JPH0869791A - Manufacture of nonaqueous electrolytic secondary battery - Google Patents

Manufacture of nonaqueous electrolytic secondary battery

Info

Publication number
JPH0869791A
JPH0869791A JP6230606A JP23060694A JPH0869791A JP H0869791 A JPH0869791 A JP H0869791A JP 6230606 A JP6230606 A JP 6230606A JP 23060694 A JP23060694 A JP 23060694A JP H0869791 A JPH0869791 A JP H0869791A
Authority
JP
Japan
Prior art keywords
paste
positive electrode
electrode plate
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6230606A
Other languages
Japanese (ja)
Other versions
JP3232910B2 (en
Inventor
Ryoichi Nakayama
良一 中山
Hajime Miyake
肇 三宅
Shoichiro Watanabe
庄一郎 渡辺
Yorito Oohana
頼人 大花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23060694A priority Critical patent/JP3232910B2/en
Publication of JPH0869791A publication Critical patent/JPH0869791A/en
Application granted granted Critical
Publication of JP3232910B2 publication Critical patent/JP3232910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To lighten the corrosion of a collector at coating of paste so as to improve the yield rate of manufacture by neutralizing the alkaline ingredients in paste, and then, pasting it on the collector so as to form a positive electrode plate. CONSTITUTION: In a positive electrode plate 5, 3 pts.wt. of acetylene black and 7 pts.wt. of fluororesin binder 7 are mixed to 100 pts.wt. of LiCoO2 powder being an active material and this is suspended in the aqueous solution of carboxymethyl cellulose into paste form. The alkaline ingredients in lithium composite oxide paste are neutralized to put the pH of paste to 7-11 by agitating the suspension while ventilating carbonic acid gas at the rate of 2l/min. in the suspension at the time of makeup of the paste. This is overlaid on both sides of the collector consisting of aluminum foils 30μm thick, and after dry, it is rolled into 0.17mm in thickness with a rolling press, and then it is cut in specified dimension to make positive electrode plate 5. Positive electrode plates 5 and negative electrode plates 6 are counterposed to each other through separators 7, and those are wound in spiral shape to form a group of electrode plates 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にリチウム化合物を正極活物質に用いた電池の正極板
の製造方法に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to a method for producing a positive electrode plate of a battery using a lithium compound as a positive electrode active material.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。現在、これら電子機
器の駆動用電源としての役割を、ニッケル−カドミウム
電池あるいは密閉型小型鉛蓄電池が担っているが、ポー
タブル化、コードレス化が進展し、定着するにしたが
い、駆動用電源となる二次電池の高エネルギー密度化、
小型軽量化の要望が強くなっている。また、近年は小型
のカムコーダの急速な市場の拡大に代表されるように、
高率充放電が可能な電池が要望されている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is advancing rapidly. Currently, nickel-cadmium batteries or sealed small lead-acid batteries play a role as driving power sources for these electronic devices, but as they become more portable and cordless, they become the driving power sources. Higher energy density of secondary battery,
There is a strong demand for smaller size and lighter weight. In recent years, as represented by the rapid expansion of the market for small camcorders,
A battery capable of high-rate charge / discharge is desired.

【0003】このような状況から、高い充放電電圧を示
すリチウムコバルト複合酸化物、例えばLiCoO2
正極活物質に用い、リチウムイオンの挿入、離脱を利用
した非水電解液二次電池が提案されている(例えば特開
昭63−59507公報)。
Under such circumstances, a non-aqueous electrolyte secondary battery has been proposed in which a lithium cobalt composite oxide exhibiting a high charge / discharge voltage, for example, LiCoO 2 , is used as a positive electrode active material and insertion / extraction of lithium ions is utilized. (For example, JP-A-63-59507).

【0004】このような電池は、高率充放電を実現可能
にするため、例えば正極板と負極板をセパレータを間に
介在して巻回したスパイラル構造とすることにより、電
極面積をできるだけ大きくする工夫がなされている。
In order to realize high-rate charging / discharging, such a battery has a spiral structure in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween to maximize the electrode area. It has been devised.

【0005】例えば、その極板作成方法の一例を示す
と、特開平3−244508公報に示されている方法で
は、まず正極活物質であるLiCoO2の粉末100重
量部に、アセチレンブラック3重量部、グラファイト粉
末4重量部、フッ素樹脂系結着剤7重量部を混合し、カ
ルボキシメチルセルロース水溶液に懸濁させてペースト
状とし、このペーストをアルミニウム箔の両面に塗着
し、乾燥後圧延して正極板としている。
For example, as an example of the method for producing the electrode plate, in the method disclosed in JP-A-3-244508, first, 100 parts by weight of LiCoO 2 powder as a positive electrode active material and 3 parts by weight of acetylene black are used. , 4 parts by weight of graphite powder and 7 parts by weight of fluororesin binder were mixed and suspended in an aqueous solution of carboxymethyl cellulose to form a paste, and the paste was applied to both sides of an aluminum foil, dried and rolled to produce a positive electrode. It is a plate.

