JPH0868788A - Detector for color and turbidity of city water - Google Patents

Detector for color and turbidity of city water

Info

Publication number
JPH0868788A
JPH0868788A JP20622794A JP20622794A JPH0868788A JP H0868788 A JPH0868788 A JP H0868788A JP 20622794 A JP20622794 A JP 20622794A JP 20622794 A JP20622794 A JP 20622794A JP H0868788 A JPH0868788 A JP H0868788A
Authority
JP
Japan
Prior art keywords
turbidity
color
measuring
water
tap water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20622794A
Other languages
Japanese (ja)
Other versions
JP3095954B2 (en
Inventor
Yasushi Zaitsu
靖史 財津
Mutsuhisa Hiraoka
睦久 平岡
Naohiro Noda
直広 野田
Hiroshi Tada
弘 多田
Kenji Harada
健治 原田
Keiji Goto
圭司 後藤
Noboru Shiromizu
暢 白水
Saburo Hosoda
三朗 細田
Masanori Ichinohe
正憲 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUIDO KYOKAI
Fuji Electric Co Ltd
Original Assignee
NIPPON SUIDO KYOKAI
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUIDO KYOKAI, Fuji Electric Co Ltd filed Critical NIPPON SUIDO KYOKAI
Priority to JP06206227A priority Critical patent/JP3095954B2/en
Publication of JPH0868788A publication Critical patent/JPH0868788A/en
Application granted granted Critical
Publication of JP3095954B2 publication Critical patent/JP3095954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/054Bubble trap; Debubbling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/152Scraping; Brushing; Moving band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/317Special constructive features
    • G01N2021/3174Filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To automatically measure the color and turbidity of city water at the same sensitivity as that of visual inspection by preparing a spectrophotometric part, etc., that can classifying the wavelengths of light transmitting in a measuring cell into a plurality of kinds. CONSTITUTION: A rotary disc type spectrophotometric part 6 is provided with at least four optical filters 7 (T for measuring turbidity; C for measuring color; R, G, B for three stimulation values of red, green and blue). During measurement, two solenoid values 8 are opened/closed at first to fill a measuring cell 2 with a blank water of colorless, transparent standard liquid, and the filters 7 (T, C, R, G, and B) are inserted into a measurement light path 4 successively in this state so as to measure the transmitting light quantity from a light source at this time. Next, the valves 8 are opened/closed again to fill the cell 2 with city water as a measuring sample and its transmitting light quantity at this time is measured. Based on these obtained data, a signal processing part 9 calculates and outputs their synthesized vector values as lightness or stimulation purity for coloring. In addition, a wiper is prepared on the cell 2 to eliminate measuring errors due to adhesion of air bubbles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水道水の水質を自動計
測する装置、とくに水道水の濁りと着色の度合いを計測
し、着色があればその色相を判定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for automatically measuring the quality of tap water, and more particularly to a device for measuring the degree of turbidity and coloring of tap water and determining the hue of the coloring.

【0002】[0002]

【従来の技術】従来、水道水の着色の自動計測は、色度
を基準として行われている。例えば、厚生省生活衛生局
水道環境部監修、日本水道協会発行の刊行物「上水試験
方法」1993年版、第73頁〜第74頁によれば、色
度は「水中に含まれる溶解性物質およびコロイド性物質
が呈する類黄色ないし黄褐色の程度」とされ、目視によ
る比色法や波長390nmの吸光度が公定法として示さ
れている。
2. Description of the Related Art Conventionally, automatic measurement of coloring of tap water has been performed on the basis of chromaticity. For example, according to the publication “Water Supply Test Method” published by the Japan Water Works Association under the supervision of the Ministry of Health and Welfare Bureau, Ministry of Health and Welfare, 1993 edition, pages 73 to 74, the chromaticity is “soluble substances contained in water and The degree to which the colloidal substance exhibits a yellowish or yellowish brown color ", and a visual colorimetric method and an absorbance at a wavelength of 390 nm are shown as official methods.

【0003】この色度を自動的に計測する装置は、既に
各種のものが市販されており、例えば特開平4−974
6号公報に開示されているように、色度の自動計測装置
は、基本的に、光源、フローセル、波長390nmの光
を透過する光学フィルタ、光電変換器からなり、連続的
に試料水が流れるフローセルを透過した390nmの光
の吸光度を測定し、測定値を換算式または換算表から色
度に変換して出力するものである。色度は塩化白金酸コ
バルトの標準溶液で校正され、一般的な装置の測定レン
ジは、水道水を対象としたもので0〜10度程度、水道
の原水を対象としたものでは0〜200度程度である。
色度の水道水としての水質基準は、5度以下であること
が厚生省令で定められている。
Various types of devices for automatically measuring this chromaticity are already on the market, for example, Japanese Patent Laid-Open No. 4-974.
As disclosed in Japanese Patent No. 6, the automatic chromaticity measuring device basically includes a light source, a flow cell, an optical filter that transmits light of a wavelength of 390 nm, and a photoelectric converter, and sample water flows continuously. The absorbance of 390 nm light transmitted through the flow cell is measured, and the measured value is converted into chromaticity from a conversion formula or conversion table and output. The chromaticity is calibrated with a standard solution of cobalt chloroplatinate, and the measurement range of a general device is 0 to 10 degrees for tap water and 0 to 200 degrees for tap water. It is a degree.
The welfare ministerial ordinance stipulates that the water quality standard for chromaticity of tap water is 5 degrees or less.

