JPH0862494A - Focusing optical system using anamorphic lens - Google Patents

Focusing optical system using anamorphic lens

Info

Publication number
JPH0862494A
JPH0862494A JP3020895A JP3020895A JPH0862494A JP H0862494 A JPH0862494 A JP H0862494A JP 3020895 A JP3020895 A JP 3020895A JP 3020895 A JP3020895 A JP 3020895A JP H0862494 A JPH0862494 A JP H0862494A
Authority
JP
Japan
Prior art keywords
axis direction
anamorphic
optical system
axis
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3020895A
Other languages
Japanese (ja)
Inventor
Eiji Yasuda
英治 安田
Masaya Nakaoka
正哉 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3020895A priority Critical patent/JPH0862494A/en
Publication of JPH0862494A publication Critical patent/JPH0862494A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To provide a more small-sized and thinned focusing optical system in a photographing device which photographs a crosswise or longitudinal range by satisfying a specific condition between an X-axial near-axis curvature radius and a Y-axial near-axis curvature radius of an anamorphic surface. CONSTITUTION: A focusing optical system is composed of a first negative lens group G1 , a second positive lens group G2 , an aperture S, and a third positive lens group G3 which are arranged in that order from the object side. The first lens group G1 enlarges the viewing angle. Accordingly, the longitudinal and crosswise viewing angles are different from each other, and accordingly, an anamorphic lens is used in the first lens group G1 so as to have a negative strong refractive power in the wide angle direction, and a negative weak refractive power in a narrow angle direction. A condition RDX≠DRY is satisfied, where DRS is an X-axial near-axis curvature radius, and RDY is a Y-axial near-axis curvature radius.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、縦横比の異なる範囲を
撮像する撮像装置中の結像光学系に関するもので、例え
ば、電子内視鏡、ファイバースコープ、硬性鏡等の内視
鏡用対物光学系や、小型テレビカメラ用のように小型
化、細径化を必要とする結像光学系に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming optical system in an image pickup apparatus for picking up images having different aspect ratios. The present invention relates to an optical system and an imaging optical system that needs to be downsized and reduced in diameter such as for a small television camera.

【0002】[0002]

【従来の技術】結像光学系により形成された像を撮像す
る素子や、撮像した像を表示する装置として、例えばC
CDやテレビモニター等が知られている。そしてこれら
の素子および装置は、一般に長方形である。例えばNT
SC方式では、縦横比が3:4であり、HDTV等のハ
イビジョンの方式では、縦横比が9:16である。一
方、一般の光学系は、光軸に対して回転対称であり、レ
ンズ外径も円形であるために、結像する像および物体側
の撮像可能な範囲も円形である。又結像性能も、光軸に
対して回転対称になるので、収差が良好に補正されてい
る範囲も円形である。そのために、光学系により結像さ
れる円形の像のうち長方形の撮像素子により撮像できる
のは、内接する長方形の範囲にとどまり、それ以外の部
分の画像は利用出来ない。そのため、光学系を通る光束
は、絞りの近傍を除いては縦横で大きさの異なる形状に
なり、円形の光学系の有効面積を効率よく使うことが出
来ず、結像光学系の細径化の妨げになっていた。
2. Description of the Related Art As an element for picking up an image formed by an image forming optical system or an apparatus for displaying the picked up image, for example, C
CDs, TV monitors and the like are known. And these elements and devices are generally rectangular. For example NT
In the SC system, the aspect ratio is 3: 4, and in the high-definition system such as HDTV, the aspect ratio is 9:16. On the other hand, since a general optical system is rotationally symmetric with respect to the optical axis and the lens outer diameter is also circular, the image formed and the image-capable range on the object side are also circular. Also, since the imaging performance is rotationally symmetric with respect to the optical axis, the range in which the aberration is favorably corrected is also circular. Therefore, the circular image formed by the optical system can be captured by the rectangular image sensor only within the inscribed rectangular area, and the image of other portions cannot be used. Therefore, the light flux passing through the optical system has different vertical and horizontal sizes except in the vicinity of the diaphragm, and the effective area of the circular optical system cannot be used efficiently, and the diameter of the imaging optical system is reduced. Was hindering me.

【0003】また従来の電子内視鏡では、ほぼ正方形の
範囲を円形の結像光学系によってほぼ正方形のCCDに
結像し、テレビモニター上にほぼ正方形の画像を表示し
ていた。上記のようにテレビモニターは、一般に横長で
ある。したがって、テレビ画面表示部の多くが無駄にな
っていた。ハイビジョン方式の電子内視鏡を考えた場合
は、テレビ画面表示部の無駄はさらに多くなる。この問
題は、ほぼ長方形の撮像範囲を円形の結像光学系によっ
て長方形のCCDに結像させることで解決できるが、こ
の場合は円形の結像光学系の有効面積を効率良く使うこ
とができず、内視鏡の径が太くなり好ましくないという
問題があった。
In a conventional electronic endoscope, a substantially square range is imaged on a substantially square CCD by a circular imaging optical system, and a substantially square image is displayed on a television monitor. As described above, the television monitor is generally horizontally long. Therefore, much of the TV screen display is wasted. When considering a high-definition type electronic endoscope, the waste of the television screen display unit is further increased. This problem can be solved by forming an image in a substantially rectangular imaging range on a rectangular CCD by a circular imaging optical system, but in this case, the effective area of the circular imaging optical system cannot be used efficiently. However, there is a problem that the diameter of the endoscope becomes large, which is not preferable.

【0004】上記の問題を解決するために、特開平5−
103271号公報に記載されているように、屈折力が
光軸に対して回転非対称な光学素子、いわゆるアナモル
フィックレンズを使用することにより縦横の結像倍率を
変えて、形成する像の縦横比がほぼ1になるようにする
ことが提案されている。しかし、この特開平5−103
271号公報に記載されている光学系で使用しているア
ナモルフィック面は、近軸曲率半径が光軸に対して回転
対称であるかあるいは軸の方向に曲率をもたないアナモ
ルフィック面である。近軸曲率半径が回転対称である面
は、縦横の近軸量を変化させることが不可能になり、そ
のためこの従来例のアナモルフィック面では、近軸設計
の自由度を著しく制限し、十分な収差補正が出来ない。
また、ある特定の軸の方向に曲率を持たないアナモルフ
ィック面は、その軸方向には屈折力をもたないため他に
曲率をもった面が必要になり、レンズの枚数が多くなり
光学系を小型に出来ない。
In order to solve the above problems, Japanese Patent Laid-Open No.
As described in Japanese Patent No. 1032771, by using an optical element whose refractive power is rotationally asymmetric with respect to the optical axis, a so-called anamorphic lens, the longitudinal and lateral imaging magnifications are changed, and the aspect ratio of an image to be formed. Is proposed to be approximately 1. However, this Japanese Patent Laid-Open No. 5-103
The anamorphic surface used in the optical system described in Japanese Patent No. 271 is an anamorphic surface whose paraxial radius of curvature is rotationally symmetric with respect to the optical axis or has no curvature in the axial direction. Is. A surface with a paraxial radius of curvature that is rotationally symmetric cannot change the amount of paraxial in the vertical and horizontal directions.Therefore, in this conventional anamorphic surface, the degree of freedom in paraxial design is significantly limited and Aberration correction is not possible.
In addition, an anamorphic surface that does not have a curvature in the direction of a specific axis needs another surface with a curvature because it does not have refractive power in that axis direction, and the number of lenses increases and The system cannot be made small.

【0005】更にこの従来例は、絞りより像側にアナモ
ルフィック面を用いているため最も像側のアナモルフィ
ック面までの光束は、絞りの近傍を除いて楕円ないし長
方形である。そのためにレンズの有効面積を効率的に使
えず、結像光学系を更に細くすることが困難であった。
又この従来例は、方向により有効Fナンバーが異なるた
め、被写界深度が方向により異なるという不自然な現象
が生じ観察像が不自然になる。その上、同じ画角であっ
ても表示装置上での歪曲収差の発生量が縦方向と横方向
とで大きく異なり、像が光軸に対して非対称に歪み、こ
れによっても観察像が不自然なものになる。
Further, in this conventional example, since the anamorphic surface is used on the image side of the stop, the light flux to the anamorphic surface closest to the image is elliptical or rectangular except for the vicinity of the stop. Therefore, the effective area of the lens cannot be used efficiently, and it is difficult to make the imaging optical system thinner.
Further, in this conventional example, since the effective F-number differs depending on the direction, an unnatural phenomenon that the depth of field differs depending on the direction occurs and the observed image becomes unnatural. Moreover, even if the angle of view is the same, the amount of distortion produced on the display device differs greatly in the vertical and horizontal directions, and the image is distorted asymmetrically with respect to the optical axis, which also causes the observed image to look unnatural. It becomes something.

【0006】また、この従来例は、2面のアナモルフィ
ック面を異なる2枚のレンズの面に設けている。現在の
技術では、アナモルフィックレンズは、プレス成形によ
り作成され、研削研磨により作成される球面レンズより
コスト高になる。また、2枚以上のアナモルフィックレ
ンズを組立てるには、アナモルフィックレンズ同士の回
転偏芯を考慮しなければならない。つまりアナモルフィ
ック面上の軸を他のアナモルフィック面の軸と一致させ
る必要があり、組立てに注意する必要があり、組立て工
数が多くなる。
Also, in this conventional example, two anamorphic surfaces are provided on the surfaces of two different lenses. With current technology, anamorphic lenses are more expensive than spherical lenses made by press molding and grinding. Further, when assembling two or more anamorphic lenses, it is necessary to consider the rotational eccentricity between the anamorphic lenses. That is, the axis on the anamorphic surface needs to be aligned with the axes of other anamorphic surfaces, attention must be paid to the assembly, and the number of assembling steps increases.

【0007】[0007]

【発明が解決しようとする課題】本発明は、横長あるい
は縦長の範囲を撮像する撮像装置中の光学系において、
より小型で、細径化された結像光学系を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention relates to an optical system in an image pickup device for picking up an image in a horizontally long or vertically long range.
It is an object of the present invention to provide a compact and thin imaging optical system.

【0008】また、本発明は、横長又は縦長の範囲を撮
像する撮像装置中の光学系において、方向による歪みの
ない自然な像で、被写界深度が方向により変わらない自
然な像を観察できる結像光学系を提供することを目的と
する。
Further, according to the present invention, in an optical system in an image pickup apparatus for picking up a horizontally or vertically long range, it is possible to observe a natural image which is not distorted by the direction and whose depth of field does not change depending on the direction. An object is to provide an imaging optical system.

【0009】また、本発明は、横長または縦長の範囲を
撮像する撮像装置中の光学系において、X軸方向とY軸
方向の近軸結像位置を一致させ、ボケの少ない像を観察
できる結像光学系を提供することを目的とする。
Further, according to the present invention, in an optical system in an image pickup device for picking up a horizontally long or vertically long range, paraxial image forming positions in the X axis direction and the Y axis direction are made coincident with each other, and an image with less blurring can be observed. An object is to provide an image optical system.

【0010】さらに、本発明は、横長または縦長の範囲
を撮像する撮像装置中の光学系において、収差が良好に
補正された結像光学系を提供することを目的とする。
A further object of the present invention is to provide an image forming optical system in which an aberration is favorably corrected in an optical system in an image pickup apparatus for picking up an image in a horizontally long or vertically long range.

【0011】[0011]

【課題を解決するための手段】本発明の結像光学系は、
光学系中に少なくとも1面のアナモルフィック面を設け
たもので、アナモルフィック面のX軸方向の近軸曲率半
径をRDX、Y軸方向の近軸曲率半径をRDYとする
時、下記条件(1)を満足することを特徴とする。
The image forming optical system of the present invention comprises:
When at least one anamorphic surface is provided in the optical system and the paraxial radius of curvature in the X-axis direction of the anamorphic surface is RDX and the paraxial radius of curvature in the Y-axis direction is RDY, the following conditions are satisfied. It is characterized by satisfying (1).

【0012】RDX≠RDY (1) 本発明の結像光学系は、例えば図1に示すような構成
で、(A)はY方向の又(B)はX方向の断面図であ
る。この図において、1は結像光学系、2は撮像範囲、
3は像で結像光学系1のうち4はアナモルフィック面、
5は絞りである。この結像光学系1のアナモルフィック
面4の形状は式(2)にて表わされる形状で、図2に示
す通りであり、RDX≠RDYである。
RDX ≠ RDY (1) The image forming optical system of the present invention has a structure as shown in FIG. In this figure, 1 is an imaging optical system, 2 is an imaging range,
3 is an image, 4 of the imaging optical system 1 is an anamorphic surface,
Reference numeral 5 is a diaphragm. The shape of the anamorphic surface 4 of the imaging optical system 1 is the shape represented by the equation (2), as shown in FIG. 2, and RDX ≠ RDY.

【0013】ここで、光軸方向で像側が正にz軸をと
り、z軸と直交し結像倍率の最も小さい方向をX軸、z
軸とX軸とに直交する方向をY軸とした時、KXはX方
向の円錐係数、KYはY方向の円錐係数、ARn は非球
面成分のうちz軸に対して回転対称な成分の非球面係
数、APn は非球面成分のうちz軸に対して回転非対称
な非球面係数である。
Here, in the optical axis direction, the image side has the positive z axis, the direction orthogonal to the z axis and having the smallest imaging magnification is the X axis, and z
When the direction orthogonal to the axis and the X axis is the Y axis, KX is the conical coefficient in the X direction, KY is the conical coefficient in the Y direction, and AR n is a rotationally symmetric component of the aspherical component with respect to the z axis. The aspherical surface coefficient, AP n, is an aspherical surface coefficient that is rotationally asymmetric with respect to the z axis among the aspherical surface components.

【0014】このアナモルフィック面は、上記の通りの
形状であり、そのためX軸方向とY軸方向のパワーが異
なり、撮像範囲2の縦横比と像3の縦横比を変えること
が出来る。これによって、光軸に対して回転対称な光学
系を用いた同じ撮像範囲を撮像する光学系と比べて径を
より細くすることが出来る。しかもRDXの値とRDY
の値は夫々独立な値をとることが出来るので設計の自由
度が大になり収差を良好に補正することが出来る。
The anamorphic surface has the shape as described above, and therefore the powers in the X-axis direction and the Y-axis direction are different, and the aspect ratio of the imaging range 2 and the aspect ratio of the image 3 can be changed. As a result, the diameter can be made smaller than that of an optical system that images the same imaging range using an optical system that is rotationally symmetric with respect to the optical axis. Moreover, the value of RDX and RDY
Since the values of can take independent values, respectively, the degree of freedom in designing becomes great, and the aberration can be satisfactorily corrected.

【0015】ただし、本発明においては、RDX=RD
Yで1次の非球面項又は3次以上の非球面項等によって
X軸方向とY軸方向の面形状が異なるような面もアナモ
ルフィック面と呼ぶことにする。
However, in the present invention, RDX = RD
A surface having a different surface shape in the X-axis direction and the Y-axis direction due to a first-order aspherical term or a third-order or higher-order aspherical term in Y is also referred to as an anamorphic surface.

【0016】さらに本発明の結像光学系は、光学系中の
アナモルフィック面が、下記の式(3)を満たすことを
特徴とする。
Further, the imaging optical system of the present invention is characterized in that the anamorphic surface in the optical system satisfies the following expression (3).

【0017】 RDY=RDX かつ AP2=0 (3) ここでAP2はアナモルフィック面形状を表わす(2)
式における2次の回転非対称非球面係数である。上記の
式(3)を満足することにより、X軸方向とY軸方向の
近軸結像位置を一致させることができる。
RDY = RDX and AP 2 = 0 (3) where AP 2 represents an anamorphic surface shape (2)
It is the second-order rotationally asymmetric aspherical coefficient in the equation. By satisfying the above expression (3), the paraxial image forming positions in the X-axis direction and the Y-axis direction can be matched.

【0018】更に、結像光学系1のうちのアナモルフィ
ック面のRDX,RDYの値を下記式(16)に示すよ
うにRDX≠∞かつRDY≠∞にすると、近軸量を満足
させるために又は収差を補正するために、曲率を持つ他
の面を設ける必要はなくレンズ枚数の削減が可能にな
る。 RDX≠∞かつRDY≠∞ (16)
Further, if the values of RDX and RDY of the anamorphic surface of the imaging optical system 1 are set to RDX ≠ ∞ and RDY ≠ ∞ as shown in the following equation (16), the paraxial amount is satisfied. Or it is not necessary to provide another surface having a curvature in order to correct the aberration, and the number of lenses can be reduced. RDX ≠ ∞ and RDY ≠ ∞ (16)

【0019】又、結像光学系において、広角な方向と狭
角な方向で被写界深度を等くして自然な観察像を得るた
めの方法として二つの方法がある。
There are two methods for obtaining a natural observation image by making the depth of field equal in the wide-angle direction and the narrow-angle direction in the imaging optical system.

【0020】第1の方法は、アナモルフィック面を絞り
よりも物体側に設けるものである。通常、光学系の絞り
は、例えば円形であって、縦横で開口の径がほぼ等し
い。アナモルフィック面を持つ光学系の場合も、アナモ
ルフィック面を絞りよりも物体側に設けると、有効Fナ
ンバーをX軸方向とY軸方向とでほぼ等しくすることが
可能になる。これにより、結像光学系の被写界深度をX
軸方向とY軸方向とでほぼ等しくすることが出来、自然
な観察像を得ることが出来る。
The first method is to provide the anamorphic surface on the object side of the diaphragm. Normally, the diaphragm of the optical system is, for example, circular, and the diameters of the openings are substantially equal in the vertical and horizontal directions. Also in the case of an optical system having an anamorphic surface, if the anamorphic surface is provided closer to the object side than the diaphragm, the effective F-numbers can be made substantially equal in the X-axis direction and the Y-axis direction. As a result, the depth of field of the imaging optical system is set to X.
The axial direction and the Y-axis direction can be made substantially equal, and a natural observation image can be obtained.

【0021】第2の方法は、開口の大きさが広角な方向
と狭角な方向とで異なる絞りを用いる方法である。例え
ば絞りの形状を楕円形にすればよい。また、絞りよりも
像側にアナモルフィック面があると広角な方向と狭角な
方向とで有効Fナンバーを独立に設定出来るため望まし
い。この場合、絞りの開口の大きさの大きな軸の方向よ
りも小さい軸の方向の方がアナモルフィック面の有する
屈折力がより正の方向に大きいと有効Fナンバーの方向
による変化を小さくすることが出来る。
The second method is to use a diaphragm having different aperture sizes in the wide-angle direction and the narrow-angle direction. For example, the shape of the diaphragm may be elliptical. It is also desirable to have an anamorphic surface on the image side of the aperture, because the effective F-numbers can be set independently in the wide-angle direction and the narrow-angle direction. In this case, if the anamorphic surface has a larger refractive power in the positive direction in the smaller axial direction than in the axial direction in which the aperture size of the diaphragm is larger, the change in the effective F-number depending on the direction should be reduced. Can be done.

【0022】また、一般に結像光学系にて形成される像
を固体撮像素子にて撮像することが多い。このように像
を固体撮像素子により撮像するときは、被写界深度は固
体撮像素子の画素ピッチに比例する。そのため、X軸方
向とY軸方向の被写界深度が等しくなるようにするため
には、結像光学系の有効Fナンバーと固体撮像素子の画
素のピッチとの間に下記式(4)が成立つようにすれば
よい。
In general, an image formed by the image forming optical system is often picked up by a solid-state image pickup device. Thus, when an image is captured by the solid-state image sensor, the depth of field is proportional to the pixel pitch of the solid-state image sensor. Therefore, in order to make the depths of field in the X-axis direction and the Y-axis direction equal, the following formula (4) is set between the effective F number of the imaging optical system and the pixel pitch of the solid-state image sensor. It should be established.

【0023】 (FNOY ・PY )/(FNOX ・PX )=1 (4) ただしFNOX はX軸方向の有効Fナンバー、FNOY はY
軸方向の有効Fナンバー、PX は固体撮像素子のX軸方
向の画素ピッチ、PY は固体撮像素子のY軸方向の画素
ピッチである。
(F NOY · P Y ) / (F NOX · P X ) = 1 (4) where F NOX is an effective F number in the X-axis direction and F NOY is Y
An effective F number in the axial direction, P X is a pixel pitch in the X-axis direction of the solid-state image sensor, and P Y is a pixel pitch in the Y-axis direction of the solid-state image sensor.

【0024】上記式(4)は、X軸方向の被写界深度と
Y軸方向の被写界深度を厳密に一致させるための条件で
あるが、実用上は式(4)を正確に満足させる必要はな
い。例えば通常の観察光学系の場合、ある程度の被写界
深度のずれは許容出来、下記条件(5)を満足すればよ
い。
The above formula (4) is a condition for exactly matching the depth of field in the X-axis direction and the depth of field in the Y-axis direction, but in practice, the formula (4) is exactly satisfied. You don't have to. For example, in the case of a normal observation optical system, a certain amount of depth of field deviation can be tolerated and the following condition (5) should be satisfied.

