JP2007003202A - Coloration monitoring method and coloration monitoring device of sewage treated water - Google Patents

Coloration monitoring method and coloration monitoring device of sewage treated water Download PDF

Info

Publication number
JP2007003202A
JP2007003202A JP2005180254A JP2005180254A JP2007003202A JP 2007003202 A JP2007003202 A JP 2007003202A JP 2005180254 A JP2005180254 A JP 2005180254A JP 2005180254 A JP2005180254 A JP 2005180254A JP 2007003202 A JP2007003202 A JP 2007003202A
Authority
JP
Japan
Prior art keywords
treated water
color
turbidity
coloration
midpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005180254A
Other languages
Japanese (ja)
Inventor
Takao Murakami
孝雄 村上
Kazumasa Abe
千雅 阿部
Hideharu Saito
秀晴 斎藤
Yuuko Iwagami
木綿子 岩上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTI SCIENCE SYSTEM CO Ltd
Japan Sewage Works Agency
Original Assignee
CTI SCIENCE SYSTEM CO Ltd
Japan Sewage Works Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTI SCIENCE SYSTEM CO Ltd, Japan Sewage Works Agency filed Critical CTI SCIENCE SYSTEM CO Ltd
Priority to JP2005180254A priority Critical patent/JP2007003202A/en
Publication of JP2007003202A publication Critical patent/JP2007003202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To confirm the coloration degree and the hue of sewage treated water easily, visually and highly accurately. <P>SOLUTION: Each transmitted-light turbidity (TPr, TPg, TPb) of treated water which is a coloration monitoring object is measured by a tricolor light source of red, green and blue, and the light absorption balance of each color is calculated. The distance OG between a triangular gravity center position G and the origin O on a tri-diagram on an XY-coordinate system calculated based on the calculated value is plotted on a chromaticity chart, to thereby determine it as the coloration degree of the treated water, and a coloration change of the treated water is monitored continuously. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は下水処理水の着色監視方法及び着色監視装置に係り、分光濁度センサによって得られた下水処理水の着色度、色相の確認をコンピュータグラフィックスにより、ビジュアルに行えるようにした下水処理水の着色監視方法及び着色監視装置に関する。   The present invention relates to a coloring monitoring method and a coloring monitoring apparatus for sewage treated water, and the sewage treated water is designed so that the color and hue of sewage treated water obtained by a spectral turbidity sensor can be visually confirmed by computer graphics. The present invention relates to a coloring monitoring method and a coloring monitoring apparatus.

近年、下水処理施設等では、施設の維持管理上、施設において処理された下水(以下、処理水と記す。)の監視作業の効率化を目的として、たとえば、処理水の濁度、SS、色度等の計測管理項目において自動計測可能な各種検査装置が開発されている(特許文献1、特許文献2参照)。   In recent years, in sewage treatment facilities, etc., for the purpose of improving the efficiency of monitoring the sewage treated in the facility (hereinafter referred to as treated water), for example, the turbidity, SS, color of the treated water. Various inspection apparatuses capable of automatic measurement in measurement management items such as degrees have been developed (see Patent Document 1 and Patent Document 2).

特許文献1に開示された着色度の測定装置は、純水と被検液との各透過光量を捉え、そのときの検出素子の出力差が所定値になるときの被検液における試料の希釈倍率をその試料の着色度と定義した希釈法による着色度測定方法である。   The coloring degree measuring device disclosed in Patent Document 1 captures each transmitted light amount of pure water and a test solution, and dilutes the sample in the test solution when the output difference of the detection element at that time becomes a predetermined value. This is a coloring degree measuring method by a dilution method in which the magnification is defined as the coloring degree of the sample.

特許文献2に開示された着色度測定方法では、試料が流れるフローセルまたはサンプリングした試料を入れたガラスセルに可視光線を投射し、その透過光を分光、またはX値、Y値、Z値の三刺激値を検出する三刺激値フィルタを用い、その三刺激値からたとえばX,Y,Z吸光度の総和と希釈度法で求めた着色度との関係を示す検量線から試料の着色度を求めることを特徴としている。   In the coloring degree measuring method disclosed in Patent Document 2, visible light is projected onto a flow cell in which a sample flows or a glass cell containing a sampled sample, and the transmitted light is spectrally separated, or three values of X value, Y value, and Z value are obtained. Using a tristimulus filter that detects the stimulus value, and obtaining the coloration degree of the sample from a calibration curve indicating the relationship between, for example, the sum of X, Y, and Z absorbances and the coloration degree obtained by the dilution method. It is characterized by.

特開平7−218498号公報。JP-A-7-218498. 特開平9−43140号公報。JP-A-9-43140.

ところで、一般的な下水処理水は通常、黄〜黄褐色を呈するが、工場排水による化学物質等に由来する着色した汚水等が流入した場合、処理水の色相が通常と異なることが考えられる。そのような処理水の色相の変化は、その変化が顕著な場合、目視によっても容易なこともあり、それらを視認した地域住民からの苦情の対象となるばかりでなく、処理施設自体の処理性能が汚染に対して対応できていない、あるいは性能低下が生じている等の問題を有していることも考えられる。   By the way, although general sewage treated water usually exhibits yellow to yellowish brown color, when colored sewage or the like derived from a chemical substance or the like by factory wastewater flows, the hue of treated water may be different from usual. Such changes in the color of the treated water may be easily observed visually if the change is significant, and are not only subject to complaints from local residents who have seen them, but also the treatment performance of the treatment facility itself. However, it is also conceivable that there is a problem such as failure to cope with contamination or degradation in performance.