【0004】また、水中の懸濁質が色度に与える影響を
補正するため、上述の装置の基本構成とは異なる構成を
採るものもある。例えば、特開平4−315020号公
報に記載されている装置は、波長390nmの光学フィ
ルタの他に、色度標準液に吸収を示さない660nm付
近の光を透過する光学フィルタを備え、この光学フィル
タを用いて測定した懸濁質による吸光度に基づき、懸濁
質による見かけの色度を補正する機構を持っている。こ
の際、2枚の光学フィルタを交互に測定光路に挿入する
ための機構、例えば、2枚のフィルタを備えた回転板な
どを備えている。従来、濁度の測定には、波長660n
m付近の光の吸光度が用いられており、このような装置
でも、波長660nm付近の光の吸光度測定から得られ
る懸濁質濃度を濁度として、色度と併せて出力すること
も行なわれている。
Further, in order to correct the influence of the suspended solids in water on the chromaticity, there is a configuration different from the basic configuration of the above-mentioned apparatus. For example, the device described in Japanese Patent Application Laid-Open No. 4-315020 is provided with an optical filter having a wavelength of 390 nm and an optical filter which does not absorb light in a chromaticity standard solution and transmits light near 660 nm. It has a mechanism to correct the apparent chromaticity of the suspension based on the absorbance of the suspension measured using the. At this time, a mechanism for alternately inserting two optical filters into the measurement optical path, for example, a rotating plate having two filters is provided. Conventionally, for measuring turbidity, a wavelength of 660n
Absorbance of light around m is used, and even with such an apparatus, the suspension concentration obtained from the measurement of light around 660 nm wavelength is also output as turbidity together with chromaticity. There is.

【0005】一方、本来、目で見て無色透明である筈の
水道水の視覚的異常、即ち、着色や濁りの有無を検査す
るために、水道法では水道事業者に対して色、濁り、残
留塩素の3項目の水質検査を、給水区域内の複数の給水
栓を対象に、毎日1回以上検査することを義務付けてい
る。この際の「濁り」は、上述の濁度とほぼ同義語の測
定項目とされているが、「色」は上述の色度と目視によ
る検査との差異が明らかなため、同義の測定項目とされ
ておらず、目視検査を自動化するための便宜的手段とし
て、自動測定が可能な色度計測での代用が認められてい
る。色度は、元来、黄色または黄褐色の着色の指標とし
て発生した測定法であり、これは浄水処理の対象物質が
歴史的に土壌や腐植由来の懸濁質と有機着色成分とされ
てきたことによる。
On the other hand, in order to inspect the presence or absence of visual abnormality, that is, coloring or turbidity of tap water that should originally be colorless and transparent to the eye, the Water Supply Act requires the water supply operator to have color and turbidity. It is obligatory to conduct a water quality test for three items of residual chlorine at least once a day for multiple faucets in the water supply area. At this time, "turbidity" is a measurement item that is almost synonymous with the above-mentioned turbidity, but "color" is a measurement item with the same meaning because the difference between the above-mentioned chromaticity and visual inspection is clear. However, as a convenient means for automating the visual inspection, a substitute for chromaticity measurement that allows automatic measurement is permitted. Chromaticity is a measurement method that originally occurred as an index of yellow or yellow-brown coloration, and the target substances for water purification treatment have historically been suspended matter derived from soil and humus and organic coloring components. It depends.

【0006】色度と異なる着色の評価指標として、前述
の刊行物「上水試験方法(解説編)」では、参考として
色の単色表示測定方法が示されている。この方法では試
料の400〜700nmの範囲における可視光透過率を
20nmの間隔で測定し、以下の式(1),(2)によ
り、三刺激値X,Y,Zから色度座標(x,y)を色度
図に求める。
[0006] As an evaluation index of coloring different from chromaticity, the above-mentioned publication "Water Supply Test Method (Explanation Edition)" shows a method of measuring a single color of color as a reference. In this method, the visible light transmittance of the sample in the range of 400 to 700 nm is measured at intervals of 20 nm, and chromaticity coordinates (x, x, y are calculated from tristimulus values X, Y, Z by the following equations (1) and (2). y) is obtained from the chromaticity diagram.

【0007】[0007]

【数1】 [Equation 1]

【0008】[0008]

【数2】 [Equation 2]

【0009】ここに、τ(λ)は波長λにおける透過
率、fx( λ),fy( λ),fz( λ)は、波長λにおけ
るおける重値関数であり、透過率測定値を人の目の比視
感度にあう透過感度特性値になるよう補正するための係
数である。また、Kは係数、色度図は、国際照明委員会
(CIE)が1931年に定めたCIE1931xy色
度図が一般に用いられる。色度図上に測定試料の色に対
応する色度座標が決定されると、作図と計算によって、
主波長、刺激純度の二つの特性値を求めることができ
る。主波長は、その試料の色相を表わし、刺激純度は主
波長で示される色の強さを表わす。このような色の三刺
激値法に基づく測色計は、様々な分野における色彩の計
測用として市販されている。
Here, τ (λ) is the transmittance at the wavelength λ, and fx (λ), fy (λ) and fz (λ) are weighted functions at the wavelength λ. It is a coefficient for correction so that the transmission sensitivity characteristic value matches the relative luminous efficiency of the eye. In addition, K is a coefficient, and as the chromaticity diagram, the CIE1931xy chromaticity diagram established by the International Commission on Illumination (CIE) in 1931 is generally used. When the chromaticity coordinates corresponding to the color of the measurement sample are determined on the chromaticity diagram, by drawing and calculation,
Two characteristic values, the dominant wavelength and the stimulation purity, can be obtained. The dominant wavelength represents the hue of the sample, and the stimulation purity represents the intensity of the color indicated by the dominant wavelength. Colorimeters based on such color tristimulus method are commercially available for measuring color in various fields.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、問題
は、水道水のように、着色も濁りも希薄な試料液の色と
濁りを、同時に定量的に計測することができる装置は未
だ実現されていないことにある。従来、懸濁質は濁度
で、黄色または黄褐色の腐植由来の有機着色成分は色度
で計測されてきた。ところが、近年、水道水の質的向上
が期待される中で、給水栓での水質検査の充実が求めら
れ、色、濁り、残留塩素の毎日検査の自動化による検査
頻度の向上が必要となってきた。しかし、本来、原水の
黄色または黄褐色の着色濃度の指標である色度では、水
道配管内の鉄錆、または付着マンガンの流出による赤や
黒褐色という着色の度合いや、色相を正しく計測するこ
とができないため、より広い色相に適用可能な着色の検
知装置が求められている。このような装置の性能は、前
述の人の目による視覚検査が比較の基準となるから、水
道水の色と濁りの連続的な自動計測を、目視検査と同等
の感度で実現することができる装置が必要である。
However, the problem is that an apparatus capable of simultaneously quantitatively measuring the color and the turbidity of a sample liquid, which is dilute in coloring and turbidity, such as tap water, has not been realized yet. Especially. In the past, suspensions have been measured by turbidity, and yellow or yellowish brown humus-derived organic coloring components have been measured by chromaticity. However, in recent years, with the expectation that the quality of tap water will be improved, it is required to improve the water quality inspection at the water tap, and it is necessary to improve the inspection frequency by automating the daily inspection of color, turbidity, and residual chlorine. It was However, originally, the chromaticity, which is an index of the yellow or yellow-brown color concentration of the raw water, can accurately measure the degree of coloring such as iron rust in the water pipe or red or black brown due to the outflow of adhered manganese, and the hue. Therefore, there is a demand for a color detection device applicable to a wider range of hues. As for the performance of such a device, since the visual inspection by the human eye described above serves as a reference for comparison, continuous automatic measurement of color and turbidity of tap water can be realized with the same sensitivity as the visual inspection. Equipment required.