【0006】[0006]

【発明が解決しようとする課題】しかし、正極活物質は
リチウムをインターカレーション、デインターカレーシ
ョンすることのできるリチウム化合物であり、正極活物
質を増粘剤を含む水溶液に練合させると、前記リチウム
がリチウムイオンとして溶出する。またリチウムと遷移
金属の複合酸化物は、リチウム化合物と遷移金属化合物
から合成されており、これらの原料中からNa、K等の
アルカリ成分を完全に除去するのは困難である。これら
の材料より合成される正極活物質中には合成未反応物と
してアルカリ成分が残存してしまい、ペーストのpHを
著しく上昇させる。このためペーストをアルミニウム箔
に塗着するとき、アルミニウム箔が腐食され、箔と活物
質層との界面で水素ガスが発生する。これにより活物質
の箔からの脱落あるいは浮き上がりが生じ、塗着工程歩
留まりを低下させている。また、活物質の浮き上がりに
よる集電特性の劣化や箔の腐食によるアルミニウムと活
物質との界面に形成される不導体層により、インピーダ
ンスが上昇する等の電池特性劣化を生じやすかった。
However, the positive electrode active material is a lithium compound capable of intercalating and deintercalating lithium, and when the positive electrode active material is kneaded with an aqueous solution containing a thickener, The lithium is eluted as lithium ions. The lithium-transition metal composite oxide is synthesized from a lithium compound and a transition metal compound, and it is difficult to completely remove alkali components such as Na and K from these raw materials. In the positive electrode active material synthesized from these materials, an alkaline component remains as a synthetic unreacted substance, which significantly raises the pH of the paste. Therefore, when the paste is applied to the aluminum foil, the aluminum foil is corroded and hydrogen gas is generated at the interface between the foil and the active material layer. This causes the active material to fall off or float up from the foil, thus lowering the yield of the coating process. Further, deterioration of current collecting characteristics due to floating of the active material and deterioration of battery characteristics such as increase in impedance are likely to occur due to a non-conductive layer formed at the interface between aluminum and the active material due to corrosion of the foil.

【0007】本発明は、このような課題を解決して、リ
チウム化合物を活物質とする非水電解液二次電池の適切
な正極板の製造方法を提供することを目的としている。
It is an object of the present invention to solve the above problems and provide a method for manufacturing a suitable positive electrode plate for a non-aqueous electrolyte secondary battery using a lithium compound as an active material.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、強アルカリに対し腐食性を有する金属箔を集
電体とし、その表面にリチウムと遷移金属を主体とした
複合酸化物を主成分とする活物質層を形成した正極板
と、負極板と、この両極板間にセパレータを介在させた
非水電解液二次電池の製造方法において、前記正極板は
正極活物質と増粘材を練合させたペーストのアルカリ成
分を中和した後、そのペーストを集電体表面に塗着し、
乾燥したものである。ここでの中和剤は電池内部に不純
物として残存しない炭酸ガスを用いるのが望ましい。
In order to achieve the above object, the present invention uses a metal foil corrosive to strong alkali as a current collector, and a composite oxide mainly composed of lithium and a transition metal on the surface thereof. In a method for manufacturing a non-aqueous electrolyte secondary battery in which a positive electrode plate having an active material layer formed as a main component, a negative electrode plate, and a separator interposed between the both electrode plates is used, the positive electrode plate is thickened with the positive electrode active material. After neutralizing the alkaline component of the paste in which the materials are kneaded, apply the paste to the current collector surface,
It is dried. As the neutralizing agent here, it is desirable to use carbon dioxide gas that does not remain as an impurity inside the battery.

【0009】[0009]

【作用】正極活物質であるリチウム複合酸化物を練合し
たペースト中に存在するアルカリ成分を中和し、ペース
トのpHをアルカリ領域から中性領域に向けて低下させ
ることにより、ペーストの集電体表面への塗着時に発生
する集電体の腐食を防ぐことができる。このため集電体
と活物質層の間での水素ガス発生がなくなり、集電体よ
りの活物質の脱落あるいは浮き上がりが生じないため塗
着性が向上し、正極板の製造歩留まりも向上する。ま
た、集電体と活物質層との界面に不導体層が形成されな
くなるため、電導性、電池特性も向上する。
[Function] The current of the paste is collected by neutralizing the alkaline component present in the paste prepared by kneading the lithium composite oxide as the positive electrode active material and decreasing the pH of the paste from the alkaline region to the neutral region. It is possible to prevent corrosion of the current collector that occurs during application to the body surface. Therefore, hydrogen gas is not generated between the current collector and the active material layer, and the active material does not fall off or float up from the current collector, so that the coating property is improved and the production yield of the positive electrode plate is also improved. Further, since the nonconductor layer is not formed at the interface between the current collector and the active material layer, the electrical conductivity and the battery characteristics are improved.

【0010】[0010]

【実施例】【Example】

(実施例1)以下、本発明の実施例を図面とともに説明
する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1に本実施例1で用いた円筒系電池の縦
断面図を示す。図1において1は耐有機電解液性のステ
ンレス鋼板を加工した電池ケース、2は安全弁を設けた
封口板、3は絶縁パッキングを示す。4は極板群であ
り、これは正極板5および負極板6がセパレータ7を介
して複数回渦巻状に巻回されている。そして正極板5か
らは正極リード5aが引き出されて封口板2に接続さ
れ、負極板6からは負極リード6aが引き出されて電池
ケース1の底部に接続されている。8は絶縁リングで、
極板群4の上下部にそれぞれ設けられている。
FIG. 1 is a vertical sectional view of the cylindrical battery used in the first embodiment. In FIG. 1, 1 is a battery case formed by processing a stainless steel plate resistant to organic electrolyte, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode plate 5 and a negative electrode plate 6 are spirally wound a plurality of times with a separator 7 interposed therebetween. A positive electrode lead 5a is drawn out from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode lead 6a is drawn out from the negative electrode plate 6 and connected to the bottom of the battery case 1. 8 is an insulating ring,
They are provided on the upper and lower parts of the electrode plate group 4, respectively.

【0012】以下、正極板5、負極板6、電解液等につ
いて詳しく説明する。負極板6は、コークスを加熱処理
して得た炭素粉末100重量部に、フッ素樹脂系結着剤
10重量部を混合し、これをカルボキシメチルセルロー
スの水溶液に懸濁させてペースト状にした。そしてこの
ペーストを厚さ0.015mmの銅箔の表面に塗着し、
乾燥後0.2mmに圧延し、幅37mm、長さ280m
mの大きさに切り出して負極板とした。
The positive electrode plate 5, the negative electrode plate 6, the electrolytic solution and the like will be described in detail below. The negative electrode plate 6 was prepared by mixing 100 parts by weight of carbon powder obtained by heating coke with 10 parts by weight of a fluororesin binder and suspending the mixture in an aqueous solution of carboxymethyl cellulose to form a paste. Then, the paste is applied to the surface of a copper foil having a thickness of 0.015 mm,
After drying, it is rolled to 0.2 mm, width 37 mm, length 280 m
It was cut into a size of m to obtain a negative electrode plate.

【0013】正極板5は活物質であるLiCoO2の粉
末100重量部に、アセチレンブラック3重量部、フッ
素樹脂系結着剤7重量部を混合し、これをカルボキシメ
チルセルロースの水溶液に懸濁させてペースト状にし
た。このペーストをアルミニウム箔の両面に塗着し、乾
燥後ロールプレス機によって0.17mmに圧延し、幅
35mm、長さ250mmに切り出した。
The positive electrode plate 5 was prepared by mixing 100 parts by weight of LiCoO 2 powder as an active material, 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder, and suspending this in an aqueous solution of carboxymethyl cellulose. Made into a paste. This paste was applied on both sides of an aluminum foil, dried, and then rolled by a roll press machine to 0.17 mm and cut into a width of 35 mm and a length of 250 mm.

【0014】そして正、負極板それぞれにリード5a,
6aを取り付け、セパレータを介して渦巻状に巻回し、
直径13.8mm、高さ50mmの電池ケース1内に収
納した。
Then, the leads 5a,
6a is attached, spirally wound through the separator,
It was housed in a battery case 1 having a diameter of 13.8 mm and a height of 50 mm.

【0015】電解液には炭酸エチレンと炭酸ジエチルの
等容積混合溶媒に、六フッ化リン酸リチウム1モル/l
の割合で溶解したものを用い、その所定量を極板群4に
注入した後、電池を密封口し、試験電池とした。
As the electrolytic solution, 1 mol / l of lithium hexafluorophosphate was mixed with an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.
After dissolving a predetermined amount into the electrode plate group 4, the battery was sealed and used as a test battery.

【0016】以下、正極板の作成について詳しく説明す
る。LiCoO2の粉末100重量部に、アセチレンブ
ラック3重量部、フッ素樹脂系結着剤7重量部を混合
し、これをカルボキシメチルセルロースの水溶液に懸濁
させてペースト状にするが、このペースト調整時にこれ
を撹拌しながらペースト中に炭酸ガス(純度99.9
%)を2l/分の割合でペーストのpHが10.0にな
るまで通気させる。このペーストを厚さ30μのアルミ
ニウム箔の両面にマルチコーターで塗着し、乾燥させ
た。
The production of the positive electrode plate will be described in detail below. 100 parts by weight of LiCoO 2 powder was mixed with 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. While stirring, the carbon dioxide gas (purity 99.9
%) At a rate of 2 l / min until the paste has a pH of 10.0. This paste was applied on both sides of an aluminum foil having a thickness of 30 μ using a multi coater and dried.

【0017】得られた極板をローラープレス機を用いて
0.17mmの厚みになるまで圧延し、幅35mm、長
さ250mmに切り出して正極板を作成した。同様にし
て炭酸ガス通気後のペーストのpHが11.0、10.
5、9.5、9.0および7.0である各ペーストを用
いる以外は上記と同様の方法によりそれぞれ正極板を作
成した。また正極活物質層の塗着性を、アルミニウム箔
に塗着した正極合剤1cm3あたりの重量(以後塗着密
度という)で評価し、これを次のような方法で測定し
た。
The obtained electrode plate was rolled using a roller press machine to a thickness of 0.17 mm and cut into a width of 35 mm and a length of 250 mm to prepare a positive electrode plate. Similarly, the pH of the paste after passing carbon dioxide gas was 11.0, 10.
Positive electrodes were prepared in the same manner as above except that the pastes of 5, 9.5, 9.0 and 7.0 were used. The coatability of the positive electrode active material layer was evaluated by the weight per 1 cm 3 of the positive electrode mixture coated on the aluminum foil (hereinafter referred to as coating density), and this was measured by the following method.

【0018】塗着乾燥後の正極板を一定面積だけ切り出
してその重量、厚みを測定する。切り出した正極板に含
まれるアルミニウム箔の重量を箔の比重、切り出し面
積、厚みより計算し、測定重量からこれを差し引き正極
合剤重量とする。また正極板の体積からアルミニウム箔
の体積を差し引き、合剤体積を算出する。そしてこれら
より合剤1cm3あたりの重量を計算し、塗着密度とし
た。
After the coating and drying, the positive electrode plate is cut out in a certain area and the weight and thickness thereof are measured. The weight of the aluminum foil contained in the cut-out positive electrode plate is calculated from the specific gravity of the foil, the cut-out area, and the thickness, and this is subtracted from the measured weight to obtain the positive electrode mixture weight. The volume of the aluminum foil is subtracted from the volume of the positive electrode plate to calculate the mixture volume. Then, the weight per 1 cm 3 of the mixture was calculated from these to obtain the coating density.

【0019】アルミニウム箔がアルカリ腐食される場合
の化学反応式は、Liを例にとると(化1)の通りであ
る。
The chemical reaction formula in the case where the aluminum foil is corroded by alkali is as shown in (Chemical formula 1) using Li as an example.

【0020】[0020]

【化1】 アルミニウム箔が腐食されることによりこの箔と活物質
層との界面で水素ガスが発生し、それによって活物質の
浮き上がりを生じる。その結果、活物質層の見掛け体積
が増加し、単位体積あたりの重量が減少する。このよう
に塗着性が低下すると、塗着密度は減少することにな
る。
Embedded image When the aluminum foil is corroded, hydrogen gas is generated at the interface between the foil and the active material layer, which causes the active material to float. As a result, the apparent volume of the active material layer increases and the weight per unit volume decreases. When the coating property is reduced in this way, the coating density is reduced.