これらに対応するために、上述の特許文献1,2に開示された着色度測定方法を採用することもできるが、特許文献1の場合、純水と被検液とを比較するために常に精度の良いサンプリングを行い、それぞれの試料についての官能測定による希釈法測定を行う必要があるため、純水、被検液等、多くの試料についての監視、試験を行う必要がある。   In order to cope with these, the coloring degree measuring methods disclosed in the above-mentioned Patent Documents 1 and 2 can be adopted. However, in the case of Patent Document 1, the accuracy is always compared in order to compare pure water and the test solution. Since it is necessary to perform good sampling and perform dilution method measurement by sensory measurement for each sample, it is necessary to monitor and test many samples such as pure water and test solution.

一方、特許文献2に開示された方法では、予め希釈度法により求めた色相の異なる試料の着色度との検量線を求め、それに基づいて試料の着色度を測定する必要がある。   On the other hand, in the method disclosed in Patent Document 2, it is necessary to obtain a calibration curve with the degree of coloration of a sample having a different hue obtained in advance by a dilution method, and to measure the degree of coloration of the sample based on the calibration curve.

ところで、出願人は、下水処理水の管理手法として、すでに分光濁度センサを用いた粒度測定方法等を提案している。この分光濁度センサは従来の単色光源を、赤色、緑色、青色の3波長光源とし、3波長の透過光濁度、散乱光濁度、及び積分球濁度の7濁度データを用いた計測に対応した装置である。この分光濁度センサを用いた下水処理水の計測では、濁度、粒度指数を指標とした汚泥性状についての提案を行った。しかし、この分光濁度センサに備わる計測機能を利用した処理水の着色度、色相の計測については、センサに備わった機能を十分発揮できるような計測手法が確立されていなかった。そこで、本発明の目的は上述した従来の装置の機能を効果的に活用すべく、装置が備えた赤色、緑色、青色の3波長光源を用いて得られる透過光濁度値を求める際の吸光バランスを把握することで、処理水の着色度、色相の評価を容易に行えるようにした着色監視方法とその監視装置を提案するものである。   By the way, the applicant has already proposed a particle size measuring method using a spectral turbidity sensor as a method for managing sewage treated water. This spectral turbidity sensor uses a conventional monochromatic light source as a three-wavelength light source of red, green, and blue, and uses seven-turbidity data for transmitted light turbidity, scattered light turbidity, and integrating sphere turbidity at three wavelengths. It is a device corresponding to. In the measurement of sewage treated water using this spectral turbidity sensor, we proposed the sludge properties using turbidity and particle size index as indices. However, for the measurement of the color and hue of the treated water using the measurement function provided in the spectral turbidity sensor, a measurement method that can fully exhibit the function provided in the sensor has not been established. Therefore, an object of the present invention is to absorb the light when determining the transmitted turbidity value obtained using the three-wavelength light sources of red, green, and blue provided in the apparatus in order to effectively utilize the functions of the conventional apparatus described above. The present invention proposes a color monitoring method and a monitoring apparatus that make it possible to easily evaluate the degree of coloration and hue of treated water by grasping the balance.

上記目的を達成するために、本発明は着色監視対象の処理水の透過光濁度と散乱光濁度を赤色、緑色、青色の三色光源によって計測し、各色の吸光バランスを算定し、該算定した値をもとに色度図上の着色度を求め、前記処理水の着色変化を連続監視するようにしたことを特徴とする。   In order to achieve the above object, the present invention measures the transmitted light turbidity and scattered light turbidity of the color water to be monitored with a three-color light source of red, green, and blue, calculates the light absorption balance of each color, The coloring degree on the chromaticity diagram is obtained based on the calculated value, and the coloring change of the treated water is continuously monitored.

このとき、前記三色の透過光濁度値をもとに算出したXY座標系上でのトリダイヤグラムの三角形重心位置と原点との距離を、前記色度図上にプロットし、前記処理水の着色度として判定することが好ましい。   At this time, the distance between the triangle center of gravity of the tri-diagram on the XY coordinate system calculated based on the transmitted light turbidity values of the three colors and the origin is plotted on the chromaticity diagram, and the treated water It is preferable to determine the degree of coloring.

また、前記色度図は、正六角形の第I象限の辺の中点を青色(B)、その対辺の中点を黄色(Y)、Y軸と正値側で交わる辺の中点をシアン(C)、その対辺の中点を赤色(R)、第II象限の辺の中点を緑色(G)、その対辺の中点をマゼンタ(M)とし、加法混色により原点が白色となるように、前記正六角形内が連続的に混色表示された表色系とすることが好ましい。   The chromaticity diagram shows that the midpoint of the first quadrant of the regular hexagon is blue (B), the midpoint of the opposite side is yellow (Y), and the midpoint of the side that intersects the Y axis on the positive side is cyan. (C) The midpoint of the opposite side is red (R), the midpoint of the second quadrant is green (G), the midpoint of the opposite side is magenta (M), and the origin is white by additive color mixing Moreover, it is preferable that the regular hexagonal color system is a color system in which colors are continuously displayed.