【0011】本発明は、上述の点を解決するためになさ
れたものであり、その目的は、水道水のように無色、透
明に近い試料水の色と濁りについて、水道事業者が行な
う毎日検査を、自動的にしかも目視検査と同等の感度で
計測可能な装置を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to carry out a daily inspection by a water utility for the color and turbidity of sample water that is colorless and nearly transparent like tap water. It is an object of the present invention to provide a device capable of automatically measuring with the same sensitivity as visual inspection.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の水道水の色および濁りの検知装置は、光
源,試料とする水道水を入れる測定セル,光源から出射
し測定セルを透過する光の波長を複数の種類に選択可能
な分光部,測定セルと分光部を通る光源からの光を電気
信号に変換する光電変換器,光電変換器からの信号に基
づき、測定値を着色度、色相、濁度として演算出力する
信号処理部を備えたものである。また、測定セルには、
光学窓に生ずる気泡を除去するワイパーと、ブランク水
を得る吸着濾過器を設ける。
In order to solve the above problems, the apparatus for detecting the color and turbidity of tap water according to the present invention comprises a light source, a measuring cell for putting tap water as a sample, and a measuring cell for emitting light from the light source. Based on the signal from the spectroscopic unit that converts the light from the light source that passes through the measuring cell and the spectroscopic unit into an electric signal, the measured value based on the signal from the photoelectric converter. A signal processing unit for calculating and outputting the coloring degree, the hue, and the turbidity is provided. In addition, the measurement cell,
A wiper for removing bubbles generated in the optical window and an adsorption filter for obtaining blank water are provided.

【0013】[0013]

【作用】以上の装置構成により、従来の目視検査や色度
の自動計測に代わって色の分析を行ない、着色度と色相
を出力させるが、基本的手段は、濁度と三刺激値を求め
るための少なくとも4種の波長選択用の光学フィルタを
備え、着色度を式(5)のYで示される明度、もしくは
式(7)で示す刺激純度、または式(9)で示すこれら
の合成ベクトルの長さの値CL として演算出力する。ま
た、測定セルにワイパーを設けて微細な気泡の付着によ
る誤差を排除し、光学窓に付着した膜状の汚れの影響を
除去するために、ブランク水による校正と、試料水の測
定を交互に繰り返す。
With the above device configuration, instead of the conventional visual inspection and automatic measurement of chromaticity, color analysis is performed and the coloring degree and hue are output, but the basic means is to obtain turbidity and tristimulus values. A lightness represented by Y in the formula (5), or a stimulus purity represented by the formula (7), or a composite vector of these represented by the formula (9). It is calculated and output as the length value CL. In addition, the measurement cell is equipped with a wiper to eliminate the error caused by the adhesion of minute bubbles, and in order to remove the effect of film-like dirt adhering to the optical window, calibration with blank water and measurement of sample water are alternately performed. repeat.

【0014】[0014]

【実施例】実施例1 .図1は本発明の装置の要部構成を示す模式図
であり、図1(a)は装置全体を上から見た図,図1
(b)は分光部の平面図を表わす。図1(a)におい
て、光源1は広い発光スペクトルを持ったタングステン
ランプもしくはハロゲンランプと安定化電源からなり、
測定セル2は、パイレックスガラス製の光学窓5を備
え、100mm程度以上の測定光路長Lを有する光路4
を形成している。水道水レベルの透明度を持つ試料水の
濁度と着色成分を安定に測定するためには、少なくとも
100mm程度以上の測定光路長が必要である。光電変
換器3にはシリコンフォトダイオードを用いる。回転円
盤型の分光部6は、少なくとも4枚の光学フィルタ7を
備え、これら光学フィルタ7のうち、Tで示した濁度測
定用は中心波長660nmの光学フィルタ、Cで示した
色度計測を行なうための390nmを中心波長とする光
学フィルタ、R,G,Bは、それぞれ570nm、53
5nm、445nm付近に中心波長を持ち、三刺激値法
で色計測を行なうめの赤、緑、青の光をそれぞれ選択的
に透過する光学フィルタである。三刺激値用光学フィル
タR,G,Bの分光透過率は、光源1から光電変換器3
に至る総合的な相対分光感度比が、CIEが定める三刺
激値の等色関数分布の積分値に等しくなるように、光源
1の発光スペクトルと、光電変換器3の受光感度特性を
考慮して決定する。分光部6はモータにより回転するの
で、各光学フィルタ7は、順次測定光路4に挿入され、
そのときの透過光量を測定することができる。本発明の
装置を構成する主要部は、光源1,測定セル2,光電変
換器3,分光部6および信号処理部9である。
EXAMPLES Example 1 FIG. 1 is a schematic view showing the main configuration of the device of the present invention, and FIG. 1 (a) is a view of the entire device seen from above, FIG.
(B) represents the top view of a spectroscopic part. In FIG. 1 (a), the light source 1 comprises a tungsten lamp or a halogen lamp having a wide emission spectrum and a stabilized power source,
The measuring cell 2 includes an optical window 5 made of Pyrex glass, and has an optical path 4 having a measuring optical path length L of about 100 mm or more.
Is formed. In order to stably measure the turbidity of the sample water having the level of tap water level transparency and the colored components, a measurement optical path length of at least about 100 mm or more is required. A silicon photodiode is used for the photoelectric converter 3. The rotating disk type spectroscopic unit 6 includes at least four optical filters 7. Of these optical filters 7, the turbidity measurement shown by T is an optical filter having a central wavelength of 660 nm and the chromaticity measurement shown by C is used. An optical filter having a central wavelength of 390 nm, R, G, and B is 570 nm and 53, respectively.
An optical filter having center wavelengths near 5 nm and 445 nm and selectively transmitting red, green, and blue light for color measurement by the tristimulus value method. The spectral transmittances of the tristimulus value optical filters R, G, and B are calculated from the light source 1 to the photoelectric converter 3
Considering the light emission spectrum of the light source 1 and the light receiving sensitivity characteristic of the photoelectric converter 3, so that the total relative spectral sensitivity ratio up to is equal to the integrated value of the color matching function distribution of the tristimulus values defined by CIE. decide. Since the spectroscopic unit 6 is rotated by the motor, the optical filters 7 are sequentially inserted into the measurement optical path 4,
The amount of transmitted light at that time can be measured. The main parts constituting the device of the present invention are a light source 1, a measuring cell 2, a photoelectric converter 3, a spectroscopic part 6 and a signal processing part 9.