【0021】前記の塗着密度測定法で測定した塗着密度
とペーストのpHとの関連、および従来例(ペーストの
pH=11.5)により作成した正極板の塗着密度を図
2に○印で示す。炭酸ガスを通気したペーストより作成
した正極板は塗着密度が高まり、pHが低下し、中性に
寄るにしたがってさらに塗着密度が上昇し、塗着性の向
上が認められる。また従来例により作成した正極板の活
物質層をはがした後のアルミニウム箔の表面組織、およ
び本発明の炭酸ガスを通気してpH7としたペーストを
用いて作成した正極板の活物質層をはがした後のアルミ
ニウム箔の表面組織の倍率10,000倍のSEM写真
を図3(A)、(B)にそれぞれ示す。SEM像より明
らかなように、炭酸ガスを通気したペーストを用いるこ
とにより、アルミニウム箔の腐食は軽減されている。こ
れは正極合剤ペースト中に含まれる集電体の腐食性アル
カリ成分が、炭酸ガスを通気することによって重炭酸塩
に中和され、集電体のアルカリ腐食を軽減させたためで
ある。
The relationship between the coating density measured by the above coating density measuring method and the pH of the paste and the coating density of the positive electrode plate prepared by the conventional example (pH of the paste = 11.5) are shown in FIG. It shows with a mark. The positive electrode plate made of the paste in which carbon dioxide gas is aerated has a high coating density and a lowered pH, and the coating density further increases as it approaches neutrality, and the coating property is improved. Further, the surface texture of the aluminum foil after peeling off the active material layer of the positive electrode plate prepared according to the conventional example, and the active material layer of the positive electrode plate prepared by using the paste of the present invention which has been pH adjusted to 7 by passing carbon dioxide gas SEM photographs of the surface texture of the aluminum foil after being peeled off at a magnification of 10,000 are shown in FIGS. 3 (A) and 3 (B), respectively. As is clear from the SEM image, corrosion of the aluminum foil is reduced by using the paste in which carbon dioxide gas is aerated. This is because the corrosive alkaline component of the current collector contained in the positive electrode mixture paste was neutralized into bicarbonate by passing carbon dioxide gas, and the alkali corrosion of the current collector was reduced.

【0022】また上記方法により作成した各正極板を用
いた本実施例の電池と従来例により作成した電池のイン
ピーダンスとペーストのpHとの関係を図4に○印で示
す。図4より明らかなように本発明により作成した電池
はインピーダンスが低下している。これは集電体のアル
ミニウム箔のアルカリ腐食が軽減され、電極としての集
電特性が向上したためである。
Further, the relationship between the impedance of the battery of this example using each positive electrode plate prepared by the above method and the battery prepared by the conventional example and the pH of the paste is shown by a circle in FIG. As is clear from FIG. 4, the battery produced according to the present invention has a reduced impedance. This is because the alkali corrosion of the aluminum foil of the current collector was reduced and the current collecting characteristics as an electrode were improved.

【0023】(実施例2)正極活物質としてLiNiO
2を用い、その粉末100重量部に、アセチレンブラッ
ク3重量部、フッ素樹脂系結着剤7重量部を混合し、こ
れをカルボキシメチルセルロース水溶液に懸濁させてペ
ースト状にする。このペーストを撹拌しながらペースト
中に炭酸ガス(純度99.9%)と空気との体積比1:
1の混合ガスを2l/分の割合でペーストのpHがそれ
ぞれ11.0、10.5、10.0、9.5、9.0、
7.0になるまで通気させる。これらのペーストをそれ
ぞれ厚さ30μのアルミニウム箔の両面に塗着し、乾燥
して得られた極板をローラープレス機を用いて0.17
mmの厚みになるまで圧延し、幅35mm、長さ250
mmに切り出した正極板を用いる以外は、実施例1と同
様にして電池を作成した。この実施例により作成した電
池でも同様の効果が得られた。これらの極板の塗着密度
とペーストのpHとの関連を図2に、電池インピーダン
スとペーストのpHとの相関を図4にそれぞれ□印で併
記する。
(Example 2) LiNiO as a positive electrode active material
2 was mixed with 100 parts by weight of the powder, 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder, and the mixture was suspended in an aqueous carboxymethylcellulose solution to form a paste. While stirring this paste, the volume ratio of carbon dioxide gas (purity 99.9%) to air in the paste was 1:
1 mixed gas at a rate of 2 l / min and the pH of the paste was 11.0, 10.5, 10.0, 9.5, 9.0, respectively.
Ventilate until it reaches 7.0. Each of these pastes was applied onto both sides of an aluminum foil having a thickness of 30 μ and dried to obtain an electrode plate, which was used for 0.17 with a roller press machine.
Rolled to a thickness of mm, width 35 mm, length 250
A battery was made in the same manner as in Example 1 except that the positive electrode plate cut out to have a size of mm was used. Similar effects were obtained with the battery prepared in this example. The relationship between the coating density of these electrode plates and the pH of the paste is shown in FIG. 2, and the correlation between the battery impedance and the pH of the paste is also shown in FIG.