上述の監視方法を実現するために、処理水槽から処理水が導かれる検水槽と、該検水槽内の処理水の透過光濁度と散乱光濁度を赤色、緑色、青色の三色光源によって計測する濁度センサと、該濁度センサからの受光信号を透過光出力、散乱光出力として演算し、前記各色の吸光バランスを算定する演算出力部と、演算出力結果を送信する送信部とを有する現場監視部と、該現場監視部からの信号を受信し、前記演算値を画面表示された色度図上に着色度として表示する表示手段とを備えたことを特徴とする。   In order to realize the above-described monitoring method, a test water tank from which the treated water is guided, and the transmitted light turbidity and the scattered light turbidity of the treated water in the test water tank are represented by three color light sources of red, green, and blue. A turbidity sensor to be measured, a calculation output unit that calculates a light reception signal from the turbidity sensor as a transmitted light output and a scattered light output, calculates an absorption balance of each color, and a transmission unit that transmits a calculation output result And a display unit for receiving a signal from the site monitoring unit and displaying the calculated value as a coloring degree on a chromaticity diagram displayed on the screen.

本発明によれば、赤色、緑色、青色の三色光源によって計測された検水の透過光出力の吸光バランスから、前記検水の着色度、色相を、色度図を用いて簡易に判定できるという効果を奏する。   According to the present invention, the coloration degree and hue of the test water can be easily determined from the absorbance balance of the transmitted light output of the test water measured by the three color light sources of red, green, and blue using a chromaticity diagram. There is an effect.

以下、本発明の下水処理水の着色監視方法を実施するための最良の形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, as the best mode for carrying out the color monitoring method for sewage treated water of the present invention, the following examples will be described with reference to the accompanying drawings.

[濁度計測の原理]
処理水の濁度計測は、上述の分光濁度センサを用いて行うこととした。この分光濁度センサは積分球濁度、赤色(640nm)・緑色(525nm)・青色(470nm)の各透過光濁度、各色散乱光濁度の7種類の濁度を計測可能な装置で、この装置を用いて、計測対象の処理水の赤色(以下、R)・緑色(以下、G)・青色(以下B)の吸光バランスを測ることにより、これらのR,G,Bの計測値をもとに処理水の着色度、色相検知を継続的に行うことで処理水の着色監視が可能となる。
[着色監視のためのキャリブレーション]
[Principle of turbidity measurement]
The turbidity measurement of treated water was performed using the above-described spectral turbidity sensor. This spectral turbidity sensor is a device that can measure 7 types of turbidity, integrating sphere turbidity, red (640nm), green (525nm), blue (470nm) transmitted turbidity, each color scattered light turbidity, Using this device, the red, red (hereinafter R), green (hereinafter G), and blue (hereinafter B) light absorption balance of the treated water to be measured is measured, and the measured values of R, G, B are obtained. It is possible to monitor the color of the treated water by continuously detecting the color and hue of the treated water.
[Calibration for color monitoring]

処理水の色相の検知を行うために、まず分光濁度センサによる透過光のR,G,Bの計測値に対してキャリブレーションを行う。具体的には、R,G,Bの各透過光濁度(TPr,TPg,TPb)の計測値について、図1に示したようなトリダイヤグラムを描く。そしてこれら3点の透過光計測値で得られる三角形の重心位置Gを求め、その検水の色相の判断を、三角形の重心位置Gと原点Oからの距離(OG)で、処理水の色相濃淡の判断を行うこととした。   In order to detect the hue of the treated water, first, calibration is performed on the measured values of R, G, and B of transmitted light by the spectral turbidity sensor. Specifically, a tri-diagram as shown in FIG. 1 is drawn for the measured values of transmitted light turbidity (TPr, TPg, TPb) of R, G, B. Then, the center of gravity G of the triangle obtained from the three transmitted light measurement values is obtained, and the hue of the test water is determined by the hue density of the treated water based on the distance (OG) from the center of gravity G of the triangle and the origin O. It was decided to make a decision.

このとき、予備実験を参考に、R,G,B計測値に対して、以下の(式1)〜(式3)に示したように、透過光濁度計測値のバランスを補うための補正係数α、β、γを乗じて、XY座標上のトリダイヤグラムの重心座標G(Gx,Gy)と原点Oの距離OGを求めることとした。以上のキャリブレーションを行った上で、後述する監視装置により、対象となる処理水から得られた検水の着色、色相を知ることができる。
なお、本実施例では既往実験をもとに補正係数α,β,γをα=1.37,β=1.69,γ=2.29として(式1)に適用した。

Figure 2007003202
At this time, with reference to the preliminary experiment, the correction for compensating the balance of the transmitted light turbidity measurement values as shown in the following (Equation 1) to (Equation 3) with respect to the R, G, B measurement values. The distances OG between the center of gravity G (G x , G y ) of the tri-diagram on the XY coordinates and the origin O are obtained by multiplying the coefficients α, β, γ. After performing the above calibration, the color and hue of the test water obtained from the target treated water can be known by the monitoring device described later.
In this embodiment, the correction coefficients α, β, and γ are applied to (Equation 1) with α = 1.37, β = 1.69, and γ = 2.29 based on past experiments.
Figure 2007003202