【0025】 0.15<(FNOY ・PY )/(FNOX ・PX )<2.0 (5) 又、計測等に用いられる結像光学系等のように被写界深
度のずれに対する許容の厳しい光学系の場合、以下の条
件(6)を満足すればよい。
0.15 <(F NOY · P Y ) / (F NOX · P X ) <2.0 (5) Also, the depth of field shifts, such as in an imaging optical system used for measurement or the like. In the case of an optical system that is severely tolerant to, it is sufficient to satisfy the following condition (6).

【0026】 0.75<(FNOY ・PY )/(FNOX ・PX )<1.25 (6) ここで、固体撮像素子の画素ピッチがX軸方向とY軸方
向とで等しい場合つまりPX =PY の時には、条件
(4),(5),(6)は夫々下記の(4’),
(5’),(6’)のようになる。
0.75 <(F NOY · P Y ) / (F NOX · P X ) <1.25 (6) Here, when the pixel pitch of the solid-state imaging device is the same in the X-axis direction and the Y-axis direction. That is, when P X = P Y , the conditions (4), (5), and (6) are the following (4 ′) and
It becomes like (5 ') and (6').

【0027】 FNOY /FNOX =1 (4’) 0.5<FNOY /FNOX <2.0 (5’) 0.9<FNOY /FNOX <1.1 (6’) つまり、結像光学系中の絞りの開口の大きさをX軸方向
つまり撮像画角の広角な軸の方向よりもY軸方向つまり
撮像画角の狭角な軸の方向の方が大になるようにすれば
よい。
F NOY / F NOX = 1 (4 ′) 0.5 <F NOY / F NOX <2.0 (5 ′) 0.9 <F NOY / F NOX <1.1 (6 ′) The size of the aperture of the diaphragm in the imaging optical system is set to be larger in the Y-axis direction, that is, in the direction of the narrow angle of the imaging field angle than in the direction of the wide axis of the imaging field angle in the X axis direction. do it.

【0028】又、結像光学系1の歪曲収差の発生量は、
一般的に同じ画角の像であってもX軸方向とY軸方向と
で異なり、像の歪みは光軸に対して等方的ではなく、不
自然な観察像になる。そのため歪曲収差の発生量を等方
的にする必要がある。
The amount of distortion produced by the imaging optical system 1 is
Generally, even images having the same angle of view are different in the X-axis direction and the Y-axis direction, and the image distortion is not isotropic with respect to the optical axis and is an unnatural observation image. Therefore, it is necessary to make the amount of distortion aberration isotropic.

【0029】光学系において、撮像範囲を広角にすると
負の歪曲収差が発生しやすくなる。そのために縦横の撮
像範囲が異なる結像光学系は、一般に広角な方向の歪曲
収差の方が狭角な方向の歪曲収差よりも負の側に大きく
発生する。そのため、縦横の撮像範囲の異なる結像光学
系において、歪曲収差の発生量が方向により変化のない
観察像を得るためには、例えば絞りよりも物体側にアナ
モルフィック面を設けた場合、アナモルフィック面の非
球面量が次の条件(7)を満足することが望ましい。
又、絞りよりも像側にアナモルフィック面を設けた場
合、アナモルフィック面の非球面の非球面量が条件
(8)を満足することが望ましい。
In the optical system, when the image pickup range is wide, negative distortion is likely to occur. Therefore, in an image forming optical system having different vertical and horizontal imaging ranges, generally, the distortion aberration in the wide-angle direction is larger on the negative side than the distortion aberration in the narrow-angle direction. Therefore, in an imaging optical system with different vertical and horizontal imaging ranges, in order to obtain an observation image in which the amount of distortion aberration does not change depending on the direction, for example, when an anamorphic surface is provided on the object side of the diaphragm, It is desirable that the aspherical amount of the morphic surface satisfies the following condition (7).
Further, when the anamorphic surface is provided on the image side of the diaphragm, it is desirable that the aspherical amount of the aspherical surface of the anamorphic surface satisfies the condition (8).

【0030】 (n−n’)ARi ・APi >0 (7) (n−n’)AR・AP<0 (8) ただしnは前記のアナモルフィック面の物体側の媒質の
屈折率、n’は前記アナモルフィック面の像側の媒質の
屈折率、ARi ,APi はアナモルフィック面の形状を
表わす式(2)のARn ≠0となる項のうち最低次の項
の非球面係数である。
(N−n ′) AR i · AP i > 0 (7) (n−n ′) AR i · AP i <0 (8) where n is the medium on the object side of the anamorphic surface. Refractive index, n'is the refractive index of the medium on the image side of the anamorphic surface, AR i and AP i are the lowest order among the terms where AR n ≠ 0 in the equation (2) representing the shape of the anamorphic surface. Is the aspherical coefficient of the term.

【0031】絞りより物体側のアナモルフィック面が式
(7)を満足すると、負の屈折力を持った面における広
角方向の屈折力の中心付近と周辺とでの変化と狭角方向
の屈折力の中心付近と周辺とでの変化を比較すると、広
角方向の周辺の方がより負の屈折力を弱くするはたらき
をもつ。また正の屈折力を持った面の場合、広角方向の
屈折力の中心付近と周辺とでの変化と狭角方向の屈折力
の中心付近と周辺とでの変化とを比較すると、広角方向
の周辺の方がより正の屈折力を強くするはたらきをも
つ。
When the anamorphic surface on the object side of the stop satisfies the expression (7), the change in the refractive power in the wide-angle direction near the center and the peripheral in the surface having a negative refractive power and the refraction in the narrow-angle direction. Comparing the change in the vicinity of the center of power with that in the periphery, the periphery in the wide-angle direction has a function of weakening the negative refracting power. In the case of a surface having a positive refracting power, comparing the change in the vicinity of the center of the wide-angle direction and the change in the vicinity of the center of the narrow-direction refracting power in the wide-angle direction The periphery has the function of increasing the positive refractive power.

【0032】また、絞りより像側のアナモルフィック面
が式(8)を満足すると、負の屈折力を持った面の場
合、広角方向の屈折力の中心付近と周辺とでの変化と狭
角方向の屈折力の中心付近と周辺とでの変化とを比較す
ると、広角方向の周辺の方がより負の屈折力を強くする
はたらきをもつ。また、正の屈折力をもった面の場合、
広角方向の屈折力の中心付近と周辺とでの変化と狭角方
向の屈折力の中心付近と周辺とでの変化とを比較する
と、広角方向の周辺の方がより正の屈折力を弱くするは
たらきをもつ。
If the anamorphic surface on the image side of the diaphragm satisfies the expression (8), in the case of a surface having a negative refracting power, the change and narrowing of the refracting power in the wide-angle direction near the center and in the periphery are narrow. Comparing the change in the vicinity of the center of the refractive power in the angular direction and the change in the peripheral area, the peripheral area in the wide-angle direction serves to strengthen the negative refractive power. If the surface has a positive refractive power,
Comparing the change near the center of the wide-angle direction refractive power and the periphery with the change near the center of the narrow-angle direction refractive power and the periphery, the positive refractive power becomes weaker near the wide-angle direction. Have a function.

【0033】上記のいずれの場合も、広角方向の負の歪
曲収差を狭角方向の負の歪曲収差よりも少なくする効果
を持つので、同じ画角の像の歪曲収差の発生量がX軸方
向とY軸方向とで等しくなり、像の歪が光軸に対し等方
的になる。
In any of the above cases, the negative distortion aberration in the wide-angle direction is made smaller than the negative distortion aberration in the narrow-angle direction, so that the amount of distortion aberration of an image having the same angle of view is generated in the X-axis direction. And the Y axis direction are equal, and the image distortion is isotropic with respect to the optical axis.

【0034】X軸方向とY軸方向とで撮影画角の異なる
結像光学系中に、1面のみアナモルフィック面を用いた
場合、一般にX軸方向とY軸方向とで近軸結像位置が異
なる。この結像位置のずれ量が許容量を越える時、近軸
結像位置を一致させるためにもう1面アナモルフィック
面を設ける必要がある。その場合、X軸方向とY軸方向
とで、近軸量の要求を満足させるためには、少なくとも
2面のアナモルフィック面が必要になる。この場合、ア
ナモルフィック面として、正の屈折力を持つアナモルフ
ィック面と負の屈折力を持つアナモルフィック面を設け
ると、設計の自由度が増加し、X軸方向とY軸方向とに
独立して発生した収差を良好に補正することが出来る。
When only one anamorphic surface is used in the image forming optical system having different photographing field angles in the X-axis direction and the Y-axis direction, paraxial image formation is generally performed in the X-axis direction and the Y-axis direction. The position is different. When the deviation amount of the image forming position exceeds the allowable amount, it is necessary to provide another anamorphic surface in order to match the paraxial image forming positions. In that case, at least two anamorphic surfaces are required in order to satisfy the paraxial amount requirement in the X-axis direction and the Y-axis direction. In this case, if an anamorphic surface having a positive refractive power and an anamorphic surface having a negative refractive power are provided as the anamorphic surface, the degree of freedom in design is increased, and the anamorphic surface has an X-axis direction and a Y-axis direction. It is possible to satisfactorily correct the aberration that independently occurs in the.

【0035】また、結像光学系中に2面以上のアナモル
フィック面を設ける場合、一つのレンズの両面にアナモ
ルフィック面を設けると、アナモルフィックレンズの枚
数を減らすことが出来、また組立てが容易になりコスト
の軽減になる。
When two or more anamorphic surfaces are provided in the image forming optical system, the number of anamorphic lenses can be reduced by providing anamorphic surfaces on both surfaces of one lens. Assembly is easy and costs are reduced.

【0036】更に縦横比の異なる範囲を撮像する結像光
学系にアナモルフィック面を2面設ける場合、アナモル
フィック面の内、少なくとも1面は、絞り面からなるべ
く離れていて、軸外主光線高が高く、面への光線入射角
が大きい面に設けると効率良く撮像範囲の縦横比と像の
縦横比を変え、かつ、収差を良好に補正することができ
る。その理由は以下の通りである。
Further, when two anamorphic surfaces are provided in the image forming optical system for imaging a range having different aspect ratios, at least one of the anamorphic surfaces is separated from the diaphragm surface as far as possible, and the off-axis main surface. When provided on a surface having a high light ray height and a large light ray incident angle on the surface, it is possible to efficiently change the aspect ratio of the imaging range and the aspect ratio of the image and satisfactorily correct aberrations. The reason is as follows.

【0037】絞り面からなるべく離れていて、軸外主光
線高が高い面では、面への光線入射角が大きいので画角
を変えやすい。したがって、絞り面からなるべく離れて
いて、軸外主光線高が高く、面への光線入射角が大きい
面にアナモルフィック面を設ければ、X軸方向の面形状
とY軸方向の面形状との差異が僅かであってもX軸方向
とY軸方向の画角比を容易に変えることができる。ま
た、絞り面からなるべく離れていて、軸外主光線高が高
く、面への光線入射角が大きい面は、歪曲収差が発生し
やすく、歪曲収差によってX軸方向とY軸方向の画角比
を変えることも出来るためアナモルフィック面を設ける
のに適している。また、絞り面からなるべく離れていて
軸外主光線高が高く、面への光線入射角が大きい面をア
ナモルフィック面にすると、X軸方向の面形状とY軸方
向の面形状との差異が僅かでもX軸方向とY軸方向の画
角比を容易に変えることができるため、歪曲収差以外の
収差に与える影響を少なくすることができ、収差を良好
に補正することができる。
On a surface which is as far as possible from the diaphragm surface and has a high off-axis chief ray height, the angle of incidence of the ray on the surface is large, so that the angle of view can be easily changed. Therefore, if an anamorphic surface is provided on a surface that is as far as possible from the diaphragm surface, has a high off-axis chief ray height, and has a large ray incident angle to the surface, the surface shape in the X-axis direction and the surface shape in the Y-axis direction can be obtained. It is possible to easily change the angle-of-view ratio in the X-axis direction and the Y-axis direction even if there is a slight difference. Further, a surface which is as far as possible from the diaphragm surface and has a high off-axis chief ray height and a large light ray incident angle on the surface is likely to suffer from distortion aberration, and due to the distortion aberration, the angle of view ratio between the X-axis direction and the Y-axis direction is increased. Since it can be changed, it is suitable for providing an anamorphic surface. If a surface that is as far as possible from the diaphragm surface and has a high off-axis chief ray height and a large ray incident angle on the surface is an anamorphic surface, the difference between the surface shape in the X-axis direction and the surface shape in the Y-axis direction is different. Since the angle of view in the X-axis direction and the angle of view in the Y-axis direction can be easily changed even with a small amount, the influence on aberrations other than distortion can be reduced, and aberrations can be corrected well.

【0038】又、アナモルフィック面を2面設ける場
合、絞りよりも物体側の2面をアナモルフィック面にし
ても良いし、絞りよりも像側の2面をアナモルフィック
面にしても良いし、又絞りよりも物体側の1面と絞りよ
りも像側の一面をアナモルフィック面にしても良い。
When two anamorphic surfaces are provided, the two surfaces on the object side of the diaphragm may be anamorphic surfaces, or the two surfaces on the image side of the diaphragm may be anamorphic surfaces. Alternatively, one surface on the object side of the diaphragm and one surface on the image side of the diaphragm may be anamorphic surfaces.

【0039】アナモルフィック面を絞り面よりも物体側
の2面又は絞り面よりも像側の2面に設ける場合、1面
は絞り面からなるべく離れていて、軸外主光線高が高
く、面へ光線入射角の大きい面に設け、1面は、絞り面
の近くで、軸外主光線高が低い面に設けることが好まし
い。その理由は次の通りである。
When the anamorphic surface is provided on two surfaces closer to the object than the diaphragm surface or two surfaces closer to the image than the diaphragm surface, one surface is as far as possible from the diaphragm surface, and the off-axis chief ray height is high. It is preferable that the first surface is provided on a surface having a large light ray incident angle, and the first surface is provided on a surface having a low off-axis chief ray height near the diaphragm surface. The reason is as follows.

【0040】前述のようにX軸方向とY軸方向の画角比
を変える作用をするアナモルフィック面を、軸外主光線
高が高く、面へ光線入射角の大きい面に設けると、X軸
方向とY軸方向の画角比を容易に変えることができ、歪
曲収差以外の収差に与える影響を少なくすることができ
る。一方、X軸方向の近軸結像位置とY軸方向の近軸結
像位置のズレ量を小さくする作用を有するアナモルフィ
ック面の屈折力すなわちパワーは、X軸方向とY軸方向
の画角比を変える作用をするアナモルフィック面のパワ
ーとは、逆符号のパワーでなければならない。このた
め、近軸結像位置のズレ量を小さくする作用を有するア
ナモルフィック面は、画角に与える影響が少ない面、す
なわち、絞り面の近くで、軸外主光線高が低い面に設け
るのが良い。
As described above, when an anamorphic surface that acts to change the angle of view in the X-axis direction and the Y-axis direction is provided on a surface having a high off-axis chief ray height and a large light ray incident angle to the surface, X The angle-of-view ratio in the axial direction and the Y-axis direction can be easily changed, and the influence on aberrations other than the distortion aberration can be reduced. On the other hand, the refracting power of the anamorphic surface, which has the function of reducing the amount of deviation between the paraxial image forming position in the X-axis direction and the paraxial image forming position in the Y-axis direction, that is, the power is the image in the X-axis direction and the Y-axis direction. The power of the anamorphic surface that acts to change the angular ratio must be of opposite sign. Therefore, the anamorphic surface, which has the effect of reducing the amount of paraxial imaging position shift, is provided on a surface that has little effect on the angle of view, that is, on a surface having a low off-axis chief ray height near the diaphragm surface. Is good.

【0041】絞り面よりも物体側の2面にアナモルフィ
ック面を設けると、円形の絞りでもX軸方向の有効Fナ
ンバーとY軸方向の有効Fナンバーを等しくすることが
できる。また、このように絞りより物体側の2面にアナ
モルフィック面に設けるのはビハインド絞り方式の光学
系の場合に特に有効である。逆にフロント絞り方式の光
学系の場合は、絞りよりも像側の2面にアナモルフィッ
ク面を設けることが望ましい。
By providing anamorphic surfaces on the two surfaces closer to the object than the diaphragm surface, the effective F-number in the X-axis direction and the effective F-number in the Y-axis direction can be made equal even with a circular diaphragm. Further, it is particularly effective to provide the anamorphic surface on the two surfaces closer to the object than the diaphragm in the case of an optical system of a behind diaphragm system. On the other hand, in the case of a front diaphragm type optical system, it is desirable to provide anamorphic surfaces on the two surfaces on the image side of the diaphragm.

【0042】アナモルフィック面を絞り面よりも物体側
の1面と絞り面よりも像側の1面に設ける場合、絞り面
よりも物体側のアナモルフィック面と絞り面よりも像側
のアナモルフィック面の両方とも、絞り面からなるべく
離れていて軸外主光線高がなるべく高く、面への光線入
射角の大きい面に設けるのが望ましい。その理由は、次
の通りである。
When the anamorphic surface is provided on one surface on the object side of the diaphragm surface and on one surface on the image side of the diaphragm surface, the anamorphic surface on the object side of the diaphragm surface and the image side of the diaphragm surface Both of the anamorphic surfaces are preferably provided on a surface which is as far as possible from the diaphragm surface, has a high off-axis chief ray height, and has a large ray incident angle on the surface. The reason is as follows.

【0043】絞り面よりも物体側の面でX軸方向とY軸
方向の画角比を変えるためにアナモルフィック面を設け
る場合、その面が負のパワーを持つ面では、広角方向が
狭角方向より強い負のパワーを持つ必要がある。又その
面が正のパワーを持つ面では、広角方向の方が狭角方向
よりも弱い正のパワーを持つ必要がある。このようにす
れば近軸結像位置は、広角方向のほうが狭角方向よりも
像側に位置することになる。これに対し、絞り面よりも
像側の面をアナモルフィック面にしてX軸方向とY軸方
向の画角比を変える場合は、その面が正のパワーを持つ
面である時は、広角方向のほうが狭角方向よりも強い正
のパワーを持つ必要があり、負のパワーを持つ面である
時には、広角方向の方が狭角方向よりも弱い負のパワー
を持つ必要がある。このようにすれば近軸結像位置は、
広角方向のほうが狭角方向よりも物体側に位置する。し
たがって、絞り面よりも物体側の面と絞り面よりも像側
の面に1面ずつX軸方向とY軸方向の画角比を変える作
用を持つアナモルフィック面を設ければ、画角比の変化
と共にX軸方向とY軸方向の近軸結像位置のズレを補正
する作用をも合わせ持つことになる。そして前述のよう
にX軸方向とY軸方向の画角比を効率良く変えるために
は、絞り面からなるべく離れていて、軸外主光線高が高
く、面への光線入射角が大きい面に設けることが好まし
い。
When an anamorphic surface is provided on the surface closer to the object than the diaphragm surface to change the angle of view in the X-axis direction and the Y-axis direction, if the surface has negative power, the wide-angle direction is narrow. It is necessary to have a stronger negative power than in the angular direction. If the surface has positive power, the wide-angle direction needs to have weaker positive power than the narrow-angle direction. By doing so, the paraxial image forming position is located closer to the image side in the wide-angle direction than in the narrow-angle direction. On the other hand, when changing the angle of view in the X-axis direction and the Y-axis direction with the anamorphic surface on the image side of the diaphragm surface, if the surface has positive power, the wide angle The direction needs to have stronger positive power than the narrow angle direction, and when the surface has negative power, the wide angle direction needs to have weaker negative power than the narrow angle direction. In this way, the paraxial image formation position is
The wide-angle direction is located closer to the object side than the narrow-angle direction. Therefore, if an anamorphic surface having a function of changing the angle of view in the X-axis direction and the angle of view in the Y-axis direction is provided for each of the surface closer to the object than the diaphragm surface and the surface closer to the image than the diaphragm surface, the angle of view can be increased. It also has the function of correcting the shift of the paraxial image forming position in the X-axis direction and the Y-axis direction together with the change of the ratio. As described above, in order to efficiently change the angle of view in the X-axis direction and the Y-axis direction, it is necessary to use a surface that is as far as possible from the diaphragm surface, has a high off-axis chief ray height, and has a large light ray incident angle on the surface. It is preferable to provide.

【0044】そしてレンズ枚数が少なく、アナモルフィ
ック面を設けることのできる面の選択の余地が少ない結
像光学系にアナモルフィック面を2面設ける場合は、絞
りよりも物体側の1面と絞りよりも像側に1面とにアナ
モルフィック面を設けるようにすれば、両面とも絞り面
からなるべく離れていて軸外主光線高が高く、面への入
射角が大きい面を選ぶことが容易になる。又、アナモル
フィック面を絞り面よりも物体側の1面と絞り面よりも
像側の1面とに設けると、二つのアナモルフィック面に
よりX軸方向とY軸方向の画角比を変えることになるた
め、各アナモルフィック面のパワー負担が減り、収差を
良好に補正することが容易になる。
When two anamorphic surfaces are provided in the image forming optical system in which the number of lenses is small and there is little room for selection of the surface on which the anamorphic surface can be provided, one surface closer to the object side than the diaphragm is used. If one anamorphic surface is provided on the image side of the diaphragm, it is possible to select a surface that is as far as possible from the diaphragm surface and has a high off-axis chief ray height and a large incident angle to the surface. It will be easier. Further, when the anamorphic surface is provided on the one surface on the object side of the diaphragm surface and the one surface on the image side of the diaphragm surface, the two anamorphic surfaces provide an angle-of-view ratio in the X-axis direction and the Y-axis direction. Since it is changed, the power load on each anamorphic surface is reduced, and it becomes easy to satisfactorily correct aberrations.

【0045】また、アナモルフィック面を少なくとも1
面設けた場合、アナモルフィック面が下記の式(9)を
満足する次の非球面係数の回転非対称非球面を少なくと
も一つ持つかまたは式(10)を満たすと、設計の自由
度が大きくなり収差を良好に補正することができる。
At least one anamorphic surface is used.
When the surface is provided, if the anamorphic surface has at least one rotationally asymmetric aspherical surface having the following aspherical surface coefficient that satisfies the following expression (9), or if the expression (10) is satisfied, the degree of freedom in design is increased. Therefore, the aberration can be corrected well.

【0046】 AR ≠0 かつ AP ≠0 (9) AR ≠0 かつ AP ≠0 (10) ただし、jは自然数、AR は、アナモルフィック面
形状を表す(2)式におけるj次の回転対称非球面係数
であり、AP はアナモルフィック面形状を表す
(2)式におけるj次の回転非対称非球面係数で、又A
は、アナモルフィック面形状を表す(2)式にお
ける4次の回転対称非球面係数であり、APは4次の
回転非対称非球面係数である。
AR j ≠ 0 and AP j ≠ 0 (9) AR 4 ≠ 0 and AP 4 ≠ 0 (10) where j is a natural number and AR j is j in the equation (2) representing an anamorphic surface shape. Is the rotationally symmetric aspherical coefficient of the following, AP j is the rotationally asymmetrical aspherical coefficient of the j-th order in the equation (2) representing the anamorphic surface shape, and A j
R 4 is the fourth-order rotationally symmetric aspherical coefficient in the equation (2) representing the anamorphic surface shape, and AP 4 is the fourth-order rotationally asymmetrical aspherical coefficient.

【0047】前述のように、結像光学系においてアナモ
ルフィック面を1面のみ用いた場合、X軸方向とY軸方
向の近軸結像位置は一致せず、像はぼけてしまう。しか
しX軸方向とY軸方向の近軸結像位置のずれ量が許容範
囲内であれば、アナモルフィック面が1面だけでも良
い。ズレ量の許容範囲は、下記条件(11)のようにな
る。
As described above, when only one anamorphic surface is used in the image forming optical system, the paraxial image forming positions in the X axis direction and the Y axis direction do not coincide with each other and the image is blurred. However, if the amount of deviation between paraxial image formation positions in the X-axis direction and the Y-axis direction is within the allowable range, only one anamorphic surface may be used. The allowable range of the shift amount is as in the following condition (11).

【0048】 |Δ|<5・PX・FNOX かつ|Δ|<5・PY・FNOY (11) ただし、|Δ|は、X軸方向とY軸方向の近軸結像位置
のズレ量の絶対値である。
| Δ | <5 · P X · F NOX and | Δ | <5 · P Y · F NOY (11) where | Δ | is a paraxial imaging position in the X-axis direction and the Y-axis direction. It is the absolute value of the amount of deviation.

【0049】前記条件(11)は、X軸方向の近軸結像
位置が、Y軸方向の焦点深度の範囲内に入っている必要
があり、かつ、Y軸方向の近軸結像位置が、X軸方向の
焦点深度の範囲内に入っている必要があることから設け
られた。しかしテレビモニターを遠くから観察するよう
な場合には、ずれ量の許容範囲は、下記式(11’)の
ようであれば良い。
The condition (11) requires that the paraxial imaging position in the X-axis direction be within the range of the depth of focus in the Y-axis direction, and the paraxial imaging position in the Y-axis direction is , It is necessary to be within the range of the depth of focus in the X-axis direction. However, when the television monitor is viewed from a distance, the allowable range of the shift amount may be represented by the following formula (11 ′).

【0050】 |Δ|<10・PX・FNOXかつ|Δ|<10・PY・FNOY (11’) アナモルフィック面を設ける場合、少なくとも1面は、
下記条件(12)を満たす面すなわち軸外主光線高がマ
ージナル光線高よりも高い面に設けると良い。
| Δ | <10 · P X · F NOX and | Δ | <10 · P Y · F NOY (11 ′) When an anamorphic surface is provided, at least one surface is
It is preferable to provide it on the surface that satisfies the following condition (12), that is, on the surface where the off-axis chief ray height is higher than the marginal ray height.

【0051】 h /h ≧1 (12) ただし、hは最大像高または広角方向の最大像高に対
する主光線高、hはX軸方向のマージナル光線高とY
軸方向のマージナル光線高のうち高い方の光線高であ
る。ここで最大像高はX軸方向の最大像高をIH
Y軸方向の最大像高をIHとした時、(IH +I
1/2 のことであり、広角方向の最大像高は
IH またはIH のことである。
H s / h m ≧ 1 (12) where h s is the chief ray height with respect to the maximum image height or the maximum image height in the wide-angle direction, and h m is the marginal ray height in the X-axis direction and Y
It is the higher ray height of the marginal ray heights in the axial direction. Here, the maximum image height is IH X , which is the maximum image height in the X-axis direction.
When the maximum image height in the Y-axis direction is IH Y , (IH X 2 + I
H Y 2 ) 1/2 , and the maximum image height in the wide-angle direction is IH X or IH Y.

【0052】条件(12)を満足する位置に配置された
面は、絞り面から離れており、軸外主光線高が高く、面
への光線入射角が大きい面であるため、X軸方向とY軸
方向の画角比を容易に変えることができる。
The surface arranged at the position satisfying the condition (12) is apart from the diaphragm surface, has a high off-axis chief ray height, and has a large light ray incident angle on the surface, and therefore is not in the X-axis direction. The angle-of-view ratio in the Y-axis direction can be easily changed.

【0053】さらに、結像光学系の収差を良好に補正す
るためには、または1面のみアナモルフィック面を用い
た撮像光学系の場合は、下記条件(12’)を満たす面
にアナモルフィック面を設けることが望ましい。
Further, in order to satisfactorily correct the aberration of the image forming optical system, or in the case of an image pickup optical system using only one anamorphic surface, an anamorphic surface should satisfy the following condition (12 '). It is desirable to provide a fictive surface.

【0054】 h /h ≧2.5 (12’) 通常、最も物体側のレンズまたは最も像側のレンズが上
記のようなアナモルフィック面を設けるのに適した面で
ある。これは、最も物体側の面又は最も像側の面が絞り
面から最も遠く、軸外主光線高が高い面であるからであ
る。上記の条件(12’)を満足する面をアナモルフィ
ック面にすれば撮像範囲の縦横比と像の縦横比を変える
ことができ、かつ、収差を良好に補正することができ
る。
H s / h m ≧ 2.5 (12 ′) Usually, the most object side lens or the most image side lens is a surface suitable for providing the anamorphic surface as described above. This is because the most object-side surface or the most image-side surface is the surface farthest from the diaphragm surface and the off-axis chief ray height is high. If the surface that satisfies the above condition (12 ′) is an anamorphic surface, the aspect ratio of the imaging range and the aspect ratio of the image can be changed, and aberration can be corrected well.

【0055】また、アナモルフィック面が一面のみであ
れば、レンズの加工や光学系の組立が容易になりコスト
の軽減になる。
If only one anamorphic surface is provided, lens processing and optical system assembly are facilitated and cost is reduced.

【0056】結像光学系にアナモルフィック面を設ける
場合、アナモルフィック面が下記条件(3)を満足すれ
ばX軸方向とY軸方向の近軸結像位置を一致させること
ができる。
When an anamorphic surface is provided in the image forming optical system, the paraxial image forming positions in the X-axis direction and the Y-axis direction can be matched if the anamorphic surface satisfies the following condition (3).

【0057】 RDY=RDX かつ AP =0 (3) ただし、AP はアナモルフィック面形状を表す
(2)式における2次の回転非対称非球面係数である。
RDY = RDX and AP 2 = 0 (3) However, AP 2 is a quadratic rotationally asymmetric aspherical coefficient in the equation (2) representing an anamorphic surface shape.

【0058】この条件(3)を満足するアナモルフィッ
ク面は、2次の項においてX軸方向とY軸方向の区別を
なくすことによってX軸方向とY軸方向の近軸結像位置
を一致させ、又2次以外の非球面項によってX軸方向の
歪曲収差の発生量とY軸方向の歪曲収差の発生量とに差
を持たせることによって撮像範囲の縦横比と像の縦横比
を変えることが出来る。絞り面からなるべく離れていて
軸外主光線高が高く、面への光線入射角が大きい面で
は、歪曲収差が発生しやすく、歪曲収差によってX軸方
向とY軸方向の画角比を変えることができる。したがっ
て、アナモルフィック面を設ける面としては歪曲収差の
発生量の多い面、すなわち、絞り面からなるべく離れて
いて軸外主光線高が高く、面への光線入射角が大きい絞
りより物体側の面または絞りよりも像側の面が好まし
い。また、X軸方向とY軸方向の近軸結像位置を一致さ
せるためには、アナモルフィック面が下記式(13)を
満足することが望ましく、これにより設計の自由度が大
きくなり、収差を良好に補正することができる。特にア
ナモルフィック面を1面のみ設ける場合には条件(1
3)を満たすことが望ましい。
For the anamorphic surface satisfying the condition (3), paraxial image forming positions in the X-axis direction and the Y-axis direction are made coincident by eliminating the distinction between the X-axis direction and the Y-axis direction in the quadratic term. The aspect ratio of the imaging range and the aspect ratio of the image are changed by providing a difference between the amount of distortion aberration in the X-axis direction and the amount of distortion aberration in the Y-axis direction due to an aspherical term other than the second order. You can Distortion is likely to occur on a surface that is as far as possible from the diaphragm surface, has a high off-axis chief ray height, and has a large angle of incidence on the surface, and changing the angle-of-view ratio in the X-axis direction and the Y-axis direction due to distortion. You can Therefore, as a surface on which the anamorphic surface is provided, a surface with a large amount of distortion is generated, that is, the height of the off-axis chief ray is high as much as possible from the diaphragm surface, and the angle of ray incidence on the surface is larger on the object side than the diaphragm. The surface or the surface closer to the image side than the diaphragm is preferable. Further, in order to match the paraxial image forming positions in the X-axis direction and the Y-axis direction, it is desirable that the anamorphic surface satisfies the following expression (13), which increases the degree of freedom in design and reduces aberrations. Can be satisfactorily corrected. Especially when only one anamorphic surface is provided, the condition (1
It is desirable to satisfy 3).

【0059】 RDY=RDX≠∞ かつ AP =0 (13) アナモルフィック面を一面のみ設けた場合で、かつ、ア
ナモルフィック面が式(3)または(13)を満たす場
合であって、アナモルフィック面を絞りよりも物体側に
設ける場合には(14)式を満たし、アナモルフィック
面を絞りよりも像側に設ける場合には(15)式を満た
すことが望ましい。
RDY = RDX ≠ ∞ and AP 2 = 0 (13) When only one anamorphic surface is provided and when the anamorphic surface satisfies the formula (3) or (13), When the anamorphic surface is provided on the object side of the diaphragm, it is preferable to satisfy the expression (14), and when the anamorphic surface is provided on the image side of the diaphragm, it is preferable to satisfy the expression (15).

【0060】 (n−n’)・AR ・AP <0 (14) (n−n’)・AR ・AP >0 (15) ただし、AR はアナモルフィック面形状を表す
(2)式における4次の回転対称非球面係数であり、A
はアナモルフィック面形状を表す(2)式におけ
る4次の回転非対称非球面係数である。
(Nn ′) · AR 4 · AP 4 <0 (14) (nn ′) · AR 4 · AP 4 > 0 (15) where AR 4 represents an anamorphic surface shape ( It is the fourth-order rotationally symmetric aspherical coefficient in the equation (2), and A
P 4 is a fourth-order rotationally asymmetric aspherical coefficient in the equation (2) representing the anamorphic surface shape.

【0061】絞りよりも物体側に設けたアナモルフィッ
ク面が条件(14)を満足し、負のパワーを持つ面の場
合、広角方向の方が狭角方向に比べて、主光線に対する
負の屈折力の作用がより強くなる。同様に、正のパワー
を持つ面の場合は、広角方向の方が狭角方向に比べて、
主光線に対する正の屈折力の作用がより弱くなる。又絞
りよりも像側に設けたアナモルフィック面が条件(1
5)を満足し、負のパワーを持つ場合、広角方向の方が
狭角方向に比べて、主光線に対する負の屈折力の作用が
より弱くなる。同様に、正のパワーを持つ面の場合は、
広角方向の方が狭角方向に比べて、主光線に対する正の
屈折力の作用がより強くなる。
In the case where the anamorphic surface provided closer to the object than the diaphragm satisfies the condition (14) and has a negative power, the wide-angle direction is more negative than the narrow-angle direction with respect to the chief ray. The action of refractive power becomes stronger. Similarly, in the case of a surface having positive power, the wide-angle direction is more
The action of the positive refractive power on the chief ray becomes weaker. Also, the anamorphic surface on the image side of the aperture must meet the conditions (1
When 5) is satisfied and the negative power is provided, the action of the negative refracting power on the principal ray becomes weaker in the wide-angle direction than in the narrow-angle direction. Similarly, for a surface with positive power,
The action of the positive refracting power on the chief ray is stronger in the wide-angle direction than in the narrow-angle direction.

【0062】アナモルフィック面が(3)または(1
3)式を満たすとき、絞りよりも物体側に設けたアナモ
ルフィック面が(14)式を満たす場合、絞りよりも像
側に設けたアナモルフィック面が(15)式を満たす場
合のいずれの場合も広角方向の方が狭角方向に比べてよ
り強い負の歪曲収差を発生する。したがって、撮像範囲
の縦横比と像の縦横比を効率良く変えることができる。
特に、縦長又は横長の撮像範囲をほぼ正方形の像に変え
る場合には効果的である。
If the anamorphic surface is (3) or (1
When the expression (3) is satisfied, either the anamorphic surface provided on the object side of the diaphragm satisfies the expression (14) or the anamorphic surface provided on the image side of the diaphragm satisfies the expression (15). In the case of, also in the wide-angle direction, stronger negative distortion aberration occurs than in the narrow-angle direction. Therefore, the aspect ratio of the imaging range and the aspect ratio of the image can be efficiently changed.
In particular, it is effective when changing the vertically or horizontally long imaging range to a substantially square image.

【0063】ここで、図1に示すような結像光学系つま
り、物体側より順に、負の第1レンズ群G1 と正の第2
レンズ群G2 と絞りSと正の第3レンズ群G3 とにて構
成された結像光学系において、画角を広角にしているの
は主として第1レンズ群G1 である。そのため縦方向と
横方向とで画角が異なるようにするため、第1レンズ群
1 にアナモルフィックレンズを用いて、広角方向に強
い負の屈折力を、狭角方向に弱い負の屈折力を持たせて
ある。また、広角方向と狭角方向との結像位置をそろえ
るためには、第2レンズ群G2 または第3レンズ群G3
にもアナモルフィックレンズを用いればよい。
Here, the imaging optical system as shown in FIG. 1, that is, in order from the object side, the negative first lens group G 1 and the positive second lens group G 1 are arranged.
In the image forming optical system including the lens group G 2 , the stop S, and the positive third lens group G 3, it is mainly the first lens group G 1 that has a wide angle of view. Therefore, in order to make the angle of view different between the vertical direction and the horizontal direction, an anamorphic lens is used in the first lens group G 1 , and a strong negative refractive power in the wide angle direction and a weak negative refractive power in the narrow angle direction are used. It has power. In order to align the image forming positions in the wide-angle direction and the narrow-angle direction, the second lens group G 2 or the third lens group G 3
Also, an anamorphic lens may be used.

【0064】また、この結像光学系は、第1レンズ群G
1 の負の屈折力を持つ面で内向性のコマ収差が大きく発
生する。このコマ収差を補正するためには、絞りSより
も物体側の正の屈折力を持つ面で外向性のコマ収差を発
生させて補正すればよい。しかし第1レンズ群G1 の負
の屈折力を持つ面は、アナモルフィック面であるため、
コマ収差の発生量は縦方向と横方向とで異なる。そのた
め、絞りSよりも物体側の正の屈折力を持つアナモルフ
ィック面を設けて縦方向と横方向のコマ収差を同時に良
好に補正している。
Further, this imaging optical system includes the first lens group G
A large amount of inward coma occurs on a surface having a negative refractive power of 1 . In order to correct this coma aberration, it is sufficient to generate and correct the outward coma aberration on the surface having a positive refractive power on the object side of the diaphragm S. However, since the surface of the first lens group G 1 having a negative refractive power is an anamorphic surface,
The amount of coma generated differs in the vertical and horizontal directions. Therefore, an anamorphic surface having a positive refracting power on the object side of the diaphragm S is provided to satisfactorily correct both longitudinal and lateral comatic aberrations.

【0065】上述のようなアナモルフィック面を設けた
結像光学系により形成される像は、縦と横とで結像倍率
が異なるので、そのまま通常の観察方法で観察すると、
像が縦長又は横長になり自然な観察像が得られない。そ
のため図3に示すような撮像装置が考えられる。つま
り、アナモルフィックレンズを設けた結像光学系1によ
り観察物体10の像を例えばCCDのような固体撮像素
子11上に結像する。このとき結像光学系の結像倍率
は、アナモルフィック面のために縦方向と横方向とで異
なる。この固体撮像素子上に結像した像は、電気的な映
像信号に変換され画像処理装置12に送られる。画像処
理装置に送られた信号は、ここで縦横をそれぞれ異なる
倍率で電気的に拡大又は縮小されて表示装置13上に縦
横比の正常な像14となって表示される。表示装置上で
正常な観察像を得るためには、結像光学系1の縦横の結
像倍率を夫々βoX,βoYとし、画像処理装置上での電気
的な拡大倍率を夫々βeX,βeYとした時には正常な観察
像を得るためには、夫々の倍率を下記のように設定すれ
ばよい。
An image formed by the image-forming optical system having the anamorphic surface as described above has different image forming magnifications in the vertical and horizontal directions.
The image becomes portrait or landscape and a natural observation image cannot be obtained. Therefore, an imaging device as shown in FIG. 3 can be considered. That is, the image of the observation object 10 is formed on the solid-state image pickup device 11 such as CCD by the image forming optical system 1 provided with the anamorphic lens. At this time, the imaging magnification of the imaging optical system differs in the vertical direction and the horizontal direction due to the anamorphic surface. The image formed on the solid-state image sensor is converted into an electric video signal and sent to the image processing device 12. The signal sent to the image processing apparatus is electrically enlarged or reduced in the vertical and horizontal directions at different magnifications, and is displayed on the display device 13 as an image 14 having a normal aspect ratio. In order to obtain a normal observation image on the display device, the vertical and horizontal imaging magnifications of the imaging optical system 1 are set to β oX and β oY , respectively, and the electrical enlargement ratios on the image processing device are set to β eX and β eX , respectively. When β eY is set, in order to obtain a normal observation image, the respective magnifications may be set as follows.

【0066】βoX・βeX≒βoY・βeY 固体撮像素子上に結像した像を電気的に変形、拡大等を
行なう場合、画像処理装置で像を変形する以外にテレビ
モニター上で像を変形、拡大等を行なっても良い。画像
処理装置12において座標変換を行ない、歪曲収差を電
気的に補正することも可能である。その際、X軸方向の
歪曲収差とY軸方向の歪曲収差とを独立して補正を行な
い、それぞれの軸方向の歪曲収差を良好に補正すること
がより望ましい。歪曲収差を電気的に除去しきれない場
合でも、X軸方向とY軸方向の歪曲収差の発生量がほぼ
等しくなるように補正できれば良い。
Β oX · β eX ≈β oY · β eY When electrically deforming or enlarging the image formed on the solid-state image pickup device, the image is displayed on the television monitor in addition to the image being deformed by the image processing device. May be deformed or enlarged. It is also possible to perform coordinate conversion in the image processing device 12 and electrically correct the distortion. At this time, it is more desirable to independently correct the distortion aberration in the X-axis direction and the distortion aberration in the Y-axis direction to favorably correct the distortion aberration in each axial direction. Even if the distortion aberration cannot be completely removed electrically, it may be corrected so that the amounts of distortion aberration in the X-axis direction and the Y-axis direction are almost equal.

【0067】[0067]

【実施例】次に本発明の結像光学系の各実施例を示す。 実施例1 Y軸方向 有効Fナンバー=4.582 ,倍率=-0.1552 ,像高=0.472 画角=53.3°,物体距離=6.05 r1 =∞ d1 =0.3312 n1 =1.88300 ν1 =40.78 r2 =0.8910 d2 =0.3943 r3 =2.4186 d3 =0.6835 n2 =1.77250 ν2 =49.60 r4 =-1.1870 d4 =0.1314 r5 =∞(絞り) d5 =0.2103 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0158 r7 =∞ d7 =0.8412 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.2734 r9 =1.8497 d9 =0.5836 n5 =1.77250 ν5 =49.60 r10=-0.7072 d10=0.1682 n6 =1.84666 ν6 =23.78 r11=-3.9039 d11=0.2051 r12=∞ d12=0.6730 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2103 n8 =1.52287 ν8 =59.89 r14=∞ X軸方向 有効Fナンバー=4.612 ,倍率=-0.1058 ,像高=0.47
2 画角=84.5°,物体距離=6.05 r2 =0.4227 r4 =-0.8544 (他のr,d,n,νはY軸方向と同じ) 第2面 hs/hm=2.03 第4面 hs/hm=0.23
EXAMPLES Examples of the image forming optical system of the present invention will be described below. Example 1 Y-axis direction effective F number = 4.582, magnification = -0.1552, image height = 0.472, angle of view = 53.3 °, object distance = 6.05 r 1 = ∞ d 1 = 0.3312 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.8910 d 2 = 0.3943 r 3 = 2.4186 d 3 = 0.6835 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.1870 d 4 = 0.1314 r 5 = ∞ (aperture) d 5 = 0.2103 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0158 r 7 = ∞ d 7 = 0.8412 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.2734 r 9 = 1.8497 d 9 = 0.5836 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.7072 d 10 = 0.1682 n 6 = 1.84666 ν 6 = 23.78 r 11 = -3.9039 d 11 = 0.2051 r 12 = ∞ d 12 = 0.6730 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2103 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ X-axis direction effective F number = 4.612, magnification = -0.1058, image height = 0.47
2 Angle of view = 84.5 °, object distance = 6.05 r 2 = 0.4227 r 4 = -0.8544 (other r, d, n, ν are the same as Y-axis direction) 2nd surface hs / hm = 2.03 4th surface hs / hm = 0.23

【0068】実施例2 Y軸方向 有効Fナンバー=4.582 ,倍率=-0.1573 ,像高=0.466 画角=54.3°,物体距離=5.97 r1 =∞ d1 =0.3268 n1 =1.88300 ν1 =40.78 r2 =0.9070(非球面) d2 =0.3890 r3 =2.3860 d3 =0.6743 n2 =1.77250 ν2 =49.60 r4 =-1.1917 (非球面)d4 =0.1297 r5 =∞(絞り) d5 =0.2075 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0156 r7 =∞ d7 =0.8299 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.2697 r9 =1.8248 d9 =0.5758 n5 =1.77250 ν5 =49.60 r10=-0.6976 d10=0.1660 n6 =1.84666 ν6 =23.78 r11=-3.8513 d11=0.2023 r12=∞ d12=0.6639 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2075 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第2面) AR2 =0 ,AR4 =2.9038×10-1,AR6 ,AR8
AR10は 0 (第4面) AR2 =0 ,AR4 =5.4170×10-2,AR6 ,AR8
AR10は 0 X軸方向 有効Fナンバー=4.579 ,倍率=-0.1058 ,像高=0.46
6 画角=85.3°,物体距離=5.97 r2 =0.4170 r4 =-0.8429 (他のr,d,n,νはY軸方向と同じ) 非球面係数 (第2面) AP2 =0 ,AP4 =1.4400×10-1,AP6 ,AP8
AP10は 0 (第4面) AP2 =0 ,AP4 =2.7409×10-1,AP6 ,AP8
AP10は 0 (n−1)ARi ・APi =0.0369 (第2面)、0.011
5(第4面) 第2面 hs/hm=2.84 第4面 hs/hm=0.34
Example 2 Y-axis direction effective F number = 4.582, magnification = -0.1573, image height = 0.466 angle of view = 54.3 °, object distance = 5.97 r 1 = ∞ d 1 = 0.3268 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.9070 (aspherical surface) d 2 = 0.3890 r 3 = 2.3860 d 3 = 0.6743 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.1917 (aspherical surface) d 4 = 0.1297 r 5 = ∞ (aperture) d 5 = 0.2075 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0156 r 7 = ∞ d 7 = 0.8299 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.2697 r 9 = 1.8248 d 9 = 0.5758 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.6976 d 10 = 0.1660 n 6 = 1.84666 ν 6 = 23.78 r 11 = -3.8513 d 11 = 0.2023 r 12 = ∞ d 12 = 0.6639 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2075 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical coefficient (second surface) AR 2 = 0, AR 4 = 2.9038 × 10 -1 , AR 6 , AR 8 ,
AR 10 is 0 (fourth surface) AR 2 = 0, AR 4 = 5.4170 × 10 -2 , AR 6 , AR 8 ,
AR 10 is 0 X-axis direction effective F number = 4.579, magnification = -0.1058, image height = 0.46
6 Angle of view = 85.3 °, object distance = 5.97 r 2 = 0.4170 r 4 = -0.8429 (other r, d, n, ν are the same as the Y-axis direction) Aspheric coefficient (2nd surface) AP 2 = 0, AP 4 = 1.4400 × 10 -1 , AP 6 , AP 8 ,
AP 10 is 0 (4th surface) AP 2 = 0, AP 4 = 2.7409 × 10 −1 , AP 6 , AP 8 ,
AP 10 is 0 (n-1) AR i · AP i = 0.0369 (second surface), 0.011
5 (4th surface) 2nd surface hs / hm = 2.84 4th surface hs / hm = 0.34

【0069】実施
例3 Y軸方向 有効Fナンバー=4.582 ,倍率=-0.1372 ,像高=0.441 画角=49.4°,物体距離=6.84 r1 =∞ d1 =0.3746 n1 =1.88300 ν1 =40.78 r2 =0.7887(非球面) d2 =0.4459 r3 =2.7350 d3 =0.7729 n2 =1.77250 ν2 =49.60 r4 =-1.1589 (非球面)d4 =0.1486 r5 =∞(絞り) d5 =0.2378 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0178 r7 =∞ d7 =0.9513 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.3092 r9 =2.0917 d9 =0.6600 n5 =1.77250 ν5 =49.60 r10=-0.7997 d10=0.1903 n6 =1.84666 ν6 =23.78 r11=-4.4147 d11=0.2319 r12=∞ d12=0.7610 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2378 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第2面) AR2 =0 ,AR4 =-7.8630 ×10-1,AR6 ,AR
8 ,AR10は 0 (第4面) AR2 =0 ,AR4 =4.0436×10-2,AR6 ,AR8
AR10は 0 X軸方向 有効Fナンバー=4.479 ,倍率=-0.0781 ,像高=0.44
1 画角=93.3°,物体距離=6.84 r2 =0.3132 r4 =-0.8095 (他のr,d,n,νはY軸方向と同じ) 非球面係数 (第2面) AP2 =0 ,AP4 =-6.7458 ×10-1,AP6 ,AP
8 ,AP10は 0 (第4面) AP2 =0 ,AP4 =2.4043,AP6 ,AP8 ,AP10
は 0 (n−1)ARi ・APi =0.468 (第2面)、0.0751
(第4面) 第2面 hs/hm=2.65 第4面 hs/hm=0.27
Embodiment 3 Y-axis direction effective F number = 4.582, magnification = -0.1372, image height = 0.441 angle of view = 49.4 °, object distance = 6.84 r 1 = ∞ d 1 = 0.3746 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7887 (aspherical surface) d 2 = 0.4459 r 3 = 2.7350 d 3 = 0.7729 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.1589 (aspherical surface) d 4 = 0.1486 r 5 = ∞ (aperture) d 5 = 0.2378 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0178 r 7 = ∞ d 7 = 0.9513 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.3092 r 9 = 2.0917 d 9 = 0.6600 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.7997 d 10 = 0.1903 n 6 = 1.84666 ν 6 = 23.78 r 11 = -4.4147 d 11 = 0.2319 r 12 = ∞ d 12 = 0.7610 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2378 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical surface coefficient (second surface) AR 2 = 0, AR 4 = -7.8630 × 10 -1 , AR 6 , AR
8 , AR 10 is 0 (fourth surface) AR 2 = 0, AR 4 = 4.0436 × 10 -2 , AR 6 , AR 8 ,
AR 10 is 0 X-axis direction effective F number = 4.479, magnification = -0.0781, image height = 0.44
1 angle of view = 93.3 °, object distance = 6.84 r 2 = 0.3132 r 4 = -0.8095 (other r, d, n, ν are the same as the Y-axis direction) aspheric coefficient (2nd surface) AP 2 = 0, AP 4 = -6.7458 × 10 -1 , AP 6 , AP
8 , AP 10 is 0 (4th surface) AP 2 = 0, AP 4 = 2.4043, AP 6 , AP 8 , AP 10
Is 0 (n-1) AR i · AP i = 0.468 (second surface), 0.0751
(Fourth surface) Second surface hs / hm = 2.65 Fourth surface hs / hm = 0.27

【0070】実施例4 Y軸方向 有効Fナンバー=4.582 ,倍率=-0.1525 ,像高=0.476 画角=54.5°,物体距離=6.10 r1 =∞ d1 =0.3342 n1 =1.88300 ν1 =40.78 r2 =1.4318 d2 =0.3978 r3 =-2.8426 d3 =0.6895 n2 =1.77250 ν2 =49.60 r4 =-0.8619 d4 =0.1326 r5 =∞(絞り) d5 =0.2122 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0159 r7 =∞ d7 =0.8487 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.2758 r9 =1.8660 d9 =0.5888 n5 =1.77250 ν5 =49.60 r10=-0.7134 d10=0.1697 n6 =1.84666 ν6 =23.78 r11=-3.9383 d11=0.2069 r12=∞ d12=0.6789 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2122 n8 =1.52287 ν8 =59.89 r14=∞ X軸方向 有効Fナンバー=4.666 ,倍率=-0.1058 ,像高=0.47
6 画角=84.5°,物体距離=6.10 r2 =0.4265 r3 =2.4399 (他のr,d,n,νはY軸方向と同じ) 第2面 hs/hm=2.07 第3面 hs/hm=1.04
Example 4 Y-axis direction effective F number = 4.582, magnification = -0.1525, image height = 0.476 angle of view = 54.5 °, object distance = 6.10 r 1 = ∞ d 1 = 0.3342 n 1 = 1.88300 ν 1 = 40.78 r 2 = 1.4318 d 2 = 0.3978 r 3 = -2.8426 d 3 = 0.6895 n 2 = 1.77250 ν 2 = 49.60 r 4 = -0.8619 d 4 = 0.1326 r 5 = ∞ (aperture) d 5 = 0.2122 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0159 r 7 = ∞ d 7 = 0.8487 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.2758 r 9 = 1.8660 d 9 = 0.5888 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.7134 d 10 = 0.1697 n 6 = 1.84666 v 6 = 23.78 r 11 = -3.9383 d 11 = 0.2069 r 12 = ∞ d 12 = 0.6789 n 7 = 1.51633 v 7 = 64.15 r 13 = ∞ d 13 = 0.2122 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ X-axis direction effective F number = 4.666, magnification = -0.1058, image height = 0.47
6 Angle of view = 84.5 °, object distance = 6.10 r 2 = 0.4265 r 3 = 2.4399 (other r, d, n, ν are the same as the Y-axis direction) Second surface hs / hm = 2.07 Third surface hs /Hm=1.04

【0071】実施例5 Y軸方向 有効Fナンバー=10.000,倍率=-0.1572 ,像高=0.474 画角=54.1°,物体距離=6.07 r1 =∞ d1 =0.3327 n1 =1.88300 ν1 =40.78 r2 =0.4246 d2 =0.3961 r3 =0.5234 d3 =0.6865 n2 =1.77250 ν2 =49.60 r4 =14.0803 d4 =0.1320 r5 =∞(絞り) d5 =0.2112 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0158 r7 =∞ d7 =0.8449 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.2746 r9 =1.8578 d9 =0.5862 n5 =1.77250 ν5 =49.60 r10=-0.7103 d10=0.1690 n6 =1.84666 ν6 =23.78 r11=-3.9210 d11=0.2060 r12=∞ d12=0.6759 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2112 n8 =1.52287 ν8 =59.89 r14=∞ X軸方向 有効Fナンバー=10.236,倍率=-0.1058 ,像高=0.47
4 画角=98.9°,物体距離=6.07 r3=2.4291 r4 =-0.8581 (他のr,d,n,νはY軸方向と同じ) 第3面 hs/hm=1.89 第4面 hs/hm=0.55
Example 5 Y-axis direction effective F number = 10.000, magnification = -0.1572, image height = 0.474 angle of view = 54.1 °, object distance = 6.07 r 1 = ∞ d 1 = 0.3327 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.4246 d 2 = 0.3961 r 3 = 0.5234 d 3 = 0.6865 n 2 = 1.77250 ν 2 = 49.60 r 4 = 14.0803 d 4 = 0.1320 r 5 = ∞ (diaphragm) d 5 = 0.2112 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0158 r 7 = ∞ d 7 = 0.8449 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.2746 r 9 = 1.8578 d 9 = 0.5862 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.7103 d 10 = 0.1690 n 6 = 1.84666 ν 6 = 23.78 r 11 = -3.9210 d 11 = 0.2060 r 12 = ∞ d 12 = 0.6759 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2112 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ X-axis direction effective F number = 10.236, magnification = -0.1058, image height = 0.47
4 Angle of view = 98.9 °, object distance = 6.07 r 3 = 2.4291 r 4 = -0.8581 (other r, d, n, ν are the same as the Y-axis direction) 3rd surface hs / hm = 1.89 4th surface hs / hm = 0.55

【0072】実施例6 Y軸方向 有効Fナンバー=4.582 ,倍率=-0.1051 ,像高=0.432 画角=49.8°,物体距離=8.94 r1 =∞ d1 =0.4900 n1 =1.88300 ν1 =40.78 r2 =0.6464 d2 =0.5834 r3 =3.5778 d3 =1.0111 n2 =1.77250 ν2 =49.60 r4 =-1.2639 d4 =0.1944 r5 =∞(絞り) d5 =0.3111 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0233 r7 =∞ d7 =1.2445 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.4044 r9 =2.7362 d9 =0.8633 n5 =1.77250 ν5 =49.60 r10=-1.0461 d10=0.2489 n6 =1.84666 ν6 =23.78 r11=-5.1680 d11=0.3033 r12=∞ d12=0.9956 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.3111 n8 =1.52287 ν8 =59.89 r14=∞ X軸方向 有効Fナンバー=4.582 ,倍率=-0.0637 ,像高=0.43
2 画角=93.10 °,物体距離=8.94 r2 =0.4570 r11=-2.0177 (他のr,d,n,νはY軸方向と同じ) 第2面 hs/hm=3.13 第11面 hs/hm=3.66
Example 6 Y-axis direction effective F number = 4.582, magnification = -0.1051, image height = 0.432 angle of view = 49.8 °, object distance = 8.94 r 1 = ∞ d 1 = 0.4900 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.6464 d 2 = 0.5834 r 3 = 3.5778 d 3 = 1.0111 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.2639 d 4 = 0.1944 r 5 = ∞ (diaphragm) d 5 = 0.3111 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0233 r 7 = ∞ d 7 = 1.2445 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.4044 r 9 = 2.7362 d 9 = 0.8633 n 5 = 1.77250 ν 5 = 49.60 r 10 = -1.0461 d 10 = 0.2489 n 6 = 1.84666 ν 6 = 23.78 r 11 = -5.1680 d 11 = 0.3033 r 12 = ∞ d 12 = 0.9956 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.3111 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ X-axis direction effective F number = 4.582, magnification = -0.0637, image height = 0.43
2 Angle of view = 93.10 °, object distance = 8.94 r 2 = 0.4570 r 11 = -2.0177 (other r, d, n, ν are the same as the Y-axis direction) 2nd surface hs / hm = 3.13 11th surface hs / hm = 3.66

【0073】実施例7 Y軸方向 有効Fナンバー=4.698 ,倍率=-0.141 ,像高=0.488 画角=56.3°,物体距離=6.739 r1 =∞ d1 =0.3428 n1 =1.88300 ν1 =40.78 r2 =0.8112(非球面) d2 =0.5982 r3 =2.5000 d3 =0.7065 n2 =1.77250 ν2 =49.60 r4 =-1.1202 d4 =0.1359 r5 =∞(絞り) d5 =0.2174 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0163 r7 =∞ d7 =0.8695 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.2826 r9 =1.8811 d9 =0.6032 n5 =1.77250 ν5 =49.60 r10=-0.7310 d10=0.1739 n6 =1.84666 ν6 =23.78 r11=-5.7123 (非球面)d11=0.2120 r12=∞ d12=0.9656 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2174 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第2面) AR2 =0 ,AR4 =5.2315×10-1 ,AR6 =AR8
=AR10=0 AP2 =0 ,AP4 =-9.6676 ×10-2 ,AP6 =AP
8 =AP10=0 (第11面) AR2 =0 ,AR4 =4.8750×10-2 ,AR6 =AR8
=AR10=0 AP2 =0 ,AP4 =-2.9067 ×10-1 ,AP6 =AP
8 =AP10=0 X軸方向 有効Fナンバー=2.719 ,倍率=-0.082 ,像高=0.48
8 画角=112.4 °,物体距離=6.739 r2 =0.5404 r12=-1.4155 (他のr,d,n,νはY軸方向と同じ) 第2面 hS /hm =3.42 第11面 hS /hm =5.40
Embodiment 7 Y-axis direction effective F number = 4.698, magnification = -0.141, image height = 0.488 angle of view = 56.3 °, object distance = 6.739 r 1 = ∞ d 1 = 0.3428 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.8112 (aspherical surface) d 2 = 0.5982 r 3 = 2.5000 d 3 = 0.7065 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.1202 d 4 = 0.1359 r 5 = ∞ (aperture) d 5 = 0.2174 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0163 r 7 = ∞ d 7 = 0.8695 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.2826 r 9 = 81811 d 9 = 0.6032 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.7310 d 10 = 0.1739 n 6 = 1.84666 ν 6 = 23.78 r 11 = -5.7123 (aspherical surface) d 11 = 0.2120 r 12 = ∞ d 12 = 0.9656 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2174 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical surface coefficient (second surface) AR 2 = 0, AR 4 = 5.2315 × 10 -1 , AR 6 = AR 8
= AR 10 = 0 AP 2 = 0, AP 4 = -9.6676 × 10 -2 , AP 6 = AP
8 = AP 10 = 0 (11th surface) AR 2 = 0, AR 4 = 4.8750 × 10 -2 , AR 6 = AR 8
= AR 10 = 0 AP 2 = 0, AP 4 = -2.9067 × 10 -1 , AP 6 = AP
8 = AP 10 = 0 X-axis direction effective F number = 2.719, magnification = -0.082, image height = 0.48
8 angle = 112.4 °, object distance = 6.739 r 2 = 0.5404 r 12 = -1.4155 ( other r, d, n, ν is the same as the Y-axis direction) the second surface h S / h m = 3.42 eleventh surface h S / h m = 5.40

【0074】実施例8 Y軸方向 有効Fナンバー=4.579 ,倍率=-0.171 ,像高=0.401 画角=46.4°,物体距離=5.541 r1 =∞ d1 =0.3128 n1 =1.88300 ν1 =40.78 r2 =1.4291(非球面) d2 =0.3351 r3 =3.4646 d3 =0.5809 n2 =1.77250 ν2 =49.60 r4 =-1.0057 d4 =0.0804 r5 =∞(絞り) d5 =0.1787 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0134 r7 =∞ d7 =0.7149 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.0946 r9 =3.6485(非球面) d9 =0.4960 n5 =1.77250 ν5 =49.60 r10=-0.6010 d10=0.1430 n6 =1.84666 ν6 =23.78 r11=-1.8444 d11=0.1743 r12=∞ d12=0.5720 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.1787 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第2面) AR2 =0 ,AR4 =1.0875 ,AR6 =AR8 =AR
10=0 AP2 =0 ,AP4 =-2.1512 ×10-1 ,AP6 =AP
8 =AP10=0 (第9面) AR2 =0 ,AR4 =5.1840×10-2 ,AR6 =AR8
=AR10=0 AP2 =0 ,AP4 =9.0022×10-1 ,AP6 =AP8
=AP10=0 X軸方向 有効Fナンバー=2.777 ,倍率=-0.104 ,像高=0.40
1 画角=91.0°,物体距離=5.541 r2 =1.4291 r10=3.6485 (他のr,d,n,νはY軸方向と同じ) 第2面 hS /hm =2.98 第9面 hS /hm =3.01
Example 8 Y-axis direction effective F number = 4.579, magnification = -0.171, image height = 0.401 angle of view = 46.4 °, object distance = 5.541 r 1 = ∞ d 1 = 0.3128 n 1 = 1.88300 ν 1 = 40.78 r 2 = 1.4291 (aspherical surface) d 2 = 0.3351 r 3 = 3.4646 d 3 = 0.5809 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.0057 d 4 = 0.0804 r 5 = ∞ (aperture) d 5 = 0.1787 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0134 r 7 = ∞ d 7 = 0.7149 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.0946 r 9 = 3.6485 (aspherical surface) d 9 = 0.4960 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.6010 d 10 = 0.1430 n 6 = 1.84666 ν 6 = 23.78 r 11 = -1.8444 d 11 = 0.1743 r 12 = ∞ d 12 = 0.5720 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.1787 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical surface coefficient (second surface) AR 2 = 0, AR 4 = 1.0875, AR 6 = AR 8 = AR
10 = 0 AP 2 = 0, AP 4 = -2.1512 × 10 -1 , AP 6 = AP
8 = AP 10 = 0 (9th surface) AR 2 = 0, AR 4 = 5.1840 × 10 -2 , AR 6 = AR 8
= AR 10 = 0 AP 2 = 0, AP 4 = 9.0022 × 10 -1 , AP 6 = AP 8
= AP 10 = 0 X-axis direction effective F number = 2.777, magnification = -0.104, image height = 0.40
1 angle = 91.0 °, object distance = 5.541 r 2 = 1.4291 r 10 = 3.6485 ( other r, d, n, ν is the same as the Y-axis direction) h second surface S / h m = 2.98 ninth surface h S / h m = 3.01

【0075】実施例9 Y軸方向 有効Fナンバー=4.545 ,倍率=-0.1238 ,像高=0.547 画角=61.8°,物体距離=7.551 r1 =∞ d1 =0.3836 n1 =1.88300 ν1 =40.78 r2 =0.7332 d2 =1.0246 r3 =2.1101 d3 =0.4040 n2 =1.77250 ν2 =49.60 r4 =-1.6805 (非球面)d4 =0.1136 r5 =∞(絞り) d5 =0.2436 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0183 r7 =∞ d7 =0.9743 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.2436 r9 =-4.2924 (非球面)d9 =0.6759 n5 =1.77250 ν5 =49.60 r10=-0.8190 d10=0.1948 n6 =1.84666 ν6 =23.78 r11=-1.6087 d11=0.7744 r12=∞ d12=0.7794 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2436 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第4面) AR2 =0 ,AR4 =8.8928×10-3 ,AR6 =AR8
=AR10=0 AP2 =0 ,AP4 =1.0910 ,AP6 =AP8 =AP
10=0 (第9面) AR2 =0 ,AR4 =-1.0133 ×10-1 ,AR6 =AR
8 =AR10=0 AP2 =0 ,AP4 =1.2277×10-1 ,AP6 =AP8
=AP10=0 X軸方向 有効Fナンバー=2.829 ,倍率=-0.077 ,像高=0.54
7 画角=113.2 °,物体距離=7.551 r5 =-6.9310 r10=2.5556 (他のr,d,n,νはY軸方向と同じ) 第4面 hS /hm =0.20 第9面 hS /hm =1.74
Example 9 Y-axis direction effective F number = 4.545, magnification = -0.1238, image height = 0.547 angle of view = 61.8 °, object distance = 7.551 r 1 = ∞ d 1 = 0.3836 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7332 d 2 = 1.0246 r 3 = 2.1101 d 3 = 0.4040 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.6805 (aspherical surface) d 4 = 0.1136 r 5 = ∞ (aperture) d 5 = 0.2436 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0183 r 7 = ∞ d 7 = 0.9743 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.2436 r 9 = -4.2924 (aspherical surface) d 9 = 0.6759 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.8190 d 10 = 0.1948 n 6 = 1.84666 ν 6 = 23.78 r 11 = -1.6087 d 11 = 0.7744 r 12 = ∞ d 12 = 0.7794 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2436 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ Aspheric coefficient (4th surface) AR 2 = 0, AR 4 = 8.8928 × 10 -3 , AR 6 = AR 8
= AR 10 = 0 AP 2 = 0, AP 4 = 1.0910, AP 6 = AP 8 = AP
10 = 0 (9th surface) AR 2 = 0, AR 4 = -1.0133 × 10 -1 , AR 6 = AR
8 = AR 10 = 0 AP 2 = 0, AP 4 = 1.2277 × 10 -1 , AP 6 = AP 8
= AP 10 = 0 X-axis direction Effective F number = 2.829, Magnification = -0.077, Image height = 0.54
7 Angle of = 113.2 °, object distance = 7.551 r 5 = -6.9310 r 10 = 2.5556 ( other r, d, n, ν is the same as the Y-axis direction) fourth surface h S / h m = 0.20 Face of 9 h S / h m = 1.74

【0076】実施例10 Y軸方向 有効Fナンバー=4.386 ,倍率=-0.115 ,像高=0.593 画角=67.0°,物体距離=8.188 r1 =∞ d1 =0.1434 n1 =1.76200 ν1 =40.10 r2 =0.6133 d2 =0.4319 r3 =3.9204(非球面) d3 =1.1416 n2 =1.88300 ν2 =40.78 r4 =-1.1771 d4 =0.5773 r5 =∞(絞り) d5 =0.2641 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0198 r7 =∞ d7 =1.0565 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.1321 r9 =-12.3000(非球面)d9 =0.4792 n5 =1.80300 ν5 =46.66 r10=-0.7353 d10=0.2113 n6 =1.84666 ν6 =23.78 r11=-1.4864 d11=0.1799 r12=∞ d12=0.8452 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2642 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第3面) AR2 =0 ,AR4 =-1.5164 ×10-2 ,AR6 =AR
8 =AR10=0 AP2 =0 ,AP4 =1.0504 ,AP6 =AP8 =AP
10=0 (第9面) AR2 =0 ,AR4 =-1.2412 ×10-1 ,AR6 =AR
8 =AR10=0 AP2 =0 ,AP4 =-2.0442 ×10-1 ,AP6 =AP
8 =AP10=0 X軸方向 有効Fナンバー=2.474 ,倍率=-0.0647 ,像高=0.59
3 画角=120.2 °,物体距離=8.188 r3 =-5.5254 r9 =2.3948 (他のr,d,n,νはY軸方向と同じ) 第3面 hS /hm =2.73 第9面 hS /hm =3.37
Example 10 Y-axis direction effective F number = 4.386, magnification = -0.115, image height = 0.593 angle of view = 67.0 °, object distance = 8.188 r 1 = ∞ d 1 = 0.1434 n 1 = 1.76200 ν 1 = 40.10 r 2 = 0.6133 d 2 = 0.4319 r 3 = 3.9204 (aspherical surface) d 3 = 1.1416 n 2 = 1.88300 ν 2 = 40.78 r 4 = -1.1771 d 4 = 0.5773 r 5 = ∞ (diaphragm) d 5 = 0.2641 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0198 r 7 = ∞ d 7 = 1.0565 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.1321 r 9 = -12.3000 (aspherical surface) d 9 = 0.4792 n 5 = 1.80300 ν 5 = 46.66 r 10 = -0.7353 d 10 = 0.2113 n 6 = 1.84666 ν 6 = 23.78 r 11 = -1.4864 d 11 = 0.1799 r 12 = ∞ d 12 = 0.8452 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2642 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical coefficient (third surface) AR 2 = 0, AR 4 = -1.5164 × 10 -2 , AR 6 = AR
8 = AR 10 = 0 AP 2 = 0, AP 4 = 1.0504, AP 6 = AP 8 = AP
10 = 0 (9th surface) AR 2 = 0, AR 4 = -1.2412 × 10 -1 , AR 6 = AR
8 = AR 10 = 0 AP 2 = 0, AP 4 = -2.0442 × 10 -1 , AP 6 = AP
8 = AP 10 = 0 X-axis direction effective F number = 2.474, magnification = -0.0647, image height = 0.59
3 Angle of view = 120.2 °, object distance = 8.188 r 3 = -5.5254 r 9 = 2.3948 (other r, d, n, ν are the same as the Y-axis direction) Third surface h S / h m = 2.73 9th surface h S / h m = 3.37

【0077】実施例11 Y軸方向 有効Fナンバー=4.575 ,倍率=-0.140 ,像高=0.497 画角=54.8°,物体距離=6.868 r1 =∞ d1 =0.3489 n1 =1.88300 ν1 =40.78 r2 =0.5645 d2 =0.3450 r3 =4.1758 d3 =0.5696 n2 =1.77250 ν2 =49.60 r4 =-1.8983 d4 =0.2378 r5 =∞(絞り) d5 =0.2215 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0167 r7 =∞ d7 =0.8861 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.2030 r9 =1.0302(非球面) d9 =0.8792 n5 =1.77250 ν5 =49.60 r10=-0.7449 d10=0.5454 n6 =1.84666 ν6 =23.78 r11=5.4426(非球面) d11=0.9817 r12=∞ d12=0.7089 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2215 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第9面) AR2 =0 ,AR4 =-7.0669 ×10-4 ,AR6 =AR
8 =AR10=0 AP2 =0 ,AP4 =8.7738 ,AP6 =AP8 =AP
10=0 (第11面) AR2 =0 ,AR4 =1.7565×10-1 ,AR6 =AR8
=AR10=0 AP2 =0 ,AP4 =3.5894×10-1 ,AP6 =AP8
=AP10=0 X軸方向 有効Fナンバー=2.794 ,倍率=-0.0853 ,像高=0.49
7 画角=94.8°,物体距離=6.868 r10=2.7370 r12=-1.2985 (他のr,d,n,νはY軸方向と同じ) 第9面 hS /hm =1.45 第11面 hS /hm =1.30
Example 11 Y-axis direction effective F number = 4.575, magnification = −0.140, image height = 0.497 angle of view = 54.8 °, object distance = 6.868 r 1 = ∞ d 1 = 0.3489 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5645 d 2 = 0.3450 r 3 = 4.1758 d 3 = 0.5696 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.8983 d 4 = 0.2378 r 5 = ∞ (aperture) d 5 = 0.2215 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0167 r 7 = ∞ d 7 = 0.8861 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.2030 r 9 = 1.0302 (aspherical surface) d 9 = 0.8792 n 5 = 1.77250 v 5 = 49.60 r 10 = -0.7449 d 10 = 0.5454 n 6 = 1.84666 v 6 = 23.78 r 11 = 5.4426 (aspherical surface) d 11 = 0.9817 r 12 = ∞ d 12 = 0.7089 n 7 = 1.51633 v 7 = 64.15 r 13 = ∞ d 13 = 0.2215 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical coefficient (9th surface) AR 2 = 0, AR 4 = -7.0669 × 10 -4 , AR 6 = AR
8 = AR 10 = 0 AP 2 = 0, AP 4 = 8.7738, AP 6 = AP 8 = AP
10 = 0 (11th surface) AR 2 = 0, AR 4 = 1.7565 × 10 -1 , AR 6 = AR 8
= AR 10 = 0 AP 2 = 0, AP 4 = 3.5894 × 10 -1 , AP 6 = AP 8
= AP 10 = 0 X-axis direction effective F number = 2.794, magnification = -0.0853, image height = 0.49
7 Angle of = 94.8 °, object distance = 6.868 r 10 = 2.7370 r 12 = -1.2985 ( other r, d, n, ν is the same as the Y-axis direction) ninth surface h S / h m = 1.45 eleventh surface h S / h m = 1.30

【0078】実施例12 Y軸方向 有効Fナンバー=4.529 ,倍率=-0.109 ,像高=0.627 画角=73.0°,物体距離=8.659 r1 =∞ d1 =0.4399 n1 =1.88300 ν1 =40.78 r2 =0.7188(非球面) d2 =0.5237 r3 =2.3810 d3 =0.9078 n2 =1.68600 ν2 =49.16 r4 =-1.0582 d4 =0.1746 r5 =∞(絞り) d5 =0.2793 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0209 r7 =∞ d7 =1.1172 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.3631 r9 =2.4565 d9 =0.7751 n5 =1.77250 ν5 =49.60 r10=-0.9392 d10=0.2234 n6 =1.84666 ν6 =23.78 r11=-5.1847 d11=0.2723 r12=∞ d12=0.8938 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2793 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第2面) AR2 =AR4 =AR6 =AR8 =AR10=0 AP2 =AP4 =AP6 =AP8 =AP10=0 X軸方向 有効Fナンバー=3.985 ,倍率=-0.096 ,像高=0.627 画角=97.0°,物体距離=8.66 r2 =0.5171 (他のr,d,n,νはY軸方向と同じ) hS /hm =3.79Example 12 Y-axis direction effective F number = 4.529, magnification = -0.109, image height = 0.627 angle of view = 73.0 °, object distance = 8.659 r 1 = ∞ d 1 = 0.4399 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7188 (aspherical surface) d 2 = 0.5237 r 3 = 2.3810 d 3 = 0.9078 n 2 = 1.68600 ν 2 = 49.16 r 4 = -1.0582 d 4 = 0.1746 r 5 = ∞ (aperture) d 5 = 0.2793 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0209 r 7 = ∞ d 7 = 1.1172 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.3631 r 9 = 2.4565 d 9 = 0.7751 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.9392 d 10 = 0.2234 n 6 = 1.84666 ν 6 = 23.78 r 11 = -5.1847 d 11 = 0.2723 r 12 = ∞ d 12 = 0.8938 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2793 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical coefficient (second surface) AR 2 = AR 4 = AR 6 = AR 8 = AR 10 = 0 AP 2 = AP 4 = AP 6 = AP 8 = AP 10 = 0 X-axis direction Effective F-number = 3.985, magnification = -0.096, image height = 0.627 angle of view = 97.0 °, object distance = 8.66 r 2 = 0.5171 (other r, d, n, ν are the same as Y-axis direction) ) H S / h m = 3.79

【0079】実施例13 Y軸方向 有効Fナンバー=4.532 ,倍率=-0.105 ,像高=0.648 画角=75.0°,物体距離=8.947 r1 =6.0273(非球面) d1 =0.4546 n1 =1.88300 ν1 =40.78 r2 =0.5801 d2 =0.5411 r3 =3.3190 d3 =0.9380 n2 =1.77250 ν2 =49.60 r4 =-1.1725 d4 =0.1804 r5 =∞(絞り) d5 =0.2886 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0216 r7 =∞ d7 =1.1544 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.3752 r9 =3.8589 d9 =0.8009 n5 =1.77250 ν5 =49.60 r10=-0.9704 d10=0.2309 n6 =1.84666 ν6 =23.78 r11=-2.7415 d11=0.2814 r12=∞ d12=0.9235 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2886 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第1面) AR2 =0 ,AR4 =2.5760×10-3 ,AR6 =AR8
=AR10=0 AP2 =0 ,AP4 =1.4743×10-7 ,AP6 =AP8
=AP10=0 X軸方向 有効Fナンバー=3.964 ,倍率=-0.091 ,像高=0.648 画角=97.8°,物体距離=8.947 r1 =-8.8293 (他のr,d,n,νはY軸方向と同じ) hS /hm =7.34
Example 13 Y-axis direction effective F number = 4.532, magnification = −0.105, image height = 0.648 angle of view = 75.0 °, object distance = 8.947 r 1 = 6.0273 (aspherical surface) d 1 = 0.4546 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5801 d 2 = 0.5411 r 3 = 3.3190 d 3 = 0.9380 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.1725 d 4 = 0.1804 r 5 = ∞ (diaphragm) d 5 = 0.2886 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0216 r 7 = ∞ d 7 = 1.1544 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.3752 r 9 = 3.8589 d 9 = 0.8009 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.9704 d 10 = 0.2309 n 6 = 1.84666 ν 6 = 23.78 r 11 = -2.7415 d 11 = 0.281 r 12 = ∞ d 12 = 0.9235 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2886 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical surface coefficient (first surface) AR 2 = 0, AR 4 = 2.5760 × 10 −3 , AR 6 = AR 8
= AR 10 = 0 AP 2 = 0, AP 4 = 1.4743 × 10 -7 , AP 6 = AP 8
= AP 10 = 0 X-axis direction Effective F number = 3.964, Magnification = -0.091, Image height = 0.648 Angle of view = 97.8 °, Object distance = 8.947 r 1 = -8.8293 (other r, d, n, ν are Y Same as axial direction) h S / h m = 7.34

【0080】実施例14 Y軸方向 有効Fナンバー=4.517 ,倍率=-0.110 ,像高=0.627 画角=73.0°,物体距離=8.662 r1 =∞ d1 =0.4401 n1 =1.88300 ν1 =40.78 r2 =0.5616 d2 =0.5239 r3 =3.2134 d3 =0.9081 n2 =1.77250 ν2 =49.60 r4 =-1.1352 d4 =0.1746 r5 =∞ (絞り) d5 =0.2794 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0210 r7 =∞ d7 =1.1177 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.3633 r9 =2.4575 d9 =0.7754 n5 =1.77250 ν5 =49.60 r10=-0.8309 d10=0.2235 n6 =1.91536 ν6 =21.17 r11=-5.5603 (非球面)d11=0.2724 r12=∞ d12=0.8942 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.2794 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第11面) AR2 =AR4 =AR6 =AR8 =AR10=0 AP2 =AP4 =AP6 =AP8 =AP10=0 X軸方向 有効Fナンバー=3.432 ,倍率=-0.084 ,像高=0.627 画角=100.0 °,物体距離=8.66 r12=-2.1668 (他のr,d,n,νはY軸方向と同じ) hS /hm =5.73Example 14 Y-axis direction effective F number = 4.517, magnification = -0.110, image height = 0.627 angle of view = 73.0 °, object distance = 8.662 r 1 = ∞ d 1 = 0.4401 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5616 d 2 = 0.5239 r 3 = 3.2134 d 3 = 0.9081 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.1352 d 4 = 0.1746 r 5 = ∞ (aperture) d 5 = 0.2794 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0210 r 7 = ∞ d 7 = 1.1177 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.3633 r 9 = 2.4575 d 9 = 0.7754 n 5 = 1.77250 ν 5 = 49.60 r 10 = -0.8309 d 10 = 0.2235 n 6 = 1.91536 ν 6 = 21.17 r 11 = -5.5603 (aspherical surface) d 11 = 0.2724 r 12 = ∞ d 12 = 0.8942 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.2794 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical surface coefficient (11th surface) AR 2 = AR 4 = AR 6 = AR 8 = AR 10 = 0 AP 2 = AP 4 = AP 6 = AP 8 = A 10 = 0 X-axis direction effective F-number = 3.432, magnification = -0.084, image height = 0.627 angle = 100.0 °, object distance = 8.66 r 12 = -2.1668 (other r, d, n, [nu is the Y-axis direction Same as) h S / h m = 5.73

【0081】実施例15 Y軸方向 有効Fナンバー=4.535 ,倍率=-0.099 ,像高=0.689 画角=86.0°,物体距離=9.601 r1 =∞ d1 =0.4878 n1 =1.88300 ν1 =40.78 r2 =0.6225(非球面) d2 =0.5807 r3 =3.5616 d3 =1.0066 n2 =1.77250 ν2 =49.60 r4 =-1.2582 d4 =0.1936 r5 =∞(絞り) d5 =0.3097 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0232 r7 =∞ d7 =1.2388 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.4026 r9 =2.7239 d9 =0.8594 n5 =1.77250 ν5 =49.60 r10=-1.0414 d10=0.2478 n6 =1.84666 ν6 =23.78 r11=-5.7490 d11=0.3020 r12=∞ d12=0.9911 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.3097 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第2面) AR2 =0 ,AR4 =2.5301×10-1 ,AR6 =-3.942
6 ×10-1 AR8 =-4.8818 ×10-1 ,AR10=-8.6456 AP2 =0 ,AP4 =-2.1277 ,AP6 =-7.5511 ×
10-6 AP8 =-7.8280 ×10-1 ,AP10=1.0001×10-10 X軸方向 有効Fナンバー=4.535 ,倍率=-0.099 ,像高=0.689 画角=109.0 °,物体距離=9.601 (他のr,d,n,νはY軸方向と同じ) hS /hm =3.92 (n−n’)・AR4 ・AP4 =-0.4753
Example 15 Y-axis direction effective F number = 4.535, magnification = -0.099, image height = 0.689 angle of view = 86.0 °, object distance = 9.601 r 1 = ∞ d 1 = 0.4878 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.6225 (aspherical surface) d 2 = 0.5807 r 3 = 3.5616 d 3 = 1.0066 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.2582 d 4 = 0.1936 r 5 = ∞ (aperture) d 5 = 0.3097 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0232 r 7 = ∞ d 7 = 1.2388 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.4026 r 9 = 2.7239 d 9 = 0.8594 n 5 = 1.77250 ν 5 = 49.60 r 10 = -1.0414 d 10 = 0.2478 n 6 = 1.84666 ν 6 = 23.78 r 11 = -5.7490 d 11 = 0.3020 r 12 = ∞ d 12 = 0.9911 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.3097 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical coefficient (second surface) AR 2 = 0, AR 4 = 2.5301 × 10 -1 , AR 6 = -3.942
6 x 10 -1 AR 8 = -4.8818 x 10 -1 , AR 10 = -8.6456 AP 2 = 0, AP 4 = -2.1277, AP 6 = -7.5511 x
10 -6 AP 8 = -7.8280 × 10 -1 , AP 10 = 1.0001 × 10 -10 X-axis direction effective F number = 4.535, magnification = -0.099, image height = 0.689 angle of view = 109.0 °, object distance = 9.601 ( other r, d, n, ν is the same as the Y-axis direction) h S / h m = 3.92 (n-n ') · AR 4 · AP 4 = -0.4753

【0082】実施例16 Y軸方向 有効Fナンバー=4.546 ,倍率=-0.091727 ,像高=0.746 画角=88.8°,物体距離=10.295 r1 =∞ d1 =0.5231 n1 =1.88300 ν1 =40.78 r2 =0.6675 d2 =0.7223 r3 =3.3211 d3 =1.0793 n2 =1.77250 ν2 =49.60 r4 =-1.3327 d4 =0.2076 r5 =∞(絞り) d5 =0.3321 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0249 r7 =∞ d7 =1.3284 n4 =1.51400 ν4 =73.00 r8 =∞ d8 =0.4317 r9 =2.9209 d9 =0.9216 n5 =1.77250 ν5 =49.60 r10=-1.1167 d10=0.2657 n6 =1.84666 ν6 =23.78 r11=-6.1647 (非球面)d11=0.0830 r12=∞ d12=1.0627 n7 =1.51633 ν7 =64.15 r13=∞ d13=0.3321 n8 =1.52287 ν8 =59.89 r14=∞ 非球面係数 (第11面) AR2 =9.9141×10-3 ,AR4 =-1.0944 ×10-1 AR6 =9.5516×10-2 ,AR8 =6.2083×10-2 AR10=-6.4965 ×10-2 AP2 =0 ,AP4 =-3.7973 ×10-1 ,AP6 =1.24
38×10-1 AP8 =-9.1935 ×10-2 ,AP10=2.1323×10-1 X軸方向 有効Fナンバー=4.546,倍率=-0.092 ,像高=0.746 画角=116.2 °,物体距離=10.295 (他のr,d,n,νはY軸方向と同じ) hS /hm =9.40 (n−n’)・AR4 ・AP4 =0.0352 ただしr,r,・・・ は各レンズ面の曲率半径、
,d,・・・は各レンズの肉厚、n,n,・
・・は各レンズの屈折率、ν,ν2,・・・は各レン
ズのアッベ数である。又、データー中アナモルフィック
面は、X軸方向とY軸方向とで曲率半径が異なるが、他
の面はすべてX軸方向の曲率半径とY軸方向の曲率半径
は等しい。したがってデーター中X軸方向はアナモルフ
ィック面のみ記載してある。又、データー中の画角は、
図4において、15を撮像範囲とすると16がX軸方向
の画角、17がY軸方向の画角、18が撮像範囲の対角
方向の画角で最大画角である。
Example 16 Y-axis direction effective F number = 4.546, magnification = -0.091727, image height = 0.746 angle of view = 88.8 °, object distance = 10.295 r 1 = ∞ d 1 = 0.5231 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.6675 d 2 = 0.7223 r 3 = 3.3211 d 3 = 1.0793 n 2 = 1.77250 ν 2 = 49.60 r 4 = -1.3327 d 4 = 0.2076 r 5 = ∞ (aperture) d 5 = 0.3321 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0249 r 7 = ∞ d 7 = 1.3284 n 4 = 1.51400 ν 4 = 73.00 r 8 = ∞ d 8 = 0.4317 r 9 = 2.9209 d 9 = 0.9216 n 5 = 1.77250 ν 5 = 49.60 r 10 = -1.1167 d 10 = 0.2657 n 6 = 1.84666 ν 6 = 23.78 r 11 = -6.1647 (aspherical surface) d 11 = 0.0830 r 12 = ∞ d 12 = 1.0627 n 7 = 1.51633 ν 7 = 64.15 r 13 = ∞ d 13 = 0.3321 n 8 = 1.52287 ν 8 = 59.89 r 14 = ∞ aspherical surface coefficient (the 11th surface) AR 2 = 9.9141 × 10 −3 , AR 4 = −1.0944 × 10 −1 AR 6 = 9.5516 × 10 −2 , AR 8 = 6.2083 × 10 -2 R 10 = -6.4965 × 10 -2 AP 2 = 0, AP 4 = -3.7973 × 10 -1, AP 6 = 1.24
38 × 10 -1 AP 8 = -9.1935 × 10 -2 , AP 10 = 2.1323 × 10 -1 X-axis direction effective F number = 4.546, magnification = -0.092, image height = 0.746 angle of view = 116.2 °, object distance = 10.295 (other r, d, n, ν is the Y-axis direction and the same) h S / h m = 9.40 (n-n ') · AR 4 · AP 4 = 0.0352 However r 1, r 2, ··· is Radius of curvature of each lens surface,
d 1 , d 2 , ... Are the thicknesses of the lenses, n 1 , n 2 , ...
.. is the refractive index of each lens, and ν 1 , ν 2 , ... Are Abbe numbers of each lens. In the data, the anamorphic surface has different radii of curvature in the X-axis direction and the Y-axis direction, but the other surfaces all have the same radius of curvature in the X-axis direction and the Y-axis direction. Therefore, in the data, only the anamorphic surface is shown in the X-axis direction. Also, the angle of view in the data is
In FIG. 4, when 15 is the imaging range, 16 is the angle of view in the X-axis direction, 17 is the angle of view in the Y-axis direction, and 18 is the angle of view in the diagonal direction of the imaging range, which is the maximum angle of view.

【0083】実施例1は図5に示す構成で、(A)はX
軸方向、(B)はY軸方向を示す。
Example 1 has the configuration shown in FIG. 5, and (A) is X
Axial direction, (B) shows Y-axis direction.

【0084】この実施例1は、最大画角107.7°の
広角な内視鏡対物光学系で、物体側から順に、負の屈折
力を持った第1レンズ群Gと正の屈折力を持った第2
レンズ群Gと絞りSと、正の屈折力を持った第3レン
ズ群Gとより構成されている。
The first embodiment is a wide-angle endoscope objective optical system having a maximum angle of view of 107.7 °. The first lens group G 1 having a negative refractive power and the positive refractive power are arranged in this order from the object side. Second with
It is composed of a lens group G 2 , a diaphragm S, and a third lens group G 3 having a positive refractive power.

【0085】この光学系で、画角を主として決定してい
るのは第1レンズ群Gの屈折力であるため第1レンズ
群G中のアナモルフィック面(r)は、X軸方向の
曲率半径とY軸方向の曲率半径を異なるようにして、X
軸方向とY軸方向の画角を変えている。また、このアナ
モルフィック面は、式(1)と式(16)を満足し、レ
ンズ枚数を必要最小限の枚数にしている。
[0085] In this optical system, the angle of view mainly determined you doing the anamorphic surface of the first lens group G 1 because the refractive power of the first lens group G 1 (r 2) is, X-axis The radius of curvature in the X-direction and the radius of curvature in the Y-axis are made different, and X
The angle of view in the axial direction and the Y-axis direction are changed. Further, this anamorphic surface satisfies the expressions (1) and (16), and the number of lenses is set to the minimum necessary number.

【0086】また、アナモルフィック面は、負の屈折力
を持つ第1レンズ群Gの凹面(r)のほか第2レン
ズ群Gの凸面(r)にも使用している。そして第1
レンズ群G中のアナモルフィック面により、X軸方向
の屈折力がY軸方向の屈折力よりも負の側に大きくなっ
ている。そのためX軸方向の画角が広角でY軸方向の画
角が狭角である。又第1レンズ群中のアナモルフィック
面により生ずるX軸方向とY軸方向との結像位置のずれ
を、第2レンズ群G中のアナモルフィック面(r
により補正するようにしている。即ち、第2レンズ群G
中のアナモルフィック面において広角なX軸方向の屈
折力を狭角なY軸方向の屈折力より正の側に大きくし、
X軸方向の結像位置とY軸方向の結像位置との差を小さ
くしている。
The anamorphic surface is used not only as the concave surface (r 2 ) of the first lens group G 1 having negative refractive power but also as the convex surface (r 4 ) of the second lens group G 2 . And the first
Due to the anamorphic surface in the lens group G 1 , the refractive power in the X-axis direction is larger than the refractive power in the Y-axis direction on the negative side. Therefore, the angle of view in the X-axis direction is wide and the angle of view in the Y-axis direction is narrow. In addition, the deviation of the image forming positions in the X-axis direction and the Y-axis direction caused by the anamorphic surface in the first lens group is determined by the anamorphic surface (r 4 ) in the second lens group G 2.
I am trying to correct it. That is, the second lens group G
In the anamorphic surface in 2 , the wide-angle X-axis direction refracting power is made larger than the narrow-angle Y-axis direction refracting power on the positive side,
The difference between the image forming position in the X axis direction and the image forming position in the Y axis direction is reduced.

【0087】この実施例1では、全てのアナモルフィッ
ク面を絞りより物体側に設け、これによって絞りよりも
像面側の光学系中の光束はほぼ正方形となり光線高を小
さくしレンズ外径を小さくすることを可能にした。
In the first embodiment, all anamorphic surfaces are provided closer to the object side than the diaphragm, so that the light beam in the optical system on the image plane side of the diaphragm becomes almost square and the height of the light ray is reduced to reduce the lens outer diameter. It was possible to make it small.

【0088】この実施例の光学系の有効Fナンバーは、
X軸方向とY軸方向とで若干異なるがその差は少なく実
用上問題にならない。又X軸方向とY軸方向の被写界深
度の差も小さく実用上問題はない。
The effective F number of the optical system of this embodiment is
Although there is a slight difference between the X-axis direction and the Y-axis direction, the difference is small and does not pose a practical problem. Further, the difference in depth of field between the X-axis direction and the Y-axis direction is small, and there is no practical problem.

【0089】実施例2は、図6に示す構成で、同様に
(A)はY軸方向、(B)はX軸方向である。この実施
例の対物レンズは、最大画角が107.8度で、実施例
1と同様にアナモルフィック面を第1レンズ群と第2レ
ンズ群とに用いX軸方向の画角を広角に、Y軸方向の画
角を狭角にしてある。又、絞りより前に負の屈折力を持
ったアナモルフィック面(r)と正の屈折力を持った
アナモルフィック面(r)を有するので、X軸方向と
Y軸方向とで発生するコマ収差を同時に小さくし得る。
更に絞りより物体側にある第1レンズ群中のアナモルフ
ィック面は、係数ARのうち、0ではない係数の最低次
である項である4次の項が条件(7)を満足し、歪曲収
差の発生量がX軸方向とY軸方向とで大きく異ならない
ようにしている。また第2レンズ群中のアナモルフィッ
ク面も係数ARが0でないもののうち最低次の項である
4次の項が条件(7)を満足する。これによりX軸方向
とY軸方向の歪曲収差をより一層一致するようにしてい
る。
The second embodiment has the structure shown in FIG. 6, similarly (A) is in the Y-axis direction, and (B) is in the X-axis direction. The maximum angle of view of the objective lens of this example is 107.8 degrees, and the anamorphic surface is used for the first lens group and the second lens group as in Example 1, and the angle of view in the X-axis direction is wide. , The angle of view in the Y-axis direction is narrow. Further, since it has an anamorphic surface (r 2 ) having a negative refractive power and an anamorphic surface (r 4 ) having a positive refractive power in front of the diaphragm, it is possible to move in the X-axis direction and the Y-axis direction. The coma generated can be reduced at the same time.
Further, in the anamorphic surface in the first lens unit on the object side of the diaphragm, the fourth-order term, which is the lowest-order term of the coefficients other than 0, satisfies the condition (7) and the distortion is generated. The amount of occurrence of aberration is set so as not to be significantly different between the X-axis direction and the Y-axis direction. The anamorphic surface in the second lens group also satisfies the condition (7) by the fourth-order term, which is the lowest-order term among those whose coefficient AR is not zero. As a result, the distortion aberrations in the X-axis direction and the Y-axis direction are made to match each other.

【0090】実施例3は、図6に示す実施例2と同じ構
成で最大画角が112.2°の内視鏡対物レンズで、実
施例1,2よりも広角である。アナモルフィック面は実
施例1,2と同様に第1レンズ群と第2レンズ群に用い
られている。更に絞りよりも物体側にある第2レンズ群
中のアナモルフィック面は、係数ARが0でない係数の
うち最低次項である4次の項が、条件(7)を満足にし
て第1レンズ群中のアナモルフィック面で発生するX軸
方向とY軸方向の歪曲収差の差を良好に補正するように
した。
The third embodiment is an endoscope objective lens having the same structure as the second embodiment shown in FIG. 6 and having a maximum angle of view of 112.2 °, which is wider than the first and second embodiments. The anamorphic surface is used for the first lens group and the second lens group as in the first and second embodiments. Further, in the anamorphic surface in the second lens group which is closer to the object than the diaphragm, the fourth-order term, which is the lowest order term among the coefficients whose AR is not 0, satisfies the condition (7) and the first lens group is satisfied. The difference between the distortion aberration in the X-axis direction and the distortion aberration in the Y-axis direction generated on the anamorphic surface in the inside is favorably corrected.

【0091】実施例4は、図7に示す通りの構成で最大
画角が109.1°の内視鏡対物レンズである。この実
施例では、負の屈折力を持つ第1レンズ群中の凹面(r
)と、正の屈折力を持つ第2レンズ群中の凹面
(r)にアナモルフィック面が用いられている。この実
施例では、第1レンズ群中のアナモルフィック面で発生
したX軸方向とY軸方向の結像位置のずれを第2レンズ
群中のアナモルフィック面により補正するようにした。
つまり、第2レンズ群中のアナモルフィック面に広角な
X軸方向に正の屈折力を持たせ又狭角なY軸方向に負の
屈折力を持たせてX軸方向の結像位置との差が小さくな
るようにしている。
Example 4 is an endoscope objective lens having a configuration as shown in FIG. 7 and a maximum angle of view of 109.1 °. In this embodiment, the concave surface (r
2 ) and a concave surface (r 3 ) in the second lens group having a positive refractive power, anamorphic surfaces are used. In this embodiment, the anamorphic surface in the second lens group is used to correct the deviation of the image-forming position in the X-axis direction and the Y-axis direction that has occurred in the anamorphic surface in the first lens group.
That is, the anamorphic surface in the second lens group has a positive refracting power in the wide-angle X-axis direction and a negative refracting power in the narrow-angle Y-axis direction to form an imaging position in the X-axis direction. I try to reduce the difference between.

【0092】実施例5は、図8に示す構成であって、最
大画角が109.1°の内視鏡対物レンズである。この
実施例では、アナモルフィック面を第2レンズ群のみに
用いてる。そして1枚のレンズの両面をアナモルフィッ
ク面にしたので、アナモルフィックレンズは、1枚のみ
でよく、コストの低減と組立てに要する工数の削減が可
能になる。
Example 5 is an endoscope objective lens having a configuration shown in FIG. 8 and a maximum angle of view of 109.1 °. In this embodiment, the anamorphic surface is used only for the second lens group. Since both surfaces of one lens are anamorphic surfaces, only one anamorphic lens is required, and it is possible to reduce the cost and the man-hour required for assembly.

【0093】実施例6は、図9に示す構成で、最大画角
が114.5°の内視鏡対物レンズであって、絞りより
物体側の負の屈折力を持った第1レンズ群の凹面
(r)と絞りより像側の正の屈折力を持った第3レン
ズ群の凸面(r11)にアナモルフィック面を用いてい
る。又絞りの開口を広角方向であるX軸方向よりも狭角
方向であるY軸方向を大きくし、絞りよりも像側にアナ
モルフィック面を用いても有効FナンバーがX軸方向と
Y軸方向とで等しくなり、被写界深度が方向により変わ
らないようにしている。
The sixth embodiment is an endoscope objective lens having the configuration shown in FIG. Anamorphic surfaces are used for the concave surface (r 2 ) and the convex surface (r 11 ) of the third lens group having a positive refractive power on the image side of the diaphragm. Also, even if the Y-axis direction, which is the narrow-angle direction, is made larger than the X-axis direction, which is the wide-angle direction, and the anamorphic surface is used on the image side of the aperture, the effective F-number will be the X-axis direction and the Y-axis direction. It is equal to the direction so that the depth of field does not change depending on the direction.

【0094】尚絞りの開口形状は、下記の式にて表わさ
れる楕円で、実施例6で用いられるものはa=0.19
5,b=0.253である。
The aperture shape of the diaphragm is an ellipse expressed by the following equation, and a = 0.19 is used in the sixth embodiment.
5, b = 0.253.

【0095】 (X /a )+(Y /b )=1(X 2 / a 2 ) + (Y 2 / b 2 ) = 1

【0096】実施例7は、図10に示す構成で最大画角
137.2°の内視鏡対物光学系である。この実施例で
は、負の屈折力を持つ第1レンズ群G 中の凹面(r
)と正の屈折力を持つ第3レンズ群G 中の凸面
(r11)とにアナモルフィック面が設けられている。
そして第1レンズ群G 中のアナモルフィック面と第
3レンズ群G 中のアナモルフィック面によりX軸方
向の画角をY軸方向の画角よりも大きくし、横長の撮像
範囲をほぼ正方形の像に変え、さらにX軸方向とY軸方
向の近軸結像位置の差を小さくしている。又、この実施
例のアナモルフィック面は、式(9)、式(10)を満
足し、収差を良好に補正するようにした。
Example 7 is an endoscope objective optical system having a maximum field angle of 137.2 ° with the configuration shown in FIG. In this embodiment, the concave surface of the first lens group G 1 having a negative refractive power (r
2 ) and the convex surface (r 11 ) in the third lens group G 3 having a positive refractive power have anamorphic surfaces.
The angle of view in the X-axis direction is made larger than the angle of view in the Y-axis direction by the anamorphic surface in the first lens group G 1 and the anamorphic surface in the third lens group G 3. The image is changed to a substantially square image, and the difference between paraxial image forming positions in the X-axis direction and the Y-axis direction is further reduced. Further, the anamorphic surface of this example satisfies the expressions (9) and (10), and the aberration is satisfactorily corrected.

【0097】実施例8は、図11に示す構成で最大画角
115.6°の内視鏡対物光学系である。この実施例
は、負の屈折力を持つ第1レンズ群G 中の凹面(r
)と正の屈折力を持つ第3レンズ群G 中の凸面
(r )とにアナモルフィック面を設けて横長の撮像
範囲をほぼ正方形の像に変え、さらにX軸方向とY軸方
向の近軸結像位置の差を小さくしている。又、アナモル
フィック面は、式(9)、式(10)を満足し、収差を
良好に補正するようにしている。
The eighth embodiment is an endoscope objective optical system having a configuration shown in FIG. 11 and a maximum field angle of 115.6 °. This embodiment is concave in the first lens group G 1 having a negative refractive power (r
2 ) and a convex surface (r 9 ) in the third lens group G 3 having a positive refractive power, an anamorphic surface is provided to change the horizontally long imaging range into a substantially square image, and further, an X-axis direction and a Y-axis direction. The difference between the paraxial image forming positions in the directions is reduced. Further, the anamorphic surface satisfies the expressions (9) and (10), and the aberration is satisfactorily corrected.

【0098】実施例9は、図12に示す構成で最大画角
137.4°の内視鏡対物光学系である。この実施例で
は、正の屈折力を持つ第2レンズ群G中の凸面
(r)と正の屈折力を持つ第3レンズ群G 中の凸
面(r)とにアナモルフィック面が設けられている。
第2レンズ群中のアナモルフィック面と第3レンズ群中
のアナモルフィック面とによりX軸方向の画角をY軸方
向の画角よりも大きくし、横長の撮像範囲をほぼ正方形
の像に変え、さらにX軸方向とY軸方向の近軸結像位置
の差が小さくなるようにしている。又、アナモルフィッ
ク面は、式(9)、式(10)を満足し、収差を良好に
補正するようにしている。
The ninth embodiment is an endoscope objective optical system having a configuration shown in FIG. 12 and a maximum field angle of 137.4 °. In this embodiment, the convex surface (r 4 ) in the second lens group G 2 having positive refractive power and the convex surface (r 9 ) in the third lens group G 3 having positive refractive power are anamorphic surfaces. Is provided.
The angle of view in the X-axis direction is made larger than the angle of view in the Y-axis direction by the anamorphic surface in the second lens group and the anamorphic surface in the third lens group, and the horizontally long imaging range is a substantially square image. In addition, the difference between the paraxial image forming positions in the X-axis direction and the Y-axis direction is further reduced. Further, the anamorphic surface satisfies the expressions (9) and (10), and the aberration is satisfactorily corrected.