【0015】次に、上記の本発明の装置により、濁度、
色度、三刺激値法による着色度および色相を測定する手
順を、図1を参照して説明する。はじめに、二つの電磁
弁8を開閉操作して、測定セル2に無色透明の標準液で
あるブランク水を満たし、この状態で測定光路4に光学
フィルタ7のT,C,R,G,Bを順次挿入し、そのと
きの光源1からの透過光量ITO,ICO,IRO,IGO,I
BOを測定する。次に、再び二つの電磁弁8を開閉操作
し、測定試料である水道水を測定セル2に満たし、その
ときの透過光量IT1,IC1,IR1,IG1,IB1を測定す
る。これらのデータから、濁度Tおよび色度Cの測定値
を式(3)、式(4)により得ることができる。
Next, the turbidity,
A procedure for measuring the chromaticity, the coloring degree and the hue by the tristimulus value method will be described with reference to FIG. First, the two solenoid valves 8 are opened and closed to fill the measurement cell 2 with blank water, which is a colorless transparent standard solution, and in this state, the T, C, R, G and B of the optical filter 7 are placed in the measurement optical path 4. Sequentially inserted, the amount of transmitted light from the light source 1 at that time I TO , I CO , I RO , I GO , I
Measure BO . Next, the two solenoid valves 8 are opened and closed again to fill the measurement cell 2 with tap water, which is a measurement sample, and the amounts of transmitted light I T1 , I C1 , I R1 , I G1 , and I B1 at that time are measured. From these data, the measured values of the turbidity T and the chromaticity C can be obtained by the equations (3) and (4).

【0016】[0016]

【数3】 (Equation 3)

【0017】[0017]

【数4】 [Equation 4]

【0018】KT およびKC は装置定数である。三刺激
値法に基づく着色の度合いと色相の計測は以下の手順で
行なう。三刺激値用光学フィルタ7のR,G,Bは、あ
らかじめ光源1の発光スペクトルおよび光電変換器3の
分光受光感度特性を考慮して、CIE等色関数の分光感
度特性にあわせた相対透過率特性を持つように選定して
あるので、式(1)、式(2)のX,Y,Zおよび色度
座標(x,y)は次の式(5)および式(6)から得る
ことができる。
K T and K C are device constants. The measurement of the degree of coloring and the hue based on the tristimulus method is performed according to the following procedure. R, G, and B of the tristimulus value optical filter 7 are relative transmittances that match the spectral sensitivity characteristics of the CIE color matching function in consideration of the emission spectrum of the light source 1 and the spectral sensitivity characteristics of the photoelectric converter 3 in advance. Since they are selected so as to have characteristics, X, Y, Z and chromaticity coordinates (x, y) of the formulas (1) and (2) should be obtained from the following formulas (5) and (6). You can

【0019】[0019]

【数5】 (Equation 5)

【0020】[0020]

【数6】 (Equation 6)

【0021】KR ,KG ,KB は装置定数であり、理想
的にはKR =KG =KB =1である。ここで、図2に
x,y色度図を示す。図2(a)は色度図,(b)は色
度図を用いた着色度の説明図である。各図上の点Cは測
定試料の色度座標,点Wは無色に相当する点の色度座標
であって、標準色度図では、x=0.333、y=0.
333となる点である。点Sは点Wと点Cを結ぶ直線が
色度図の曲線と交わる点で、点Pは点C上からxy平面
に垂直な方向に明度Yだけ離れた点である。式(5)の
Yとして計算される明度は、IGOとIG1の値によって0
〜1の値をとる。即ち、試料水の着色が著しく、IG1
0のときにY=0となり、ブランク水と試料水の間の透
明度の差がないIGO=IG1のときY=1となる。点W′
は点W上で、この装置における明度の最大値Y=1の
点、即ち無色透明な点を示し、点C′は点C上でY=1
の点である。
K R , K G and K B are device constants, and ideally K R = K G = K B = 1. Here, an x, y chromaticity diagram is shown in FIG. 2A is a chromaticity diagram, and FIG. 2B is an explanatory diagram of the coloring degree using the chromaticity diagram. Point C on each figure is the chromaticity coordinate of the measurement sample, and point W is the chromaticity coordinate of the point corresponding to colorlessness. In the standard chromaticity diagram, x = 0.333, y = 0.
333. A point S is a point where a straight line connecting the points W and C intersects the curve of the chromaticity diagram, and a point P is a point separated from the point C by the lightness Y in the direction perpendicular to the xy plane. The brightness calculated as Y in equation (5) is 0 depending on the values of I GO and I G1.
Takes a value of ~ 1. That is, the sample water is markedly colored, and I G1 =
When 0, Y = 0, and when there is no difference in transparency between the blank water and the sample water, I GO = I G1 , Y = 1. Point W '
Indicates a point on the point W where the maximum brightness value Y = 1 in this device, that is, a colorless and transparent point, and a point C ′ indicates a point Y = 1 on the point C.
Is the point.

