JPH0871591A - Biological treatment of waste water containing ammonia nitrogen - Google Patents

Biological treatment of waste water containing ammonia nitrogen

Info

Publication number
JPH0871591A
JPH0871591A JP21458894A JP21458894A JPH0871591A JP H0871591 A JPH0871591 A JP H0871591A JP 21458894 A JP21458894 A JP 21458894A JP 21458894 A JP21458894 A JP 21458894A JP H0871591 A JPH0871591 A JP H0871591A
Authority
JP
Japan
Prior art keywords
reactor
activated carbon
wastewater
substance
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21458894A
Other languages
Japanese (ja)
Other versions
JP3222014B2 (en
Inventor
Isao Somiya
功 宗宮
Hiroshi Tsuno
洋 津野
Hideki Iwabe
秀樹 岩部
Ushio Wakita
潮 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21458894A priority Critical patent/JP3222014B2/en
Publication of JPH0871591A publication Critical patent/JPH0871591A/en
Application granted granted Critical
Publication of JP3222014B2 publication Critical patent/JP3222014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE: To efficiently remove NH4 -N or T-N(total nitrogen) in waste water containing NH4 -N in high concn. and also containing org. matter obstructing nitration reaction. CONSTITUTION: A first reactor 1 is packed with activated carbon 3 and the succeeding reactor 21 is packed with a substance 23 having ion exchange capacity and, after the activated carbon 3 and the substance 23 are seeded with a bacteria mixed soln., waste water containing an org. substance and ammonia nitrogen is circulated to the reactors 1, 21 and, in the succeeding reactor 21, waste water is subjected to nitration treatment under an aerobic condition while the nitration soln. is circulated to the first reactor 1 and, in the first reactor 1, waste water is subjected to denitrification treatment under an oxygen free anaerobic condition while an org. substance is adsorbed and removed by activated carbon 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水等の高濃度にNH
4 −N(アンモニア性窒素)を含有する廃水の水処理方
法に関し、特に硝化反応を阻害する有機物質を合わせて
含有する廃水中のNH4 −NあるいはT−N(全窒素)
を除去するアンモニア性窒素含有廃水の生物学的水処理
方法に関する。
BACKGROUND OF THE INVENTION The present invention is applicable to high concentration of sewage, etc.
TECHNICAL FIELD The present invention relates to a method for treating wastewater containing 4- N (ammonia nitrogen), particularly NH 4 -N or TN (total nitrogen) in wastewater containing an organic substance that inhibits nitrification reaction.
The present invention relates to a biological water treatment method for removing wastewater containing ammoniacal nitrogen.

【0002】[0002]

【従来の技術】従来、高濃度にNH4 −N(アンモニア
性窒素)を含有する廃水の生物学的水処理方法として
は、例えば、特開平6−106182号公報に記載され
たものがある。この水処理方法は、一対の反応器を直列
に配置し、各反応器にNH4 −Nに対してイオン交換能
を持つゼオライト等の物質を充填して流動床を形成し、
この流動床を形成する物質に硝化菌を含む微生物を植種
し、NH4 −Nを含む廃水を各反応器において順次に、
多段的に処理するものである。
2. Description of the Related Art Conventionally, as a biological water treatment method for waste water containing a high concentration of NH 4 —N (ammonia nitrogen), for example, there is one described in Japanese Patent Laid-Open No. 106182/1994. In this water treatment method, a pair of reactors are arranged in series, and each reactor is filled with a substance such as zeolite having an ion exchange capacity for NH 4 —N to form a fluidized bed,
Microorganisms including nitrifying bacteria are inoculated into the material forming the fluidized bed, and waste water containing NH 4 —N is sequentially charged in each reactor,
It is processed in multiple stages.

【0003】この方法によれば、1基目においては、イ
オン交換能を持つ物質がNH4 −Nを飽和に近い状態で
吸着し、硝化反応によってNH4 −Nを除去するととも
に、イオン交換体の再生を行う。2基目においては、1
基目と同様にNH4 −Nの吸着と硝化反応による再生と
を行うが、2基目の入口においてはNH4 −Nが低下し
ているので、イオン交換体のNH4 −N吸着能に余裕が
ある。このように、高濃度のNH4 −Nを含む廃水を対
象とする場合にも、一旦イオン交換体によってNH4
Nを吸着した上で、硝化反応が進行するので、NH4
Nが高濃度に存在しても安定して硝化処理を行うことが
できる。
According to this method, in the first group, a substance having an ion exchange ability adsorbs NH 4 --N in a state close to saturation, removes NH 4 --N by a nitrification reaction, and also an ion exchanger. Play. In the second group, 1
Adsorption of NH 4 —N and regeneration by nitrification reaction are performed as in the case of the base group, but NH 4 —N is reduced at the inlet of the 2nd group, so the NH 4 —N adsorption capacity of the ion exchanger is reduced. Afford. As described above, even when the wastewater containing a high concentration of NH 4 —N is targeted, the NH 4
Since the nitrification reaction proceeds after adsorbing N, NH 4
Even if N is present at a high concentration, the nitrification treatment can be stably performed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記した従来
の構成において、原水中に有機物質(DOC;溶解性有
機炭素等)を含まない場合には、NH4 −Nを生物学的
に効率よくNO3 −N(硝酸態窒素)に硝化できるが、
有機物質を含有する廃水(例えば汚泥乾燥機の排ガスス
クラバー排水等)を対象とする場合には、1基目に溶解
有機物質によると見られる硝化阻害が生じ、1基目での
硝化反応が著しく低下することが認められ、1基目にお
いて有機物質自体が減少すると、2基目においては効率
良くNH4−Nの硝化を行うことができる。
However, in the above conventional structure, when the raw water does not contain an organic substance (DOC; soluble organic carbon, etc.), NH 4 -N is biologically efficiently added. Can be nitrified into NO 3 -N (nitrate nitrogen),
When wastewater containing organic substances (for example, waste gas scrubber wastewater from a sludge dryer) is targeted, nitrification inhibition, which is thought to be caused by dissolved organic substances, occurs in the first unit and the nitrification reaction in the first unit is remarkable. It is recognized that the amount of the organic substance decreases in the first group, and the NH 4 —N can be efficiently nitrified in the second group.