【0099】実施例10は、図13に示す構成で最大画
角137.4°の内視鏡対物光学系である。この実施例
では、正の屈折力を持つ第2レンズ群G中の凸面(r
)と正の屈折力を持つ第3レンズ群G 中の凸面
(r)とにアナモルフィック面が設けられている。こ
の実施例10は上記の通りの構成で、その作用、効果は
実施例9と同様である。
The tenth embodiment is an endoscope objective optical system having a configuration shown in FIG. 13 and a maximum field angle of 137.4 °. In this embodiment, the convex surface of the second lens group G 2 having a positive refractive power (r
3 ) and the convex surface (r 9 ) in the third lens group G 3 having a positive refractive power have anamorphic surfaces. The tenth embodiment is configured as described above, and its operation and effect are similar to those of the ninth embodiment.

【0100】実施例11は、図14に示す構成で最大画
角113.8°の内視鏡対物光学系である。この実施例
では正の屈折力を持つ第3レンズ群G中の二つの凸面
(r)、(r11)にアナモルフィック面が設けられ
ている。これらアナモフィック面は軸外主光線高が高
く、面への光線入射角が大で、絞り面より像側で最も離
れた2面に設けられ、かつ、これらアナモルフィック面
は式(9)、式(10)を満足している。これにより、
効率良く横長の撮像範囲をほぼ正方形の像に変え、しか
も収差が良好に補正されている。
The eleventh embodiment is an endoscope objective optical system having a configuration shown in FIG. 14 and a maximum field angle of 113.8 °. In this embodiment, anamorphic surfaces are provided on the two convex surfaces (r 9 ) and (r 11 ) in the third lens group G 3 having a positive refractive power. These anamorphic surfaces have a high off-axis chief ray height, a large ray incident angle to the surfaces, are provided on the two surfaces farthest from the diaphragm surface on the image side, and these anamorphic surfaces are expressed by the formula (9), Expression (10) is satisfied. This allows
The horizontally long imaging range is efficiently converted into a substantially square image, and the aberration is corrected well.

【0101】実施例12は、図15に示す構成で最大画
角136.4°の内視鏡対物光学系である。この実施例
では、負の屈折力を持つ第1レンズ群G中の凹面(r
)のみにアナモルフィック面を設けたものである。こ
の凹面rは軸外主光線高が高く、面への光線入射角が
大きく、絞り面から離れた位置にある。したがって、効
率良く横長の撮像範囲をほぼ正方形の像に変えしかも収
差が良好に補正されている。又、アナモルフィック面が
1面のみであるため、レンズの加工や光学系の組立が容
易になりコストを低減することができる。
The twelfth embodiment is an endoscope objective optical system having the maximum field angle of 136.4 ° with the configuration shown in FIG. In this embodiment, the concave surface of the first lens group G 1 having a negative refractive power (r
The anamorphic surface is provided only in 2 ). The concave surface r 2 has a high off-axis chief ray height, a large incident angle of light rays on the surface, and is located away from the diaphragm surface. Therefore, the horizontally long imaging range is efficiently converted into a substantially square image, and the aberration is corrected well. Further, since there is only one anamorphic surface, it is easy to process the lens and assemble the optical system, and the cost can be reduced.

【0102】実施例13は、図16に示す構成で最大画
角135.9°の内視鏡対物光学系である。この実施例
は、負の屈折力を持つ第1レンズ群G中の面(r
)にのみアナモルフィック面が設けられている。こ
の面rは軸外主光線高が高く、面への光線入射角が大
きい、絞り面より物体側の離れた面で、しかも最も物体
側の面である。したがって、効率良く横長の撮像範囲を
ほぼ正方形の像に変え、しかも収差を良好に補正するよ
うにしている。また、この面rでの軸外主光線高は面
での軸外主光線高よりも高い。したがって、X軸方
向の近軸結像位置とY軸方向の近軸結像位置とのズレ量
は実施例12に比べて小さくなっている。
The thirteenth embodiment is an endoscope objective optical system having a configuration shown in FIG. 16 and a maximum field angle of 135.9 °. In this embodiment, the surface (r of the first lens group G 1 having a negative refractive power (r
Anamorphic surface is provided only in 1 ). This surface r 1 is a surface having a high off-axis chief ray height and a large light ray incident angle on the surface, and is a surface distant from the diaphragm surface on the object side, and is also the most object side surface. Therefore, the horizontally long imaging range is efficiently changed to a substantially square image, and the aberration is satisfactorily corrected. The off-axis chief ray height at the surface r 1 is higher than the off-axis chief ray height at the surface r 2 . Therefore, the shift amount between the paraxial image forming position in the X-axis direction and the paraxial image forming position in the Y-axis direction is smaller than that in the twelfth embodiment.

【0103】実施例14は、図17に示す構成で最大画
角136.6°の内視鏡対物光学系である。この実施例
では、正の屈折力を持つ第3レンズ群G中の凸面(r
11)にのみアナモルフィック面が設けられている。こ
の面r11は、軸外主光線高が高く、面への光線入射角
が大きい絞り面より離れた最も像側の面である。したが
って、効率良く横長の撮像範囲をほぼ正方形の像に変え
しかも収差を良好に補正するようにしている。
The fourteenth embodiment is an endoscope objective optical system having a configuration shown in FIG. 17 and a maximum angle of view of 136.6 °. In this embodiment, the third lens group G 3 in the convex surface having a positive refractive power (r
Only 11 ) has an anamorphic surface. This surface r 11 is the surface closest to the image side apart from the diaphragm surface where the off-axis chief ray height is high and the incident angle of the light ray on the surface is large. Therefore, the horizontally long imaging range is efficiently changed to a substantially square image, and the aberration is corrected well.

【0104】実施例15は、図18に示す構成で最大画
角134.4°の内視鏡対物光学系である。この実施例
では、負の屈折力を持つ第1レンズ群G中の凹面(r
)にのみアナモルフィック面を設けている。この実施
例のアナモルフィック面は、(13)式を満たしている
のでX軸方向の近軸結像位置とY軸方向の近軸結像位置
は一致しており、全体がほやけることのない良好な像を
観察することができる。又、この実施例15のアナモル
フィック面は、式(12’),(14)を満たしてお
り、効率良く横長の撮像範囲をほぼ正方形の像に変える
ことができる。しかも、アナモルフィック面をこの面
(r12)に設けて、さらにアナモルフィック面形状を
表す式(2)における4次、6次、8次、10次の回転
対称非球面係数及び回転非対称非球面係数を用いて設計
の自由度を大にし、収差を良好に補正するようにしてい
る。
The fifteenth embodiment is an endoscope objective optical system having a maximum field angle of 134.4 ° with the configuration shown in FIG. In this embodiment, the concave surface of the first lens group G 1 having a negative refractive power (r
The anamorphic surface is provided only in 2 ). Since the anamorphic surface of this embodiment satisfies the expression (13), the paraxial image forming position in the X-axis direction and the paraxial image forming position in the Y-axis direction coincide with each other, and the whole image is blurred. Not a good image can be observed. Further, the anamorphic surface of the fifteenth embodiment satisfies the equations (12 ′) and (14), and the horizontally long imaging range can be efficiently converted into a substantially square image. Moreover, an anamorphic surface is provided on this surface (r 12 ), and the fourth-, sixth-, eighth-, and tenth-order rotationally symmetric aspherical coefficients and rotationally asymmetrical coefficients in the equation (2) representing the shape of the anamorphic surface are further provided. The aspherical coefficient is used to increase the degree of freedom in design, and the aberration is favorably corrected.

【0105】実施例16は、図19に示す構成で最大画
角157.6°の内視鏡対物光学系である。この実施例
では、正の屈折力を持つ第3レンズ群G中の凸面(r
11)にアナモルフィック面を設けてある。この実施例
のアナモルフィック面は、(13),(12’),(1
5)式を満たしている。さらにアナモルフィック面形状
を表す式(2)における4次、6次、8次、10次の回
転対称非球面係数及び回転非対称非球面係数を用いてい
る。したがって、X軸方向の近軸結像位置とY軸方向の
近軸結像位置がずれることなく、効率良く横長の撮像範
囲をほぼ正方形の像に変え、さらに収差を良好に補正す
るようにしている。前記各実施例の断面図(図5,図
6,図7,図8,図9,図10,図11,図12,図1
3,図14,図15,図16,図17,図18,図1
9)において、F1,F2,F3,F4は例えば光学的ロー
パスフィルター、赤外カットフィルター等の光学素子で
ある。
The sixteenth embodiment is an endoscope objective optical system having a maximum field angle of 157.6 ° with the configuration shown in FIG. In this embodiment, the third lens group G 3 in the convex surface having a positive refractive power (r
11 ) is provided with an anamorphic surface. The anamorphic surface of this example is (13), (12 '), (1
Formula (5) is satisfied. Further, the rotationally symmetric aspherical coefficients and the rotationally asymmetrical aspherical coefficients of the 4th, 6th, 8th and 10th order in the equation (2) representing the shape of the anamorphic surface are used. Therefore, the paraxial image forming position in the X-axis direction and the paraxial image forming position in the Y-axis direction are not displaced, the laterally long imaging range is efficiently changed to a substantially square image, and the aberration is satisfactorily corrected. There is. Cross-sectional views of each of the above-described embodiments (FIGS. 5, 6, 6, 7, 8, 9, 10, 11, 12, and 1).
3, FIG. 14, FIG. 15, FIG. 16, FIG. 17, FIG.
In 9), F 1 , F 2 , F 3 , and F 4 are optical elements such as an optical low-pass filter and an infrared cut filter.

【0106】本発明の結像光学系は、特許請求の範囲の
請求項1、2に記載した発明の他に次の各項に記載する
通りの態様の結像光学系も考えられる。 (1) 特許請求の範囲の請求項1に記載されている光
学系であって、前記アナモルフィック面が下記の式(1
6)を満足する結像光学系。
As the image forming optical system of the present invention, in addition to the invention described in claims 1 and 2 of the claims, an image forming optical system having the forms described in the following respective items is also conceivable. (1) The optical system according to claim 1 wherein the anamorphic surface is represented by the following formula (1):
An imaging optical system that satisfies 6).

【0107】 RDX≠∞ かつ RDY≠∞ (1
6) (2) 特許請求の範囲の請求項1又は前記(1)の項
に記載されている光学系であって、前記アナモルフィッ
ク面が絞りより物体側にある結像光学系。 (3) 少なくとも1面のアナモルフィック面と、X軸
方向とY軸方向の開口の大きさが異なる開口絞りとを有
する結像光学系。 (4) 特許請求の範囲の請求項1あるいは前記
(1)、(2)又は(3)の項に記載されている光学系
で、絞りよりも物体側に設けられたアナモルフィック面
のうちの少なくとも1面の非球面係数が下記式(7)を
満足するかあるいは絞りよりも像側に設けられたアナモ
ルフィック面のうちの少なくとも1面の非球面係数が式
(8)を満足する結像光学系。
RDX ≠ ∞ and RDY ≠ ∞ (1
6) (2) The optical system according to claim 1 or (1), wherein the anamorphic surface is on the object side of the diaphragm. (3) An image forming optical system having at least one anamorphic surface and an aperture stop having different aperture sizes in the X-axis direction and the Y-axis direction. (4) Among the anamorphic surfaces provided on the object side of the diaphragm in the optical system according to claim 1 or the above (1), (2) or (3). Of at least one surface satisfies the following expression (7), or at least one of the anamorphic surfaces provided on the image side of the diaphragm satisfies the expression (8). Imaging optics.

【0108】 (n−n’)・AR ・AP >0 (7) (n−n’)・AR ・AP <0 (8) (5) 特許請求の範囲の請求項1あるいは前記(1)
又は(3)の項に記載されている光学系で、絞りよりも
物体側にアナモルフィック面を少なくとも1面もち、か
つ絞りよりも像側にアナモルフィック面を少なくとも1
面もつ結像光学系。 (6) 特許請求の範囲の請求項1又は前記(1)の項
に記載されている光学系で、絞りよりも像側にアナモル
フィック面を2面もっている結像光学系。 (7) 特許請求の範囲の請求項1あるいは、前記
(1)、(3)、(5)又は(6)の項に記載されてい
る光学系で、アナモルフィック面がその形状を表わす式
(5)におけるj次の回転対称非球面係数ARとj次
の回転非対称非球面係数APが下記の式(9)を満足
する結像光学系。
(N−n ′) · AR i · AP i > 0 (7) (n−n ′) · AR i · AP i <0 (8) (5) Claim 1 or the above in the claims. (1)
Alternatively, the optical system described in the item (3) has at least one anamorphic surface on the object side of the diaphragm and at least one anamorphic surface on the image side of the diaphragm.
Imaging optics with a surface. (6) The optical system according to claim 1 or (1), which has two anamorphic surfaces on the image side of the diaphragm. (7) An optical system described in claim 1 of the claims or in the above (1), (3), (5) or (6), in which an anamorphic surface represents its shape. An imaging optical system in which the jth-order rotationally symmetric aspherical coefficient AR j and the jth-order rotationally asymmetrical aspherical coefficient AP j in (5) satisfy the following expression (9).

【0109】 AR ≠0 かつ AP ≠0 (9) (8) 特許請求の範囲の請求項1あるいは、前記
(1)、(3)、(5)、(6)又は(7)の項に記載
されている光学系で、アナモルフィック面がその面の形
状を表わす式における4次の回転対称非球面係数AR
と4次の回転非対称非球面係数AP が下記の式(1
0)を満足する結像光学系。
AR j ≠ 0 and AP j ≠ 0 (9) (8) Claim 1 of the claims or the term of (1), (3), (5), (6) or (7) In the optical system described in, the anamorphic surface has a fourth-order rotationally symmetric aspherical surface coefficient AR 4 in the equation expressing the shape of the surface.
And the fourth-order rotationally asymmetric aspherical coefficient AP 4 is expressed by the following equation (1
An imaging optical system that satisfies 0).

【0110】 AR ≠0 かつ AP ≠0 (10) (9) 特許請求の範囲の請求項2に記載されている光
学系で、下記の式(13)を満足する結像光学系。
AR 4 ≠ 0 and AP 4 ≠ 0 (10) (9) An optical system according to claim 2 of the claims, wherein the imaging optical system satisfies the following expression (13).

【0111】 RDY=RDX≠∞ かつ AP =0 (13) (10) 特許請求の範囲の請求項1又は2あるいは前
記(1)、(3)又は(9)の項に記載されている光学
系で、アナモルフィック面を1面のみ有している結像光
学系。 (11) 特許請求の範囲の請求項1又は2あるいは前
記(1)、(3)、(9)、(10)の項に記載されて
いる結像光学系で、アナモルフィック面が絞りより物体
側に1面のみ用いられている結像光学系。 (12) 特許請求の範囲の請求項1又は2あるいは、
前記(3)、(9)又は(10)の項に記載されている
光学系で、アナモルフィック面が絞りより像側に1面の
み用いられている結像光学系。 (13) 特許請求の範囲の請求項1又は2あるいは前
記(1)、(3)、(9)、(10)、(11)又は
(12)の項に記載されている光学系で、少なくとも一
つのアナモルフィック面がマージナル光線高よりも軸外
主光線高が高い面にある結像光学系。ここでマージナル
光線高とはX軸方向のマージナル光線高とY軸方向のマ
ージナル光線高のうち光線高の高い方であり、又軸外主
光線高とは最大像高又は広角方向の最大像高に対する主
光線高である。 (14) 特許請求の範囲の請求項1又は2あるいは前
記(1)、(3)、(9)、(10)、(11)、(1
2)又は(13)の項に記載されている光学系で、アナ
モルフィック面の軸外主光線高h とマージナル光線
高hとが下記の式(12’)を満足する結像光学系。 hs/hm≧2.5 (12’) (15) 特許請求の範囲の請求項1又は2あるいは前
記(1)、(3)、(9)、(10)、(11)又は
(13)の項に記載されている光学系で、アナモルフィ
ック面が第1レンズに設けられている結像光学系。 (16) 特許請求の範囲の請求項1又は2あるいは前
記(1)、(3)、(9)、(10)、(12)又は
(13)の項に記載されている光学系で、アナモルフィ
ック面が最も像側のレンズに設けられている結像光学
系。 (17) 特許請求の範囲の請求項1又は2あるいは前
記(1)、(3)、(9)、(10)、(11)、(1
3)又は(15)の項に記載されている結像光学系で、
絞りよりも物体側に設けられているアナモルフィック面
の4次非球面係数AR およびAP が下記の条件
(14)を満足する結像光学系。
RDY = RDX ≠ ∞ and AP 2 = 0 (13) (10) The optics described in claim 1 or 2 or (1), (3) or (9) in the claims. An imaging optical system that has only one anamorphic surface. (11) In the image forming optical system according to claim 1 or 2 of the claims or (1), (3), (9) and (10), the anamorphic surface is formed by a diaphragm. An imaging optical system in which only one surface is used on the object side. (12) Claim 1 or 2 of the claims, or
The optical system described in the item (3), (9), or (10), wherein only one anamorphic surface is used on the image side of the diaphragm. (13) At least the optical system according to claim 1 or 2 or the above (1), (3), (9), (10), (11) or (12). An imaging optical system in which one anamorphic surface is on a surface where the off-axis chief ray height is higher than the marginal ray height. Here, the marginal ray height is the higher of the marginal ray height in the X-axis direction and the marginal ray height in the Y-axis direction, and the off-axis chief ray height is the maximum image height or the maximum image height in the wide-angle direction. Is the chief ray height for. (14) Claim 1 or 2 of the claims or (1), (3), (9), (10), (11), (1)
In the optical system described in the item 2) or (13), the imaging optics in which the off-axis chief ray height h S and the marginal ray height h m of the anamorphic surface satisfy the following expression (12 ′). system. hs / hm ≧ 2.5 (12 ′) (15) Claims 1 or 2 of the claims or (1), (3), (9), (10), (11) or (13) The optical system described in the item 1, wherein an anamorphic surface is provided on the first lens. (16) An optical system according to any one of claims 1 or 2 or (1), (3), (9), (10), (12) or (13) in the claims. An imaging optical system in which the morphic surface is provided on the lens closest to the image side. (17) Claim 1 or 2 of the claims or the above (1), (3), (9), (10), (11), (1
In the imaging optical system described in the item 3) or (15),
An imaging optical system in which the fourth-order aspherical surface coefficients AR 4 and AP 4 of the anamorphic surface provided on the object side of the diaphragm satisfy the following condition (14).

【0112】 (n−n’)・AR ・AP <0 (14) (18) 特許請求の範囲の項1又は2あるいは前記
(1)、(3)、(9)、(10)、(12)、(1
3)または(16)の項に記載されている光学系で、絞
りよりも像側に設けられたアナモルフィック面の4次の
非球面係数AR 、AP が下記の式(15)を満
足する結像光学系。
(N−n ′) · AR 4 · AP 4 <0 (14) (18) Claims 1 or 2 or (1), (3), (9), (10), (12), (1
In the optical system described in the item 3) or (16), the fourth-order aspherical coefficients AR 4 and AP 4 of the anamorphic surface provided on the image side of the diaphragm are calculated by the following formula (15). Imaging optics that satisfy.

【0113】 (n−n’)・AR ・AP >0 (15) (19) 特許請求の範囲の第1項又は第2項あるいは
前記(1)、(3)、(4)、(5)、(6)、
(7)、(8)、(9)、(10)、(11)、(1
2)、(13)、(14)、(15)、(16)、(1
7)又は(18)の項に記載されている光学系で、光学
系のFナンバーFNOX 、FNOY と固体撮像素子
の画素ピッチP、Pとの間に下記式(5)に示す関
係を満足する結像光学系。
(N−n ′) · AR 4 · AP 4 > 0 (15) (19) Claims 1 or 2 or (1), (3), (4), ( 5), (6),
(7), (8), (9), (10), (11), (1
2), (13), (14), (15), (16), (1
In the optical system described in the item 7) or (18), the following formula (5) is provided between the F-numbers F NOX and F NOY of the optical system and the pixel pitches P X and P Y of the solid-state image sensor. Imaging optics that satisfy the relationship.

【0114】0.5<(FNOY・P)/(FNOX
・P)・2 (5)(20) 特許請求の範囲
の請求項1あるいは前記(1)、(2)、(3)、
(4)、(5)、(6)、(7)、(8)、(9)、
(10)、(11)、(12)、(13)、(14)、
(15)、(16)又は(19)の項に記載されている
光学系で、X軸方向の近軸結像位置とY軸方向の近軸結
像位置のずれ量Δが下記の式(11’)に示す範囲内で
ある結像光学系。
0.5 <(F NOY · P Y ) / (F NOX
-P X ) -2 (5) (20) Claim 1 or the above-mentioned (1), (2), (3),
(4), (5), (6), (7), (8), (9),
(10), (11), (12), (13), (14),
In the optical system described in the item (15), (16) or (19), the deviation amount Δ between the paraxial image forming position in the X axis direction and the paraxial image forming position in the Y axis direction is expressed by the following equation ( An imaging optical system within the range shown in 11 ').

【0115】 |Δ|<10・P ・FNOX かつ |Δ|<10・P ・FNOY (11’) (21) 特許請求の範囲の請求項1又は2あるいは前
記(1),(2),(3)又は(9)の項に記載されて
いる光学系で、少なくとも2面のアナモルフィック面を
含む結像光学系。
| Δ | <10 · P X · F NOX and | Δ | <10 · P Y · F NOY (11 ′) (21) Claims 1 or 2 or (1), (1) in the claims. The optical system according to item (2), (3), or (9), which includes at least two anamorphic surfaces.

【0116】(22) 前記(21)の項に記載された
光学系で、X軸方向又はY軸方向において正の屈折力を
持つアナモルフィック面と負の屈折力を持つアナモルフ
ィック面とをそれぞれ少なくとも1面含む結像光学系。
(22) In the optical system described in the item (21), an anamorphic surface having a positive refractive power and an anamorphic surface having a negative refractive power in the X-axis direction or the Y-axis direction are provided. An imaging optical system including at least one surface of each.

【0117】(23) 特許請求の範囲の請求項1又は
2あるいは前記(1),(3)又は(9)の項に記載さ
れている光学系で、前記アナモルフィック面が絞りより
像側に少なくとも1面有する結像光学系。
(23) In the optical system described in claim 1 or 2 or (1), (3) or (9), the anamorphic surface is closer to the image side than the diaphragm. An image forming optical system having at least one surface on.

【0118】(24) 前記(3)の項に記載されてい
る光学系で、光学系中に配置されている絞りの開口の形
状が撮像画角の広角な軸の方向よりも撮像画角の狭角な
軸の方向の方が大きいことを特徴とする結像光学系。
(24) In the optical system described in the item (3), the shape of the aperture of the diaphragm arranged in the optical system is such that the angle of view of the imaging field is larger than that of the wide angle axis of the field of view of the imaging field of view. An imaging optical system characterized in that the direction of a narrow-angle axis is larger.

【0119】(25) 前記(23)の項に記載されて
いる光学系で、前記アナモルフィック面が前記結像光学
系中に配置された絞りの開口の大きな方向よりも開口の
小さな方向が大きな屈折力を持つことを特徴とする結像
光学系。
(25) In the optical system described in the item (23), the direction in which the anamorphic surface is smaller than the direction in which the aperture of the diaphragm arranged in the imaging optical system is larger than that in the aperture is larger. An imaging optical system characterized by having a large refractive power.

【0120】(26) 前記(21)の項に記載されて
いる光学系で、前記アナモルフィック面のうち2面が1
枚のレンズの両面に設けられていることを特徴とする結
像光学系。
(26) In the optical system described in the item (21), two of the anamorphic surfaces are one.
An image forming optical system, which is provided on both surfaces of a single lens.

【0121】(27) 特許請求の範囲の請求項1又は
2あるいは前記(1),(2),(3)又は(9)の項
に記載されている光学系で、同じ画角での歪曲収差の発
生量が広角方向と狭角方向とでほぼ等しいことを特徴と
する結像光学系。
(27) In the optical system described in claim 1 or 2 of the claims or (1), (2), (3) or (9), distortion at the same angle of view is obtained. An imaging optical system characterized in that the amount of aberration generated is substantially equal in the wide-angle direction and in the narrow-angle direction.

【0122】(28) 少なくとも1面がアナモルフィ
ック面である結像光学系と、前記結像光学系により形成
される像を受ける固体撮像素子と、前記固体撮像素子か
らの映像信号を処理する電気処理回路と、前記電気処理
回路から出力される映像信号を画面に表示する画像表示
装置とからなり、電気処理回路、または画像表示装置の
少なくとも一方にて画像変形処理することを特徴とする
撮像装置。
(28) An image forming optical system having at least one surface which is an anamorphic surface, a solid-state image pickup device for receiving an image formed by the image forming optical system, and a video signal from the solid-state image pickup device. An image pickup device comprising an electric processing circuit and an image display device for displaying a video signal output from the electric processing circuit on a screen, wherein image transformation processing is performed by at least one of the electric processing circuit and the image display device. apparatus.

【0123】(29) 前記(28)の項に記載された
撮像装置において、結像光学系の結像倍率と電気処理装
置の電気的倍率またはテレビモニターの電気的倍率とが
下記の式を満たすことを特徴とする撮像装置。
(29) In the image pickup apparatus described in the item (28), the image forming magnification of the image forming optical system and the electric magnification of the electric processing apparatus or the electric magnification of the television monitor satisfy the following formula. An imaging device characterized by the above.

【0124】βoX・βeX≒βoY・βeY ただし、βoXは結像光学系の広角な方向の結像倍率、
βoYは結像光学系の狭角な方向の結像倍率、βeX
βoXと同じ方向の電気的拡大倍率、βeYはβoY
同じ方向の電気的拡大倍率である。
Β oX · β eX ≈β oY · β eY where β oX is the imaging magnification in the wide-angle direction of the imaging optical system,
beta oy the narrow angle direction of the imaging magnification of the imaging optical system, beta eX electrical magnification in the same direction as β oX, β eY is an electrical magnification in the same direction as the beta oy.

【0125】[0125]

【発明の効果】本発明によれば、横長あるいは縦長の範
囲を撮像する撮像装置中の光学系で、より小型で、細径
化された結像光学系を実現し得る。
As described above, according to the present invention, it is possible to realize a smaller and smaller-diameter image forming optical system in an optical system in an image pickup apparatus for picking up a horizontally long or vertically long range.

【0126】また、本発明によれば、横長あるいは縦長
の範囲を撮像する撮像装置中の結像光学系で、方向によ
る歪のない自然な像で、被写界深度が方向により変わら
ない自然な像を観察することができる。
Further, according to the present invention, in the image forming optical system in the image pickup apparatus for picking up a horizontally long or vertically long range, a natural image without distortion due to a direction and a natural depth of field which does not change depending on the direction are obtained. You can observe the image.

【0127】また、本発明によれば、横長または縦長の
範囲を撮像する撮像装置中の光学系において、X軸方向
とY軸方向の近軸結像位置を一致させ、ボケの少ない像
を観察できる結像光学系を実現し得る。
Further, according to the present invention, in the optical system in the image pickup apparatus for picking up the horizontally or vertically long range, the paraxial image forming positions in the X-axis direction and the Y-axis direction are made to coincide with each other, and an image with less blurring is observed. A possible imaging optical system can be realized.

【0128】さらに、本発明によれば、横長または縦長
の範囲を撮像する撮像装置中の光学系において、収差を
良好に補正された結像光学系を実現し得る。
Further, according to the present invention, it is possible to realize an image forming optical system in which aberration is favorably corrected in an optical system in an image pickup device for picking up a horizontally long or vertically long range.

【0129】また、本発明によれば、アナモルフィック
面を用いた撮像装置において、映像信号を電気的に処理
することによって、自然な画像をテレビモニター上に表
示することができる。
Further, according to the present invention, a natural image can be displayed on the television monitor by electrically processing the video signal in the image pickup device using the anamorphic surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学系の基本構成を示す図FIG. 1 is a diagram showing a basic configuration of an optical system of the present invention.

【図2】本発明の光学系で用いるアナモルフィック面の
形状を示す図
FIG. 2 is a diagram showing the shape of an anamorphic surface used in the optical system of the present invention.

【図3】撮像範囲と画角を示す図FIG. 3 is a diagram showing an imaging range and an angle of view.

【図4】長方形の撮像範囲をもつ光学系の画角を示す図FIG. 4 is a diagram showing an angle of view of an optical system having a rectangular imaging range.

【図5】本発明の実施例1の構成を示す図FIG. 5 is a diagram showing a configuration of a first embodiment of the present invention.

【図6】本発明の実施例2,3の構成を示す図FIG. 6 is a diagram showing a configuration of Examples 2 and 3 of the present invention.

【図7】本発明の実施例4の構成を示す図FIG. 7 is a diagram showing a configuration of a fourth embodiment of the present invention.

【図8】本発明の実施例5の構成を示す図FIG. 8 is a diagram showing a configuration of a fifth embodiment of the present invention.

【図9】本発明の実施例6の構成を示す図FIG. 9 is a diagram showing a configuration of a sixth embodiment of the present invention.

【図10】本発明の実施例7の構成を示す図FIG. 10 is a diagram showing a configuration of a seventh embodiment of the present invention.

【図11】本発明の実施例8の構成を示す図FIG. 11 is a diagram showing a configuration of an eighth embodiment of the present invention.

【図12】本発明の実施例9の構成を示す図FIG. 12 is a diagram showing a configuration of a ninth embodiment of the present invention.

【図13】本発明の実施例10の構成を示す図FIG. 13 is a diagram showing the configuration of Example 10 of the present invention.

【図14】本発明の実施例11の構成を示す図FIG. 14 is a diagram showing a configuration of an eleventh embodiment of the present invention.

【図15】本発明の実施例12の構成を示す図FIG. 15 is a diagram showing a configuration of a twelfth embodiment of the present invention.

【図16】本発明の実施例13の構成を示す図FIG. 16 is a diagram showing a configuration of a thirteenth embodiment of the present invention.

【図17】本発明の実施例14の構成を示す図FIG. 17 is a diagram showing a configuration of a fourteenth embodiment of the present invention.

【図18】本発明の実施例15の構成を示す図FIG. 18 is a diagram showing the configuration of Example 15 of the present invention.

【図19】本発明の実施例16の構成を示す図FIG. 19 is a diagram showing the configuration of Example 16 of the present invention.

【図20】実施例1のY軸方向の収差曲線図20 is a diagram of aberration curves in the Y-axis direction of Example 1. FIG.

【図21】実施例1のX軸方向の収差曲線図FIG. 21 is an aberration curve diagram in the X-axis direction of Example 1.

【図22】実施例2のY軸方向の収差曲線図22 is a diagram of aberration curves in the Y-axis direction of Example 2. FIG.

【図23】実施例2のX軸方向の収差曲線図FIG. 23 is a diagram of aberration curves in the X-axis direction of Example 2.

【図24】実施例3のY軸方向の収差曲線図FIG. 24 is a diagram of aberration curves in the Y-axis direction of Example 3.

【図25】実施例3のX軸方向の収差曲線図FIG. 25 is a diagram of aberration curves in the X-axis direction of Example 3.

【図26】実施例4のY軸方向の収差曲線図FIG. 26 is a diagram of aberration curves in the Y-axis direction of Example 4.

【図27】実施例4のX軸方向の収差曲線図FIG. 27 is an aberration curve diagram in the X-axis direction of Example 4.

【図28】実施例5のY軸方向の収差曲線図28 is a diagram of aberration curves in the Y-axis direction of Example 5. FIG.

【図29】実施例5のX軸方向の収差曲線図FIG. 29 is a diagram of aberration curves in the X-axis direction of Example 5.

【図30】実施例6のY軸方向の収差曲線図FIG. 30 is a diagram of aberration curves in the Y-axis direction of Example 6.

【図31】実施例6のX軸方向の収差曲線図FIG. 31 is a diagram of aberration curves in the X-axis direction of Example 6.

【図32】実施例7のY軸方向の収差曲線図32 is a diagram of aberration curves in the Y-axis direction of Example 7. FIG.

【図33】実施例7のX軸方向の収差曲線図FIG. 33 is an aberration curve diagram in the X-axis direction of Example 7.

【図34】実施例8のY軸方向の収差曲線図34 is a diagram of aberration curves in the Y-axis direction of Example 8. FIG.

【図35】実施例8のX軸方向の収差曲線図FIG. 35 is a diagram of aberration curves in the X-axis direction of Example 8.

【図36】実施例9のY軸方向の収差曲線図FIG. 36 is a diagram of aberration curves in the Y-axis direction of Example 9.

【図37】実施例9のX軸方向の収差曲線図FIG. 37 is an aberration curve diagram in the X-axis direction of Example 9.

【図38】実施例10のY軸方向の収差曲線図FIG. 38 is a diagram of aberration curves in the Y-axis direction of Example 10.

【図39】実施例10のX軸方向の収差曲線図FIG. 39 is a diagram of aberration curves in the X-axis direction of Example 10.

【図40】実施例11のY軸方向の収差曲線図FIG. 40 is a diagram of aberration curves in the Y-axis direction of Example 11.

【図41】実施例11のX軸方向の収差曲線図FIG. 41 is a diagram of aberration curves in the X-axis direction of Example 11.

【図42】実施例12のY軸方向の収差曲線図42 is an aberration curve diagram in the Y-axis direction of Example 12. FIG.

【図43】実施例12のX軸方向の収差曲線図FIG. 43 is a diagram of aberration curves in the X-axis direction of Example 12.

【図44】実施例13のY軸方向の収差曲線図FIG. 44 is a diagram of aberration curves in the Y-axis direction of Example 13.

【図45】実施例13のX軸方向の収差曲線図45 is an aberration curve diagram in the X-axis direction of Example 13. FIG.

【図46】実施例14のY軸方向の収差曲線図FIG. 46 is a diagram of aberration curves in the Y-axis direction of Example 14.

【図47】実施例14のX軸方向の収差曲線図FIG. 47 is a diagram of aberration curves in the X-axis direction of Example 14.

【図48】実施例15のY軸方向の収差曲線図FIG. 48 is a diagram of aberration curves in the Y-axis direction of Example 15.

【図49】実施例15のX軸方向の収差曲線図FIG. 49 is a diagram of aberration curves in the X-axis direction of Example 15.

【図50】実施例16のY軸方向の収差曲線図50 is a diagram of aberration curves in the Y-axis direction of Example 16. FIG.

【図51】実施例16のX軸方向の収差曲線図FIG. 51 is an aberration curve diagram of Example 16 in the X-axis direction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1面のアナモルフィック面を有
し、該アナモルフィック面のX軸方向の近軸曲率半径R
DXとY軸方向の近軸曲率半径RDYが下記式(1)を
満足することを特徴とする結像光学系。 RDX≠RDY (1) ただしRDX,RDYは光軸方向をz、z軸に直交し結
像倍率が絶対値の最も小である方向をX軸、z軸とX軸
とに直交する方向をY軸とする時のX軸方向およびY軸
方向の近軸曲率半径である。
1. A paraxial radius of curvature R of at least one anamorphic surface in the X-axis direction of the anamorphic surface.
An imaging optical system characterized in that DX and a paraxial radius of curvature RDY in the Y-axis direction satisfy the following expression (1). RDX ≠ RDY (1) where RDX and RDY are the optical axis direction, which is orthogonal to the z and z axes, and the direction in which the imaging magnification has the smallest absolute value is the X axis, and the direction orthogonal to the z axis and the X axis is Y. It is a paraxial radius of curvature in the X-axis direction and the Y-axis direction when used as an axis.
【請求項2】少なくとも1面のアナモルフィック面を有
し、該アナモルフィック面が下記の式(2)で表わされ
る非球面であって、該アナモルフィック面のX軸方向の
近軸曲率半径をRDX、Y軸方向の近軸曲率半径をRD
Y、アナモルフィック面を表わす2次の回転非対称非球
面係数をAPとするとき、下記の条件式(3)を満足
する結像光学系。 RDY=RDX かつ AP=0 (3) ここで、X軸方向で像側が正にz軸をとり、z軸と直交
し結像倍率の最も小さい方向をX軸、z軸とX軸とに直
交する方向をY軸とした時、KXはX方向の円錐係数、
KYはY方向の円錐係数、ARn は非球面成分のうちz
軸に対して回転対称な成分の非球面係数、APn は非球
面成分のうちz軸に対して回転非対称な非球面係数であ
る。
2. An at least one anamorphic surface, which is an aspherical surface represented by the following formula (2), wherein the anamorphic surface is a paraxial line in the X-axis direction. Radius of curvature is RDX, paraxial radius of curvature in the Y-axis direction is RD
An imaging optical system that satisfies the following conditional expression (3), where Y is a second-order rotationally asymmetric aspherical coefficient representing an anamorphic surface and AP 2 is AP 2 . RDY = RDX and AP 2 = 0 (3) When the image side in the X-axis direction is the positive z-axis, the direction orthogonal to the z-axis and having the smallest imaging magnification is the X-axis, and the direction orthogonal to the z-axis and the X-axis is the Y-axis, KX Is the conical coefficient in the X direction,
KY is the conical coefficient in the Y direction, AR n is the aspherical component z
An aspherical coefficient of a component rotationally symmetric with respect to the axis, AP n is an aspherical coefficient rotationally asymmetric with respect to the z axis among aspherical surface components.
JP3020895A 1994-06-17 1995-01-27 Focusing optical system using anamorphic lens Withdrawn JPH0862494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3020895A JPH0862494A (en) 1994-06-17 1995-01-27 Focusing optical system using anamorphic lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-158281 1994-06-17
JP15828194 1994-06-17
JP3020895A JPH0862494A (en) 1994-06-17 1995-01-27 Focusing optical system using anamorphic lens

Publications (1)

Publication Number Publication Date
JPH0862494A true JPH0862494A (en) 1996-03-08

Family

ID=26368517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020895A Withdrawn JPH0862494A (en) 1994-06-17 1995-01-27 Focusing optical system using anamorphic lens

Country Status (1)

Country Link
JP (1) JPH0862494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163549A (en) * 2005-12-09 2007-06-28 Konica Minolta Opto Inc Superwide angle imaging optical system, superwide angle imaging lens apparatus and imaging apparatus
EP2172797A1 (en) * 2008-10-01 2010-04-07 Kabushiki Kaisha Topcon Anamorphic optical system, image pickup device, on-board type camera and monitoring camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163549A (en) * 2005-12-09 2007-06-28 Konica Minolta Opto Inc Superwide angle imaging optical system, superwide angle imaging lens apparatus and imaging apparatus
CN100432737C (en) * 2005-12-09 2008-11-12 柯尼卡美能达精密光学株式会社 Ultra wide angle imaging optical system, ultra wide angle imaging lens device, and image sensing apparatus
US7457044B2 (en) 2005-12-09 2008-11-25 Konica Minolta Opto, Inc. Ultra wide angle imaging optical system, ultra wide angle imaging lens device, and image sensing apparatus
DE102006057955B4 (en) * 2005-12-09 2011-08-25 AutoNetworks Technologies, Ltd., Mie Ultra wide angle optical imaging system, ultra wide angle imaging lens device, and image scanner
EP2172797A1 (en) * 2008-10-01 2010-04-07 Kabushiki Kaisha Topcon Anamorphic optical system, image pickup device, on-board type camera and monitoring camera
US7940469B2 (en) 2008-10-01 2011-05-10 Kabushiki Kaisha Topcon Anamorphic optical system, image pickup device, on-board type camera and monitoring camera

Similar Documents

Publication Publication Date Title
US20090109548A1 (en) Zoom lens and image-pickup apparatus
US20060114574A1 (en) Zoom lens system and image pickup apparatus having the same
US20030184883A1 (en) Compact photographing lens
JP6727785B2 (en) Optical system and image pickup apparatus having the same
CN103969812A (en) Zoom lens and image pickup apparatus including the same
US7391968B2 (en) Finder optical system for a single-lens reflex camera
JP5253997B2 (en) Magnification optical system and imaging device
JP6632311B2 (en) Optical system and imaging apparatus having the same
US7075733B2 (en) Zoom lens system and image pickup apparatus including the same
CN103454754B (en) Zoom lens and the image pick-up device being furnished with zoom lens
JP5774055B2 (en) Zoom lens and imaging apparatus having the same
CN102798966A (en) Zoom lens and image pickup apparatus equipped with zoom lens
JP4208667B2 (en) Zoom lens and imaging device
US20080117315A1 (en) Zoom optical system and electronic imaging apparatus using the same
US7061685B2 (en) Zoom lens system
JP6720131B2 (en) Zoom lens and imaging device
US7403340B2 (en) Zoom optical system and electronic imaging apparatus using the same
US11860510B2 (en) Observation device and image pickup apparatus including the same
JPH10213742A (en) Photographic lens system
US6510008B1 (en) Zoom lens
JP2000275514A (en) Photographing lens for electronic still camera
JP2002277734A (en) Photography optical system
JP2003185917A (en) Wide angle lens
JP5871554B2 (en) Attachment optical system and imaging apparatus using the same
JPH0862494A (en) Focusing optical system using anamorphic lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402