【0022】信号処理部9は、光電変換器3により測定
された透過光量から式(3),式(5),式(6)を用
いて、濁度、明度Y、色度図における試料座標を演算す
る。しかし、目視検査でようやく検出されるレベルの水
道水の着色を測定する本発明の装置による明度Yは、殆
ど1に近い値をとる。このため1に近く1より小さい値
F をフルスケールとし、(Y/YF )×100(%)
の値を着色度として演算し出力する。
The signal processing unit 9 uses the formulas (3), (5) and (6) from the transmitted light amount measured by the photoelectric converter 3 to determine the turbidity, the brightness Y and the sample coordinates in the chromaticity diagram. Is calculated. However, the brightness Y obtained by the apparatus of the present invention for measuring the level of coloring of tap water finally detected by visual inspection takes a value close to 1. Therefore, the value Y F that is close to 1 and smaller than 1 is taken as the full scale, and (Y / Y F ) × 100 (%)
The value of is calculated and output as the coloring degree.

【0023】また、 信号処理部9は、図2(a)の色
度図のxy平面を(i,j)のように区分し、この各区
分に、出力すべき色相を赤、黄、白、黒、青のように記
憶した試料座標−色相変換データとして内蔵している。
色相の出力は、試料座標(x,y)がどの区分に入るか
を判別し、その区分に割り振られた色相を出力すること
により行われる。
Further, the signal processing section 9 divides the xy plane of the chromaticity diagram of FIG. 2A into (i, j) sections, and the hues to be output are red, yellow, and white in each section. , Black, and blue are stored as the stored sample coordinate-hue conversion data.
The hue is output by determining which section the sample coordinates (x, y) belong to and outputting the hue assigned to that section.

【0024】なお、図1の装置を用いるに当たって、中
心波長390nmの色度計測用光学フィルタCは、着色
の計測を三刺激値法のみにより行なう場合は必要ない
が、濁度、着色度および色相の出力に加え、従来使われ
ている色度を出力させるときは、分光部6に光学フィル
タCも付加し、さらに信号処理部9で式(4)の演算出
力を行なうようにする。
In using the apparatus of FIG. 1, the optical filter C for measuring chromaticity having a central wavelength of 390 nm is not necessary when the measurement of coloring is carried out only by the tristimulus method, but the turbidity, the degree of coloring and the hue are not required. In addition to the above-mentioned output, when the conventionally used chromaticity is to be output, an optical filter C is also added to the spectroscopic unit 6, and the signal processing unit 9 further performs the arithmetic output of Expression (4).

【0025】実施例2.上述の実施例1.では着色度を
明度Yの値として測定したが、ここでは、実施例1.の
信号処理部9から演算出力される着色度を、図2
(a),(b)に示す刺激純度Sとして測定する。仮に
点Wの座標を(x0 ,y0 )、点Sの座標を(x1 ,y
1 )、点Pの座標を(x2 ,y2 )とするとき、刺激純
度Sは線分WSに対する線分WCの長さの比として、式
(7)のように与えられる。
Example 2 Example 1 above. The coloring degree was measured as the value of lightness Y, but here, in Example 1 . The coloring degree calculated and output from the signal processing unit 9 of FIG.
It is measured as the stimulation purity S shown in (a) and (b). Suppose the coordinates of the point W are (x0, y0) and the coordinates of the point S are (x1, y0).
1), where the coordinates of the point P are (x2, y2), the stimulation purity S is given as the ratio of the length of the line segment WC to the line segment WS as shown in equation (7).

【0026】[0026]

【数7】 (Equation 7)

【0027】この場合も、実施例1.と同様に、0〜1
の値をとる刺激純度Sを着色度として出力するためのフ
ルスケールの変更が必要である。実施例3 .ここでは、実施例1.の信号処理部9から演
算出力される着色度を、式(8)によって与えられる線
分L W′P の長さとして演算する。または、実用上の便
を考慮して(9)を用いて演算する。
Also in this case, the first embodiment . As well as 0-1
It is necessary to change the full scale in order to output the stimulation purity S that takes the value of as the coloring degree. Example 3 . Here, in the first embodiment . The coloring degree calculated and output from the signal processing unit 9 is calculated as the length of the line segment L W ′ P given by the equation (8). Alternatively, in consideration of practical convenience, the calculation is performed using (9).

【0028】[0028]

【数8】 [Equation 8]

【0029】[0029]

【数9】 [Equation 9]

【0030】この式(9)は、式(8)中の線分WCの
長さに相当する項を、刺激純度Sの値を使うことにより
正規化したものである。CL の値はブランク水で0.1
〜0.5、目視検出限界付近の色度2程度を示す試料で
は、CL =4程度の値をとり、水道水の着色の検出に十
分な感度を示す。CL の代わりに式(8)で計算される
L W′P の値に基づき演算出力しても、ほぼ同様の結果
が得られる。また式(8)と式(9)の(1−Y)の項
を単にYとしても、本来の式(8)と式(9)を用いた
場合に比べて、測定感度が変わることはない。
The expression (9) is a term obtained by normalizing the term corresponding to the length of the line segment WC in the expression (8) by using the value of the stimulation purity S. CL value is 0.1 with blank water
.About.0.5, a sample showing a chromaticity of about 2 near the visual detection limit has a value of CL = 4, which shows sufficient sensitivity for detecting coloring of tap water. Almost the same result can be obtained by calculating and outputting based on the value of L W'P calculated by the equation (8) instead of CL. Further, even if the term of (1-Y) in the equations (8) and (9) is simply Y, the measurement sensitivity does not change as compared with the case where the original equations (8) and (9) are used. .