【0024】(実施例3)正極活物質としてLiMnO
2を用い、その粉末100重量部に、アセチレンブラッ
ク3重量部、フッ素樹脂系結着剤7重量部を混合し、カ
ルボキシメチルセルロース水溶液に懸濁させてペースト
状にする。このペーストを撹拌しながらペースト中に炭
酸ガス(純度99.9%)と窒素との体積比1:1の混
合ガスを2l/分の割合でペーストのpHがそれぞれ1
1.0、10.5、10.0、9.5、9.0、7.0
になるまで通気させる。これらのペーストをそれぞれ厚
さ30μのアルミニウム箔の両面に塗着し、乾燥して得
られた極板をローラープレス機を用いて0.17mmの
厚みになるまで圧延し、幅35mm、長さ250mmに
切り出した正極板を用いる以外は、実施例1と同様にし
て電池を作成した。この例の電池でも同様の効果が得ら
れた。これらの極板の塗着密度とペーストpHとの関連
を図2に、電池インピーダンスとペーストpHとの相関
を図4にそれぞれ△印で併記する。
(Example 3) LiMnO as a positive electrode active material
2 was mixed with 100 parts by weight of the powder, 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin-based binder, and the mixture was suspended in an aqueous carboxymethylcellulose solution to form a paste. While stirring this paste, a mixed gas of carbon dioxide gas (purity 99.9%) and nitrogen in a volume ratio of 1: 1 was added at a ratio of 2 l / min to a pH of 1 each.
1.0, 10.5, 10.0, 9.5, 9.0, 7.0
Ventilate until Each of these pastes was applied to both sides of an aluminum foil having a thickness of 30μ, and the electrode plate obtained by drying was rolled to a thickness of 0.17 mm using a roller press machine, width 35 mm, length 250 mm. A battery was made in the same manner as in Example 1 except that the positive electrode plate cut out in (1) was used. The same effect was obtained with the battery of this example. The relationship between the coating density of these electrode plates and the paste pH is shown in FIG. 2, and the correlation between the battery impedance and the paste pH is also shown in FIG.

【0025】(実施例4)正極活物質としてLiMn2
4を用い、その粉末100重量部に、アセチレンブラ
ック3重量部、フッ素樹脂系結着剤7重量部を混合し、
カルボキシメチルセルロース水溶液に懸濁させてペース
ト状にする。このペーストを撹拌しながらペースト中に
炭酸ガス(純度99.9%)とヘリウムとの体積比1:
1の混合ガスを2l/分の割合で、ペーストpHがそれ
ぞれ11.0、10.5、10.0、9.5、9.0、
7.0になるまで通気させる。これらのペーストをそれ
ぞれ厚さ30μのアルミニウム箔の両面に塗着し、乾燥
して得られた極板をローラープレス機を用いて0.17
mmの厚みになるまで圧延し、幅35mm、長さ250
mmに切り出した正極板を用いる以外は、実施例1と同
様して電池を作成した。この例の電池でも同様の効果が
得られた。これらの極板の塗着密度とペーストpHとの
関連を図2に、電池インピーダンスとペーストpHとの
相関を図4にそれぞれ*印で併記する。
(Example 4) LiMn 2 as a positive electrode active material
Using O 4 , 100 parts by weight of the powder was mixed with 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder,
Suspend in an aqueous carboxymethylcellulose solution to form a paste. While stirring this paste, the volume ratio of carbon dioxide gas (purity 99.9%) and helium in the paste was 1:
1 mixed gas at a rate of 2 l / min and paste pH values of 11.0, 10.5, 10.0, 9.5, 9.0, respectively.
Ventilate until it reaches 7.0. Each of these pastes was applied onto both sides of an aluminum foil having a thickness of 30 μ and dried to obtain an electrode plate, which was used for 0.17 with a roller press machine.
Rolled to a thickness of mm, width 35 mm, length 250
A battery was made in the same manner as in Example 1 except that the positive electrode plate cut out to have a size of mm was used. The same effect was obtained with the battery of this example. The relationship between the coating density of these electrode plates and the paste pH is shown in FIG. 2, and the correlation between the battery impedance and the paste pH is also shown in FIG.

【0026】(実施例5)正極活物質としてLiNb2
5を用い、その粉末100重量部に、アセチレンブラ
ック3重量部、フッ素樹脂系結着剤7重量部を混合し、
カルボキシメチルセルロース水溶液に懸濁させてペース
ト状にする。このペーストを撹拌しながらペースト中に
炭酸ガス(純度99.9%)を2l/分の割合でペース
トのpHがそれぞれ11.0、10.5、10.0、
9.5、9.0、7.0になるまで通気させる。これら
のペーストをそれぞれ厚さ30μのステンレス鋼箔の両
面に塗着し、乾燥して得られた極板をローラープレス機
を用いて0.17mmの厚みになるまで圧延し、幅35
mm、長さ250mmに切り出した正極板を用いる以外
は、実施例1と同様にして電池を作成した。この例の電
池でも同様の効果が得られた。これらの極板の塗着密度
とペーストpHとの関連を図2に、電池インピーダンス
とペーストpHとの相関を図4にそれぞれ●印で併記す
る。
Example 5 LiNb 2 was used as the positive electrode active material.
Using O 5 , 100 parts by weight of the powder was mixed with 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder,
Suspend in an aqueous carboxymethylcellulose solution to form a paste. While stirring this paste, carbon dioxide gas (purity 99.9%) was added to the paste at a rate of 2 l / min so that the pH of the paste was 11.0, 10.5, 10.0, respectively.
Vent until 9.5, 9.0, 7.0. Each of these pastes was applied on both sides of a stainless steel foil having a thickness of 30 μ, and the obtained electrode plate was rolled using a roller press machine to a thickness of 0.17 mm, and the width 35
A battery was prepared in the same manner as in Example 1 except that the positive electrode plate cut out to a length of 250 mm and a length of 250 mm was used. The same effect was obtained with the battery of this example. The relation between the coating density of these electrode plates and the paste pH is shown in FIG. 2, and the correlation between the battery impedance and the paste pH is also shown in FIG.

【0027】上記各実施例においては中和剤として炭酸
ガスを用いたが、これに限らず酢酸、蓚酸、酪酸を用い
ても同様の効果が得られる。
Although carbon dioxide was used as the neutralizing agent in each of the above embodiments, the same effect can be obtained by using acetic acid, oxalic acid or butyric acid.

【0028】また、上記各実施例においては円筒型電池
を用いて評価を行ったが、角型など電池形状が異なって
も同様の効果が得られる。
Further, in each of the above-mentioned examples, the evaluation was carried out by using a cylindrical battery, but the same effect can be obtained even if the battery shape such as a prismatic battery is different.

【0029】さらに上記各実施例において負極には炭素
質材料を用いたが、リチウム金属や、リチウム合金を負
極として用いても同様の効果が得られる。
Further, although a carbonaceous material was used for the negative electrode in each of the above-mentioned examples, the same effect can be obtained by using lithium metal or lithium alloy as the negative electrode.

【0030】また、上記実施例においては電解質として
六フッ化リン酸リチウムを使用したが、他のリチウム含
有塩、例えば過塩素酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ化
ヒ酸リチウムなどでも同様の効果が得られた。
Although lithium hexafluorophosphate was used as the electrolyte in the above examples, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluoride were used. Similar effects were obtained with lithium arsenate phosphide.

【0031】さらに、上記各実施例では電解液に炭酸エ
チレンと炭酸ジエチルの混合溶媒を用いたが、他の非水
溶媒、例えばプロピレンカーボネートなどの環状エステ
ル、テトラヒドロフランなどの環状エーテル、ジメトキ
シエタンなどの鎖状エーテル、プロピオン酸メチルなど
の鎖状エステルなどの非水溶媒や、これらの多元系混合
溶媒を用いても同様の効果が得られた。
Furthermore, in each of the above embodiments, a mixed solvent of ethylene carbonate and diethyl carbonate was used as the electrolytic solution, but other non-aqueous solvents such as cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, dimethoxyethane, etc. Similar effects were obtained using a non-aqueous solvent such as a chain ether or a chain ester such as methyl propionate, or a multi-component mixed solvent thereof.

【0032】[0032]

【発明の効果】以上の説明から明らかなように本発明に
よれば、正極板の製造において、正極活物質であるリチ
ウム複合酸化物を練合したペースト中のアルカリ成分を
中和し、ペーストのpHを7〜11とすることにより、
ペーストの集電体表面への塗着時に発生する集電体腐食
を防ぐことができる。このため集電体と活物質層との間
での水素ガス発生がなくなり、活物質の集電体からの脱
落あるいは浮き上がりが生じないためペーストの塗着性
が向上し、正極板の製造歩留まりも向上させることがで
きた。さらに集電体と活物質層との界面に不導体層が形
成されなくなるため、電導性、電池特性も向上させるこ
とができた。
As is apparent from the above description, according to the present invention, in the production of the positive electrode plate, the alkaline component in the paste prepared by kneading the lithium composite oxide as the positive electrode active material is neutralized to form the paste of the paste. By adjusting the pH to 7-11,
It is possible to prevent current collector corrosion that occurs when the paste is applied to the current collector surface. Therefore, hydrogen gas is not generated between the current collector and the active material layer, and the active material does not fall off or float up from the current collector, so that the paste applicability is improved and the production yield of the positive electrode plate is also improved. I was able to improve. Further, since the nonconductor layer is not formed at the interface between the current collector and the active material layer, the conductivity and the battery characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒型電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】本発明および従来例における正極合剤ペースト
のpHと塗着密度との相関を示す図
FIG. 2 is a diagram showing a correlation between a pH of a positive electrode mixture paste and a coating density in the present invention and a conventional example.

【図3】(A) 従来例により作成した正極板の活物質
層をはがした後のアルミニウム箔の表面組織を示す走査
型電子顕微鏡写真 (B) 本発明の正極板の活物質層をはがした後のアル
ミニウム箔の表面組織を示す走査型電子顕微鏡写真
FIG. 3A is a scanning electron micrograph showing the surface texture of the aluminum foil after peeling off the active material layer of the positive electrode plate prepared by the conventional example. FIG. 3B shows the active material layer of the positive electrode plate of the present invention. Scanning electron micrograph showing the surface texture of aluminum foil after abrasion

【図4】本発明および従来例における正極合剤ペースト
のpHと電池のインピーダンスとの相関を示す図
FIG. 4 is a diagram showing a correlation between pH of a positive electrode mixture paste and battery impedance in the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulating Packing 4 Electrode Plate Group 5 Positive Electrode Plate 5a Positive Electrode Lead 6 Negative Electrode Plate 6a Negative Lead 7 Separator 8 Insulating Ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大花 頼人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yorito Ohana 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】強アルカリに対し腐食性を有する金属箔を
集電体とし、その表面にリチウムと遷移金属を主体とし
た複合酸化物を主成分とする活物質層を形成した正極板
と、負極板と、この正極板と負極板との間にセパレータ
を介在させた非水電解液二次電池の製造方法において、
前記正極板は活物質と増粘材を練合させた粘性水溶液
(以後ペーストという)のアルカリ成分を中和した後、
このペーストを集電体表面に塗着し乾燥したことを特徴
とする非水電解液二次電池の製造方法。
1. A positive electrode plate having a metal foil corrosive to strong alkalis as a current collector, and having an active material layer containing a composite oxide containing lithium and a transition metal as a main component on the surface thereof. A negative electrode plate, in the method of manufacturing a non-aqueous electrolyte secondary battery with a separator interposed between the positive electrode plate and the negative electrode plate,
The positive electrode plate neutralizes an alkaline component of a viscous aqueous solution (hereinafter referred to as a paste) obtained by kneading an active material and a thickener,
A method for producing a non-aqueous electrolyte secondary battery, characterized in that the paste is applied to the surface of a current collector and dried.
【請求項2】正極活物質と増粘材を練合させたペースト
に炭酸ガスを吸収させ、ペーストのpHを7〜11とす
る請求項1記載の非水電解液二次電池の製造方法。
2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the paste prepared by kneading the positive electrode active material and the thickener absorbs carbon dioxide gas to adjust the pH of the paste to 7 to 11.
【請求項3】正極活物質と増粘材を練合させたペースト
に炭酸ガスと、空気または不活性ガスとの混合ガスを吸
収させ、ペーストのpHを7〜11とする請求項1記載
の非水電解液二次電池の製造方法。
3. The paste according to claim 1, wherein the paste prepared by kneading the positive electrode active material and the thickener absorbs a mixed gas of carbon dioxide gas and air or an inert gas to adjust the pH of the paste to 7 to 11. Manufacturing method of non-aqueous electrolyte secondary battery.
【請求項4】強アルカリに対し腐食性を有する金属箔と
してアルミニウム箔あるいはステンレス鋼箔を用いる請
求項1記載の非水電解液二次電池の製造方法。
4. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein an aluminum foil or a stainless steel foil is used as the metal foil corrosive to strong alkali.
【請求項5】アルミニウム箔表面にLiCoO2または
LiNiO2またはLiMnO2またはLiMn24のい
ずれかを主たる成分とする活物質層を形成した正極板
と、負極板と、この正極板と負極板との間にセパレータ
を介在させた非水電解液二次電池の製造方法において、
前記正極板は活物質とカルボキシメチルセルロースを練
合させた粘度が500センチポイズ以上で、かつpHが
11以上の水溶液に炭酸ガスを吸収させ、前記水溶液の
pHを7〜11とした後、集電体表面に塗着し、乾燥後
裁断して形成することを特徴とした非水電解液二次電池
の製造方法。
5. A positive electrode plate on which an active material layer containing LiCoO 2, LiNiO 2, LiMnO 2 or LiMn 2 O 4 as a main component is formed on the surface of an aluminum foil, a negative electrode plate, and the positive electrode plate and the negative electrode plate. In the method for manufacturing a non-aqueous electrolyte secondary battery with a separator interposed between
The positive electrode plate has a viscosity of 500 centipoises or more obtained by kneading an active material and carboxymethyl cellulose, and absorbs carbon dioxide into an aqueous solution having a pH of 11 or more to adjust the pH of the aqueous solution to 7 to 11. A method for producing a non-aqueous electrolyte secondary battery, which is characterized in that it is applied on the surface, dried and cut to form.
JP23060694A 1994-08-30 1994-08-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Lifetime JP3232910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23060694A JP3232910B2 (en) 1994-08-30 1994-08-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23060694A JP3232910B2 (en) 1994-08-30 1994-08-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0869791A true JPH0869791A (en) 1996-03-12
JP3232910B2 JP3232910B2 (en) 2001-11-26

