JPH086055B2 - Zinc oxide-based transparent conductive film-forming composition - Google Patents

Zinc oxide-based transparent conductive film-forming composition

Info

Publication number
JPH086055B2
JPH086055B2 JP62314779A JP31477987A JPH086055B2 JP H086055 B2 JPH086055 B2 JP H086055B2 JP 62314779 A JP62314779 A JP 62314779A JP 31477987 A JP31477987 A JP 31477987A JP H086055 B2 JPH086055 B2 JP H086055B2
Authority
JP
Japan
Prior art keywords
zinc oxide
conductive
fine powder
film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62314779A
Other languages
Japanese (ja)
Other versions
JPH01153769A (en
Inventor
信義 河本
謙一 安田
達雄 矢崎
Original Assignee
白水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白水化学工業株式会社 filed Critical 白水化学工業株式会社
Priority to JP62314779A priority Critical patent/JPH086055B2/en
Publication of JPH01153769A publication Critical patent/JPH01153769A/en
Publication of JPH086055B2 publication Critical patent/JPH086055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性付与成分として導電性酸化亜鉛を含
み、安価で透明な導電膜を形成することのできる組成物
に関するものであり、この導電膜形成組成物は、クリー
ン・ルームあるいはは自動車や車輛等の窓、ブラウン管
などの静電防止膜、コンピュータをはじめとする様々の
電子機器にけるCRTディスプレー等の各種タッチパネ
ル、ELパネル、液晶セル等の表面に形成される静電防止
膜、透明静電記録紙の如き様々の情報産業記録紙や磁気
テープ等への導電膜形成材、更には導電性の塗料やイン
キ構成材等として幅広く利用することができる。
TECHNICAL FIELD The present invention relates to a composition containing conductive zinc oxide as a conductivity-imparting component and capable of forming an inexpensive and transparent conductive film. Conductive film forming compositions are used in clean rooms or windows of automobiles and vehicles, antistatic films such as cathode ray tubes, various touch panels such as CRT displays in various electronic devices such as computers, EL panels, liquid crystal cells. Widely used as an antistatic film formed on the surface of etc., a conductive film forming material for various information industry recording paper such as transparent electrostatic recording paper and magnetic tape, and also a conductive paint and ink constituent material. can do.

[従来の技術] 上記の様な用途に適用される透明導電膜の形成手段と
しては、以下に示す様な色々の方法が知られている。
[Prior Art] Various methods as shown below are known as means for forming a transparent conductive film applied to the above-mentioned applications.

金、バラジウム、クロム系合金の如き金属薄膜を、ポ
リエステル等の透明樹脂シートもしくはフィルムあるい
はガラス等の表面に蒸着させる方法。
A method of depositing a thin metal film such as gold, palladium, or a chrome-based alloy on the surface of a transparent resin sheet or film such as polyester or glass.

膜形成基材全体を透明静電ポリマーの如く透明で導電
性を備えたものとする方法。
A method of making the entire film-forming substrate transparent and conductive like a transparent electrostatic polymer.

300〜600℃程度に加熱した透明基板の表面に、InCl4
やSnCl4等の様な金属塩の有機溶媒溶液をスプレー付着
させて熱分解せしめ、導電性をもった金属酸化分薄膜を
形成する方法。
On the surface of the transparent substrate heated to about 300 to 600 ℃, InCl 4
A method of forming a conductive metal oxide thin film by spraying an organic solvent solution of a metal salt such as SnCl 4 or the like and thermally decomposing it.

In,Sn等の金属アルコキシドやアセチルアセトン溶液
を透明基材の表面に塗布した後、加熱処理することによ
って導電性を持った透明な金属酸化物被膜を形成する方
法。
A method of forming a transparent metal oxide film having conductivity by applying a metal alkoxide such as In, Sn or the like or an acetylacetone solution on the surface of a transparent substrate and then heat-treating it.

導電性を有する微粉末、たとえば導電性酸化錫微粉末
を、ポリマー溶液などのバインダーに分散させて透明基
板に塗布する方法。
A method in which a fine powder having conductivity, for example, a fine powder of conductive tin oxide is dispersed in a binder such as a polymer solution and applied to a transparent substrate.

これらの方法は前述の如き透明導電膜としての用途や
要求特性等に応じて適宜使い分けられている。
These methods are appropriately used depending on the use as the transparent conductive film and the required characteristics as described above.

本発明は、上記のうち特にとして示した方法に適用
される導電性微粉末分散タイプの透明導電膜形成組成物
の改良に関するものである。これらの方法に適用される
導電性微粉末としてはアンチモン含有酸化錫や錫含有酸
化インジウム等が知られており、これらは微粉末自身の
導電特性を利用して導電性及び帯電防止性を与えるもの
であり、且つ上記のアンチモン含有酸化錫等は粒径が可
視光線の1/2波長よりも小さいので被膜は透明となる。
この導電膜形成法は、導電性微粉末の分散と塗布・乾燥
を組合せて実施するだけであるから作業性及び生産性が
良く、しかも導電性微粉末の配合量を変えることによっ
て導電率を自由に調整できるといった様々の特徴を有し
てする。
The present invention relates to an improvement in a conductive fine powder dispersion type transparent conductive film forming composition which is applied to the above-mentioned method. Antimony-containing tin oxide, tin-containing indium oxide, and the like are known as conductive fine powders applied to these methods, and these impart conductivity and antistatic properties by utilizing the conductive properties of the fine powders themselves. In addition, since the particle size of the above-mentioned antimony-containing tin oxide is smaller than 1/2 wavelength of visible light, the coating becomes transparent.
This conductive film forming method has good workability and productivity because it is performed only by combining dispersion of conductive fine powder, coating and drying, and the conductivity can be freely adjusted by changing the blending amount of conductive fine powder. It has various features that can be adjusted to.

ところで導電性微粉末として現在最も汎用されている
のは、アルミニウム、錫、チタン等により賦活化された
導電性酸化亜鉛であるが、この導電性酸化亜鉛粉末の粒
径は最小のものでも1μm程度であるため、目的との関
係においては微粉体と言えず、被膜に透明性を与えるこ
とができない。そこで透明導電膜形成用の微粉末として
は0.1μm程度以下の微粉末として得ることのできる酸
化錫系あるいは酸化インジウム系の微粉末が用いられて
いる。ところがこれらの微粉末は導電性酸化亜鉛粉末に
較べると価格が10〜50倍と非常に高い。しかも酸化錫系
の導電性微粉末では、 高レベルの導電率を得るために大量のアンチモン等を
配合するが、その影響によって青味がかった色になる、 この青色は紫外線によって更に着色が進むことがあ
る、 湿度変化によって導電率が変わることがあり、殊に電
子機器用の導銅材料としての適性を欠く 等の問題が指摘される。
By the way, the most commonly used conductive fine powder at present is conductive zinc oxide activated by aluminum, tin, titanium, etc., but even the smallest particle size of this conductive zinc oxide powder is about 1 μm. Therefore, it cannot be said to be a fine powder in relation to the purpose, and it is impossible to impart transparency to the coating film. Therefore, as the fine powder for forming the transparent conductive film, a tin oxide-based or indium oxide-based fine powder that can be obtained as a fine powder of about 0.1 μm or less is used. However, these fine powders are 10 to 50 times more expensive than the conductive zinc oxide powder. Moreover, in the case of tin oxide type conductive fine powder, a large amount of antimony or the like is mixed in order to obtain a high level of conductivity, but due to the influence, it becomes a bluish color. This blue color is further colored by ultraviolet rays. However, it is pointed out that the conductivity may change due to changes in humidity, and in particular, it lacks suitability as a copper conductor material for electronic devices.

本出願人はこの様な状況の下で透明導電膜用としての
要求特性を満たす導電性酸化亜鉛微粉末を開発すべくか
ねてより研究を行なっているが、かかる研究の一環とし
て先に特開昭58−161923号公報に記載の方法を開発し
た。この方法は、 (A)酸化亜鉛を、 (B)賦活剤として作用するアルミニウム塩及び (C)侵食剤(崩壊剤)として作用する炭酸アンモニウ
ム、重炭酸アンモニウム、硝酸アンモニウムまたは尿素 と共に水分散系で撹拌処理し、濾過、脱水後乾燥し還元
性雰囲気下に600〜1000℃で焼成して導電性酸化亜鉛微
粉末とするもの であり、この方法によれば崩壊剤の作用で酸化亜鉛を微
細化することができるので賦活化が促進されると共に焼
結粉末の微細化も促進される。
Under the circumstances, the present applicant has been conducting research for some time in order to develop a conductive zinc oxide fine powder satisfying the required properties for a transparent conductive film. The method described in JP-A 58-161923 was developed. This method comprises stirring (A) zinc oxide with (B) an aluminum salt acting as an activator and (C) ammonium carbonate, ammonium bicarbonate, ammonium nitrate or urea acting as an erosion agent (disintegrator) in an aqueous dispersion system. It is treated, filtered, dehydrated, dried, and then calcined in a reducing atmosphere at 600 to 1000 ° C to make conductive zinc oxide fine powder. According to this method, zinc oxide is made fine by the action of a disintegrant. As a result, activation is promoted and at the same time, miniaturization of the sintered powder is promoted.

[発明が解決しようとする問題点] しかしながら上記公開公報に記載された方法にして
も、導電性酸化亜鉛の粒径は比表面積径(BET法により
求められる値:以下同じ)で0.2μm程度が限度であり
透明導電膜としての要求特性を完全に満たすものとは言
えない。
[Problems to be Solved by the Invention] However, even with the method described in the above publication, the particle diameter of the conductive zinc oxide is about 0.2 μm in terms of specific surface area diameter (value obtained by BET method: the same below). It is a limit and cannot be said to completely satisfy the required characteristics as a transparent conductive film.

即ち顔料充填系で透明な被膜を得る為の手段として
は、顔料の粒子径を可視光線の1/2波長よりも小さくす
るか、あるいは塗料等ではビヒクル成分である樹脂との
屈折率をできるだけ小さくすることが有効とされてお
り、顔料自体の性状からすれば粒子径を0.1μm以下と
することにより透明性付与の目的は達成されるが、現在
のところその様な微細粒度構成の導電性酸化亜鉛微粉末
は得られていない。
That is, as a means for obtaining a transparent coating in a pigment-filled system, the particle size of the pigment is made smaller than 1/2 wavelength of visible light, or the refractive index with a resin which is a vehicle component in paint etc. is made as small as possible. It is considered effective to do so, and the object of imparting transparency can be achieved by setting the particle size to 0.1 μm or less in view of the properties of the pigment itself, but at present, conductive oxidation of such a fine particle size composition is achieved. No fine zinc powder was obtained.