Figure 2007003202
Figure 2007003202

Figure 2007003202
Figure 2007003202

[着色監視の判定方法]
上述のように、R,G,B透過光濁度から求められたOG値を用いて、着色度、色相
の判定のために、本発明では、図2に示したような色度図を用い、OG値に対応する着色度、色相を把握できるようにした。この色度図は、刺激値を当てはめて色度を求めるXY色度図(JIS Z8701による)と異なり、Gx,Gyに対応した座標に対応する色度図を正六角形とし、図2に示したように、Gx=0,Gy=0を原点とし、頂点まで所定長の正六角形のY軸上の辺の中点をRとし,このRと原点とを結ぶ線分と120°をなす角度で横切る辺の中点をそれぞれG,Bとし、Rを含む辺の対辺とY軸との交点を、加法混色により求められるシアン(青緑色、以下C)とし、同様にGの対辺の中点をマゼンタ(赤紫色、以下M)、Bの対辺の中点をイエロー(黄色、以下Y)とし、すべての色を加法混色した座標原点が白色Wとなるように、混色が連続的に遷移する。この色度図は、言い換えると、正六角形の第I象限の辺の中点を青色(B)、その対辺の中点を黄色(Y)、Y軸と正値側で交わる辺の中点をシアン(C)、その対辺の中点を赤色(R)、第II象限の辺の中点を緑色(G)、その対辺の中点をマゼンタ(M)とし、加法混色により原点が白色となるように、前記正六角形内が連続的に混色表示された表色系からなる。
[Coloring monitoring judgment method]
As described above, in the present invention, the chromaticity diagram as shown in FIG. 2 is used in order to determine the coloring degree and the hue by using the OG value obtained from the R, G, B transmitted light turbidity. The coloring degree and hue corresponding to the OG value can be grasped. This chromaticity diagram is different from the XY chromaticity diagram (according to JIS Z8701) for obtaining chromaticity by applying stimulus values, and the chromaticity diagram corresponding to the coordinates corresponding to G x and G y is a regular hexagon. As shown, G x = 0, G y = 0 is the origin, R is the midpoint of the Y-axis side of the regular hexagon of a predetermined length up to the vertex, and the line segment connecting R and the origin is 120 °. Let G and B be the midpoints of the sides that cross at an angle that forms an angle, and let the intersection of the opposite side of the side containing R and the Y axis be cyan (blue-green, hereinafter C) obtained by additive color mixing. Mixing is continuous so that the midpoint of m is magenta (red purple, hereinafter referred to as M), the midpoint of the opposite side of B is defined as yellow (yellow, hereinafter referred to as Y), and the coordinate origin of all colors additively mixed is white W Transition to. In other words, this chromaticity diagram shows the midpoint of the side of the first quadrant of the regular hexagon as blue (B), the midpoint of the opposite side as yellow (Y), and the midpoint of the side that intersects the Y axis on the positive side. Cyan (C), the midpoint of the opposite side is red (R), the midpoint of the second quadrant is green (G), the midpoint of the opposite side is magenta (M), and the origin is white by additive color mixing Thus, the inside of the regular hexagon consists of a color system in which mixed colors are displayed continuously.

この色度図は、図3に示したシステム構成の一例において、遠隔監視を行う管理棟の監視室等に設置されたパーソナルコンピュータの画面にフルカラーで表示され、検水のOG値に対応する点がその色度図上に重ねて表示される。これにより、処理水に生じた異常着色等をビジュアルに検知可能になる。このとき色度図のレンジは、算出されたOG値によって適宜選択することができ、それにより着色度の絶対色も把握することができる。   In the example of the system configuration shown in FIG. 3, this chromaticity diagram is displayed in full color on the screen of a personal computer installed in a monitoring room or the like of a management building that performs remote monitoring, and corresponds to the OG value of the sample water. Is superimposed on the chromaticity diagram. This makes it possible to visually detect abnormal coloring or the like occurring in the treated water. At this time, the range of the chromaticity diagram can be appropriately selected according to the calculated OG value, and thereby the absolute color of the coloring degree can also be grasped.

[監視装置のシステム構成]
図3は、上述した処理水の着色監視を行うために、下水道処理施設の一部に設けるようにした一実施例としての下水処理水の着色監視装置の構成を概略的に示したシステム構成図である。同図に示したように、処理水槽1の処理水Wの着色度、色相を測定するために、処理水槽1本体と別に検水槽3が設けられており、この検水槽3にポンプ2を介して処理水Wが、設定時刻になると供給貯留され、計測後、処理水槽1に自然排水される。検水槽3内には前述した分光濁度センサ10が設置されている。
[System configuration of monitoring device]
FIG. 3 is a system configuration diagram schematically illustrating the configuration of a color monitoring device for sewage treated water as an embodiment that is provided in a part of a sewerage treatment facility in order to perform the color monitoring of the treated water described above. It is. As shown in the figure, in order to measure the coloring degree and hue of the treated water W in the treated water tank 1, a test water tank 3 is provided separately from the main body of the treated water tank 1. The treated water W is supplied and stored at the set time, and is naturally drained into the treated water tank 1 after the measurement. The spectral turbidity sensor 10 described above is installed in the water detection tank 3.