【0031】また、色相は、点Pのxy平面上の位置に
対応して、図2(a)のように決定する。即ち、あらか
じめ、色度図上の座標を区画し、区画位置と判定との関
係を表データ化しておき、試料の測定座標の区画に対応
する色相を出力する。実施例4 .図3は、図1に示した装置とは、測定セルの
構成のみ異なる本発明の検知装置の要部を示す模式図で
あり、図3(a)は装置全体を上から見た図、図3
(b)は測定セルの中心における断面図を表わし、いず
れも図1と共通部分に同一符号を用いてある。以下、両
図を併用参照してこの装置と、その取り扱いについて説
明する。
Further, the hue is determined as shown in FIG. 2A, corresponding to the position of the point P on the xy plane. That is, the coordinates on the chromaticity diagram are sectioned in advance, the relationship between the section position and the determination is made into tabular data, and the hue corresponding to the section of the measurement coordinate of the sample is output. Example 4 . FIG. 3 is a schematic diagram showing a main part of a detection device of the present invention, which is different from the device shown in FIG. 1 only in the structure of the measuring cell, and FIG. Three
(B) shows a cross-sectional view at the center of the measuring cell, and the same reference numerals are used for the same parts as in FIG. Hereinafter, this device and its handling will be described with reference to both figures together.

【0032】この装置は、測定セル2に光学窓5の液面
に付着する気泡を除去するためのワイパー機構10を加
え、さらに濁質と溶解性および懸濁性の両方の着色成分
を除去したブランク水を得るための活性炭吸着層と濾過
フィルタを備えた吸着濾過器12を設けてある。また、
測定セル2には、ブランク水と飲料水を交互に導入し
て、校正と測定を交互に実施することができるようにし
ている。
In this apparatus, a wiper mechanism 10 for removing air bubbles adhering to the liquid surface of the optical window 5 is added to the measuring cell 2, and turbidity and colored components having both solubility and suspension are removed. An adsorption filter 12 equipped with an activated carbon adsorption layer for obtaining blank water and a filtration filter is provided. Also,
Blank water and drinking water are alternately introduced into the measurement cell 2 so that calibration and measurement can be performed alternately.

【0033】この装置では、測定セル2を内径100m
mの円筒形とし、その内面に接して回転するバイトンゴ
ム製のブレード11を有する。ワイパー機構10は、磨
耗を防ぐために、校正と測定時の透過光量データの収集
直前に回転させ、光路4を遮断しない位置に停止させた
後、データの収集を行なう。校正は電磁弁8aと吸気排
水用電磁弁8cを開き、吸着濾過器12からのブランク
水を測定セル2に満たした後、吸気排水用電磁弁8cを
閉じてワイパー機構10を回転,停止させ、分光部6を
回転させて、各光学フィルタの透過光量を測定する。次
に電磁弁8aを閉じ、電磁弁8cと排水用電磁弁8dを
開き、ブランク水を排出する。その後、排水用電磁弁8
dを閉じて電磁弁8bを開き、試料水を測定セル2に満
たした後、校正と同様の操作により、各光学フィルタの
透過光量を測定する。
In this device, the measuring cell 2 has an inner diameter of 100 m.
It has a cylindrical shape of m and has a blade 11 made of Viton rubber that rotates in contact with the inner surface thereof. In order to prevent wear, the wiper mechanism 10 is rotated immediately before collecting transmitted light amount data at the time of calibration and measurement, and is stopped at a position where the optical path 4 is not blocked, and then data is collected. The calibration is performed by opening the solenoid valve 8a and the intake / drainage solenoid valve 8c, filling the measurement cell 2 with blank water from the adsorption filter 12, and then closing the intake / drainage solenoid valve 8c to rotate and stop the wiper mechanism 10. The spectroscopic unit 6 is rotated to measure the amount of transmitted light of each optical filter. Next, the solenoid valve 8a is closed, the solenoid valve 8c and the drainage solenoid valve 8d are opened, and the blank water is discharged. Then drainage solenoid valve 8
After closing d and opening the solenoid valve 8b to fill the measurement cell 2 with the sample water, the amount of transmitted light of each optical filter is measured by the same operation as the calibration.

【0034】このようにして、測定セル2にブランク水
と飲料水を交互に導入して、校正と測定を交互に実施す
ることができるようにしたものであり、この装置は、校
正と測定のサイクルを繰り返すことにより、最小15分
の周期で測定値を更新することができる。この装置にお
ける測定手順は、基本的に実施例1.〜実施例3.に述
べたのと同じであるから、ここでは記載を省略する。
In this way, the blank cell and the drinking water are alternately introduced into the measuring cell 2 so that the calibration and the measurement can be alternately carried out. By repeating the cycle, it is possible to update the measurement value with a minimum period of 15 minutes. The measurement procedure in this device is basically the same as in the first embodiment . -Example 3 Since it is the same as described above, the description is omitted here.

【0035】[0035]

【発明の効果】本発明の水道水の色および濁りの検知装
置は、濁度と三刺激値を求めるための少なくとも4種の
波長選択用の光学フィルタを備え、これら波長選択用の
光学フィルタと試料を透過した光の透過光量の値から演
算できる吸光度の値、明度の値、または刺激純度の値、
またはこれらの合成ベクトルの長さの値、および試料の
xy色度座標に基づき演算出力するように構成したこと
により、水道水の色および濁りの連続的な自動計測を、
目視検査と同等の感度で実現することができる。
The tap water color and turbidity detection device of the present invention is provided with at least four types of wavelength selection optical filters for determining turbidity and tristimulus values. Absorbance value, brightness value, or stimulation purity value that can be calculated from the value of the amount of light transmitted through the sample,
Alternatively, by continuously outputting the color and turbidity of the tap water by performing arithmetic output based on the length values of these composite vectors and the xy chromaticity coordinates of the sample,
It can be realized with the same sensitivity as visual inspection.

