JPH0855638A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0855638A
JPH0855638A JP6190370A JP19037094A JPH0855638A JP H0855638 A JPH0855638 A JP H0855638A JP 6190370 A JP6190370 A JP 6190370A JP 19037094 A JP19037094 A JP 19037094A JP H0855638 A JPH0855638 A JP H0855638A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
arsenic
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6190370A
Other languages
Japanese (ja)
Inventor
Isao Watanabe
勲 渡辺
Masami Tsutsumi
正己 堤
Tamotsu Yamamoto
保 山本
Kensuke Yoshida
賢介 吉田
Tsutomu Miyashita
勉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6190370A priority Critical patent/JPH0855638A/en
Publication of JPH0855638A publication Critical patent/JPH0855638A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase a charge/discharge cycle characteristic and battery capacity by forming a lithium ion permeable surface layer with an arsenic-containing polymer on a negative electrode, and using a material except for an arsenic compound as a solute of a nonaqueous electrolyte. CONSTITUTION:A positive electrode 1 and a negative electrode 2 are faced through a separator 3 and a glass fiber nonwoven fabric 4, and housed in a battery case comprising a negative can 6 and a positive can 5. The positive electrode 1 is connected to the positive can 5 through a positive current collector 7, and the negative electrode 2 is connected to the negative can 6 through a negative current collector 8. The negative electrode 2 is formed by forming a lithium ion permeable surface layer with an arsenic-containing polymer on metallic lithium. The glass fiber nonwoven fabric 4 is formed by impregnating a nonaqueous electrolyte containing a material except for an arsenic compound as a solute. Since the reaction of metallic lithium with the electrolyte is suppressed, charge/discharge cycle characteristic is enhanced, capacity is increased, and safety is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、詳しくはリチウム二次電池の充放電サイクル特性を
向上させるための負極及び非水電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to improvement of a negative electrode and a non-aqueous electrolyte for improving charge / discharge cycle characteristics of the lithium secondary battery.

【0002】[0002]

【従来の技術】負極活物質として金属リチウムを使用し
たリチウム電池は、電池電圧が高い、単位体積及び単位
重量あたりの電池容量が大きい、などの理由から注目さ
れており、一次電池については既に実用化されている。
2. Description of the Related Art Lithium batteries using metallic lithium as a negative electrode active material have been drawing attention because of their high battery voltage and large battery capacity per unit volume and unit weight. Has been converted.

【0003】ところで、金属リチウムは一次電池の負極
活物質としては有用なものではあるが、周知の如く、こ
れを二次電池の負極活物質として使用すると、次の
(1)及び(2)に示す理由により、充放電サイクル特
性が極めて良くないために実用性に欠ける二次電池しか
得られないという問題がある。 (1)放電時に負極から非水電解液中に溶け出たリチウ
ムイオンが充電時に負極の表面に樹枝状のリチウム(電
析リチウム)となって析出し、この電析リチウムが充放
電を繰り返すうちに次第に成長してセパレータを貫通
し、正極に到達することにより、内部短絡が引き起こさ
れる。 (2)活性が極めて高い電析リチウムは電解液と反応し
易く、このため充放電サイクルの進行に伴い充放電効率
が急激に低下する。
By the way, although metallic lithium is useful as a negative electrode active material for primary batteries, it is well known that when it is used as a negative electrode active material for secondary batteries, the following (1) and (2) are obtained. For the reason shown, there is a problem that only a secondary battery lacking practicality can be obtained because the charge / discharge cycle characteristics are extremely poor. (1) Lithium ions dissolved in the non-aqueous electrolyte solution from the negative electrode during discharge are deposited as dendritic lithium (electrodeposited lithium) on the surface of the negative electrode during charge, and the electrodeposited lithium is repeatedly charged and discharged. An internal short circuit is caused by gradually growing, penetrating the separator and reaching the positive electrode. (2) Electrodeposited lithium, which has an extremely high activity, easily reacts with the electrolytic solution, so that the charge / discharge efficiency sharply decreases as the charge / discharge cycle progresses.