Family

ID=16910394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23060694A Expired - Lifetime JP3232910B2 (en) 1994-08-30 1994-08-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3232910B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106174A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003187787A (en) * 2001-12-20 2003-07-04 Denso Corp Method for manufacturing lithium battery positive electrode
JP2007103134A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Lithium ion secondary battery and its manufacturing method
JP2008226515A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Manufacturing method of lithium-ion secondary battery and its cathode plate
JP2009064564A (en) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd Manufacturing method for positive electrode for nonaqueous electrolyte battery, slurry used for the method, and nonaqueous electrolyte battery
US7931985B1 (en) 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
JP2011146152A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Cathode paste and manufacturing method of cathode paste
US8076026B2 (en) 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
US8102642B2 (en) 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
US8530082B2 (en) 2009-07-06 2013-09-10 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode for battery
US8771876B2 (en) 2009-04-22 2014-07-08 Sony Corporation Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
JP2014209443A (en) * 2013-03-25 2014-11-06 株式会社東芝 Active material for battery use, nonaqueous electrolyte battery, and battery pack
JP2014212030A (en) * 2013-04-18 2014-11-13 Jsr株式会社 Electrode for electricity storage device and method for producing the same, and electricity storage device
WO2015146649A1 (en) * 2014-03-24 2015-10-01 昭和電工株式会社 Slurry for positive electrode of lithium ion secondary cell, positive electrode obtained using said slurry, method for manufacturing said positive electrode, lithium ion secondary cell formed using said positive electrode, and method for manufacturing said cell
US20180183047A1 (en) * 2016-02-08 2018-06-28 Nihon Spindle Manufacturing Co., Ltd. Method for manufacturing slurry for positive electrode of nonaqueous electrolyte secondary battery and slurry for positive electrode of nonaqueous electrolyte secondary battery
WO2019017152A1 (en) * 2017-07-19 2019-01-24 日本スピンドル製造株式会社 Method and device for producing cathode slurry for non-aqueous electrolyte secondary battery
CN110233252A (en) * 2019-06-25 2019-09-13 浙江工业大学 A kind of sodium-ion battery positive material surface modifying method
WO2020090014A1 (en) * 2018-10-30 2020-05-07 Attaccato合同会社 Non-aqueous electrolyte secondary battery and method for manufacturing non-electrolyte secondary battery
CN112090382A (en) * 2020-08-28 2020-12-18 江苏富矿智能科技有限公司 Novel size mixing device for lithium ion battery production and size mixing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922064B2 (en) * 2002-03-25 2007-05-30 松下電器産業株式会社 Method for evaluating the dispersion state of the binder in the battery electrode plate
WO2011102497A1 (en) 2010-02-22 2011-08-25 住友化学株式会社 Electrode mixture, electrode, and lithium secondary battery
JP6492581B2 (en) * 2014-11-27 2019-04-03 株式会社豊田自動織機 Electrode manufacturing method and electrode manufacturing apparatus
JP6951177B2 (en) * 2017-02-09 2021-10-20 日本スピンドル製造株式会社 Slurry production equipment and slurry production method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106174A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003187787A (en) * 2001-12-20 2003-07-04 Denso Corp Method for manufacturing lithium battery positive electrode
JP2007103134A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Lithium ion secondary battery and its manufacturing method
JP2008226515A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Manufacturing method of lithium-ion secondary battery and its cathode plate
US8263260B2 (en) 2007-09-04 2012-09-11 Sanyo Electric Co., Ltd. Method of manufacturing positive electrode for non-aqueous electrolyte battery, slurry used therefor, and non-aqueous electrolyte battery
JP2009064564A (en) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd Manufacturing method for positive electrode for nonaqueous electrolyte battery, slurry used for the method, and nonaqueous electrolyte battery
US8771876B2 (en) 2009-04-22 2014-07-08 Sony Corporation Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
US8530082B2 (en) 2009-07-06 2013-09-10 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode for battery
JP2011146152A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Cathode paste and manufacturing method of cathode paste
US8076026B2 (en) 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
US8102642B2 (en) 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
US8092557B2 (en) 2010-11-08 2012-01-10 International Battery, Inc. Water soluble polymer binder for lithium ion battery
US7931985B1 (en) 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
JP2014209443A (en) * 2013-03-25 2014-11-06 株式会社東芝 Active material for battery use, nonaqueous electrolyte battery, and battery pack
JP2014212030A (en) * 2013-04-18 2014-11-13 Jsr株式会社 Electrode for electricity storage device and method for producing the same, and electricity storage device
WO2015146649A1 (en) * 2014-03-24 2015-10-01 昭和電工株式会社 Slurry for positive electrode of lithium ion secondary cell, positive electrode obtained using said slurry, method for manufacturing said positive electrode, lithium ion secondary cell formed using said positive electrode, and method for manufacturing said cell
CN105940530A (en) * 2014-03-24 2016-09-14 昭和电工株式会社 Slurry for positive electrode of lithium ion secondary cell, positive electrode obtained using said slurry, method for manufacturing said positive electrode, lithium ion secondary cell formed using said positive electrode, and method for manufacturing said cell
JPWO2015146649A1 (en) * 2014-03-24 2017-04-13 昭和電工株式会社 Slurry for positive electrode of lithium ion secondary battery, positive electrode obtained using this slurry and method for producing the same, lithium ion secondary battery comprising this positive electrode and method for producing the same
US20180183047A1 (en) * 2016-02-08 2018-06-28 Nihon Spindle Manufacturing Co., Ltd. Method for manufacturing slurry for positive electrode of nonaqueous electrolyte secondary battery and slurry for positive electrode of nonaqueous electrolyte secondary battery
US11251418B2 (en) * 2016-02-08 2022-02-15 Nihon Spindle Manufacturing Co., Ltd. Method for manufacturing slurry for positive electrode of nonaqueous electrolyte secondary battery and slurry for positive electrode of nonaqueous electrolyte secondary battery
JPWO2019017152A1 (en) * 2017-07-19 2020-03-19 日本スピンドル製造株式会社 Method and apparatus for producing slurry for positive electrode of non-aqueous electrolyte secondary battery
CN110915031A (en) * 2017-07-19 2020-03-24 日本斯频德制造株式会社 Method and apparatus for producing slurry for positive electrode of nonaqueous electrolyte secondary battery
US10637057B2 (en) 2017-07-19 2020-04-28 Nihon Spindle Manufacturing Co., Ltd. Method for manufacturing slurry for positive electrode of nonaqueous electrolyte secondary battery and apparatus therefor
WO2019017152A1 (en) * 2017-07-19 2019-01-24 日本スピンドル製造株式会社 Method and device for producing cathode slurry for non-aqueous electrolyte secondary battery
WO2020090014A1 (en) * 2018-10-30 2020-05-07 Attaccato合同会社 Non-aqueous electrolyte secondary battery and method for manufacturing non-electrolyte secondary battery
TWI780274B (en) * 2018-10-30 2022-10-11 日商Attaccato合同公司 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN110233252A (en) * 2019-06-25 2019-09-13 浙江工业大学 A kind of sodium-ion battery positive material surface modifying method
CN112090382A (en) * 2020-08-28 2020-12-18 江苏富矿智能科技有限公司 Novel size mixing device for lithium ion battery production and size mixing method thereof

Also Published As

Publication number Publication date
JP3232910B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JP3232910B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
US8685573B2 (en) Cathode active material and lithium ion rechargeable battery using the material
JPH09147916A (en) Nonaqueous electrolyte secondary battery
JP4424949B2 (en) Nonaqueous electrolyte secondary battery
JP2005340056A (en) Nonaqueous electrolyte secondary battery
CN101442123B (en) Composite material for lithium ion battery cathode and preparation method thereof as well as cathode and battery
JP2005251684A (en) Nonaqueous electrolyte secondary battery
JP2005063674A (en) Nonaqueous electrolyte secondary battery
JPH0822846A (en) Treating method for nonaqueous secondary battery waste
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP3644106B2 (en) Non-aqueous secondary battery
JP2007018963A (en) Method of manufacturing nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery manufactured by the manufacturing method
JP3937515B2 (en) Non-aqueous secondary battery
JP4114247B2 (en) Non-aqueous electrolyte secondary battery
JPH11204108A (en) Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery
JP2005019149A (en) Lithium secondary battery
JPH1167277A (en) Lithium secondary battery
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP3465864B2 (en) Lithium secondary battery and method of manufacturing the same
JP4636650B2 (en) Non-aqueous secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3364378B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JPH0955203A (en) Nonaqueous battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140921

Year of fee payment: 13

EXPY Cancellation because of completion of term