【0036】さらに、測定セルに、光学窓の気泡を除去
するためのワイパーと、校正用のブランク水を得るため
の吸着濾過器を設け、ブランク水による校正と、試料水
による測定とを交互に行なう測定サイクルを繰り返すこ
とにより、光学窓に付着した気泡や膜状の汚れの影響を
除去し、校正と測定を同一条件で行なうために誤差要因
を排除することができ、水道水の微妙な色と濁りを高い
安定性のもとに測定することができる。
Further, the measurement cell is provided with a wiper for removing bubbles in the optical window and an adsorption filter for obtaining blank water for calibration, and calibration with blank water and measurement with sample water are alternately performed. By repeating the measurement cycle to be performed, it is possible to remove the influence of bubbles and film-like dirt adhering to the optical window, and to eliminate the error factors because the calibration and measurement are performed under the same conditions. And turbidity can be measured with high stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の要部構成を示し、それぞれ
(a)は装置全体を上から見た図,(b)は分光部の平
面図を表わす模式図
1A and 1B are diagrams showing a main part configuration of an apparatus according to the present invention, in which FIG. 1A is a view of the entire apparatus seen from above, and FIG.

【図2】x,y色度図を示し、それぞれ(a)は色度
図,(b)は色度図を用いた着色度の説明図
2A and 2B are x and y chromaticity diagrams, where FIG. 2A is a chromaticity diagram and FIG. 2B is an explanatory diagram of coloring degree using the chromaticity diagram.

【図3】図1とは測定セルの異なる本発明の装置の要部
構成を示し、それぞれ(a)は装置全体を上から見た
図,(b)は測定セルの中心部の断面図
3A and 3B show a main configuration of an apparatus of the present invention having a measurement cell different from that of FIG. 1, in which FIG. 3A is a view of the entire apparatus seen from above, and FIG.

【符号の説明】 1 光源 2 測定セル 3 光電変換器 4 光路 5 光学窓 6 分光部 7 光学フィルタ 8 電磁弁 8a 電磁弁 8b 電磁弁 8c 吸気排水用電磁弁 8d 排水用電磁弁 9 信号処理部 10 ワイパー機構 11 ブレード 12 吸着濾過器[Explanation of reference symbols] 1 light source 2 measuring cell 3 photoelectric converter 4 optical path 5 optical window 6 spectroscopic section 7 optical filter 8 solenoid valve 8a solenoid valve 8b solenoid valve 8c intake and drainage solenoid valve 8d drainage solenoid valve 9 signal processing section 10 Wiper mechanism 11 Blade 12 Adsorption filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野田 直広 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 多田 弘 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 原田 健治 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 後藤 圭司 東京都千代田区九段南4丁目8番9号 社 団法人日本水道協会内 (72)発明者 白水 暢 東京都千代田区九段南4丁目8番9号 社 団法人日本水道協会内 (72)発明者 細田 三朗 東京都千代田区九段南4丁目8番9号 社 団法人日本水道協会内 (72)発明者 一戸 正憲 東京都千代田区九段南4丁目8番9号 社 団法人日本水道協会内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Naohiro Noda 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Hiroshi Tada 1 Nitta Tanabe, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 in Fuji Electric Co., Ltd. (72) Kenji Harada Kenji Harada No. 1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Inside Fuji Electric Co., Ltd. (72) Keiji Goto 4-8-9 Kudan Minami, Chiyoda-ku, Tokyo Incorporated Association of Japan Water Works (72) Inventor Nobu Shiramizu 4-8-9 Kudanminami, Chiyoda-ku, Tokyo Incorporated Association of Japan Waterworks (72) Saburo Hosoda 4-8 Kudanminami, Chiyoda-ku, Tokyo No. 9 Japan Water Works Association (72) Inventor Masanori Ichinohe 4-8-9, Kudan Minami, Chiyoda-ku, Tokyo Tokyo Water Works Association

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光源,試料とする水道水を入れる測定セ
ル,光源から出射し測定セルを透過する光の波長を複数
の種類に選択可能な分光部,測定セルと分光部を通る光
源からの光を電気信号に変換する光電変換器,光電変換
器からの信号に基づき、測定値を着色度、色相、濁度と
して演算出力する信号処理部を備えてなることを特徴と
する水道水の色および濁りの検知装置。
1. A light source, a measuring cell for containing tap water as a sample, a spectroscopic unit capable of selecting a plurality of types of wavelengths of light emitted from the light source and passing through the measuring cell, and a light source passing through the measuring cell and the spectroscopic unit. A color of tap water comprising a photoelectric converter for converting light into an electric signal, and a signal processing unit for calculating and outputting measured values as coloring, hue, and turbidity based on signals from the photoelectric converter. And turbidity detection device.
【請求項2】請求項1記載の装置において、信号処理部
は明度の値に基づく演算を行ない、着色度として出力す
るものであることを特徴とする水道水の色および濁りの
検知装置。
2. The apparatus for detecting color and turbidity of tap water according to claim 1, wherein the signal processing section performs an operation based on a value of lightness and outputs it as a coloring degree.
【請求項3】請求項1記載の装置において、信号処理部
は刺激純度の値に基づく演算を行ない、着色度として出
力するものであることを特徴とする水道水の色および濁
りの検知装置。
3. The apparatus for detecting color and turbidity of tap water according to claim 1, wherein the signal processing unit performs calculation based on the value of the stimulus purity and outputs it as the degree of coloring.
【請求項4】請求項1記載の装置において、信号処理部
はxy色度図における無色に相当する点からxy平面に
垂直な方向に装置としての明度の最大値だけ離れた点
と、xy平面上の測定試料座標点からxy平面に垂直な
方向に測定試料の明度の測定値だけ離れた点との距離に
基づく演算を行ない、着色度として出力するものである
ことを特徴とする水道水の色および濁りの検知装置。
4. The apparatus according to claim 1, wherein the signal processing unit is separated from a point corresponding to colorlessness in the xy chromaticity diagram by a maximum value of lightness of the apparatus in a direction perpendicular to the xy plane, and an xy plane. The tap water is characterized in that calculation is performed based on the distance from the above measurement sample coordinate point to a point distant by the measured value of the brightness of the measurement sample in the direction perpendicular to the xy plane, and is output as the coloring degree. Color and turbidity detector.
【請求項5】請求項1記載の装置において、測定セルは
接液面に生ずる気泡を除去するワイパー機構と校正用の
濾過器とを備え、注入したブランク水を校正後に排除
し、次いで注入した試料水を測定後に排除する1サイク
ルの操作の繰り返しが可能なものであることを特徴とす
る水道水の色および濁りの検知装置。
5. The apparatus according to claim 1, wherein the measuring cell comprises a wiper mechanism for removing bubbles generated on the liquid contact surface and a filter for calibration, and the injected blank water is removed after the calibration and then injected. A device for detecting color and turbidity of tap water, which is capable of repeating one cycle of operation for removing sample water after measurement.
JP06206227A 1994-08-31 1994-08-31 Tap water color and turbidity detector Expired - Fee Related JP3095954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06206227A JP3095954B2 (en) 1994-08-31 1994-08-31 Tap water color and turbidity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06206227A JP3095954B2 (en) 1994-08-31 1994-08-31 Tap water color and turbidity detector