本発明はこの様な事情に着目してなされたものであっ
て、その目的は、工業的に安価に入手し得る酸化亜鉛を
主原料とし、微細且つ安定で導電性に優れしかも被膜に
透明性を与えることのできる様な導電性酸化亜鉛微粉末
を開発し、かかる酸化亜鉛微粉末を使用することにより
安価で優れた性能をもった透明導電膜形成組成物を提供
しようとするものである。
The present invention has been made by paying attention to such circumstances, and its purpose is to use zinc oxide, which is industrially inexpensively available, as a main raw material, and is fine, stable, excellent in conductivity, and transparent in a film. It is intended to develop a conductive zinc oxide fine powder capable of providing a transparent conductive film forming composition which is inexpensive and has excellent performance by using such a zinc oxide fine powder.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明に係る透明
導電膜形成組成物とは、導電性付与成分である導電性酸
化亜鉛微粉末のBET法により測定される比表面積径を0.1
μm以下で且つ100kg/cm2の加圧状態で測定される体積
抵抗率を104Ωcm以下と定め、該導電性酸化亜鉛微粉末
を被膜形成組成物中に乾燥被膜の固形物換算で20〜70重
量%となる様に配合したものであるところに要旨を有す
るものである。
[Means for Solving Problems] The transparent conductive film-forming composition according to the present invention, which has been able to achieve the above objects, is measured by a BET method of conductive zinc oxide fine powder which is a conductivity-providing component. Specific surface area diameter of 0.1
The volume resistivity measured under a pressure of 100 μm or less and 100 kg / cm 2 is defined as 10 4 Ωcm or less, and the conductive zinc oxide fine powder is contained in a film-forming composition in an amount of 20 to 20 in terms of solid matter of a dry film. The gist of the present invention is that it is compounded so as to be 70% by weight.

[作用] 本発明に係る被膜形成組成物は、上記の様に比表面積
径が0.1μm以下であり、体積抵抗率(100kg/cm2の加圧
状態で測定される値:以下同じ)が104Ωcm以下である
導電性酸化亜鉛微粉末を導電性付与成分として配合した
ものである。比表面積径が0.1μmを超える導電性酸化
亜鉛粉末では、塗膜成分として配合したときに可視光線
の散乱が著しくなり、優れた導電性を与えようとして十
分な量の当該粉末を配合すると導電膜が不透明となる。
また該酸化亜鉛微粉末の体積抵抗率が104Ωcmを超える
ものでは、被膜成分中に十分量の酸化亜鉛微粉末を配合
した場合でも満足のいく導電性を与えることができな
い。これに対し比表面積径が0.1μm以下で且つ体積抵
抗率が104Ωcm以下である導電性酸化亜鉛微粉末を、乾
燥被膜の固形分換算で20〜70重量%となる様に配合して
おくと、乾燥被膜は透明で優れた導電性(及び帯電防止
性)を示すものとなる。ここで導電性酸化亜鉛微粉末の
含有量が20重量%未満である場合は、乾燥被膜中に占め
る導電性付与成分の絶対量が不足気味となる為十分な導
電性が得られず、逆に70重量%を超えるときはバインダ
ーあるいは造膜成分の量が不足することとなって被膜特
性が悪化するほか、基材との密着性も悪くなって剥離し
易くなり、更には被膜の透明性も低下してくる。
[Operation] The film-forming composition according to the present invention has a specific surface area diameter of 0.1 μm or less as described above, and a volume resistivity (value measured under a pressure of 100 kg / cm 2; the same applies hereinafter) of 10 A conductive zinc oxide fine powder of 4 Ωcm or less is mixed as a conductivity-imparting component. With a conductive zinc oxide powder having a specific surface area diameter of more than 0.1 μm, visible light scattering becomes remarkable when compounded as a coating film component, and if a sufficient amount of the powder is compounded to give excellent conductivity, a conductive film is obtained. Becomes opaque.
If the zinc oxide fine powder has a volume resistivity of more than 10 4 Ωcm, satisfactory conductivity cannot be imparted even when a sufficient amount of the zinc oxide fine powder is mixed in the coating component. On the other hand, conductive zinc oxide fine powder having a specific surface area diameter of 0.1 μm or less and a volume resistivity of 10 4 Ωcm or less is blended so as to be 20 to 70% by weight in terms of solid content of the dry film. Then, the dry film becomes transparent and exhibits excellent conductivity (and antistatic property). If the content of the conductive zinc oxide fine powder is less than 20% by weight here, sufficient conductivity cannot be obtained because the absolute amount of the conductivity-imparting component in the dry film becomes insufficient, and conversely. If it exceeds 70% by weight, the amount of binder or film-forming component becomes insufficient and the film properties deteriorate. In addition, the adhesion to the substrate deteriorates and peeling easily occurs, and the transparency of the film also increases. It is decreasing.

ところで公知の導電性酸化亜鉛粉末が導電性のSnO2
微粉末やInO3系微粉末に比べて粗粒であり、透明導電膜
用としての適性を欠くものであることは先に説明した通
りであるが、本発明の目的にかなう微細で導電性の優れ
た酸化亜鉛粉末は、たとえば本願発明者らによって開発
された下記の様な方法(別途特許出願済:出願番号未
定)によって得ることができる。
By the way, the known conductive zinc oxide powder is coarser particles than the conductive SnO 2 -based fine powder or InO 3 -based fine powder, and lacks the suitability for a transparent conductive film, as described above. However, a fine and excellent zinc oxide powder that meets the object of the present invention can be obtained by, for example, the following method developed by the inventors of the present application (separate patent application: application number undecided). it can.

即ちその方法とは、 [I]非導電性酸化亜鉛:100重量部 [II]アルミニウムの蟻酸塩、酢酸塩、ハロゲン化物、
水酸化物、硫酸塩、硝酸塩等から選択される賦活剤:酸
化アルミニウム換算で0.1〜10重量部、 [III]炭酸アンモニウム、重炭酸アンモニウム、、硝
酸アンモニウム、尿素等から選択される侵食剤(崩壊
剤):5〜100重量部、 の三成分を、 [IV]比表面積径が0.10μm以下である無機質微粉末
(コロイダルシリカ、アルミナゲル、チタニアゲルある
いは珪酸塩等) の存在下に水分散系で撹拌処理し、脱水後非酸化性雰囲
気下に200〜600℃程度の温度で加熱処理する方法であ
る。
That is, the method is as follows: [I] non-conductive zinc oxide: 100 parts by weight [II] aluminum formate, acetate, halide,
Activator selected from hydroxide, sulfate, nitrate, etc .: 0.1 to 10 parts by weight in terms of aluminum oxide, [III] erosion agent selected from ammonium carbonate, ammonium bicarbonate, ammonium nitrate, urea, etc. (disintegrator) ): 5 to 100 parts by weight in a water dispersion system in the presence of [IV] an inorganic fine powder having a specific surface area diameter of 0.10 μm or less (colloidal silica, alumina gel, titania gel, silicate, etc.). It is a method of treating and dehydrating, and then heat treating at a temperature of about 200 to 600 ° C. in a non-oxidizing atmosphere.

この方法であれば、非導電性酸化亜鉛[I]が、侵食
剤[IV]との共存下における撹拌処理で0.05μm以下の
微粉末状に崩壊された後、賦活剤[II]由来の水酸化ア
ルミニウム沈殿と均一に混合されて次の加熱処理工程で
導電性が与えられ、更には無機質微粉末[IV]が酸化亜
鉛微粉末同士の間に介在することによって、乾燥乃至加
熱処理時における当該酸化亜鉛微粉末の粒成長も抑えら
れ、加熱処理温度を600℃以下に抑えることによる融着
抑制効果とも相まって、比表面積径にして0.10μm以下
といった極めて微細な導電性酸化亜鉛微粉末を容易に得
ることができる。またこの微粉末は、撹拌処理工程で微
細に崩壊された酸化亜鉛と、賦活剤から生じた水酸化ア
ルミニウムが万遍なく均一に混合された後、非酸化性雰
囲気での加熱により賦活化されたものであり、体積抵抗
率は104Ωcm以下であって優れた導電性を示すものとな
る。
According to this method, the non-conductive zinc oxide [I] is disintegrated into a fine powder of 0.05 μm or less by stirring treatment in the coexistence with the erosion agent [IV], and then water derived from the activator [II] is used. The mixture is uniformly mixed with the aluminum oxide precipitate to give conductivity in the next heat treatment step, and further, the inorganic fine powder [IV] is present between the zinc oxide fine powders, so that the dry or heat treatment can be performed. Particle growth of zinc oxide fine powder is also suppressed, and in combination with the effect of suppressing fusion by suppressing the heat treatment temperature to 600 ° C or less, it is possible to easily produce extremely fine conductive zinc oxide powder with a specific surface area diameter of 0.10 μm or less. Obtainable. Further, this fine powder was activated by heating in a non-oxidizing atmosphere after uniformly mixing zinc oxide finely disintegrated in the stirring process and aluminum hydroxide generated from the activator. Since the volume resistivity is 10 4 Ωcm or less, it exhibits excellent conductivity.

本発明の目的にかなう導電性酸化亜鉛微粉末はたとえ
ば上記の様な方法によって製造されるが、本発明は導電
性酸化亜鉛微粉末の製法自体に特徴を有するものではな
く、あくまでも比表面積径が0.10μm以下で且つ体積抵
抗率が104Ωcm以下という要求特性を備えた導電性酸化
亜鉛微粉末を透明導電膜構成々分の1つとして配合した
ところに特徴を有するものであるから、こうした特性を
満たすものであれば他の方法により製造した導電性酸化
亜鉛微粉末を使用することも勿論可能であり、更に賦活
剤としてSnやTi含有化合物等を用いた導電性酸化亜鉛微
粉末を使用することもできる。
The conductive zinc oxide fine powder that meets the object of the present invention is produced, for example, by the method as described above, but the present invention is not characterized by the production method itself of the conductive zinc oxide fine powder, and the specific surface area diameter is The characteristic feature is that the conductive zinc oxide fine powder having the required characteristics of 0.10 μm or less and the volume resistivity of 10 4 Ωcm or less is blended as one of the transparent conductive film constituents. It is of course possible to use a conductive zinc oxide fine powder produced by another method as long as it satisfies the above condition, and further, a conductive zinc oxide fine powder using Sn or a Ti-containing compound as an activator is used. You can also

次に上記導電性酸化亜鉛微粉末のバインダーあるいは
造膜成分として作用するビヒクル成分としては、アクリ
ル系、ビニル系、カーボネート系、ポリエステル系、ウ
レタン系、エポキシ系、ポリプロピレン系、シリコン
系、弗素系、スチレン系、セルロース系等、透明被膜を
形成し得る様々の重合体、或はそれらの各種変性物を使
用することができる。ビヒクル成分のうち水溶性のもの
としてはポリビニルアルコール、メチルセルロース、カ
ルボキシメチルセルロース、澱粉、アラビアゴム、スチ
レン−マレイン酸共重合体等が、またエマルジョンもし
くはラテックスとしては酢酸ビニル−アクリルエマルジ
ョン、アクリルエステル系エマルジョン、スチレン−ブ
タジエンラテックス等が例示される。これらのビヒクル
成分は、コスト、安全性(火災、健康傷害等を含め
て)、塗装作業性等を総合的に考えて水系分散媒を用い
るのが最も一般的であるが、必要によっては脂肪族、脂
環族あるいあ芳香族の炭化水素系、アルコール系、エス
テル系、ケント系等の有機溶剤もしくはこれらの混合溶
剤を使用することも勿論可能である。
Next, as the binder of the conductive zinc oxide fine powder or the vehicle component acting as a film-forming component, acrylic type, vinyl type, carbonate type, polyester type, urethane type, epoxy type, polypropylene type, silicon type, fluorine type, Various polymers capable of forming a transparent film, such as styrene type and cellulose type, or various modified products thereof can be used. Among the vehicle components, water-soluble ones include polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, starch, gum arabic, styrene-maleic acid copolymer, etc., and emulsions or latexes include vinyl acetate-acrylic emulsion, acrylic ester emulsion, Examples thereof include styrene-butadiene latex. For these vehicle components, it is most common to use an aqueous dispersion medium in consideration of cost, safety (including fire, health injury, etc.) and coating workability, etc. Of course, it is also possible to use an alicyclic or aromatic hydrocarbon-based, alcohol-based, ester-based, Kent-based organic solvent or a mixed solvent thereof.