【0005】このように、原水中に有機物質等の硝化を
阻害する物質が含まれている場合には、システム全体と
しての生物学的な水処理の効率が低下する問題があっ
た。本発明は上記した課題を解決するものであり、高濃
度にNH4 −Nを含有し、合わせて硝化反応を阻害する
有機物質を含有する廃水中のNH4 −NあるいはT−N
(全窒素)を効率良く除去するアンモニア性窒素含有廃
水の生物学的水処理方法を提供することを目的とする。
As described above, when raw water contains a substance that inhibits nitrification such as an organic substance, there is a problem that the efficiency of biological water treatment in the entire system is lowered. The present invention is to solve the above-mentioned problems, and NH 4 -N or TN in wastewater containing NH 4 -N in a high concentration and also containing an organic substance that inhibits the nitrification reaction.
An object of the present invention is to provide a biological water treatment method for efficiently removing (total nitrogen) wastewater containing ammoniacal nitrogen.

【0006】[0006]

【課題を解決するための手段】上記した課題を解決する
ために、本発明のアンモニア性窒素含有廃水の生物学的
水処理方法は、流動床を有する複数の反応器を直列に配
置し、最初の反応器に、流動床を形成する物質として有
機物質に対する吸着能を有した活性炭を充填し、後続の
反応器に、流動床を形成する物質としてアンモニア性窒
素に対するイオン交換能を有した物質を充填し、各反応
器の流動床に硝化菌および脱窒菌を含む微生物混合液を
植種した後に、有機物質とアンモニア性窒素を含有する
廃水を各反応器へ巡回させ、後続の反応器において好気
条件下で廃水を硝化処理し、生成する硝化液を最初の反
応器へ循環させ、最初の反応器において活性炭によって
廃水中の有機物質を吸着除去しながら無酸素状態の嫌気
条件下で廃水を脱窒処理する構成としたものである。
In order to solve the above-mentioned problems, the biological water treatment method of the ammonia-containing nitrogen-containing wastewater of the present invention comprises firstly arranging a plurality of reactors having a fluidized bed in series. The reactor of No. 1 was filled with activated carbon having the ability to adsorb organic substances as a substance forming a fluidized bed, and the subsequent reactor was charged with a substance having an ion exchange ability to ammoniacal nitrogen as a substance forming a fluidized bed. After filling and inoculating the fluidized bed of each reactor with a microbial mixture containing nitrifying bacteria and denitrifying bacteria, waste water containing organic substances and ammoniacal nitrogen is circulated to each reactor, and the subsequent reactor is preferably The wastewater is nitrified under atmospheric conditions, and the resulting nitrification solution is circulated to the first reactor.In the first reactor, activated carbon is used to adsorb and remove the organic substances in the wastewater while the wastewater is removed under anaerobic conditions under anoxic conditions. Prolapse It is obtained by a configuration for processing.

【0007】また、初期運転時に、各反応器において好
気条件下で廃水を硝化処理して活性炭およびイオン交換
能を有した物質に付着する硝化菌を馴養し、その後に最
初の反応器を無酸素状態となして本運転に移行する構成
としたものである。
In addition, during initial operation, wastewater is nitrified under aerobic conditions in each reactor to acclimate nitrifying bacteria adhering to activated carbon and substances having an ion exchange capacity, and then the first reactor is left unattended. The configuration is such that an oxygen state is established and the operation shifts to the main operation.

【0008】また、嫌気条件下の運転時に、最初の反応
器に対し嫌気条件を調整するために酸素含有ガスを適宜
に供給し、最初の反応器を酸化還元電位が0〜−200
mVとなる嫌気条件下に維持する構成としたものである。
During operation under anaerobic conditions, an oxygen-containing gas is appropriately supplied to the first reactor in order to adjust the anaerobic conditions, and the first reactor has an oxidation-reduction potential of 0 to -200.
It is designed to be maintained under anaerobic conditions of mV.