【0004】上述(1)及び(2)の原因を取り除いた
充放電サイクル特性に比較的優れたリチウム二次電池と
して、負極活物質に、リチウムをアルミニウム等の他の
金属と合金化したもの(リチウム合金)や、カーボンを
基体とするリチウム・カーボン複合体を使用したものが
提案されている。これらは、合金化又は複合化によりリ
チウムの活性を低下させて、内部短絡や充放電効率の低
下を防止するようにしたものである。
As a lithium secondary battery having relatively excellent charge / discharge cycle characteristics from which the above-mentioned causes (1) and (2) are removed, a negative electrode active material in which lithium is alloyed with another metal such as aluminum ( A lithium alloy) or a carbon-based lithium-carbon composite is proposed. These alloys are alloyed or compounded to reduce the activity of lithium to prevent internal short circuit and charge / discharge efficiency degradation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、負極活
物質中に多量のアルミニウムやカーボンを含有させるこ
れら従来のリチウム二次電池では、アルミニウムやカー
ボンが負極の充放電反応に直接関与するものではないた
めに電池容量が小さくなり、リチウム二次電池の最大の
利点を欠くものとなる。
However, in these conventional lithium secondary batteries in which a large amount of aluminum or carbon is contained in the negative electrode active material, aluminum or carbon is not directly involved in the charge / discharge reaction of the negative electrode. Moreover, the battery capacity becomes small, and the maximum advantage of the lithium secondary battery is lacked.

【0006】本発明は、このような従来のリチウム二次
電池が有していた問題を解決するためになされたもので
あり、充放電サイクル特性に優れ、しかも電池容量が大
きいリチウム二次電池を提供することを目的とする。
The present invention has been made in order to solve the problems of the conventional lithium secondary battery, and provides a lithium secondary battery having excellent charge / discharge cycle characteristics and a large battery capacity. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】請求項1の発明に係るリ
チウム二次電池は、リチウムイオンを可逆的に吸蔵及び
放出することが可能な物質を有する正極と、金属リチウ
ム又はリチウム合金を有する負極と、前記正極及び前記
負極を離間するセパレータと、非水電解液とを備えるも
のであって、前記負極は砒素含有ポリマーからなるリチ
ウムイオン透過性の表面層を有しており、且つ前記非水
電解液は砒素化合物以外の物質を溶質とするものである
ことを特徴とする。
A lithium secondary battery according to the present invention is a positive electrode having a substance capable of reversibly occluding and releasing lithium ions, and a negative electrode having metallic lithium or a lithium alloy. A separator for separating the positive electrode and the negative electrode, and a non-aqueous electrolytic solution, wherein the negative electrode has a lithium ion-permeable surface layer made of an arsenic-containing polymer, and The electrolytic solution is characterized by using a substance other than the arsenic compound as a solute.

【0008】正極活物質としてのリチウムイオンを可逆
的に吸蔵及び放出することが可能な物質としては、Li
CoO2 (コバルト酸リチウム)、LiNiO2 (ニッ
ケル酸リチウム)、LiMnO2 (マンガン酸リチウ
ム)、LiMn2 4 (スピネル)、V2 5 (五酸化
バナジウム)が例示される。
As a material capable of reversibly inserting and extracting lithium ions as a positive electrode active material, Li
Examples include CoO 2 (lithium cobaltate), LiNiO 2 (lithium nickelate), LiMnO 2 (lithium manganate), LiMn 2 O 4 (spinel), and V 2 O 5 (vanadium pentoxide).

【0009】負極活物質としてのリチウム合金として
は、リチウム−アルミニウム合金、リチウム−錫合金、
リチウム−鉛合金が例示される。非水電解液としては、
LiPF6 (六フッ化リン酸リチウム)、LiBF
4 (四フッ化ホウ素酸リチウム)、LiClO4 (過塩
素酸リチウム)などの溶質を、PC(プロピレンカーボ
ネート)、THF(テトラヒドロフラン)、EC(エチ
レンカーボネート)、DME(1,2−ジメトキシエタ
ン)、DEC(ジエチルカーボネート)、2−MeTH
F(2−メチル−テトラヒドロフラン)などの溶媒又は
これらの2種以上の混合溶媒に溶かしたものが例示され
る。
As the lithium alloy as the negative electrode active material, lithium-aluminum alloy, lithium-tin alloy,
An example is a lithium-lead alloy. As non-aqueous electrolyte,
LiPF 6 (lithium hexafluorophosphate), LiBF
4 (tetrafluoride lithium borate), solutes such as LiClO 4 (lithium perchlorate), PC (propylene carbonate), THF (tetrahydrofuran), EC (ethylene carbonate), DME (1,2-dimethoxyethane), DEC (diethyl carbonate), 2-MeTH
Examples include those dissolved in a solvent such as F (2-methyl-tetrahydrofuran) or a mixed solvent of two or more of these.

【0010】なお、溶質としてLiAsF6 を使用した
非水電解液、例えばLiAsF6 を2−MeTHFに1
M(モル)の割合で溶かして調製した非水電解液を、金
属リチウム又はリチウム合金を活物質とする負極を備え
るリチウム二次電池の電解液として使用すれば、本発明
に係るリチウム二次電池の如く負極に砒素含有ポリマー
からなる表面層を有するものを使用しなくても、負極の
表面に砒素化合物からなる保護膜が形成されるので、電
析リチウムと電解液との反応を防止することはできる。
しかしながら、LiAsF6 は毒性がきついので、非
水電解液中への配合は安全性の面から好ましくない。本
発明において非水電解液を、砒素化合物(例えばLiA
sF6 )以外の物質を溶質とするものに限定しているの
は、このためである。
A non-aqueous electrolytic solution using LiAsF 6 as a solute, for example, LiAsF 6 in 2-MeTHF,
If the non-aqueous electrolyte prepared by dissolving in a ratio of M (mol) is used as an electrolyte of a lithium secondary battery including a negative electrode having metallic lithium or a lithium alloy as an active material, the lithium secondary battery according to the present invention Even if the negative electrode having a surface layer made of an arsenic-containing polymer is not used, a protective film made of an arsenic compound is formed on the surface of the negative electrode, so that the reaction between the electrodeposited lithium and the electrolytic solution should be prevented. Can
However, since LiAsF 6 is highly toxic, compounding in a non-aqueous electrolyte is not preferable from the viewpoint of safety. In the present invention, the nonaqueous electrolytic solution is replaced with an arsenic compound (for example, LiA).
This is the reason why substances other than sF 6 ) are used as solutes.

【0011】負極に形成される表面層を構成する砒素含
有ポリマーとしては、式:−(O−As−O)n−で表
されるリチウムイオン透過性のポリマーが例示される。
この表面層の厚みは数百Å程度で十分である。
An example of the arsenic-containing polymer forming the surface layer formed on the negative electrode is a lithium ion permeable polymer represented by the formula:-(O-As-O) n-.
A thickness of several hundred liters is sufficient for this surface layer.

【0012】[0012]

【作用】負極に砒素含有ポリマーからなるリチウムイオ
ン透過性の表面層を形成して、金属リチウム又はリチウ
ム合金の活性を低下させてあるので、充電時に樹枝状の
リチウムが析出しにくくなるとともに、金属リチウム又
はリチウム合金と電解液との反応が抑制される。なお、
表面層の砒素含有ポリマーは非水電解液中でも全く安定
であるので、上記の作用は半永久的に行われる。また、
表面層は固体のポリマーからなるので、安全性が低下す
ることもない。
[Function] Since a lithium ion-permeable surface layer made of an arsenic-containing polymer is formed on the negative electrode to reduce the activity of metallic lithium or a lithium alloy, dendritic lithium is less likely to deposit during charging, and the metal The reaction between lithium or a lithium alloy and the electrolytic solution is suppressed. In addition,
Since the arsenic-containing polymer of the surface layer is quite stable even in the non-aqueous electrolytic solution, the above action is semipermanently performed. Also,
Since the surface layer is made of a solid polymer, safety does not deteriorate.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて説明する。
但し、下記の実施例は一例であり、本発明は下記の実施
例のものに限定されない。 (実施例) 〔正極〕正極活物質としてのLiCoO2 と、導電剤と
してのアセチレンブラックと、結着剤としてのポリフッ
化ビニリデンとを、80:10:10(重量比率)で混
合し、加圧成形し、熱処理して直径16mmの円板状の
正極を作製した。 〔負極〕2−MeTHFにLiAsF6 を1M(モル)
の割合で溶かして電解液を調製した。この電解液に厚さ
200μmのリチウム箔2枚を互いに離間させて対向配
置して浸漬し、一方をプラス極に、他方をマイナス極に
接続して、電流密度2mA/cm2 で10分間電解を行
った後、極性を反転させて、さらに10分間電解を行っ
た。
EXAMPLES The present invention will be described below based on examples.
However, the following examples are merely examples, and the present invention is not limited to the following examples. (Example) [Positive electrode] LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at 80:10:10 (weight ratio) and pressurized. After molding and heat treatment, a disk-shaped positive electrode having a diameter of 16 mm was produced. [Negative electrode] 1 M (mol) of LiAsF 6 in 2-MeTHF
To prepare an electrolytic solution. Two lithium foils having a thickness of 200 μm are placed in this electrolytic solution so as to be spaced apart from each other so as to be opposed to each other and immersed, and one is connected to a positive electrode and the other is connected to a negative electrode, and electrolysis is performed at a current density of 2 mA / cm 2 for 10 minutes. After that, the polarity was reversed and electrolysis was performed for another 10 minutes.

【0014】その後、最初にマイナス極に接続したリチ
ウム箔を取り外し、直径16mmの大きさに打ち抜き、
これを電池組立の際に使用する非水電解液(後述)で洗
浄して、極板の表面に砒素含有ポリマー〔−(O−As
−O)n−〕からなる表面層を有する金属リチウムを活
物質とする負極を作製した。 〔非水電解液〕プロピレンカーボネートと1,2−ジメ
トメキシエタンとの等容積混合溶媒にLiPF6 を1M
(モル)の割合で溶かして非水電解液を調製した。 〔セパレータ〕ポリプロピレン樹脂製の多孔性薄膜(厚
さ:25μm)を使用した。 〔電池の組立〕上記の正極、負極、非水電解液を含浸し
たガラス繊維不織布、及びセパレータを用いてコイン型
のリチウム二次電池(本発明電池)A(外径:20m
m、厚さ:3.0mm)を組み立てた。
After that, the lithium foil first connected to the negative electrode was removed and punched out to a diameter of 16 mm,
This was washed with a non-aqueous electrolytic solution (described later) used in the battery assembly, and the arsenic-containing polymer [-(O-As
A negative electrode using metallic lithium as an active material having a surface layer of —O) n-] was prepared. [Non-aqueous Electrolyte] LiPF 6 was added to a mixed solvent of propylene carbonate and 1,2-dimethoxiethane in an equal volume to 1 M of LiPF 6 .
A non-aqueous electrolytic solution was prepared by dissolving it at a ratio of (mol). [Separator] A polypropylene resin porous thin film (thickness: 25 μm) was used. [Battery Assembly] A coin-type lithium secondary battery (invention battery) A (outer diameter: 20 m) using the above positive electrode, negative electrode, non-aqueous electrolyte impregnated glass fiber nonwoven fabric, and separator.
m, thickness: 3.0 mm) was assembled.

【0015】図1は作製した本発明電池Aを示す断面図
である。図1に示す本発明電池Aは、正極1、負極2、
これら正極1及び負極2を互いに離間するセパレータ
3、非水電解液を含浸したガラス繊維不織布4、正極缶
5、負極缶6、正極集電体7、負極集電体8及びポリプ
ロピレン製の絶縁パッキング9などからなる。
FIG. 1 is a sectional view showing the manufactured battery A of the present invention. The battery A of the present invention shown in FIG. 1 includes a positive electrode 1, a negative electrode 2,
A separator 3 for separating the positive electrode 1 and the negative electrode 2 from each other, a glass fiber nonwoven fabric 4 impregnated with a non-aqueous electrolyte solution, a positive electrode can 5, a negative electrode can 6, a positive electrode current collector 7, a negative electrode current collector 8 and an insulating packing made of polypropylene. It consists of 9 and so on.

【0016】正極1及び負極2は、セパレータ3及びガ
ラス繊維不織布4を介して対向して配置され、これら
が、正負両極缶5,6が形成する電池ケース内に収納さ
れている。正極1は正極集電体7を介して正極缶5に、
また負極2は負極集電体8を介して負極缶6にそれぞれ
接続され、電池内部に生じた化学エネルギーを正極缶5
及び負極缶6の両端子から電気エネルギーとして外部へ
取り出し得るようになっている。 (比較例)負極に未処理の金属リチウムを使用したこと
の他は、上記の実施例と同じ構成のコイン型のリチウム
二次電池(比較電池)Bを組み立てた。 〔充放電サイクル試験〕各リチウム二次電池について、
充電電流密度1mA/cm2 で4.1Vまで充電した
後、放電電流密度1mA/cm2 で3.0Vまで放電す
る充放電サイクル試験を行い、各リチウム二次電池の充
放電サイクル特性を調べた。試験結果を図2に示す。
The positive electrode 1 and the negative electrode 2 are arranged so as to face each other with the separator 3 and the glass fiber nonwoven fabric 4 in between, and these are housed in the battery case formed by the positive and negative bipolar cans 5 and 6. The positive electrode 1 is connected to the positive electrode can 5 via the positive electrode current collector 7,
Further, the negative electrode 2 is connected to the negative electrode can 6 through the negative electrode current collector 8, respectively, and the chemical energy generated inside the battery is transferred to the positive electrode can 5.
Also, both terminals of the negative electrode can 6 can be taken out as electric energy to the outside. (Comparative Example) A coin-type lithium secondary battery (comparative battery) B having the same configuration as that of the above-described example except that untreated metallic lithium was used for the negative electrode was assembled. [Charge / discharge cycle test] For each lithium secondary battery,
After charging to 4.1V at a charging current density of 1 mA / cm 2, at a discharge current density 1 mA / cm 2 subjected to the charge-discharge cycle test for discharging to 3.0 V, was examined charge-discharge cycle characteristics of the lithium secondary batteries . The test results are shown in FIG.

【0017】図2のグラフは、各リチウム二次電池の充
放電サイクル特性を、縦軸に放電容量(mAh)を、ま
た横軸にサイクル数をとって示したものである。図2に
示すように、砒素含有ポリマーからなる表面層を負極に
形成した本発明電池Aでは、100サイクル経過後でも
1サイクル目の放電容量の約70%程度と、比較的高い
放電容量を有しているのに対して、未処理の負極を使用
した比較電極Bでは、15サイクル目位から放電容量が
急激に低下し、30サイクル目には1サイクル目の放電
容量の30%にまで放電容量が低下している。
The graph of FIG. 2 shows the charge / discharge cycle characteristics of each lithium secondary battery, with the vertical axis representing the discharge capacity (mAh) and the horizontal axis representing the number of cycles. As shown in FIG. 2, the battery A of the present invention in which the surface layer made of the arsenic-containing polymer was formed on the negative electrode had a relatively high discharge capacity of about 70% of the discharge capacity at the first cycle even after 100 cycles. On the other hand, in the comparative electrode B using the untreated negative electrode, the discharge capacity sharply decreased from around the 15th cycle, and at the 30th cycle, the discharge capacity was discharged to 30% of the discharge capacity at the first cycle. The capacity is low.

【0018】この事実から、本発明によれば、充放電サ
イクル特性に優れたリチウム二次電池が得られることが
分かる。なお、上述の充放電サイクル試験を終了した
後、各リチウム二次電池の負極の表面を観察したとこ
ろ、比較電池Bの負極の表面は、その全面が金属リチウ
ムと非水電解液との反応生成物と思われる灰色物質で覆
われていたのに対して、本発明電池Aの負極の表面は、
反応生成物と思われる灰色物質が若干存在しているだけ
で、灰色物質の部分が少なく、またその厚さも極めて薄
いものであった。
From this fact, it is understood that according to the present invention, a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained. In addition, when the surface of the negative electrode of each lithium secondary battery was observed after the above charge / discharge cycle test was completed, the entire surface of the negative electrode surface of the comparative battery B was a reaction product of metallic lithium and a non-aqueous electrolyte solution. The surface of the negative electrode of the battery A of the present invention was covered with a gray substance that seems to be
Only a small amount of gray substance, which is thought to be a reaction product, was present, and the gray substance portion was small, and the thickness thereof was extremely thin.

【0019】上述の実施例では、コイン型のリチウム二
次電池を例に説明したが、正極及び負極などをスパイラ
ル状に巻いて円柱状に形成したリチウム二次電池でもよ
く、本発明電池の形状は特に限定されない。
In the above embodiments, the coin-type lithium secondary battery has been described as an example, but a lithium secondary battery in which a positive electrode, a negative electrode and the like are spirally wound to form a cylindrical shape may be used. Is not particularly limited.

【0020】[0020]

【発明の効果】請求項1及び請求項2の発明によると、
負極が砒素含有ポリマーからなるリチウムイオン透過性
の表面層を有しているので、充電時に樹枝状のリチウム
が析出しにくく、且つ金属リチウム又はリチウム合金と
電解液とが反応しにくい。このため、充放電サイクル特
性に優れる。また、表面層は薄くてよいので、電池容量
が大きく低下することもない。さらに、非水電解液中に
毒性の高い砒素化合物を含有していないので、安全性が
高い。
According to the inventions of claims 1 and 2,
Since the negative electrode has a lithium ion-permeable surface layer made of an arsenic-containing polymer, dendritic lithium is unlikely to deposit during charging, and metallic lithium or a lithium alloy does not easily react with the electrolytic solution. Therefore, the charge / discharge cycle characteristics are excellent. Further, since the surface layer may be thin, the battery capacity will not be significantly reduced. Furthermore, since the non-aqueous electrolyte does not contain a highly toxic arsenic compound, the safety is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製したコイン型の本発明電池を示す
断面図である。
FIG. 1 is a cross-sectional view showing a coin-type battery of the present invention manufactured in an example.

【図2】実施例で作製した本発明電池及び比較電池の充
放電サイクル特性を示すグラフである。
FIG. 2 is a graph showing charge / discharge cycle characteristics of the battery of the present invention and the comparative battery manufactured in Examples.

【符号の説明】[Explanation of symbols]

A リチウム二次電池 1 正極 2 負極 3 セパレータ 4 ガラス繊維不織布(非水電解液) A lithium secondary battery 1 positive electrode 2 negative electrode 3 separator 4 glass fiber non-woven fabric (non-aqueous electrolyte)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 賢介 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 宮下 勉 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kensuke Yoshida, 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa, Fujitsu Limited (72) Inventor Tsutomu Miyashita, 1015, Kamedota, Nakahara-ku, Kawasaki, Kanagawa, Fujitsu Limited

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵及び放出することが
可能な物質を有する正極と、金属リチウム又はリチウム
合金を有する負極と、前記正極及び前記負極を離間する
セパレータと、非水電解液とを備えるリチウム二次電池
であって、 前記負極は砒素含有ポリマーからなるリチウムイオン透
過性の表面層を有しており、且つ前記非水電解液は砒素
化合物以外の物質を溶質とするものである、 ことを特徴とするリチウム二次電池。
1. A positive electrode having a substance capable of inserting and extracting lithium ions, a negative electrode having metallic lithium or a lithium alloy, a separator for separating the positive electrode and the negative electrode, and a non-aqueous electrolytic solution. A lithium secondary battery, wherein the negative electrode has a lithium ion-permeable surface layer made of an arsenic-containing polymer, and the nonaqueous electrolytic solution uses a substance other than an arsenic compound as a solute. A lithium secondary battery characterized by.
【請求項2】前記表面層が式:−(O−As−O)n−
で表される砒素含有ポリマーからなる、 請求項1記載のリチウム二次電池。
2. The surface layer has the formula:-(O-As-O) n-
The lithium secondary battery according to claim 1, comprising an arsenic-containing polymer represented by:
JP6190370A 1994-08-12 1994-08-12 Lithium secondary battery Withdrawn JPH0855638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190370A JPH0855638A (en) 1994-08-12 1994-08-12 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190370A JPH0855638A (en) 1994-08-12 1994-08-12 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0855638A true JPH0855638A (en) 1996-02-27

Family

ID=16257055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190370A Withdrawn JPH0855638A (en) 1994-08-12 1994-08-12 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0855638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067854A (en) * 1998-08-19 2000-03-03 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
US6187477B1 (en) 1998-03-05 2001-02-13 Fujitsu Limited Lithium secondary battery and cathode composition therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187477B1 (en) 1998-03-05 2001-02-13 Fujitsu Limited Lithium secondary battery and cathode composition therefor
JP2000067854A (en) * 1998-08-19 2000-03-03 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
JP5094027B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US6528212B1 (en) Lithium battery
JP4412778B2 (en) Polymer electrolyte battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
CA2384494C (en) Lithium metal dispersion in secondary battery anodes
US6764791B2 (en) Rechargeable lithium battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JPH10199510A (en) Negative electrode for lithium battery and lithium battery
JPH08115742A (en) Lithium secondary battery
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
US8734988B2 (en) Lithium batteries having anodes based on polythiocyanogen
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP3462764B2 (en) Non-aqueous electrolyte secondary battery
JP2004220961A (en) Lithium secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP2003168427A (en) Nonaqueous electrolyte battery
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JPH08171934A (en) Lithium secondary battery
JPH0855638A (en) Lithium secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106