本発明に係る導電膜形成組成物の必須成分は以上の通
りであるが、このほか塗装性や被膜性能を高める為の補
助剤として分散剤、界面活性剤、沈降防止剤、湿潤剤、
たれ止め剤、レベリング剤、消泡剤、カップリング剤、
酸化防止剤等の1種もしくは2種以上を必要に応じて適
量配合することもでき、また用途によっては黒鉛、カー
ボンブラック、金属粉、金属繊維、金属フレーク、酸化
亜鉛系以外の導電性金属酸化物微粉末、イオン導電剤等
を併用して導電性を更に高めることも可能であり、更に
は被膜の透明性及び導電性を阻害しない範囲で体質顔
料、着色顔料、染料等を添加することも有効である。
Although the essential components of the conductive film-forming composition according to the present invention are as described above, a dispersant, a surfactant, an anti-settling agent, a wetting agent, as an auxiliary agent for enhancing the coatability and coating performance in addition to these,
Anti-dripping agent, leveling agent, defoaming agent, coupling agent,
An appropriate amount of one kind or two or more kinds of antioxidants can be blended if necessary, and depending on the application, graphite, carbon black, metal powder, metal fibers, metal flakes, conductive metal oxides other than zinc oxide It is also possible to further increase the conductivity by using fine powder, an ionic conductive agent, etc., and it is also possible to add an extender pigment, a coloring pigment, a dye, etc. within a range not impairing the transparency and conductivity of the coating film. It is valid.

本発明組成物を用いた導電膜の形成には格別特殊な技
術が要求される訳ではなく、含浸塗布、刷毛塗り、ロー
ルコート、スプレー塗装等によって基材表面に塗布し乾
燥する方法等を採用すればよく、あるいは離形処理を施
した基材表面に塗布し乾燥した後基材から剥離し、フィ
ルム状あるいはシート状の透明導電膜とすることもでき
る。また本発明組成物においては前述の如く導電性酸化
亜鉛が非常に微細なものであることから、1コート法で
も十分な透明性を得ることができるが、2コート法採用
し、たとえば本発明組成物よりなる塗布面にクリアラッ
カー等を上塗りすると、本発明組成物表面の酸化亜鉛微
粉末に起因する微細な凹凸がクリアラッカー等により埋
められて乱反射が更に抑制され、後記実施例にも示す如
く1コートで透過率50%程度の半透明であったものが透
過率70%程度の透明なものとなる。該クリアラッカー塗
布による表面抵抗の上昇はせいぜい1桁程度であって、
導電膜あるいは帯電防止膜としての性能にはそれほど悪
影響を及ぼすことはないので、2コート法は非常に有利
な製膜法として推奨される。
No special special technique is required for forming a conductive film using the composition of the present invention, and a method of applying to the surface of a substrate by impregnation coating, brush coating, roll coating, spray coating, etc. and drying is adopted. Alternatively, a transparent conductive film in the form of a film or a sheet can be obtained by coating the surface of a base material subjected to a mold release treatment, drying it, and then peeling it off from the base material. Further, in the composition of the present invention, since the conductive zinc oxide is extremely fine as described above, sufficient transparency can be obtained even by the one-coat method, but the two-coat method is adopted. When a clear lacquer or the like is overcoated on the coated surface of the product, fine irregularities due to the zinc oxide fine powder on the surface of the composition of the present invention are filled with the clear lacquer and the diffuse reflection is further suppressed, and as shown in Examples below. What was semi-transparent with a transmittance of about 50% in one coat becomes transparent with a transmittance of about 70%. The increase in surface resistance due to the application of the clear lacquer is at most about one digit,
The 2-coat method is recommended as a very advantageous film-forming method because it does not adversely affect the performance as a conductive film or an antistatic film.

尚公知の透明導電膜に関しては、(A)高分子電解質
を混入したりポリエチレンフィルム(米国、リッチモン
ド社製)で透過率80〜85%、表面抵抗108〜1010Ωcm、
(B)金またはパラジウムを蒸着したポリエステルフィ
ルム(米国、シーラシン社製)で透過率80〜90%、表面
抵抗101〜103Ωcm、(C)酸化インジウムを蒸着したポ
リエステルフィルム(国内、帝人、東レ社製)で透過率
80〜90%、表面抵抗102〜105Ωcm、等、使用法や用途に
応じて様々のものが知られているが、透過率は70%程度
以上、表面抵抗は102〜1010Ωcm程度(ブラウン管等の
静電防止被膜では1010〜1012Ωcm程度)であれば十分で
あると考えられており、本発明に係る透明導電膜は以下
の実施例にも示す如くこうした要求特性を一応満足し、
且つ非常に安価に得ることができる。しかも酸化亜鉛
は、本来紫外線領域である350〜400n付近の光に対して
吸収帯を有しているが、本発明の導電性酸化亜鉛もその
例外ではなく紫外線領域に吸収帯を有しており、紫外線
遮蔽材としての作用も併せ有している。
Regarding the known transparent conductive film, (A) a polyelectrolyte is mixed, or a polyethylene film (manufactured by Richmond, USA) has a transmittance of 80 to 85%, a surface resistance of 10 8 to 10 10 Ωcm,
(B) 80 or 90% transmittance with a polyester film deposited with gold or palladium (manufactured by Silasin Co., USA), surface resistance of 10 1 to 10 3 Ωcm, (C) polyester film deposited with indium oxide (domestic, Teijin, Made by Toray)
Various things are known depending on the usage and application, such as 80 to 90%, surface resistance 10 2 to 10 5 Ωcm, etc., but the transmittance is about 70% or more, the surface resistance is 10 2 to 10 10 Ωcm. It is considered that a sufficient degree (about 10 10 to 10 12 Ωcm for an antistatic coating such as a cathode ray tube) is sufficient, and the transparent conductive film according to the present invention has such required characteristics as shown in the following examples. I was satisfied,
And it can be obtained at a very low cost. Moreover, zinc oxide originally has an absorption band for light in the vicinity of 350 to 400 n, which is the ultraviolet region, but the conductive zinc oxide of the present invention is not an exception and has an absorption band in the ultraviolet region. It also has a function as an ultraviolet shielding material.