【0009】[0009]

【作用】上記した構成により、運転時に、最初の反応器
では、活性炭が吸着能によって廃水中の有機物質を吸着
し、有機物質を水素供与体して脱窒菌による脱窒反応が
進行する。また、活性炭に吸着した有機物質を脱窒菌が
水素供与体として消費することにより、活性炭の吸着能
が再生し、活性炭が生物活性炭として機能し、吸着の飽
和による破過現象が生起しない。このため、後続の反応
器においては、最初の反応器において既に有機物質を除
去した廃水が流入し、有機物質に阻害されることなく、
適度な硝化速度を維持できる。しかも、イオン交換能を
有する物質がアンモニア性窒素を吸着し、この吸着した
アンモニア性窒素を硝化菌により硝化するので、硝化速
度が増大する。
With the above structure, in the first reactor during operation, the activated carbon adsorbs the organic substance in the waste water due to its adsorption ability, and the organic substance is hydrogen-donated to allow the denitrification reaction by the denitrifying bacteria to proceed. Further, the denitrifying bacteria consume the organic substances adsorbed on the activated carbon as hydrogen donors, so that the adsorption capacity of the activated carbon is regenerated, the activated carbon functions as biological activated carbon, and the breakthrough phenomenon due to saturation of adsorption does not occur. Therefore, in the subsequent reactor, the wastewater from which the organic substance has been removed in the first reactor flows in, without being disturbed by the organic substance,
An appropriate nitrification rate can be maintained. Moreover, the substance having ion-exchange ability adsorbs the ammoniacal nitrogen, and the adsorbed ammoniacal nitrogen is nitrified by the nitrifying bacteria, so that the nitrification rate is increased.

【0010】依って、後続の反応器から硝化液が最初の
反応器に循環することにより、系内で硝化・脱窒が継続
して行われ、硝化菌による硝化によってNH4 −Nを除
去し、脱窒に伴う脱窒菌による有機物質の分解によって
T−N(全窒素)を除去することができる。
Therefore, by circulating the nitrification liquid from the subsequent reactor to the first reactor, nitrification and denitrification continue in the system, and NH 4 -N is removed by nitrification by nitrifying bacteria. , TN (total nitrogen) can be removed by decomposing organic substances by denitrifying bacteria accompanying denitrification.

【0011】初期運転として、各反応器において好気条
件下で廃水を硝化処理して活性炭およびイオン交換能を
有した物質に付着する硝化菌を馴養する場合には、初期
運転において、有機物分解菌が活性炭に吸着する有機物
質を順次に酸化分解除去することにより活性炭の吸着能
を再生し、吸着の飽和による破過現象を防止する。この
とき、後続の反応器では、最初の反応器において既に有
機物質を除去した廃水が流入し、イオン交換能を有する
物質がアンモニア性窒素を吸着し、この吸着したアンモ
ニア性窒素を硝化菌により硝化するので、硝化速度が増
大し、イオン交換体に付着する硝化菌が充分に馴養され
る。
In the initial operation, when wastewater is nitrified in each reactor under aerobic conditions to acclimatize the nitrifying bacteria adhering to the activated carbon and the substance having an ion-exchange capacity, the organic matter decomposing bacteria should be used in the initial operation. Oxidize and remove the organic substances adsorbed on the activated carbon one after another to regenerate the adsorption capacity of the activated carbon and prevent the breakthrough phenomenon due to the saturation of adsorption. At this time, in the subsequent reactor, the wastewater from which the organic substances were already removed flows in in the first reactor, the substance having ion exchange ability adsorbs the ammoniacal nitrogen, and the adsorbed ammoniacal nitrogen is nitrified by the nitrifying bacteria. Therefore, the nitrification rate increases, and the nitrifying bacteria attached to the ion exchanger are sufficiently acclimated.

【0012】このため、本運転時に、最初の反応器を無
酸素状態となすと、最初の反応器内にはアンモニア性窒
素を硝化することにより生起する硝酸性窒素および亜硝
酸性窒素が充分に存在するので、新たに最初の反応器に
流入する廃水中の有機物質を水素供与体して脱窒菌によ
る脱窒反応が進行し、活性炭に付着する脱窒菌が速やか
に馴養される。
Therefore, when the first reactor is put into an anoxic state during the main operation, the nitrate nitrogen and the nitrite nitrogen generated by nitrifying ammoniacal nitrogen are sufficiently contained in the first reactor. Since it exists, the denitrifying bacterium adhering to the activated carbon is promptly acclimatized by the organic substance in the wastewater newly flowing into the first reactor as a hydrogen donor to proceed the denitrifying reaction by the denitrifying bacterium.

【0013】嫌気条件下の運転時に、最初の反応器に対
し嫌気条件を調整するために酸素含有ガスを適宜に供給
し、最初の反応器を酸化還元電位が0〜−200mVとな
る嫌気条件下に維持することにより、最初の反応器が絶
対嫌気状態となることを防止して脱窒菌の生存に適した
環境を維持し、脱窒効率を高める。
During operation under anaerobic conditions, an oxygen-containing gas is appropriately supplied to the first reactor to adjust the anaerobic conditions, and the first reactor is subjected to anaerobic conditions where the redox potential is 0 to -200 mV. By maintaining it at 1, the first reactor is prevented from becoming absolutely anaerobic, the environment suitable for survival of the denitrifying bacteria is maintained, and the denitrification efficiency is enhanced.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。生物学的水処理装置は複数の反応器を直列に配
置するものであり、本実施例においては一対の反応器を
開示して説明を行うが、反応器の基数は適宜に設定し得
るものである。
An embodiment of the present invention will be described below with reference to the drawings. The biological water treatment apparatus is one in which a plurality of reactors are arranged in series, and a pair of reactors is disclosed and described in this example, but the radix of the reactors can be set appropriately. is there.

【0015】図1において、生物学的水処理装置は、処
理工程の最初に位置する第1の反応器1と後続の第2の
反応器21を直列に配置しており、各反応器1,21は
内部に流動床2,22を有している。第1の反応器1の
流動床2には有機物質に対する吸着能を有する活性炭3
を充填しており、第2の反応器21の流動床22には、
アンモニア性窒素に対するイオン交換能を有した物質と
して、ゼオライト、沸石、イオン交換樹脂等のイオン交
換体23を充填している。
In FIG. 1, the biological water treatment apparatus has a first reactor 1 located at the beginning of a treatment process and a second reactor 21 subsequent thereto, which are arranged in series. 21 has a fluidized bed 2 and 22 inside. In the fluidized bed 2 of the first reactor 1, activated carbon 3 having adsorption ability for organic substances is used.
And the fluidized bed 22 of the second reactor 21 is filled with
As a substance having an ion exchange capacity for ammoniacal nitrogen, an ion exchanger 23 such as zeolite, zeolite, or an ion exchange resin is filled.

【0016】各反応器1,21の上部領域と底部とを連
通して循環管路4,24を設けており、循環管路4,2
4の途中には循環ポンプ5,25を介装している。各反
応器1,21の外周には外筒ジャケット6,26を外装
しており、外筒ジャケット6,26には恒温水槽7,2
7で温度調整した調整水が循環するように構成してい
る。各反応器1,21の上部領域には散気装置8,28
を配しており、各散気装置8,28には送気分管9,2
9および送気管10を通してコンプレッサー11を接続
している。また、最初の反応器1の散気装置8に連通す
る送気分管8には開閉弁12を介装している。
Circulation conduits 4 and 24 are provided so as to connect the upper region and the bottom of each reactor 1, 21 to each other.
Circulation pumps 5 and 25 are provided in the middle of 4. The outer jackets 6 and 26 are provided on the outer circumferences of the reactors 1 and 21, and the constant temperature water tanks 7 and 2 are attached to the outer jackets 6 and 26.
The adjusted water whose temperature is adjusted in 7 is configured to circulate. An air diffuser 8,28 is provided in the upper region of each reactor 1,21.
Are arranged, and each air diffuser 8, 28 is provided with a mood tube 9, 2
A compressor 11 is connected through 9 and an air supply pipe 10. Further, an opening / closing valve 12 is provided in the air feeding tube 8 communicating with the air diffuser 8 of the first reactor 1.

【0017】双方の反応器1,21は互いに上部領域が
オーバーフロー管13を通して連通しており、第2の反
応器21に設けるオーバーフロー管14は処理水を処理
水槽15に取り出すものであるが、反応器をさらに多段
的に設ける場合には、後続の反応器に連通する。処理水
槽15には硝化液循環管路16が開口し、硝化液循環管
路16の先端は最初の反応器1の循環管路4に連通して
おり、硝化液循環管路16の途中には硝化液循環ポンプ
17を介装している。
The upper regions of both reactors 1 and 21 communicate with each other through an overflow pipe 13, and an overflow pipe 14 provided in the second reactor 21 takes out treated water to a treated water tank 15, When the reactor is provided in multiple stages, it is connected to the subsequent reactor. A nitrification liquid circulation conduit 16 is opened in the treated water tank 15, and the tip of the nitrification liquid circulation conduit 16 communicates with the circulation conduit 4 of the first reactor 1. A nitrification solution circulation pump 17 is provided.

【0018】第1の反応器1の循環管路4の途中には植
種用水槽18が連通しており、植種用水槽18には、別
途に予め培養した硝化菌を含む微生物混合液を貯留して
いる。また、第1の反応器1の循環管路4の途中には原
水供給管19が連通しており、原水供給管19は基端が
原水貯留槽20に連通し、途中に原水供給ポンプ30を
介装している。
A planting water tank 18 is connected to the middle of the circulation line 4 of the first reactor 1. The planting water tank 18 contains a separately mixed microbial mixture solution containing nitrifying bacteria that has been pre-cultured. It is stored. A raw water supply pipe 19 communicates with the circulation pipe 4 of the first reactor 1, and the base end of the raw water supply pipe 19 communicates with a raw water storage tank 20. I am intervening.

【0019】以下、上記構成における作用を説明する。
処理の全過程において反応器1,21における反応温度
は安定していることが望ましく、反応温度を一定とする
ために必要ならば、恒温水槽7から外筒ジャケット6,
26に一定温度に調温した調整水を通水し、各反応器
1,21内の水温を一定程度に維持する。
The operation of the above structure will be described below.
It is desirable that the reaction temperature in the reactors 1 and 21 is stable during the whole process of the treatment, and if necessary to keep the reaction temperature constant, from the constant temperature water tank 7 to the outer jacket 6,
Conditioned water adjusted to a constant temperature is passed through 26 to maintain the water temperature in each reactor 1, 21 at a constant level.