分光濁度センサ10では、その計測機能のうち、R,G,Bの3波長光源を用いた検水のR,G,Bの各透過光濁度(TPr,TPg,TPb)が計測される。具体的には、分光濁度センサ10は、光源としてのR,G,Bの各発光ダイオード11,12,13からの測定光を、積分球中の検水を透過させ、透過光、散乱光を受光するフォトダイオード14で構成され、その受光信号は現場の検水槽3近くに設置された監視装置20に信号ケーブル15で送られる。   The spectral turbidity sensor 10 measures R, G, B transmitted light turbidity (TPr, TPg, TPb) of the sample water using a three-wavelength light source of R, G, B, among its measurement functions. . Specifically, the spectral turbidity sensor 10 transmits the measurement light from each of the R, G, and B light emitting diodes 11, 12, and 13 as a light source through the test water in the integrating sphere, and transmits the transmitted light and scattered light. The received light signal is sent to the monitoring device 20 installed near the water inspection tank 3 on the site via the signal cable 15.

監視装置20はR,G,Bの計測値(透過光、散乱光)の演算出力部としての役割を果たし、受光信号増幅部21、透過光TPi信号検出回路22、散乱光Tdi信号検出回路23、電流変換器24、透過光TPi出力・散乱光Tdi出力送信部25とから構成されている。電源としてはデータ通信等の安定性を考慮してAC電源を利用するが、設置場所で独立稼働できるように、太陽電池パネル26や蓄電池を補助電源として使用することも好ましい。信号送信手段としては、DoPa通信網等の各種データ通信が送信状態の安定性、コスト面で好ましい。 The monitoring device 20 serves as a calculation output unit for the measurement values (transmitted light and scattered light) of R, G, and B. The received light signal amplifying unit 21, the transmitted light TP i signal detection circuit 22, and the scattered light Td i signal detection. The circuit 23, the current converter 24, and the transmitted light TP i output / scattered light Td i output transmission unit 25 are configured. An AC power source is used as a power source in consideration of stability such as data communication. However, it is also preferable to use the solar cell panel 26 or a storage battery as an auxiliary power source so that the power source can operate independently at the installation location. As the signal transmission means, various data communication such as a DoPa communication network is preferable in terms of stability of transmission state and cost.

一方、管理棟(監視室)30には送信されたデータを受信する出力情報受信部31が設けられ、LAN等によるデータ転送手段により、表示部33としてのパーソナルコンピュータにデータが送られ、各計測時のOG値が、モニター画面上に所定のレンジで表示された上述の正六角形色度図上にプロットされる。これにより、官能検査等で判断できないような、処理水Wの着色度が数値処理され、ビジュアルに把握できる。   On the other hand, the management building (monitoring room) 30 is provided with an output information receiving unit 31 for receiving transmitted data, and data is sent to a personal computer as the display unit 33 by a data transfer means such as a LAN, and each measurement is performed. The OG value at the time is plotted on the above-described regular hexagonal chromaticity diagram displayed in a predetermined range on the monitor screen. Thereby, the coloring degree of the treated water W which cannot be judged by a sensory test etc. is numerically processed, and can be grasped visually.

ここで、本発明による着色監視装置20を用いた処理水Wの連続監視方法について、図3,図4を参照して説明する。図3に示したシステム構成が組み込まれた下水処理施設において、処理水Wの着色度の計測間隔を設定するが、通常は毎正時において、24回/日の計測頻度を標準とする。したがって、毎正時に処理水槽1から検水槽3に処理水Wを送水し、検水槽3内の分光濁度センサ10によりR,G,Bの透過光受光信号、散乱光受光信号の計測を行う。センサ10で求められた各信号は演算出力部としての監視装置20において、所定の透過光出力信号、散乱光出力信号に変換され監視装置20の送信部としてのデータ送信手段により、遠隔の監視室30の受信部31にデータ送信され、パーソナルコンピュータに取り込まれたデータを入力値として上述の式1〜式3をもとに組み込まれた表示部33のCGソフトウエアにより、上述のOG値をもとにしたデータがフルカラーで表示された色度図上に検水の着色度として表示される。この結果が処理水の規定された濁質許容範囲以下であるか判断され、以下であれば次の正時に再度の計測が行われ、もし濁度、着色度に異常が検知されたら、その情報に対応した対策措置をとる。
[実験例1]
Here, the continuous monitoring method of the treated water W using the coloring monitoring apparatus 20 according to the present invention will be described with reference to FIGS. In the sewage treatment facility in which the system configuration shown in FIG. 3 is incorporated, the measurement interval of the degree of coloration of the treated water W is set. Usually, the measurement frequency is 24 times / day at the hour. Accordingly, the treated water W is sent from the treated water tank 1 to the test water tank 3 at every hour, and the R, G, B transmitted light received signals and scattered light received signals are measured by the spectral turbidity sensor 10 in the test water tank 3. . Each signal obtained by the sensor 10 is converted into a predetermined transmitted light output signal and scattered light output signal in the monitoring device 20 as the calculation output unit, and is transmitted to the remote monitoring room by the data transmission means as the transmission unit of the monitoring device 20. The CG value of the above-mentioned OG value is obtained by the CG software of the display unit 33 incorporated based on the above-mentioned formulas 1 to 3 using the data transmitted to the receiving unit 31 of 30 and the data taken in the personal computer as input values. This data is displayed as the coloring degree of the test water on the chromaticity diagram displayed in full color. It is judged whether the result is below the turbidity tolerance specified in the treated water, and if it is below, the measurement is performed again at the next hour, and if an abnormality is detected in the turbidity and coloring degree, the information Take countermeasures corresponding to
[Experimental Example 1]

