A metal comprising a metal foil laminated with a plastic resin film, which is laminated from the laminated thermoplastic resin film side to form a layered structure, and the layered structure is heated and compressed to be integrated. Method for manufacturing a laminated laminate.
JP6219658A 1994-09-14 1994-09-14 Manufacture of resin laminated plate and metal-clad laminated plate Pending JPH0880539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6219658A JPH0880539A (en) 1994-09-14 1994-09-14 Manufacture of resin laminated plate and metal-clad laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6219658A JPH0880539A (en) 1994-09-14 1994-09-14 Manufacture of resin laminated plate and metal-clad laminated plate

Publications (1)

Publication Number Publication Date
JPH0880539A true JPH0880539A (en) 1996-03-26

Family

ID=16738954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6219658A Pending JPH0880539A (en) 1994-09-14 1994-09-14 Manufacture of resin laminated plate and metal-clad laminated plate

Country Status (1)

Country Link
JP (1) JPH0880539A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262011A (en) * 2000-03-16 2001-09-26 Nof Corp Fluorine-containing curable coating liquid and its use and production method
JP2011240620A (en) * 2010-05-19 2011-12-01 Taisei Plas Co Ltd Laminated sheet and method for producing the same
US9193677B2 (en) 2011-03-02 2015-11-24 Futurefuel Chemical Company Metal salts of a dialkyl ester of 5-sulfoisophthalic acid and method of preparing same
US9212133B2 (en) 2011-08-29 2015-12-15 Futurefuel Chemical Company 5-sulfoisophthalic acid salts and process for the preparation thereof
US9359292B2 (en) 2009-10-20 2016-06-07 Futurefuel Chemical Company Use of an acetic acid/water solvent mixture for the preparation of low-sulfate 5-sulfoisophthalic acid, mono-lithium salt from 5-sulfoisophthalic acid
JPWO2016021666A1 (en) * 2014-08-07 2017-04-27 日本化薬株式会社 Double-sided circuit board suitable for high-frequency circuits
US20210345485A1 (en) * 2019-01-11 2021-11-04 Daikin Insustries, Ltd. Fluororesin composition, fluororesin sheet, laminate and substrate for circuits

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262011A (en) * 2000-03-16 2001-09-26 Nof Corp Fluorine-containing curable coating liquid and its use and production method
US9359292B2 (en) 2009-10-20 2016-06-07 Futurefuel Chemical Company Use of an acetic acid/water solvent mixture for the preparation of low-sulfate 5-sulfoisophthalic acid, mono-lithium salt from 5-sulfoisophthalic acid
JP2011240620A (en) * 2010-05-19 2011-12-01 Taisei Plas Co Ltd Laminated sheet and method for producing the same
US9193677B2 (en) 2011-03-02 2015-11-24 Futurefuel Chemical Company Metal salts of a dialkyl ester of 5-sulfoisophthalic acid and method of preparing same
US9212133B2 (en) 2011-08-29 2015-12-15 Futurefuel Chemical Company 5-sulfoisophthalic acid salts and process for the preparation thereof
JPWO2016021666A1 (en) * 2014-08-07 2017-04-27 日本化薬株式会社 Double-sided circuit board suitable for high-frequency circuits
US20210345485A1 (en) * 2019-01-11 2021-11-04 Daikin Insustries, Ltd. Fluororesin composition, fluororesin sheet, laminate and substrate for circuits
US11963297B2 (en) * 2019-01-11 2024-04-16 Daikin Industries, Ltd. Fluororesin composition, fluororesin sheet, laminate and substrate for circuits

Similar Documents

Publication Publication Date Title
EP0194381B1 (en) Dielectric materials having low dielectric constants and methods for their manufacture
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
JP4866853B2 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
EP0248617A2 (en) Process for making substrates for printed circuit boards
CN108780674B (en) Insulating resin material, insulating resin material with metal layer using same, and wiring board
KR200494839Y1 (en) Dielectric substrate comprising unsintered polytetrafluoroethylene and method for manufacturing same
US20080311358A1 (en) Fluorine Resin Laminated Substrate
EP1420949B1 (en) Solid sheet material especially useful for circuit boards
JPH0818403B2 (en) Laminates and green composite films for laminates
JP2018014387A (en) Substrate, base material for flexible printed wiring board, flexible printed wiring board and method for manufacturing substrate
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
EP3570648A1 (en) Printed wiring board with built-in thick conductor and method for producing same
JPH0880539A (en) Manufacture of resin laminated plate and metal-clad laminated plate
WO2019049519A1 (en) Circuit board and manufacturing method therefor
WO2005057997A1 (en) Method of manufacturing circuit board
JP2002307611A (en) Fluoroplastic copper-clad laminated sheet
JPS63267524A (en) Method and apparatus for manufacturing metal clad laminated sheet
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JPH07202362A (en) Thermoplastic resin printed wiring board
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JP2001328205A (en) Laminated sheet and method for manufacturing the same
JPS62176842A (en) Laminated board and manufacture thereof
JP3139515B2 (en) Fiber sheet and circuit board using the same
JPH03239389A (en) Printed circuit board
JPH05102628A (en) Printed circuit board