[実施例] 参考例(導電性酸化亜鉛微粉末の製造) 20〜40gの侵食剤(炭酸アンモニウムまたは重炭酸ア
ンモニウム)を500ccの水に溶解する。一方水50ccに、
賦活材(硫酸アルミニウムまたは硝酸アルミニウム)を
酸化アルミニウム換算で5g加えて溶解し、これに上記の
侵食剤水溶液を加えて混合する。該混合液を、別途調製
したフランス法亜鉛華(平均比表面積径0.3μm)100g
の水200cc分散液に投入し、60〜90℃に昇温した後、コ
ロイダルシリカ(日本アエロジル社製商品名「アエロジ
ル200」、比表面積径0.03μm)1gを加え、同温度に保
って1時間撹拌する。その後不溶物を濾過・水洗して得
られるケーキ状物を乾燥し、水素雰囲気中350〜600℃で
60分間加熱処理することにより導電性酸化亜鉛微粉末を
製造する。
[Example] Reference example (production of conductive zinc oxide fine powder) 20 to 40 g of an erosion agent (ammonium carbonate or ammonium bicarbonate) is dissolved in 500 cc of water. Meanwhile, to 50cc of water,
5 g of an activator (aluminum sulfate or aluminum nitrate) in terms of aluminum oxide is added and dissolved, and the above erosion agent aqueous solution is added and mixed. 100 g of the separately prepared French method zinc white (average specific surface area diameter 0.3 μm)
After pouring it into a 200 cc dispersion of water and raising the temperature to 60 to 90 ° C, 1 g of colloidal silica (product name "Aerosil 200" manufactured by Nippon Aerosil Co., Ltd., specific surface area diameter 0.03 µm) is added and kept at the same temperature for 1 hour. Stir. After that, the insoluble material is filtered and washed with water to dry the cake, which is dried in a hydrogen atmosphere at 350 to 600 ° C.
A conductive zinc oxide fine powder is produced by heat treatment for 60 minutes.

上記方法に準拠し、侵食剤や賦活剤の種類や添加量、
撹拌処理条件、加熱処理条件を色々変えることにより、
比表面積径及び体積抵抗率の異なる数種類の導電性酸化
亜鉛微粉末を製造した。
According to the above method, the type and amount of erosion agents and activators,
By changing the stirring treatment condition and heat treatment condition variously,
Several kinds of conductive zinc oxide fine powders having different specific surface area diameters and volume resistivities were manufactured.

上記で得た各導電性酸化亜鉛微粉末と造膜樹脂(ウレ
タン樹脂、ポリビニルアルコールまたはアクリル樹脂)
及び所定量の溶剤(ジメチルホルムアミド)を、第1表
に示す含有比率に従って配合してホモジナイザーにより
30分間混合し、導電膜形成組成物を製造した。
Each conductive zinc oxide fine powder obtained above and film forming resin (urethane resin, polyvinyl alcohol or acrylic resin)
And a predetermined amount of solvent (dimethylformamide) according to the content ratio shown in Table 1 and mixed by a homogenizer.
The mixture was mixed for 30 minutes to produce a conductive film forming composition.

また比較のため、市販の導電性酸化亜鉛粉末(白水化
学工業社製、比表面積径0.20μm、体積抵抗率100Ωc
m)を用いた他は上記と同様にして導電膜形成組成物を
製造した。得られた各組成物を、乾燥膜厚が10〜15μm
となる様バーコータにてポリエステルフィルム(東レ社
製商品名、「ルミラーT」タイプ)に塗布し、導電性被
膜を形成した。
For comparison, a commercially available conductive zinc oxide powder (manufactured by Shiramizu Chemical Industry, specific surface area diameter 0.20 μm, volume resistivity 100 Ωc
A conductive film-forming composition was produced in the same manner as above except that m) was used. Each of the obtained compositions has a dry film thickness of 10 to 15 μm.
A polyester film (trade name, "Lumirror T" type, manufactured by Toray Industries, Inc.) was coated with a bar coater so that a conductive coating was formed.

得られた各乾燥被膜の表面抵抗及び透明性を第1表に
一括して示す。
Table 1 collectively shows the surface resistance and transparency of each of the obtained dry coatings.

尚第1表に示した配合顔料の詳細及び得られた導電膜
の性能試験法等は下記の通りである。
The details of the compounded pigments shown in Table 1 and the performance test method of the obtained conductive film are as follows.

(造膜樹脂) ウレタン樹脂:明成商会社製商品名、「EX−4513−M」 アクリル樹脂:三菱レーヨン社製商品名「LR−472」
(固形分40%) ポリビニルアルコール:電気化学社製商品名「デンカポ
バールB−20」(部分鹸化物) (体積抵抗率) 各導電製酸化亜鉛微粉末10gを、内面にテフロン加工
を施した内径25mmの円筒内へ装入して100kg/cm2に加圧
し(充填率20%)、横河電気製作所製の「3233型」テス
ターで体積抵抗率(Ωcm)を測定した。
(Film-forming resin) Urethane resin: Product name "EX-4513-M" manufactured by Meisei Trading Co., Ltd. Acrylic resin: Product name "LR-472" manufactured by Mitsubishi Rayon Co., Ltd.
(Solid content: 40%) Polyvinyl alcohol: Denka Chemical Co., Ltd. trade name "Dencapobar B-20" (partially saponified product) (Volume resistivity) 10 g of each conductive zinc oxide fine powder, Teflon processed inside diameter It was loaded into a 25 mm cylinder and pressurized to 100 kg / cm 2 (filling rate 20%), and the volume resistivity (Ωcm) was measured by a “3233 type” tester manufactured by Yokogawa Electric Corporation.

(比表面積径) 柴田化学機械社製の迅速表面積測定装置「SA−1000」
を用いて各導電性酸化亜鉛微粉末の比表面積(Sg:m2/
g)を測定し、該測定装置と試料粉末の真比重(ρ:ZnO
では5.6)より次式によって比表面積径(d:μm)を求
めた。
(Specific surface area diameter) Rapid surface area measuring device "SA-1000" manufactured by Shibata Chemical Machinery Co., Ltd.
Specific surface area of each conductive zinc oxide fine powder (Sg: m 2 /
g), and the true specific gravity (ρ: ZnO) of the measuring device and the sample powder
Then, the specific surface area diameter (d: μm) was obtained from the following equation from 5.6).

(表面抵抗) 導電膜の形成された供試面に導電ペーストを塗布して
通電することにより、導電膜の表面抵抗を測定した。
(Surface Resistance) The surface resistance of the conductive film was measured by applying a conductive paste to the test surface on which the conductive film was formed and applying current.

(表面電位) 各導電膜に対し、川口電気社製の静電複写紙試験装置
「SP−428」を用いて、Dynamic,−6KVの条件で帯電々位
量(volt)を測定した。
(Surface potential) The electrostatic potential of each conductive film was measured under the conditions of Dynamic and -6 KV by using an electrostatic copying paper tester "SP-428" manufactured by Kawaguchi Electric Co., Ltd.

(透明性) 島津製作所製の透過率測定装置を使用して500nmの光
の透過率を測定し、各測定値より下記の基準で評価し
た。
(Transparency) The transmittance of light having a wavelength of 500 nm was measured using a transmittance measuring device manufactured by Shimadzu Corporation, and each measured value was evaluated according to the following criteria.

透過率50%以上:透明 透過率30%以上50%未満:半透明 透過率30%未満:不透明 第1表からも明らかである様に、本発明の規定要件を
満たす実施例(No.2〜4,7〜12,15〜17,20〜22,27〜29,3
2〜37,40〜42,45〜47,50〜57)によって得られる被膜
は、夫々導電性酸化亜鉛微粉末の配合量に応じて適度の
表面抵抗を有すると共に被膜は透明乃至半透明(半透明
のものでもその上にクリアラッカーを塗布することによ
り透明になることを確認している)であり、透明導電膜
形成組成物として非常に優れたものである。
Transmittance 50% or more: transparent Transmittance 30% or more but less than 50%: translucent Transmittance less than 30%: opaque As is clear from Table 1, the examples (No. 2 to 4, 7 to 12, 15 to 17, 20 to 22, 27 to 29, 3 which satisfy the requirements of the present invention).
2 to 37, 40 to 42, 45 to 47, 50 to 57) each has an appropriate surface resistance according to the compounding amount of the conductive zinc oxide fine powder, and the film is transparent or translucent (semi-transparent). It has been confirmed that even a transparent material can be made transparent by applying a clear lacquer on it), which is a very excellent composition for forming a transparent conductive film.

これに対し実験No.1,6,14,19,26,31,39,44,51は、何
れも導電性酸化亜鉛微粉末の含有率が不足する比較例で
あり、透明性は良好であるものの導電性付与成分が不足
するため表面抵抗が非常に大きく、導電膜としては使用
できない。また実験No.5,13,18,23,30,38,43,48,58は、
何れも導電性酸化亜鉛微粉末の含有率が規定範囲を超え
る比較例であり、乾燥被膜は何れも不透明であって透明
導電膜を得ることができない。更に実験No.24,25,49,5
0,59,60は導電性酸化亜鉛粉末の比表面積径が0.1μmを
超える従来例であり、被膜内における光の乱反射が著し
いため透明被膜を得ることができない。
On the other hand, Experiment Nos. 1, 6, 14, 19, 26, 31, 39, 44, 51 are all comparative examples in which the content of the conductive zinc oxide fine powder is insufficient, and the transparency is good. However, since the conductivity-imparting component is insufficient, the surface resistance is very large and it cannot be used as a conductive film. Experiment Nos. 5, 13, 18, 23, 30, 38, 43, 48, 58
Both are comparative examples in which the content of the conductive zinc oxide fine powder exceeds the specified range, and the dry coatings are opaque, and a transparent conductive film cannot be obtained. Experiment No. 24, 25, 49, 5
Nos. 0, 59 and 60 are conventional examples in which the specific surface area diameter of the conductive zinc oxide powder exceeds 0.1 μm, and the diffused reflection of light in the coating is remarkable, so that a transparent coating cannot be obtained.

尚第1図は実験No.9で得た酸化亜鉛微粉末の光透過率
曲線を示したものであり、紫外線領域では酸化亜鉛特有
の吸収が見られる。
FIG. 1 shows the light transmittance curve of the zinc oxide fine powder obtained in Experiment No. 9, in which absorption characteristic of zinc oxide is observed in the ultraviolet region.

[発明の効果] 本発明は以上の様に構成されており、安価に製造する
ことができる導電性酸化亜鉛微粉末を用いて、従来の酸
化錫系あるいは酸化インジウム系導電性微粉末を用いた
のと同等乃至それ以上の透明性をもった導電性被膜を非
常に安価に得ることができ、透明の導電明もしくは帯電
防止膜形成組成物として、冒頭で掲げた様な様々の用途
に広く活用することができるほか、紫外線遮蔽効果を活
用することにより、ショーウインド用等のガラスや透明
プラスチック材中に紫外線カット材として混入したり、
あるいは様々の樹脂成形体の表面被覆剤として使用して
樹脂自体の劣化抑制を図ることも可能である。
EFFECTS OF THE INVENTION The present invention is configured as described above, and uses the conductive zinc oxide fine powder which can be manufactured at low cost, and uses the conventional tin oxide-based or indium oxide-based conductive fine powder. It is possible to obtain a conductive coating having a transparency equal to or higher than that at a very low cost, and it is widely used as a transparent conductive bright or antistatic film forming composition for various applications such as those mentioned at the beginning. In addition to being able to do so, by utilizing the ultraviolet blocking effect, it can be mixed as a UV blocking material in glass or transparent plastic materials for show windows,
Alternatively, it can be used as a surface coating agent for various resin moldings to suppress the deterioration of the resin itself.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例で得た酸化亜鉛微粉末の光透過率曲線を
示す図である。
FIG. 1 is a diagram showing a light transmittance curve of the zinc oxide fine powder obtained in the examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性付与成分として導電性酸化亜鉛微粉
末を含有する被膜形成組成物において、導電性酸化亜鉛
微粉末は、BET法により測定される比表面積径が0.1μm
以下で且つ100kg/cm2の加圧状態で測定される体積抵抗
率が104Ωcm以下のものであり、該導電性酸化亜鉛微粉
末を被膜形成組成物中に乾燥被膜の固形物換算で20〜70
重量%となる様に配合したものであることを特徴とする
酸化亜鉛系透明導電膜形成組成物。
1. A film forming composition containing a conductive zinc oxide fine powder as a conductivity-imparting component, wherein the conductive zinc oxide fine powder has a specific surface area diameter of 0.1 μm measured by a BET method.
The volume resistivity measured under a pressure of 100 kg / cm 2 or less is 10 4 Ωcm or less, and the conductive zinc oxide fine powder is contained in a film-forming composition in a dry film solid content of 20. ~ 70
A zinc oxide-based transparent conductive film-forming composition, characterized in that it is blended so as to be in a weight percentage.
JP62314779A 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition Expired - Lifetime JPH086055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314779A JPH086055B2 (en) 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314779A JPH086055B2 (en) 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition

Publications (2)

Publication Number Publication Date
JPH01153769A JPH01153769A (en) 1989-06-15
JPH086055B2 true JPH086055B2 (en) 1996-01-24

Family

ID=18057491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314779A Expired - Lifetime JPH086055B2 (en) 1987-12-11 1987-12-11 Zinc oxide-based transparent conductive film-forming composition

Country Status (1)

Country Link
JP (1) JPH086055B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185249A (en) * 2008-02-08 2009-08-20 Asahi Rubber Kk Plastisol sealing material composition
JP2009183916A (en) * 2008-02-08 2009-08-20 Asahi Rubber Kk Assembly method of car body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717103B2 (en) * 1988-02-26 1998-02-18 三菱マテリアル株式会社 Transparent UV absorbing paint
JP2001002529A (en) * 1999-06-16 2001-01-09 Hakusui Tech Co Ltd Cosmetics compounded with fine powder of conductive zinc oxide
US7485245B1 (en) * 2007-10-18 2009-02-03 E.I. Du Pont De Nemours And Company Electrode paste for solar cell and solar cell electrode using the paste
JP5668228B2 (en) * 2011-03-31 2015-02-12 東レ・モノフィラメント株式会社 Conductive synthetic fiber, method for producing the same, and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145262A (en) * 1983-02-07 1984-08-20 Atom Kagaku Toryo Kk Electrically conductive paint compositoin
JPS61211374A (en) * 1985-03-15 1986-09-19 Hakusui Kagaku Kogyo Kk Antistatic fluororesin paint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185249A (en) * 2008-02-08 2009-08-20 Asahi Rubber Kk Plastisol sealing material composition
JP2009183916A (en) * 2008-02-08 2009-08-20 Asahi Rubber Kk Assembly method of car body

Also Published As

Publication number Publication date
JPH01153769A (en) 1989-06-15

Similar Documents

Publication Publication Date Title
US4431764A (en) Antistatic transparent coating composition
US6103303A (en) Dendrite or asteroidal titanium dioxide micro-particles and process for producing the same
US4373013A (en) Electroconductive powder and process for production thereof
US5853887A (en) White conductive powder, a process for its production and a resin composition containing the powder
KR19990036350A (en) Paint for forming transparent conductive layer
JPH086055B2 (en) Zinc oxide-based transparent conductive film-forming composition
JP2008135417A (en) Method of forming electrode in solar cell, and the solar cell using electrode obtained by the same
JP2011034708A (en) Transparent conductive sheet
JPS61141616A (en) Electrically conductive titanium dioxide fine powder, and production thereof
JPH07196957A (en) Electrically conductive coating composition
KR20020053467A (en) Electro magnetic interference shielding paint
JP3195072B2 (en) Fibrous conductive filler and method for producing the same
JP3431726B2 (en) Conductive powder, method for producing the same, and conductive coating film
JP2583536B2 (en) Method for producing conductive zinc oxide fine powder
JP2619921B2 (en) Analog type transparent touch panel
JPS61151542A (en) Transparent electrostatic recording material
JP2530651B2 (en) Membrane type touch panel
CN114085412B (en) Graphene conductive material and preparation method and application thereof
CA2325582A1 (en) Electricallly conductive powder and transparent conductive composition
JPS59136167A (en) Antistatic painting method
JPH0323229B2 (en)
JPS62252481A (en) Electrically conductive paint
JPH056283B2 (en)
JPH0687631A (en) Two-layered electric conductive transparent film
JPH0465112B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term