(処理水における着色度(赤色)の検出実験)
当初より淡黄色を示している沈殿池に赤色色素を投入し、本発明による処理水Wへの異常着色の検出の検証を行った。この実験では、溶解しておいた赤色色素(食紅)で着色された処理水(以下、着色水)を沈殿池からポンプで汲み上げ、この着色水を検水槽3内で所定時間の経過(5分ごと)ごとに計測した。これにより、着色水の希釈の影響を考慮することができる。4回の計測時における着色度(色度図からの読み取りによる)、OG値の変化を表−1に示す。
(Experiment for detecting the degree of coloration (red) in treated water)
A red pigment was introduced into a sedimentation basin showing a pale yellow color from the beginning, and the detection of abnormal coloring in the treated water W according to the present invention was verified. In this experiment, treated water (hereinafter referred to as colored water) colored with dissolved red pigment (food red) is pumped from the sedimentation basin, and this colored water is passed through the test tank 3 for a predetermined time (5 minutes). Every). Thereby, the influence of dilution of colored water can be considered. Table 1 shows the change in the coloring degree (by reading from the chromaticity diagram) and the OG value during the four measurements.

Figure 2007003202
Figure 2007003202

採取当初の着色水は用いられた赤色色素による赤色が明りょうに検出され(データNo.1)、その後の計測によるデータNo.2〜データNo.4では、着色が希釈され、使用したもとの処理水に近いほぼ黄色を呈すようになったが、データNo.2,データNo.3の計測結果では、当初処理水WよりOG値が増加していることが確認された。   The colored water at the beginning of collection was clearly detected by the red pigment used (data No. 1). In data No. 2 to data No. 4 from the subsequent measurement, the coloring was diluted and used. However, in the measurement results of data No. 2 and data No. 3, it was confirmed that the OG value increased from the initial treated water W.

すなわち、着色水は時間経過とともに希釈され、図5に示した色度図(図2を簡易表示)にプロットしたように、時間経過とともに、淡赤色(橙色)→黄色(もとの処理水Wに近い色)の着色の変化が確認された。一方、データNo.1〜4について、XYZ表色系による色の表示方法(JIS Z8701)によって色度を求めたところ、XYZ表色系を利用した場合には、この赤色の色度はほとんど検出されなかった。このように、本発明によれば、従来の色度検出では検出されない程度の弱い色度(着色)も、色度図上において具体的に着色度、色相を確認することができることが確認された。
[実験例2]
That is, the colored water is diluted with time, and as plotted in the chromaticity diagram shown in FIG. 5 (simple display of FIG. 2), light red (orange) → yellow (original treated water W over time). Color change) was confirmed. On the other hand, data No. Regarding 1 to 4, when the chromaticity was determined by the color display method (JIS Z8701) using the XYZ color system, the red chromaticity was hardly detected when the XYZ color system was used. Thus, according to the present invention, it was confirmed that even a weak chromaticity (coloring) that is not detected by the conventional chromaticity detection can specifically confirm the coloring degree and hue on the chromaticity diagram. .
[Experiment 2]

(着色監視の測定許容範囲の確認実験)
処理水Wの着色監視を行うにあたって、検水から色度が検出されるための着色濃度、検水の濁度の許容範囲を確認するために、試薬による室内実験を行った。試薬としては、各原色Y,M,Cの着色を実現可能なクロム(Cr)、マンガン(Mn)、銅(Cu)を用い、上述の実験例1と同様のシステムを利用し、検水槽3内の着色水の室内実験を行った。実験では、各物質とも、段階的に変化する3濃度(Cu:3,1.5,0.6,0.3(mg/l),Mn:0.1,0.05,0.02,0.01(mg/l),Cr:2,1,0.4,0.2(mg/l))の水溶液を用い、分光濁度センサ10を備えた濁度計により透過光出力、散乱光出力,濁度を計測した。またこれらの水溶液の溶媒として、蒸留水と処理水Wの2種類を採用し、濁質による影響がどの程度かをあわせて比較、検証した。
(Confirmation experiment of measurement tolerance of color monitoring)
In monitoring the coloration of the treated water W, laboratory experiments using reagents were performed in order to confirm the color density for detecting chromaticity from the test water and the allowable range of turbidity of the test water. As the reagent, chromium (Cr), manganese (Mn), and copper (Cu) capable of coloring each of the primary colors Y, M, and C are used. The indoor experiment of the colored water was conducted. In the experiment, each substance has three concentrations (Cu: 3, 1.5, 0.6, 0.3 (mg / l), Mn: 0.1, 0.05, 0.02, stepwise). 0.01 (mg / l), Cr: 2, 1, 0.4, 0.2 (mg / l)), transmitted light output and scattering by a turbidimeter equipped with a spectral turbidity sensor 10 Light output and turbidity were measured. In addition, two kinds of distilled water and treated water W were adopted as solvents for these aqueous solutions, and the extent of the influence of turbidity was compared and verified.

その結果、Y,M,Cの各色と、各色の濃淡をそれぞれ検出することができた。蒸留水による水溶液と処理水Wによる水溶液とではほとんど差異はなく、多少の濁質分があっても着色監視は可能であることが確認された。なお、透過光濁度、OG値を指標として現場監視の測定許容範囲を判断すると、透過光濁度の計測値が20程度、OG>10であれば、色度が検出されるが、現場での監視継続には、確実に着色が認められる場合としてOG>20となったとき、現場にて採水を行い、重心Gの座標位置、OG値との算出、着色度の確認を行うことが好ましい。また、検水の濁質許容範囲としては通常の処理水程度の濁度であれば、監視が可能である。また、現場処理水の濁度50程度までなら、着色の変化を把握することが可能であることが確認できた。   As a result, it was possible to detect each color of Y, M, and C and the shade of each color. There was almost no difference between the aqueous solution of distilled water and the aqueous solution of treated water W, and it was confirmed that coloring can be monitored even with some turbidity. When the permissible range of on-site monitoring is determined using the transmitted light turbidity and OG value as an index, if the measured value of transmitted light turbidity is about 20 and OG> 10, chromaticity is detected. In order to continue the monitoring, when OG> 20 is satisfied in a case where coloring is surely confirmed, water sampling is performed at the site, the coordinate position of the center of gravity G, calculation of the OG value, and confirmation of the coloring degree are performed. preferable. Moreover, if the turbidity tolerance of test water is turbidity that is about the same as normal treated water, monitoring is possible. In addition, it was confirmed that if the turbidity of the on-site treated water is about 50, it is possible to grasp the color change.

以上の説明では、下水処理施設における処理水を対象とした着色度の検出等の監視について述べたが、着色排水が流入するおそれのある河川や湖沼における監視体制に用いることができることはいうまでもない。   In the above description, monitoring of coloration level detection for treated water in sewage treatment facilities was described, but it goes without saying that it can be used for monitoring systems in rivers and lakes where colored wastewater may flow. Absent.

本発明の透過光濁度計測値をもとにして描かれたXY座標上のトリダイヤグラム。The tri-diagram on XY coordinates drawn based on the transmitted-light turbidity measurement value of this invention. 本発明で求められたOG値を適用して着色度を求めることができる色度図。The chromaticity diagram which can obtain | require a coloring degree by applying the OG value calculated | required by this invention. 本発明の監視方法を実現するためのセンサ部、監視装置、監視室の演算部・表示部の構成を模式的に示したシステム構成図。The system block diagram which showed typically the structure of the calculating part and the display part of the sensor part for implementing the monitoring method of this invention, a monitoring apparatus, and a monitoring room. 本発明の下水処理水の着色監視方法の概略作業手順を示したフローチャート。The flowchart which showed the general | schematic work procedure of the coloring monitoring method of the sewage treated water of this invention. 実験例1におけるOG値と着色度との関係を示した着色度図Coloring degree diagram showing relationship between OG value and coloring degree in Experimental Example 1

符号の説明Explanation of symbols

1 処理水槽
3 検水槽
10 分光濁度センサ
20 監視装置
30 監視室
33 表示部(モニター画面)
DESCRIPTION OF SYMBOLS 1 Treated water tank 3 Test water tank 10 Spectral turbidity sensor 20 Monitoring apparatus 30 Monitoring room 33 Display part (monitor screen)

Claims (4)

着色監視対象の処理水の透過光濁度と散乱光濁度を赤色、緑色、青色の三色光源によって計測し、各色の吸光バランスを算定し、該算定した値をもとに色度図上の着色度を求め、前記処理水の着色変化を連続監視するようにしたことを特徴とする下水処理水の着色監視方法。   The transmitted light turbidity and scattered light turbidity of the treated water to be monitored for coloration are measured with three color light sources of red, green, and blue, and the light absorption balance of each color is calculated, and on the chromaticity diagram based on the calculated value A method for monitoring the coloration of sewage treated water, wherein the coloration degree of the treated water is obtained and the color change of the treated water is continuously monitored. 前記三色の透過光濁度値をもとに算出したXY座標系上でのトリダイヤグラムの三角形重心位置と原点との距離を、前記色度図上にプロットし、前記処理水の着色度として判定することを特徴とする請求項1記載の下水処理水の着色監視方法。   The distance between the center of gravity of the triangle of the tri-diagram on the XY coordinate system calculated based on the transmitted light turbidity values of the three colors and the origin is plotted on the chromaticity diagram, and the degree of coloration of the treated water The color monitoring method for sewage treated water according to claim 1, wherein the determination is performed. 前記色度図は、正六角形の第I象限の辺の中点を青色(B)、その対辺の中点を黄色(Y)、Y軸と正値側で交わる辺の中点をシアン(C)、その対辺の中点を赤色(R)、第II象限の辺の中点を緑色(G)、その対辺の中点をマゼンタ(M)とし、加法混色により原点が白色となるように、前記正六角形内が連続的に混色表示された表色系からなることを特徴とする請求項1に記載の下水処理水の着色監視方法。   In the chromaticity diagram, the midpoint of the side of the first quadrant of the regular hexagon is blue (B), the midpoint of the opposite side is yellow (Y), and the midpoint of the side that intersects the Y axis on the positive side is cyan (C ), The midpoint of the opposite side is red (R), the midpoint of the second quadrant is green (G), the midpoint of the opposite side is magenta (M), and the origin is white by additive color mixing. 2. The method for monitoring the color of sewage treated water according to claim 1, wherein the regular hexagon is composed of a color system in which colors are continuously displayed. 処理水槽から処理水が導かれる検水槽と、該検水槽内の処理水の透過光濁度と散乱光濁度を赤色、緑色、青色の三色光源によって計測する濁度センサと、該濁度センサからの受光信号を透過光出力、散乱光出力として演算し、前記各色の吸光バランスを算定する演算出力部と、演算出力結果を送信する送信部とを有する現場監視部と、該現場監視部からの信号を受信し、前記演算値を画面表示された色度図上に着色度として表示する表示手段とを備えたことを特徴とする下水処理水の着色監視装置。   A turbidity sensor that measures the transmitted light turbidity and scattered light turbidity of the treated water in the detected water tank using a three-color light source of red, green, and blue, and the turbidity A field monitoring unit having a calculation output unit that calculates a light reception signal from the sensor as a transmitted light output and a scattered light output and calculates an absorption balance of each color, and a transmission unit that transmits a calculation output result; and the field monitoring unit And a display means for displaying the calculation value as a coloring degree on a chromaticity diagram displayed on the screen.
JP2005180254A 2005-06-21 2005-06-21 Coloration monitoring method and coloration monitoring device of sewage treated water Pending JP2007003202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180254A JP2007003202A (en) 2005-06-21 2005-06-21 Coloration monitoring method and coloration monitoring device of sewage treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180254A JP2007003202A (en) 2005-06-21 2005-06-21 Coloration monitoring method and coloration monitoring device of sewage treated water

Publications (1)

Publication Number Publication Date
JP2007003202A true JP2007003202A (en) 2007-01-11

Family

ID=37688997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180254A Pending JP2007003202A (en) 2005-06-21 2005-06-21 Coloration monitoring method and coloration monitoring device of sewage treated water

Country Status (1)

Country Link
JP (1) JP2007003202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151605A (en) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd Method and device for measuring dissolved material concentration, and method and device for detecting color tone

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868788A (en) * 1994-08-31 1996-03-12 Fuji Electric Co Ltd Detector for color and turbidity of city water
JPH08292099A (en) * 1995-04-20 1996-11-05 Fuji Electric Co Ltd Ozone injection quantity control method
JPH0953988A (en) * 1995-08-10 1997-02-25 Fuji Electric Co Ltd Apparatus for measuring coloring of liquid
JPH10115585A (en) * 1996-10-14 1998-05-06 Fuji Electric Co Ltd Method for self-diagnosing apparatus for measuring color and turbidity of liquid
JPH10332583A (en) * 1997-05-30 1998-12-18 Miura Co Ltd Method and apparatus for measurement of concentration of liquid
JPH11344382A (en) * 1998-06-02 1999-12-14 Shinko Electric Co Ltd Method for measuring tinted degree of solution
JP2004150916A (en) * 2002-10-30 2004-05-27 Cti Science System Co Ltd Monitoring method for treated water of sewage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868788A (en) * 1994-08-31 1996-03-12 Fuji Electric Co Ltd Detector for color and turbidity of city water
JPH08292099A (en) * 1995-04-20 1996-11-05 Fuji Electric Co Ltd Ozone injection quantity control method
JPH0953988A (en) * 1995-08-10 1997-02-25 Fuji Electric Co Ltd Apparatus for measuring coloring of liquid
JPH10115585A (en) * 1996-10-14 1998-05-06 Fuji Electric Co Ltd Method for self-diagnosing apparatus for measuring color and turbidity of liquid
JPH10332583A (en) * 1997-05-30 1998-12-18 Miura Co Ltd Method and apparatus for measurement of concentration of liquid
JPH11344382A (en) * 1998-06-02 1999-12-14 Shinko Electric Co Ltd Method for measuring tinted degree of solution
JP2004150916A (en) * 2002-10-30 2004-05-27 Cti Science System Co Ltd Monitoring method for treated water of sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151605A (en) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd Method and device for measuring dissolved material concentration, and method and device for detecting color tone

Similar Documents

Publication Publication Date Title
EP2447704B1 (en) Oil state monitoring method and oil state monitoring device
CA2806491C (en) Simultaneous determination of multiple analytes in industrial water system
CN102841060B (en) On-line water quality quick detection system
CN203561586U (en) Ammonia nitrogen-total phosphorus integrated rapid detector
Ortiz et al. Application of a microplate-based ORAC-pyrogallol red assay for the estimation of antioxidant capacity: first action 2012.03
CN111896535A (en) Device and method for automatically measuring ions in water by adopting color sensor
CN112595711A (en) Titration end point determination device
CN110736723B (en) Method and system for online simultaneous detection of low turbidity and high turbidity
CN204988993U (en) Liquid testing appearance
CN102565044A (en) Method for detecting pesticide residue by adopting rapid-determination card on basis of image processing
KR20160140060A (en) Water quality monitoring system and monitoring method of water quality using the water quality monitoring system
JP2007003202A (en) Coloration monitoring method and coloration monitoring device of sewage treated water
JP2018185257A (en) Water quality measurement device
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
US8249818B2 (en) Method for qualifying the variability of an effluent composition
CN115684039A (en) Water quality monitoring system and method based on error control
JP3505560B2 (en) Self-diagnosis method for liquid color / turbidity measurement device
CN116026820A (en) Detection algorithm and device for identifying titration endpoint color
JP2001201497A (en) Hardness-measuring method
CN209055455U (en) A kind of Ultraviolet Photometric Method COD online analyzer
JP2004150916A (en) Monitoring method for treated water of sewage
TW201122458A (en) Liquid chromaticity inspecting device and inspecting method thereof
US20150316486A1 (en) Method for automatically measuring concentration of dissolved substance
JPH0125017B2 (en)
US11480556B1 (en) Method and apparatus for detecting trace amounts of copper and silver in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116