【0020】始めに、硝化菌および脱窒菌を含む微生物
の植種を行うために、植種用水槽18に貯留した微生物
混合液を循環管路4を通して第1の反応器1に供給する
とともに、オーバーフロー管13を通して第2の反応器
21に供給する。このとき、コンプレッサー11から送
気管10および送気分管9,29を通して各散気装置
8,28に供給する空気等の酸素含有ガスを、散気装置
8,28から各反応器1,21の槽内混合液に曝気し、
各反応器1,21内を好気的な環境に維持する。また、
各循環ポンプ5,25を駆動して流動床2,22に対し
て反応器1,21内の槽内混合液を底部から上部領域に
向けて上向流で通水し、上部領域の槽内混合液を循環管
路4,24を通して反応器1,21の底部に循環させ、
各流動床2,22の活性炭3ないしイオン交換体23に
微生物を付着させる。
First, in order to inoculate microorganisms including nitrifying bacteria and denitrifying bacteria, the microorganism mixture stored in the inoculating water tank 18 is supplied to the first reactor 1 through the circulation line 4, and It is supplied to the second reactor 21 through the overflow pipe 13. At this time, oxygen-containing gas such as air to be supplied from the compressor 11 to the air diffusers 8 and 28 through the air supply pipe 10 and the mood pipes 9 and 29 from the air diffusers 8 and 28 to the tanks of the reactors 1 and 21. Aerate the internal mixture,
The inside of each reactor 1, 21 is maintained in an aerobic environment. Also,
By driving the circulation pumps 5 and 25, the in-tank mixed liquid in the reactors 1 and 21 is passed through the fluidized beds 2 and 22 in an upward flow from the bottom to the upper area, and the inside of the tank in the upper area is passed. Circulating the mixture through the circulation lines 4,24 to the bottom of the reactors 1,21,
Microorganisms are attached to the activated carbon 3 or the ion exchanger 23 of each fluidized bed 2, 22.

【0021】運転時においては、原水貯留槽20に貯留
する廃水、つまり有機物質とアンモニア性窒素を含有す
る廃水を原水ポンプ30により原水供給管19を通して
第1の反応器1の循環管路4に供給するとともに、開閉
弁12を閉鎖して第1の反応器1への酸素含有ガスの供
給を停止し、第1の反応器1から第2の反応器21へオ
ーバーフロー管5を通して廃水を巡回させ、硝化液循環
ポンプ17の駆動により、処理水槽15に貯留した硝化
液を硝化液循環管路16を通して第1の反応器1へ循環
させる。
During operation, the waste water stored in the raw water storage tank 20, that is, the waste water containing an organic substance and ammoniacal nitrogen, is fed by the raw water pump 30 through the raw water supply pipe 19 to the circulation line 4 of the first reactor 1. At the same time as the supply, the on-off valve 12 is closed to stop the supply of the oxygen-containing gas to the first reactor 1, and the waste water is circulated from the first reactor 1 to the second reactor 21 through the overflow pipe 5. By driving the nitrification solution circulation pump 17, the nitrification solution stored in the treated water tank 15 is circulated to the first reactor 1 through the nitrification solution circulation conduit 16.

【0022】第1の反応器1においては、活性炭3が吸
着能により廃水中の有機物質を吸着し、有機物質を水素
供与体して脱窒菌による脱窒反応が進行し、活性炭3は
無数の微細孔を有する多孔材質であるために、微生物を
高密度に担持する。このとき、活性炭3が吸着した有機
物質を脱窒菌が水素供与体として消費することにより、
活性炭3の吸着能が再生し、活性炭3が生物活性炭とし
て機能し、吸着の飽和による破過現象を防止する。この
ため、第2の反応器21においては、第1の反応器1に
おいて既に有機物質を除去した廃水が流入し、イオン交
換体23をなすゼオライト等がアンモニア性窒素を吸着
し、この吸着したアンモニア性窒素を硝化菌により硝化
するので、適度な硝化速度を維持できる。
In the first reactor 1, the activated carbon 3 adsorbs an organic substance in the wastewater due to its adsorbing ability, the organic substance is hydrogen-donored and the denitrification reaction by the denitrifying bacteria proceeds, and the activated carbon 3 is innumerable. Since it is a porous material having fine pores, it supports microorganisms at a high density. At this time, the denitrifying bacteria consume the organic substance adsorbed by the activated carbon 3 as a hydrogen donor,
The adsorption capacity of the activated carbon 3 is regenerated, the activated carbon 3 functions as a biological activated carbon, and the breakthrough phenomenon due to saturation of adsorption is prevented. Therefore, in the second reactor 21, the wastewater from which the organic substances have been removed in the first reactor 1 flows in, the zeolite or the like forming the ion exchanger 23 adsorbs the ammoniacal nitrogen, and the adsorbed ammonia is adsorbed. Since nitric acid nitrates the soluble nitrogen, an appropriate nitrification rate can be maintained.

【0023】依って、第2の反応器21から硝化液が第
1の反応器1に循環することにより、系内で硝化・脱窒
が継続して行われ、硝化菌による硝化によってNH4
Nを除去し、脱窒菌による脱窒に伴う有機物質の分解に
よってT−N(全窒素)を除去することができる。
Therefore, by circulating the nitrification liquid from the second reactor 21 to the first reactor 1, nitrification and denitrification are continuously performed in the system, and NH 4 − is generated by nitrification by nitrifying bacteria.
N can be removed, and TN (total nitrogen) can be removed by decomposition of organic substances accompanying denitrification by denitrifying bacteria.

【0024】また、必要であれば、以下の初期運転を行
う。つまり、廃水を原水ポンプ30により原水供給管1
9を通して第1の反応器1の循環管路4に供給するとと
もに、第1の反応器1から第2の反応器21へオーバー
フロー管5を通して巡回させ、各反応器1,21におい
て好気条件下で廃水を硝化し、活性炭3およびイオン交
換体23に充分に硝化菌を馴養する。このとき、第1の
反応器1では有機物分解菌が活性炭3に吸着する有機物
質を酸化分解除去して活性炭3の吸着能を再生し、吸着
の飽和による破過現象を防止する。
If necessary, the following initial operation is performed. That is, the wastewater is supplied from the raw water pump 30 to the raw water supply pipe
9 is supplied to the circulation line 4 of the first reactor 1 and is circulated through the overflow pipe 5 from the first reactor 1 to the second reactor 21 under aerobic conditions in each reactor 1, 21. The waste water is nitrified by, and the nitrifying bacteria are sufficiently acclimatized in the activated carbon 3 and the ion exchanger 23. At this time, in the first reactor 1, the organic substance decomposing bacteria oxidize and remove the organic substances adsorbed on the activated carbon 3 to regenerate the adsorption ability of the activated carbon 3 and prevent the breakthrough phenomenon due to saturation of adsorption.

【0025】そして、初期運転後に、開閉弁12を閉鎖
して第1の反応器1への酸素含有ガスの供給を停止し、
硝化液循環ポンプ17の駆動により、処理水槽15に貯
留した硝化液を硝化液循環管路16を通して第1の反応
器1へ循環させ、本運転を開始する。
After the initial operation, the on-off valve 12 is closed to stop the supply of the oxygen-containing gas to the first reactor 1,
By driving the nitrification solution circulation pump 17, the nitrification solution stored in the treated water tank 15 is circulated to the first reactor 1 through the nitrification solution circulation conduit 16 and the main operation is started.

【0026】本運転の開始時において、第1の反応器1
内にはアンモニア性窒素を硝化することにより生起する
硝酸性窒素および亜硝酸性窒素が充分に存在するので、
廃水中の有機物質を水素供与体して脱窒菌による脱窒反
応が進行し、活性炭3に付着する脱窒菌を速やかに馴養
することができる。
At the start of the main operation, the first reactor 1
Since there is a sufficient amount of nitrate nitrogen and nitrite nitrogen generated by nitrifying ammoniacal nitrogen,
The organic substance in the waste water is donated as a hydrogen donor and the denitrification reaction by the denitrifying bacterium progresses, so that the denitrifying bacterium adhering to the activated carbon 3 can be quickly acclimated.

【0027】また、嫌気条件下の運転時に、第1の反応
器1における溶存酸素はただちに無くなり、酸化還元電
位(ORP)がマイナス値の大きな値となる。このた
め、開閉弁12を適宜に、例えば間欠的に開閉して適量
の酸素含有ガスを散気装置8から曝気し、第1の反応器
1における酸化還元電位を0〜−200mVに維持するこ
とにより、絶対嫌気状態となることを防止して脱窒菌の
生存に適した環境を維持し、脱窒効率を高める。
Also, during operation under anaerobic conditions, dissolved oxygen in the first reactor 1 immediately disappears, and the redox potential (ORP) becomes a large negative value. For this reason, the on-off valve 12 is appropriately opened, for example, intermittently to aerate an appropriate amount of oxygen-containing gas from the air diffuser 8 to maintain the redox potential in the first reactor 1 at 0 to -200 mV. This will prevent an absolute anaerobic condition, maintain an environment suitable for survival of denitrifying bacteria, and improve denitrification efficiency.

【0028】以下に、本発明の方法に基いて行った実験
を説明する。 (実験1) 装置構成 図1に示す構成と同様 装置仕様 第1,第2の反応器の形状 内径200mm ×直塔部高1500mm×有効内容積47l 充填材 第1の反応器の流動床 粒径0.9 〜1.1mm の粒状活性炭7kg 第2の反応器の流動床 0.3〜0.5 mm粒径の天然ゼオライト20kg 運転方法 先に述べた運転方法と同様 対象原水 下水汚泥乾燥機の排ガススクラバー排水 原水の水質 NH4 −N 100 〜600 mg/l (平均220mg/l ) T−N 110 〜650 mg/l (平均230mg/l ) BOD 250 〜3000 mg/l (平均650mg/l ) DOC 100 〜1100 mg/l (平均320mg/l ) pH 8.5 〜9.0 平均水温 28 ℃ 流量 10 l/h 硝化液循環ポンプ流量 30 l/h
Experiments carried out based on the method of the present invention will be described below. (Experiment 1) Device configuration Same as the configuration shown in Fig. 1 Device specifications 1st and 2nd reactor shape Inner diameter 200mm x Straight tower height 1500mm x Effective internal volume 47l Packing material Fluidized bed of 1st reactor Particle size Granular activated carbon of 0.9 to 1.1 mm 7 kg Fluidized bed of the second reactor 0.3 to 0.5 mm Natural zeolite of particle size 20 kg Operating method Similar to the operating method described above Target wastewater Sewage sludge dryer exhaust gas scrubber wastewater quality NH 4- N 100 to 600 mg / l (average 220 mg / l) T-N 110 to 650 mg / l (average 230 mg / l) BOD 250 to 3000 mg / l (average 650 mg / l) DOC 100 to 1100 mg / l (Average 320 mg / l) pH 8.5 to 9.0 Average water temperature 28 ° C Flow rate 10 l / h Nitrification solution circulation pump flow rate 30 l / h

【0029】[0029]

【表1】 [Table 1]

【0030】運転開始後20〜40日目までの水質の平
均値を表1に示す。尚、運転開始後に1塔目の反応器1
の溶存酸素はただちに無くなり、1週間後にORPが−
200mVを下回る現象が見られた。そこで、1塔目の反
応器1に空気を間欠的に吹き込み、ORPが0〜−20
0mVの範囲となるように調整し、1塔目の反応器1の環
境を脱窒菌の生育環境に適した状態とした。
Table 1 shows the average water quality values from the 20th to 40th day after the start of operation. In addition, the reactor 1 of the first tower after the start of operation
Dissolved oxygen immediately disappears, and ORP-
A phenomenon of less than 200 mV was observed. Therefore, air is intermittently blown into the reactor 1 of the first tower so that the ORP is 0 to -20.
It was adjusted so as to be in the range of 0 mV, and the environment of the reactor 1 of the first tower was set to a state suitable for the growth environment of denitrifying bacteria.

【0031】表1に示すように、1塔目の反応器1を嫌
気状態に維持することにより、活性炭3に付着している
脱窒菌による脱窒反応に伴うT−Nの除去が行われ、後
段の2塔目の反応器21で効率良く硝化が行われる。
As shown in Table 1, by maintaining the first reactor 1 in an anaerobic state, TN is removed by the denitrification reaction by the denitrifying bacteria adhering to the activated carbon 3, Nitrification is efficiently performed in the second reactor 21 in the latter stage.

【0032】20〜40日目間において、運転の初期に
較べて脱窒効率が上がったのは、1塔目の反応器1にお
けるORPを0〜−200mV間に維持したことにより、
反応器1内が絶対嫌気状態とならず、脱窒菌の活動に適
した環境を維持できたからだと推量できる。
During the 20th to 40th days, the denitrification efficiency was higher than that at the beginning of the operation because the ORP in the reactor 1 of the first tower was maintained between 0 and -200 mV.
It can be inferred that the inside of the reactor 1 was not absolutely anaerobic and the environment suitable for the activity of the denitrifying bacteria was maintained.

【0033】[0033]

【発明の効果】以上述べたように本発明によれば、最初
の反応器において、活性炭による硝化阻害物質である有
機物質の吸着、脱窒菌による脱窒および有機物質の分解
による活性炭の吸着能の再生を行い、後続の反応器にお
いて、有機物質に阻害されることなく、イオン交換能を
持つ物質によりNH4 −Nを吸着して適度な速度で硝化
を行うので、系内で硝化・脱窒が継続して行われ、硝化
菌による硝化によってNH4 −Nを除去し、脱窒菌によ
る脱窒に伴う有機物質の分解によってT−N(全窒素)
を除去することができる。また、最初の反応器を酸化還
元電位が0〜−200mVとなる嫌気条件下に維持するこ
とにより、最初の反応器が絶対嫌気状態となることを防
止して脱窒菌の生存に適した環境を維持し、脱窒効率を
高めることができる。
As described above, according to the present invention, in the first reactor, the adsorption of the organic substance which is the nitrification inhibitor by the activated carbon, the denitrification by the denitrifying bacterium and the adsorption of the activated carbon by the decomposition of the organic substance are performed. Regeneration is performed, and in the subsequent reactor, NH 4 -N is adsorbed by a substance having an ion exchange capacity and nitrification is performed at an appropriate rate without being hindered by organic substances, so nitrification and denitrification are performed in the system. Is continuously performed, NH 4 -N is removed by nitrification by nitrifying bacteria, and TN (total nitrogen) is generated by the decomposition of organic substances accompanying denitrification by denitrifying bacteria.
Can be removed. In addition, by maintaining the first reactor under anaerobic conditions where the redox potential is 0 to -200 mV, it is possible to prevent the first reactor from becoming an absolute anaerobic state and to create an environment suitable for survival of denitrifying bacteria. It can maintain and improve denitrification efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物学的水処理装置の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of a biological water treatment device of the present invention.

【符号の説明】[Explanation of symbols]

1,21 反応器 2,22 流動床 3 活性炭 8,28 散気装置 12 オーバーフロー管 16 硝化液循環管路 17 硝化液循環ポンプ 23 イオン交換体 1,21 Reactor 2,22 Fluidized bed 3 Activated carbon 8,28 Air diffuser 12 Overflow pipe 16 Nitrification solution circulation line 17 Nitrification solution circulation pump 23 Ion exchanger

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/42 ZAB F 3/08 ZAB B 3/30 ZAB B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 1/42 ZAB F 3/08 ZAB B 3/30 ZAB B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流動床を有する複数の反応器を直列に配
置し、最初の反応器に、流動床を形成する物質として有
機物質に対する吸着能を有した活性炭を充填し、後続の
反応器に、流動床を形成する物質としてアンモニア性窒
素に対するイオン交換能を有した物質を充填し、各反応
器の流動床に硝化菌および脱窒菌を含む微生物混合液を
植種した後に、有機物質とアンモニア性窒素を含有する
廃水を各反応器へ巡回させ、後続の反応器において好気
条件下で廃水を硝化処理し、生成する硝化液を最初の反
応器へ循環させ、最初の反応器において活性炭によって
廃水中の有機物質を吸着除去しながら無酸素状態の嫌気
条件下で廃水を脱窒処理することを特徴とするアンモニ
ア性窒素含有廃水の生物学的水処理方法。
1. A plurality of reactors having a fluidized bed are arranged in series, and the first reactor is filled with activated carbon having an adsorbing ability for an organic substance as a substance forming the fluidized bed, and the subsequent reactors are filled with the activated carbon. , A substance having an ion exchange capacity for ammonia nitrogen as a substance forming a fluidized bed is filled, and a microbial mixture containing nitrifying bacteria and denitrifying bacteria is planted in the fluidized bed of each reactor, and then the organic substance and ammonia are mixed. Wastewater containing nitrogenous substances is circulated to each reactor, the wastewater is nitrified under aerobic conditions in the subsequent reactors, and the resulting nitrification solution is circulated to the first reactor by activated carbon in the first reactor. A method for biological treatment of wastewater containing ammoniacal nitrogen, comprising denitrifying the wastewater under anoxic anaerobic conditions while adsorbing and removing organic substances from the wastewater.
【請求項2】 請求項1に記載のアンモニア性窒素含有
廃水の生物学的水処理方法において、初期運転時に、各
反応器において好気条件下で廃水を硝化処理して活性炭
およびイオン交換能を有した物質に付着する硝化菌を馴
養し、その後に最初の反応器を無酸素状態となして本運
転に移行することを特徴とするアンモニア性窒素含有廃
水の生物学的水処理方法。
2. The method of biological water treatment of wastewater containing ammoniacal nitrogen according to claim 1, wherein during initial operation, the wastewater is nitrified under aerobic conditions in each reactor to reduce activated carbon and ion exchange capacity. A biological water treatment method comprising acclimation of nitrifying bacteria adhering to substances contained therein, and then shifting the main reactor to an anoxic state and shifting to the main operation.
【請求項3】 嫌気条件下の運転時に、最初の反応器に
対し嫌気条件を調整するために酸素含有ガスを適宜に供
給し、最初の反応器を酸化還元電位が0〜−200mVと
なる嫌気条件下に維持することを特徴とする請求項1ま
たは請求項2に記載のアンモニア性窒素含有廃水の生物
学的水処理方法。
3. When operated under anaerobic conditions, an oxygen-containing gas is appropriately supplied to the first reactor in order to adjust the anaerobic conditions, and the first reactor is anaerobic with a redox potential of 0 to -200 mV. The biological water treatment method according to claim 1 or 2, which is maintained under conditions.
JP21458894A 1994-09-08 1994-09-08 Biological water treatment method for wastewater containing ammonia nitrogen Expired - Fee Related JP3222014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21458894A JP3222014B2 (en) 1994-09-08 1994-09-08 Biological water treatment method for wastewater containing ammonia nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21458894A JP3222014B2 (en) 1994-09-08 1994-09-08 Biological water treatment method for wastewater containing ammonia nitrogen

Publications (2)

Publication Number Publication Date
JPH0871591A true JPH0871591A (en) 1996-03-19
JP3222014B2 JP3222014B2 (en) 2001-10-22

Family

ID=16658209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21458894A Expired - Fee Related JP3222014B2 (en) 1994-09-08 1994-09-08 Biological water treatment method for wastewater containing ammonia nitrogen

Country Status (1)

Country Link
JP (1) JP3222014B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073214A1 (en) * 1999-06-01 2000-12-07 Zeolite Australia Limited Denitrification process
AU772365B2 (en) * 1999-06-01 2004-04-22 Leonid Charuckyj Denitrification process
EP1486465A1 (en) * 2003-06-13 2004-12-15 Ondeo Industrial Solutions Corporate Process for biological treatment of effluents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073214A1 (en) * 1999-06-01 2000-12-07 Zeolite Australia Limited Denitrification process
AU772365B2 (en) * 1999-06-01 2004-04-22 Leonid Charuckyj Denitrification process
EP1486465A1 (en) * 2003-06-13 2004-12-15 Ondeo Industrial Solutions Corporate Process for biological treatment of effluents

Also Published As

Publication number Publication date
JP3222014B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
JP3863995B2 (en) Water treatment device with denitrification function
JP4572504B2 (en) Biological denitrification method
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP4835536B2 (en) Removal of organic substances and nitrogen from liquid to be treated
JP4104845B2 (en) Method and apparatus for treatment of water containing phosphorus / ammonia
WO2006022539A1 (en) Progress for the biological denitrification of ammonium containing wastewater
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
CN107055760A (en) A kind of method that efficient nitrosation is realized based on ammonia nitrogen waste water
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP3089297B2 (en) Post-treatment equipment for anaerobic sewage treatment
JP4092454B2 (en) Water treatment method
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP3914587B2 (en) Methods for treating aqueous waste with biofilters or other devices using immobilized cultures
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JPH07290088A (en) Method for biologically denitrifying organic waste water
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JP3222015B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JPS6117559B2 (en)
JP2002018479A (en) Method for removing nitrogen from water
JP3837757B2 (en) Method for treating selenium-containing water
JPH11156391A (en) Treating method for ethanolamine-containing waste water
JP2006088057A (en) Method for treating ammonia-containing water
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP3837763B2 (en) Method for treating selenium-containing water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees