JPH0878162A - Thin film electroluminescent element - Google Patents

Thin film electroluminescent element

Info

Publication number
JPH0878162A
JPH0878162A JP6210321A JP21032194A JPH0878162A JP H0878162 A JPH0878162 A JP H0878162A JP 6210321 A JP6210321 A JP 6210321A JP 21032194 A JP21032194 A JP 21032194A JP H0878162 A JPH0878162 A JP H0878162A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
light emitting
thin film
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6210321A
Other languages
Japanese (ja)
Inventor
Youji Yamada
羊治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6210321A priority Critical patent/JPH0878162A/en
Publication of JPH0878162A publication Critical patent/JPH0878162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: To provide a thin film electroluminescent element excellent in white purity and white luminance without changing the film thickness by providing an insulating layer making contact with a Sr compound layer, which has a large leak current and a high dielectric constant, compared with an insulating layer making contact with a zinc sulfide layer. CONSTITUTION: A transparent electrode 12 is formed on a glass base 11, and an aluminium insulating layer 19 and tantalum pentoxide insulating layer 18 forming a first insulating layer 20 are formed thereon. A strontium light emitting layer 15 and zinc sulfide light emitting layer 16 forming a light emitting layer 21 are successively formed thereon. A silicon insulating layer 15A and silicon oxide insulating layer 13A forming a second insulating layer 22 are formed on the light emitting layer. Aluminium metal is evaporated to form a counter electrode 17. The dielectric constant of the thus-obtained tantalum pentoxide is higher than that of silicon nitride, and the leak current of the tantalum pentoxide is larger than that of silicon nitride, so that charges are easily accumulated under a prescribed voltage, and the Sr compound layer is selectively excited by these charges.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は薄膜電場発光素子の構
造に係り、特に白色発光に優れる薄膜電場発光素子の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thin film electroluminescent device, and more particularly to a structure of a thin film electroluminescent device excellent in white light emission.

【0002】[0002]

【従来の技術】Mnを発光中心とする蛍光体である発光層
の両面を絶縁層を介して透明電極ITOと対向電極で挟ん
だ二重絶縁型の薄膜エレクトロルミネセントディスプレ
イ(以下薄膜電場発光素子と称する)は、高輝度発光,
高解像度,大容量表示化が可能であることから、薄型表
示用のディスプレイパネルとして注目されている。
2. Description of the Related Art A double-insulation type thin film electroluminescent display (hereinafter referred to as a thin film electroluminescent device) in which both surfaces of a light emitting layer which is a phosphor having Mn as an emission center are sandwiched between a transparent electrode ITO and a counter electrode with an insulating layer interposed therebetween. Is called high-intensity light emission,
Since it is capable of high resolution and large capacity display, it is attracting attention as a display panel for thin display.

【0003】図3は従来の二重絶縁型の薄膜電場発光素
子を示す断面図である。薄膜電場発光素子はガラス基板
11と、透明電極12と、酸化シリコンSiO2絶縁層13
および窒化シリコンSi3N4 絶縁層14からなる第1の絶
縁層20と、硫化ストロンチウムの発光層15と硫化亜
鉛発光層16からなる発光層21と、窒化シリコンSi3N
4 絶縁層14Aと酸化シリコンSiO2絶縁層13Aからな
る第2の絶縁層22と、Alからなり透明電極12と平行
且つ直交するように配列された対向電極17から薄膜電
場発光素子が構成される。これらの各層の厚さは20な
いし1000nmに設定される。透明電極12、第1の絶
縁層20、第2の絶縁層22は一般にスパッタ法で作製
される。硫化ストロンチウム発光層15と硫化亜鉛発光
層16からなる発光層21は真空蒸着法,CVD法の1
つであるALE法,スパッタリング法あるいは電子ビー
ム蒸着法で作製される。前記対向電極はAlをスパッタリ
ングし、レジストを塗布し、パターニングしたのちに現
像しさらにAlをエッチングして作成される。
FIG. 3 is a sectional view showing a conventional double insulation type thin film electroluminescent device. The thin film electroluminescent device includes a glass substrate 11, a transparent electrode 12, and a silicon oxide SiO 2 insulating layer 13.
And a first insulating layer 20 made of a silicon nitride Si 3 N 4 insulating layer 14, a light emitting layer 21 made of a strontium sulfide light emitting layer 15 and a zinc sulfide light emitting layer 16, and a silicon nitride Si 3 N 4
The thin film electroluminescent device is composed of the second insulating layer 22 composed of the 4 insulating layer 14A and the silicon oxide SiO 2 insulating layer 13A, and the counter electrode 17 composed of Al and arranged in parallel and orthogonal to the transparent electrode 12. . The thickness of each of these layers is set to 20 to 1000 nm. The transparent electrode 12, the first insulating layer 20, and the second insulating layer 22 are generally manufactured by a sputtering method. The light emitting layer 21 including the strontium sulfide light emitting layer 15 and the zinc sulfide light emitting layer 16 is one of the vacuum deposition method and the CVD method.
It is manufactured by the ALE method, the sputtering method, or the electron beam evaporation method. The counter electrode is formed by sputtering Al, applying a resist, patterning, developing, and etching Al.

【0004】この様な薄膜電場発光素子の硫化亜鉛発光
層16は硫化亜鉛ZnS 膜を母材として、その中に発光中
心として少量のMnやTbOFを添加した材料で構成される。
硫化ストロンチウム発光層15は硫化ストロンチウム中
にセリウム Ce がドープされる。各発光層中の発光中心
は最適濃度( 例えば硫化亜鉛ZnS に対してはマンガンMn
を0.4 〜0.6wt % ,硫化ストロンチウムSrS に対しては
セリウム Ce を0.3モル%)に維持して成膜され、次
いで所定の温度で熱処理して発光層の結晶性の改善を行
うとともに発光中心の分散性を高めている。
The zinc sulfide light emitting layer 16 of such a thin film electroluminescent device is composed of a material containing a zinc sulfide ZnS film as a base material and a small amount of Mn or TbOF as an emission center added thereto.
The strontium sulfide light-emitting layer 15 has strontium sulfide doped with cerium Ce. The emission center in each emission layer has an optimum concentration (e.g., manganese Mn for zinc sulfide ZnS).
Of 0.4 to 0.6 wt% and cerium Ce for strontium sulfide SrS (0.3 mol%) are formed, and then heat treatment is performed at a predetermined temperature to improve the crystallinity of the light emitting layer and to emit light. The dispersibility of the center is enhanced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来の薄膜電場発光素子においてはストロンチウム
化合物発光層による青緑色発光は硫化亜鉛発光層による
黄橙色発光の輝度よりも格段に低いためにストロンチウ
ム化合物発光層と硫化亜鉛発光層を重ねて白色発光とす
る場合はストロンチウム化合物発光層の膜厚を厚くする
とか逆に硫化亜鉛発光層の膜厚を小さくするとかして輝
度の調整を行っていた。しかし前者の場合にはストロン
チウム化合物発光層の成膜に時間がかかって実用的でな
いし後者の場合には発光層全体の発光輝度が低下すると
いう問題があった。
However, in the conventional thin-film electroluminescent device as described above, the blue-green light emission by the strontium compound light-emitting layer is much lower than the brightness of the yellow-orange light emission by the zinc sulfide light-emitting layer, so that the strontium compound is When the light emitting layer and the zinc sulfide light emitting layer are overlapped for white light emission, the brightness is adjusted by increasing the film thickness of the strontium compound light emitting layer or, conversely, decreasing the film thickness of the zinc sulfide light emitting layer. However, in the former case, it takes a long time to form the strontium compound luminescent layer, which is not practical, and in the latter case, there is a problem that the emission luminance of the entire luminescent layer is lowered.

【0006】この発明は上述の点に鑑みてなされその目
的はストロンチウム化合物発光層と硫化亜鉛発光層の膜
厚を変更を加えることのない新規な素子構造により白色
純度と白色輝度に優れる薄膜電場発光素子を提供するこ
とにある。
The present invention has been made in view of the above points, and an object thereof is a thin film electroluminescence excellent in white purity and white brightness due to a novel device structure which does not change the film thickness of the strontium compound light emitting layer and the zinc sulfide light emitting layer. It is to provide an element.

【0007】[0007]

【課題を解決するための手段】上述の目的はこの発明に
よれば基板上に透明電極、第1の絶縁層、発光層、第2
の絶縁層、対向電極を順次積層してなる薄膜電場発光素
子において、発光層がストロンチウム化合物の層と硫化
亜鉛の層を同数交互に積層したものであり、ストロンチ
ウム化合物の層に接する絶縁層が硫化亜鉛の層に接する
絶縁層に比して漏れ電流が大きく且つ誘電率が高いとす
ることにより達成される。
According to the present invention, the above object is achieved by providing a transparent electrode, a first insulating layer, a light emitting layer and a second electrode on a substrate.
In the thin-film electroluminescent device in which the insulating layer and the counter electrode are sequentially laminated, the light emitting layer is formed by alternately laminating the same number of strontium compound layers and zinc sulfide layers, and the insulating layer in contact with the strontium compound layer is sulfide. This is achieved by having a large leakage current and a high dielectric constant as compared with the insulating layer in contact with the zinc layer.

【0008】上述の薄膜電場発光素子においてストロン
チウム化合物は硫化ストロンチウムまたはセレン化スト
ロンチウムであるとすること、さらにストロンチウム化
合物の層に接する絶縁層は五酸化タンタルTa2O5 であり
硫化亜鉛の層に接する絶縁層が窒化シリコンSi3N4 であ
るとすることが有効である。
In the above thin-film electroluminescent device, the strontium compound is strontium sulfide or strontium selenide, and the insulating layer in contact with the strontium compound layer is tantalum pentoxide Ta 2 O 5 and is in contact with the zinc sulfide layer. It is effective that the insulating layer is silicon nitride Si 3 N 4 .

【0009】[0009]

【作用】ストロンチウム化合物の層に接する絶縁層が硫
化亜鉛の層に接する絶縁層に比して漏れ電流が大きく且
つ誘電率が高い場合にはストロンチウム化合物の層が選
択的に発光輝度が増大する。誘電率が高いと所定の電圧
の下で電荷が集積しやすく、ストロンチウム化合物の層
はこの電荷により選択的に励起される。
When the insulating layer in contact with the strontium compound layer has a large leakage current and a high dielectric constant as compared with the insulating layer in contact with the zinc sulfide layer, the strontium compound layer selectively increases the emission brightness. When the permittivity is high, charges are easily accumulated under a predetermined voltage, and the strontium compound layer is selectively excited by the charges.

【0010】漏れ電流に関しても同様な効果が観測され
る。
Similar effects are observed with respect to leakage current.

【0011】[0011]

【実施例】【Example】

実施例1 図1はこの発明の実施例に係る薄膜電場発光素子を示す
断面図である。図3に示す従来の素子とは酸化シリコン
絶縁層13が酸化アルミニウム絶縁層19に、窒化シリ
コン絶縁層14が五酸化タンタルTa2O5 絶縁層18にな
っている点が異なる。
Embodiment 1 FIG. 1 is a sectional view showing a thin film electroluminescent device according to an embodiment of the present invention. It differs from the conventional element shown in FIG. 3 in that the silicon oxide insulating layer 13 is an aluminum oxide insulating layer 19 and the silicon nitride insulating layer 14 is a tantalum pentoxide Ta 2 O 5 insulating layer 18.

【0012】このような薄膜電場発光素子は以下のよう
にして調製される。50mm×50mmのガラス基板
(NA−40製)11の上にDCスパッタリングにより
ITO を170nmの厚さに成膜して透明電極12を得
た。次いでRFスパッタリングにより酸化アルミニウム
Al2O3 焼結ターゲットを用い、アルゴンガスを使用して
基板温度200℃,5mTorr,1kWの条件で酸化
アルミニウム絶縁層19を100nm厚さに成膜した。
次いでTa金属ターゲットを用い、アルゴンと酸素の混
合ガスを使用し、基板温度200℃,5mTorr,
1.5kWの条件でRFスパッタリングにより五酸化タ
ンタル絶縁層18を300nm厚さに成膜した。
Such a thin film electroluminescent device is prepared as follows. By DC sputtering on a 50 mm × 50 mm glass substrate (NA-40) 11.
A transparent electrode 12 was obtained by depositing ITO to a thickness of 170 nm. Then aluminum oxide by RF sputtering
An aluminum oxide insulating layer 19 was formed to a thickness of 100 nm under the conditions of a substrate temperature of 200 ° C., 5 mTorr, and 1 kW using an Al 2 O 3 sintering target and argon gas.
Then, using a Ta metal target, using a mixed gas of argon and oxygen, the substrate temperature was 200 ° C., 5 mTorr,
The tantalum pentoxide insulating layer 18 was formed to a thickness of 300 nm by RF sputtering under the condition of 1.5 kW.

【0013】続いてCeを0.2モル%混合した硫化ス
トロンチウムの焼結ペレットを使用し、基板温度500
℃,10kWの条件で電子ビーム蒸着法により硫化スト
ロンチウム発光層15を600nm厚さに成膜した。M
nを0.5wt%混合した硫化亜鉛の焼結ペレットを使
用し、基板温度250℃,10kWの条件で電子ビーム
蒸着法により硫化亜鉛発光層16を600nm厚さに成
膜した。
Subsequently, strontium sulfide sintered pellets mixed with 0.2 mol% of Ce were used, and the substrate temperature was 500.
A strontium sulfide light emitting layer 15 was formed to a thickness of 600 nm by an electron beam evaporation method under the conditions of ° C and 10 kW. M
A zinc sulfide light emitting layer 16 was formed to a thickness of 600 nm by an electron beam vapor deposition method under the conditions of a substrate temperature of 250 ° C. and 10 kW using a zinc sulfide sintered pellet in which n was mixed by 0.5 wt%.

【0014】発光層の上にシリコンターゲットを用いア
ルゴンと窒素ガスの混合ガスを使用し、5mTorr,
1kWの条件でRFスパッタリングにより窒化シリコン
絶縁層14Aを180nmの厚さに成膜した。さらに続
けてシリコンターゲットを用いアルゴンと酸素ガスの混
合ガスを使用し、5mTorr,1kWの条件でRFス
パッタリングにより酸化シリコン絶縁層13Aを30n
mの厚さに成膜した。
On the light emitting layer, a silicon target was used and a mixed gas of argon and nitrogen gas was used.
A silicon nitride insulating layer 14A was formed to a thickness of 180 nm by RF sputtering under the condition of 1 kW. Further, using a silicon target and a mixed gas of argon and oxygen gas, RF sputtering is performed under conditions of 5 mTorr and 1 kW to form a silicon oxide insulating layer 13A of 30 n.
The film was formed to a thickness of m.

【0015】そしてアルミニウム金属を電子ビーム蒸着
法により基板温度200℃,5×10-6Torrの条件
で対向電極17を400nm厚さに成膜した。上記の製
法で得られた五酸化タンタルTa2O5 の誘電率は約20で
あり、窒化シリコンSi3N4 の誘電率は約7である。五酸
化タンタルTa2O5 の漏れ電流はが窒化シリコンSi3N4
酸化シリコンSiO2の漏れ電流よりも大きい。 比較例 実施例の五酸化タンタル絶縁層18と酸化アルミニウム
絶縁層19に替えてそれぞれ窒化シリコン絶縁層(18
0nm)と酸化シリコン絶縁層(30nm)を成膜し
た。
Then, a counter electrode 17 having a thickness of 400 nm was formed from aluminum metal by the electron beam evaporation method under the conditions of the substrate temperature of 200 ° C. and 5 × 10 −6 Torr. The tantalum pentoxide Ta 2 O 5 obtained by the above manufacturing method has a dielectric constant of about 20, and the silicon nitride Si 3 N 4 has a dielectric constant of about 7. The leakage current of tantalum pentoxide Ta 2 O 5 is larger than that of silicon nitride Si 3 N 4 and silicon oxide SiO 2 . Comparative Example Instead of the tantalum pentoxide insulating layer 18 and the aluminum oxide insulating layer 19 of the example, a silicon nitride insulating layer (18
0 nm) and a silicon oxide insulating layer (30 nm) were formed.

【0016】図2はこの発明の実施例に係る薄膜電場発
光素子の輝度−電圧特性(イ)を比較例に係る薄膜電場
発光素子の特性(ロ)と対比して示す線図である。この
発明の実施例に係る薄膜電場発光素子の輝度特性は発光
開始電圧が従来の素子よりも低い上に絶対値も増大して
おり従来のものに比して特性がより向上していることが
わかる。 実施例2 実施例1の硫化ストロンチウム発光層に替えてセレン化
ストロンチウム発光層を用いる他は実施例1と同様にし
て薄膜電場発光素子を作成した。実施例1の場合と同様
な結果が得られた。
FIG. 2 is a diagram showing the luminance-voltage characteristic (a) of the thin film electroluminescent device according to the example of the present invention in comparison with the characteristic (b) of the thin film electroluminescent device according to the comparative example. Regarding the luminance characteristics of the thin film electroluminescent device according to the example of the present invention, the emission starting voltage is lower than that of the conventional device, and the absolute value is also increased. Recognize. Example 2 A thin film electroluminescent device was prepared in the same manner as in Example 1 except that the strontium sulfide light emitting layer in Example 1 was replaced with a strontium selenide light emitting layer. Similar results to those in Example 1 were obtained.

【0017】[0017]

【発明の効果】この発明によれば基板上に透明電極、第
1の絶縁層、発光層、第2の絶縁層、対向電極を順次積
層してなる薄膜電場発光素子において、発光層がストロ
ンチウム化合物の層と硫化亜鉛の層を同数交互に積層し
たものであり、ストロンチウム化合物の層に接する絶縁
層が硫化亜鉛の層に接する絶縁層に比して漏れ電流が大
きく且つ誘電率が高いものであるので、ストロンチウム
化合物の層が硫化亜鉛の層に対して選択的に発光輝度が
増大し白色純度と白色発光輝度に優れる薄膜電場発光素
子が得られる。
According to the present invention, in a thin film electroluminescent device in which a transparent electrode, a first insulating layer, a light emitting layer, a second insulating layer and a counter electrode are sequentially laminated on a substrate, the light emitting layer is a strontium compound. The same number of alternating layers of zinc oxide and zinc sulfide are alternately laminated, and the insulating layer in contact with the strontium compound layer has a larger leakage current and a higher dielectric constant than the insulating layer in contact with the zinc sulfide layer. Therefore, the strontium compound layer selectively increases the emission luminance with respect to the zinc sulfide layer, and a thin film electroluminescent device having excellent white purity and white emission luminance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る薄膜電場発光素子を示
す断面図
FIG. 1 is a sectional view showing a thin film electroluminescent device according to an embodiment of the present invention.

【図2】この発明の実施例に係る薄膜電場発光素子の輝
度−電圧特性(イ)を比較例に係る薄膜電場発光素子の
特性(ロ)と対比して示す線図
FIG. 2 is a diagram showing a luminance-voltage characteristic (a) of a thin film electroluminescent device according to an example of the present invention in comparison with a characteristic (b) of a thin film electroluminescent device according to a comparative example.

【図3】従来の薄膜電場発光素子を示す断面図FIG. 3 is a cross-sectional view showing a conventional thin film electroluminescent device.

【符号の説明】[Explanation of symbols]

11 ガラス基板 12 透明基板 13 酸化シリコン絶縁層 13A 酸化シリコン絶縁層 14 窒化シリコン絶縁層 14A 窒化シリコン絶縁層 15 硫化ストロンチウム発光層 16 硫化亜鉛発光層 17 対向電極 18 五酸化タンタル発光層 19 酸化アルミニウム発光層 20 第1の絶縁層 21 発光層 22 第2の絶縁層 11 glass substrate 12 transparent substrate 13 silicon oxide insulating layer 13A silicon oxide insulating layer 14 silicon nitride insulating layer 14A silicon nitride insulating layer 15 strontium sulfide light emitting layer 16 zinc sulfide light emitting layer 17 counter electrode 18 tantalum pentoxide light emitting layer 19 aluminum oxide light emitting layer 20 first insulating layer 21 light emitting layer 22 second insulating layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に透明電極、第1の絶縁層、発光
層、第2の絶縁層、対向電極を順次積層してなる薄膜電
場発光素子において、発光層がストロンチウム化合物の
層と硫化亜鉛の層を同数交互に積層したものであり、ス
トロンチウム化合物の層に接する絶縁層が硫化亜鉛の層
に接する絶縁層に比して漏れ電流が大きく且つ誘電率が
高いことを特徴とする薄膜電場発光素子。
1. A thin film electroluminescent device comprising a substrate, on which a transparent electrode, a first insulating layer, a light emitting layer, a second insulating layer, and a counter electrode are sequentially laminated, wherein the light emitting layer is a strontium compound layer and zinc sulfide. Thin film electroluminescence, characterized in that the same number of layers are alternately laminated, and that the insulating layer in contact with the strontium compound layer has a larger leakage current and a higher dielectric constant than the insulating layer in contact with the zinc sulfide layer. element.
【請求項2】請求項1記載の素子において、ストロンチ
ウム化合物は硫化ストロンチウムまたはセレン化ストロ
ンチウムであることを特徴とする薄膜電場発光素子。
2. A thin film electroluminescent device according to claim 1, wherein the strontium compound is strontium sulfide or strontium selenide.
【請求項3】請求項1記載の素子において、ストロンチ
ウム化合物の層に接する絶縁層が五酸化タンタルTa2O5
であり硫化亜鉛の層に接する絶縁層が窒化シリコンSi3N
4 であることを特徴とする薄膜電場発光素子。
3. The device according to claim 1, wherein the insulating layer in contact with the strontium compound layer is tantalum pentoxide Ta 2 O 5
And the insulating layer in contact with the zinc sulfide layer is silicon nitride Si 3 N
4. A thin film electroluminescent device characterized by being 4 .
JP6210321A 1994-09-05 1994-09-05 Thin film electroluminescent element Pending JPH0878162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6210321A JPH0878162A (en) 1994-09-05 1994-09-05 Thin film electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210321A JPH0878162A (en) 1994-09-05 1994-09-05 Thin film electroluminescent element

Publications (1)

Publication Number Publication Date
JPH0878162A true JPH0878162A (en) 1996-03-22

Family

ID=16587495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210321A Pending JPH0878162A (en) 1994-09-05 1994-09-05 Thin film electroluminescent element

Country Status (1)

Country Link
JP (1) JPH0878162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526885A (en) * 2000-03-16 2003-09-09 プレイナー システムス インコーポレーテッド Light emitting luminescent material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526885A (en) * 2000-03-16 2003-09-09 プレイナー システムス インコーポレーテッド Light emitting luminescent material

Similar Documents

Publication Publication Date Title
JPH0752672B2 (en) Method of manufacturing thin film EL device
US6403204B1 (en) Oxide phosphor electroluminescent laminate
JPS5823191A (en) Thin film el element
US7538483B2 (en) Inorganic electroluminescent device and method of fabricating the same
US20020125495A1 (en) Thin film alternating current electroluminescent displays
JPH0878162A (en) Thin film electroluminescent element
JPH1092580A (en) Thin film electroluminescent element and manufacture thereof
JPS6260800B2 (en)
JP3976892B2 (en) Thin film EL device
JPH07263147A (en) Thin film light emitting element
WO2002073708A2 (en) Electroluminescent display device
JP2803803B2 (en) Thin film EL device and method of manufacturing the same
JPS5829880A (en) Electric field luminescent element
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
KR0139735B1 (en) Thin film field emitting device and the fabrication method thereof
JPH03236195A (en) Double-insulated thin film electroluminescence device
JPS58175293A (en) Electric field light emitting element
JPH01124998A (en) Thin el element
JPH0124358B2 (en)
JPS6314833B2 (en)
JPH11126690A (en) Manufacture of thin film electroluminescent element
JPH07240278A (en) Thin film el element
JPH08162274A (en) El element
JPH09134782A (en) Thin film electroluminescent element
JPS61214395A (en) Manufacture of thin film electroluminescence element