Publications (2)

Publication Number Publication Date
JPH0868788A true JPH0868788A (en) 1996-03-12
JP3095954B2 JP3095954B2 (en) 2000-10-10

Family

ID=16519875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06206227A Expired - Fee Related JP3095954B2 (en) 1994-08-31 1994-08-31 Tap water color and turbidity detector

Country Status (1)

Country Link
JP (1) JP3095954B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047922A (en) * 2004-08-09 2006-02-16 Nikon Corp Image forming apparatus
JP2007003202A (en) * 2005-06-21 2007-01-11 Cti Science System Co Ltd Coloration monitoring method and coloration monitoring device of sewage treated water
KR100786240B1 (en) * 2006-09-15 2007-12-17 이진식 Apparatus and method for automatic classification of contaminated organic solvent using infrared spectrometer
ITRM20080428A1 (en) * 2008-08-05 2010-02-06 Anova S A S Di Giovanni Mappa DEVICE FOR IN-LINE DETERMINATION OF THE QUANTITY OF COLOR AND / OR TURBIDITY UNDER THE TREATMENT AND DISCHARGE OF WASTE OF INDUSTRIAL AND / OR CIVIL WATERS.
WO2015098399A1 (en) * 2013-12-27 2015-07-02 パナソニックヘルスケアホールディングス株式会社 Drug administration device and method for controlling drug administration device
CN107478617A (en) * 2017-09-04 2017-12-15 中国计量大学 Long-range underground water multi-parameter online test method and measurement apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401978B2 (en) * 2008-12-25 2014-01-29 栗田工業株式会社 Method and apparatus for measuring lysate concentration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047922A (en) * 2004-08-09 2006-02-16 Nikon Corp Image forming apparatus
JP2007003202A (en) * 2005-06-21 2007-01-11 Cti Science System Co Ltd Coloration monitoring method and coloration monitoring device of sewage treated water
KR100786240B1 (en) * 2006-09-15 2007-12-17 이진식 Apparatus and method for automatic classification of contaminated organic solvent using infrared spectrometer
ITRM20080428A1 (en) * 2008-08-05 2010-02-06 Anova S A S Di Giovanni Mappa DEVICE FOR IN-LINE DETERMINATION OF THE QUANTITY OF COLOR AND / OR TURBIDITY UNDER THE TREATMENT AND DISCHARGE OF WASTE OF INDUSTRIAL AND / OR CIVIL WATERS.
WO2015098399A1 (en) * 2013-12-27 2015-07-02 パナソニックヘルスケアホールディングス株式会社 Drug administration device and method for controlling drug administration device
JPWO2015098399A1 (en) * 2013-12-27 2017-03-23 パナソニックヘルスケアホールディングス株式会社 Drug administration device and method for controlling drug administration device
US10441731B2 (en) 2013-12-27 2019-10-15 Phc Holdings Corporation Pharmaceutical injection device, and method for controlling pharmaceutical injection device
CN107478617A (en) * 2017-09-04 2017-12-15 中国计量大学 Long-range underground water multi-parameter online test method and measurement apparatus
CN107478617B (en) * 2017-09-04 2023-10-31 中国计量大学 Remote underground water multi-parameter on-line detection method and measurement device

Also Published As

Publication number Publication date
JP3095954B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US6028663A (en) Photometric analysis of water suspensions
Babin et al. Light absorption by aquatic particles in the near‐infrared spectral region
US7027149B2 (en) Photometric analysis of natural waters
Triglia et al. Delayed luminescence as an indicator of tomato fruit quality
AU764447B2 (en) Fiber color grading system
JPH0868788A (en) Detector for color and turbidity of city water
Mittenzwey et al. In‐situ monitoring of water quality on the basis of spectral reflectance. Ship‐borne experiments for the development of remote sensing algorithms especially for the estimation of algae content in natural waters
Crowther et al. Estimating color in Hazen units by spectrophotometry
Kubínová et al. Comparison of standard methods for determining the color of water in several countries
JPH10115585A (en) Method for self-diagnosing apparatus for measuring color and turbidity of liquid
JPH0777492A (en) Absorption photometer and self-diagnostic method for the absorption photometer
Ivanov et al. Chromaticity characteristics of NH 2 Hg 2 I 3 and I 2: Molecular iodine as a test form alternative to Nessler’s reagent
JPH0125017B2 (en)
CN209055455U (en) A kind of Ultraviolet Photometric Method COD online analyzer
CN109142260A (en) A kind of Ultraviolet Photometric Method COD online analyzer and its working method
Mitchell et al. Relationship between different methods of colour measurement in potable water
JPH08313436A (en) Deterioration detection method of filter for automatic tap water quality monitoring apparatus
RU2138042C1 (en) Process determining content of gluten in wheat and device for its implementation
JPH08110297A (en) Device for detecting coloring of liquid
CN108226112A (en) The measuring device of water body chlorophyll alpha content and determining amount method
JP3427580B2 (en) Deterioration detection method for filter of automatic tap water quality monitoring device
Osborn et al. General Method of Color Grading
Coss et al. Color measurement with the stream colorimeter
Oliveira et al. Port wine spectral monitoring
JPH0953988A (en) Apparatus for measuring coloring of liquid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees