JPH0541251A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0541251A
JPH0541251A JP3215900A JP21590091A JPH0541251A JP H0541251 A JPH0541251 A JP H0541251A JP 3215900 A JP3215900 A JP 3215900A JP 21590091 A JP21590091 A JP 21590091A JP H0541251 A JPH0541251 A JP H0541251A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
positive electrode
lithium
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3215900A
Other languages
Japanese (ja)
Other versions
JP2734822B2 (en
Inventor
Hiroaki Yoshida
吉田  浩明
Minoru Mizutani
実 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16680116&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0541251(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3215900A priority Critical patent/JP2734822B2/en
Publication of JPH0541251A publication Critical patent/JPH0541251A/en
Application granted granted Critical
Publication of JP2734822B2 publication Critical patent/JP2734822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the safety and one cycle life property or a high energy density of nonaqueous electrolyte secondary battery by making the storable lithium ion amount of a negative electrode more than the dischargeable lithium ion amount from a positive electrode and an electrolyte. CONSTITUTION:Inside a case 1 being a positive electrode terminal concurrently which is made by press-processing an organic electrolyte resisting stainless steel, and a sealing plate 2 being a negative electrode terminal concurrently which is made by punch-processing the same stainless steel, a negative electrode 3 which consists of a pyrolytic carbon and a positive electrode 6 which consists mainly of LiMn2O4 are abutted, placing a separator 5 which consists of polypropylene impregnated with an organic electrolyte, at the center, and they are enclosed and sealed by the sealing plate 2 through a gasket 4. By making the storable lithium ion amount of the negative electrode 3 more than the dischargeable lithium ion amount from the positive electrode 6 and the electrolyte, the metal lithium is separated on the negative electrode 3 even though the battery is made in an overcharged condition, and a fear of generating an internal short circuit is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い安全性を有する非水電解質二次電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having high energy density and high safety as a power source for driving electronic equipment or a memory holding power source.

【0002】[0002]

【従来の技術】電子機器の急激なる小形軽量化に伴い、
その電源である電池に対して小形で軽量かつ高エネルギ
ー密度で、更に繰り返し充放電が可能な二次電池の開発
への要求が高まっている。これら要求を満たす二次電池
として、リチウム二次電池が最も有望である。なぜな
ら、リチウム二次電池は、負極であるリチウムの電位が
極めて卑であるため、電池の電圧が高く、かつリチウム
の体積,重量エネルギー密度が高いため、高エネルギー
密度の二次電池を提供できるという利点を有しているか
らである。
2. Description of the Related Art With the rapid reduction in size and weight of electronic devices,
There is an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source. A lithium secondary battery is most promising as a secondary battery that meets these requirements. This is because the lithium secondary battery has a high negative voltage, and thus has a high battery voltage, and has a high lithium volume and weight energy density. Therefore, a high energy density secondary battery can be provided. This is because it has advantages.

【0003】リチウム二次電池の正極活物質は、研究の
結果より各種の材料が提案されている。その結果、たと
えばTiS2 ,MnO2 ,V2 5 ,LiCoO2 ,L
iMn2 4 等の無機化合物系、あるいはポリアニリ
ン,ポリピロール等の有機化合物系活物質が優れた充放
電可逆性を有するものとして知られている。
As a positive electrode active material for a lithium secondary battery, various materials have been proposed as a result of research. As a result, for example, TiS 2 , MnO 2 , V 2 O 5 , LiCoO 2 , L
Inorganic compound-based active materials such as iMn 2 O 4 or organic compound-based active materials such as polyaniline and polypyrrole are known to have excellent charge-discharge reversibility.

【0004】それにも関わらず、現在リチウム二次電池
が本格的に実用化されない大きな理由として、リチウム
の樹枝状結晶の成長による内部短絡が挙げられる。短絡
時のジュール熱等により短絡部の温度がリチウムの融点
まで達すると、溶融リチウムと電池構成品間にて激しい
反応が起こり、電池温度が急上昇するとともに電池内圧
力も急激に上昇し、最終的には電池の破裂、最悪時には
電解液中の有機溶媒が燃えるなどして発火および爆発な
どの極めて危険な状態となる。そこで近年、負極に金属
リチウムを使わずに、リチウムの吸蔵放出が可能なLi
−Al合金やカーボンを負極材料として用いた電池がさ
かんに研究されるようになった。
Nonetheless, a major reason why lithium secondary batteries are not put into practical use at present is the internal short circuit due to the growth of lithium dendrites. When the temperature of the short circuit reaches the melting point of lithium due to Joule heat during a short circuit, a violent reaction occurs between the molten lithium and the battery components, causing a rapid increase in battery temperature and a rapid increase in battery internal pressure. If the battery is ruptured, or in the worst case, the organic solvent in the electrolyte is burned, it becomes extremely dangerous such as ignition or explosion. Therefore, in recent years, Li capable of inserting and extracting lithium without using metallic lithium for the negative electrode
-A battery using an Al alloy or carbon as a negative electrode material has been actively studied.

【0005】[0005]

【発明が解決しようとする課題】しかし、これら負極材
料を用いた電池も複数セルを直列に接続し端子間に電圧
を印加して一括充電する場合に、各セル間の容量バラン
ス差等により一部セルが過充電状態となったときには、
正極活物質中のリチウムや電解質中のリチウムが、負極
容量を越えて負極上に電析するため、樹枝状結晶が成長
した電池が生じ上記に述べた危険が生じるという問題が
ある。
However, even in the case of batteries using these negative electrode materials, when a plurality of cells are connected in series and a voltage is applied between the terminals to carry out batch charging, there is a difference in capacity balance between the cells. When the cell is overcharged,
Since lithium in the positive electrode active material and lithium in the electrolyte are deposited on the negative electrode beyond the negative electrode capacity, there is a problem that a battery in which dendrites grow and the above-mentioned danger occurs.

【0006】[0006]

【課題を解決するための手段】本発明は、リチウムイオ
ンを吸蔵放出する物質からなる負極と、正極と、リチウ
ムイオンを含むイオン導電体を電解質とする二次電池に
おいて、負極の吸蔵可能なリチウムイオン量を、正極お
よび電解質から放出可能なリチウムイオン量以上とする
ことにより上記問題を解決した非水電解質二次電池を提
供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a negative electrode composed of a substance capable of occluding and releasing lithium ions, a positive electrode, and a secondary battery having an ionic conductor containing lithium ions as an electrolyte. The present invention provides a non-aqueous electrolyte secondary battery that solves the above problems by making the amount of ions equal to or larger than the amount of lithium ions that can be released from the positive electrode and the electrolyte.

【0007】[0007]

【作用】リチウムの吸蔵放出が可能なカーボンの充放電
機構を簡単に説明する。
[Function] A carbon charging / discharging mechanism capable of inserting and extracting lithium will be briefly described.

【0008】充電は、カーボン中のグラファイト層間へ
リチウムイオンがドープされることにより行われ、放電
はリチウムイオンのグラファイト層間からの脱ドープに
より起こる。カーボンが吸蔵可能なリチウムイオン量
は、理論的には炭素原子6個に対してリチウムイオン1
個であるといわれ、換言すればカーボン1gで約372
mAhのリチウムイオンが吸蔵できることになる。
Charging is performed by doping lithium ions into graphite layers in carbon, and discharging is performed by dedoping lithium ions from the graphite layers. The theoretical amount of lithium ions that can be occluded by carbon is 1 lithium ion per 6 carbon atoms.
It is said to be individual, in other words, about 372 with 1 g of carbon.
The lithium ion of mAh can be stored.

【0009】しかし、カーボンの吸蔵可能なリチウムイ
オン量を越えてリチウムイオンを吸蔵させようとする
と、吸蔵しきれないリチウムイオンは金属リチウムとし
てカーボン上に電析してしまう。
However, if an attempt is made to occlude lithium ions in excess of the storable amount of lithium ions of carbon, the lithium ions that cannot be occluded will be electrodeposited on the carbon as metallic lithium.

【0010】しかし、本発明の構成による電池において
は、負極の吸蔵可能なリチウムイオン量を、正極および
電解質から放出可能なリチウムイオン量以上としている
ためたとえ過充電状態となってもリチウムイオンは全て
負極に吸蔵されるため、負極上に金属リチウムが析出す
るという危険な状態が生ずることがない、高い安全性を
有する電池を提供することができる。
However, in the battery having the structure of the present invention, the amount of lithium ions that can be occluded in the negative electrode is set to be equal to or more than the amount of lithium ions that can be released from the positive electrode and the electrolyte. Since it is occluded in the negative electrode, a dangerous state in which metallic lithium is deposited on the negative electrode does not occur, and a battery having high safety can be provided.

【0011】[0011]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
The present invention will be described below with reference to preferred embodiments.

【0012】[実施例1]二酸化マンガンと炭酸リチウ
ムとをLi/Mnモル比で1/2にて混合・粉砕した
後、1トン/cm2 で直径20mm、高さ20mmのペ
レットに成型した。
Example 1 Manganese dioxide and lithium carbonate were mixed and pulverized at a Li / Mn molar ratio of 1/2, and then pulverized into pellets having a diameter of 20 mm and a height of 20 mm at 1 ton / cm 2 .

【0013】この、ペレットを空気中において温度65
0℃で6時間加熱焼成した。反応生成物は、暗青色粉末
でありX線回折パターンを調べたところそ、ASTM
No.35-782 のLiMn2 4 のデータと一致した。ま
た、33°付近にMn2 3 (ASTMNo.31-286 )の
ピークが弱く確認された。
The pellets are heated in air at a temperature of 65.
It was heated and calcined at 0 ° C. for 6 hours. The reaction product was a dark blue powder, and its X-ray diffraction pattern was examined.
It was in agreement with the data of LiMn 2 O 4 of No. 35-782. A weak peak of Mn 2 O 3 (ASTM No. 31-286) was confirmed around 33 °.

【0014】このLiMn2 4 、100重量部に対し
てアセチレンブラック(導電助剤)を5重量部、および
ポリ4フッ化エチレン(結着材)を2重量部添加してよ
く混練した後、温度200℃で3時間真空乾燥して正極
合剤を調整した。そして、その正極合剤を173mgず
つ秤量して325メッシュのSUS316製金網に包み
込んで、2トン/cm2 で加圧成形して正極とした。正
極の寸法は、直径16.0mm厚み0.8mm程度で、
充電終止電位4.5V(Li/Li+ ) までの充電容量は約2
3mAhで、理論容量は約24mAhである。
After adding 5 parts by weight of acetylene black (conductive aid) and 2 parts by weight of polytetrafluoroethylene (binder) to 100 parts by weight of this LiMn 2 O 4 , and kneading well, The positive electrode mixture was prepared by vacuum drying at a temperature of 200 ° C. for 3 hours. Then, the positive electrode mixture was weighed in an amount of 173 mg each, wrapped in a 325 mesh SUS316 wire mesh, and pressure-molded at 2 ton / cm 2 to obtain a positive electrode. The size of the positive electrode is 16.0 mm in diameter and 0.8 mm in thickness,
The charge capacity up to a charge end potential of 4.5 V (Li / Li + ) is about 2
At 3 mAh, the theoretical capacity is about 24 mAh.

【0015】負極には、Ni板上に生成析出させた熱分
解カーボン90mgを用いた。負極の寸法は、直径1
6.0mm厚み0.5mm程度である。リチウムの電析
に至る(0V(Li/Li+ ) )までの充電容量は約27mA
hで、理論容量は33.5mAhである。
For the negative electrode, 90 mg of pyrolytic carbon produced and deposited on a Ni plate was used. Negative electrode size is diameter 1
The thickness is about 6.0 mm and about 0.5 mm. The charging capacity up to the electrodeposition of lithium (0 V (Li / Li + )) is about 27 mA.
At h, the theoretical capacity is 33.5 mAh.

【0016】セパレータにはポリプロピレンのマイクロ
ポーラスセパレータ(セルガードK274)及びポリプロピ
レンの不織布を重ねて用いて、外径20.0mm 高さ2.0mm
の電池を作成した。
A polypropylene microporous separator (Celgard K274) and a polypropylene non-woven fabric are used as a separator, and the outer diameter is 20.0 mm and the height is 2.0 mm.
I made a battery.

【0017】電解液には、スルホラン(S)とジメチル
カーボネイト(DMC)とを体積比1:1で混合してな
る有機溶媒に電解質として過塩素酸リチウムを1モル/
リットル溶解したものを用いた。
In the electrolytic solution, lithium perchlorate (1 mol / mol) was used as an electrolyte in an organic solvent prepared by mixing sulfolane (S) and dimethyl carbonate (DMC) at a volume ratio of 1: 1.
What was melt | dissolved in 1 liter was used.

【0018】電池への注液量は、100μl/セルとし
た。すなわち、電解質中のリチウムイオン量は1×10
-4モルとなり、約2.7mAhの容量に相当する。
The amount of liquid injected into the battery was 100 μl / cell. That is, the amount of lithium ions in the electrolyte is 1 × 10
-4 mol, which corresponds to a capacity of about 2.7 mAh.

【0019】この本発明電池において、正極中から放出
可能なイオン量は23mAhで電解質中から放出可能な
イオン量が2.7mAhであり、電池内の総イオン量は
25.7mAhとなる。また過充電により、正極の理論
容量に相当する24mAhのイオンが正極から放出され
たとした場合は電池内の総イオン量は26.7mAhと
なる。
In the battery of the present invention, the amount of ions that can be released from the positive electrode is 23 mAh, the amount of ions that can be released from the electrolyte is 2.7 mAh, and the total amount of ions in the battery is 25.7 mAh. If 24 mAh of ions corresponding to the theoretical capacity of the positive electrode are released from the positive electrode due to overcharge, the total amount of ions in the battery is 26.7 mAh.

【0020】負極の充電可能な容量は、27mAhであ
り電池内の総イオン量に対してそれぞれ約105%,1
01%に当たり、電池を過充電したとしても負極上に金
属リチウムが析出することはない。
The chargeable capacity of the negative electrode is 27 mAh, which is about 105% and 1% of the total amount of ions in the battery, respectively.
At 01%, metallic lithium does not deposit on the negative electrode even if the battery is overcharged.

【0021】図1は、電池の縦断面図である。この図に
おいて1は、耐有機電解液性のステンレス鋼板をプレス
によって打ち抜き加工した正極端子を兼ねるケース、2
は同種の材料を打ち抜き加工した負極端子を兼ねる封口
板であり、その内壁には負極3が当接されている。5は
有機電解液を含浸したポリプロピレンからなるセパレー
ター、6は正極であり正極端子を兼ねるケース1の開口
端部を内方へかしめ、ガスケット4を介して負極端子を
兼ねる封口板2の内周を締め付けることにより密閉封口
している。この本発明の電池を電池(A)とする。
FIG. 1 is a vertical sectional view of a battery. In this figure, 1 is a case that also functions as a positive electrode terminal, which is formed by punching out a stainless steel plate having organic electrolyte resistance by a press, and 2
Is a sealing plate that also functions as a negative electrode terminal made by punching the same kind of material, and the negative electrode 3 is in contact with the inner wall thereof. 5 is a separator made of polypropylene impregnated with an organic electrolytic solution, 6 is a positive electrode, and the opening end of the case 1 also serving as a positive electrode terminal is caulked inward, and the inner periphery of the sealing plate 2 also serving as a negative electrode terminal is inserted through a gasket 4. It is closed and sealed by tightening. This battery of the present invention is referred to as battery (A).

【0022】[比較例1]電池の負極活物質量を減じ、
負極の充電可能な容量が正極の充電終止電位4.5V(L
i/Li+ ) までの充電容量(23mAh)よりも若干大き
な24mAhとなるようにした負極を用いることを除い
ては、電池構成が実施例1と同様な電池を作成した。こ
の正極制限の比較電池を電池(ア)とする。
[Comparative Example 1] By reducing the amount of the negative electrode active material of the battery,
The chargeable capacity of the negative electrode is 4.5 V (L
A battery having the same battery configuration as in Example 1 was prepared except that the negative electrode was set to 24 mAh, which was slightly larger than the charging capacity (23 mAh) up to i / Li + ). This comparative battery with positive electrode restriction is referred to as battery (a).

【0023】[比較例1]電池の負極活物質量をさらに
減じ、負極の充電可能な容量が正極の充電終止電位4.
5V(Li/Li+ ) までの充電容量(23mAh)よりも若
干少ない22mAhとなるようにした負極を用いること
を除いては、電池構成が実施例1と同様な電池を作成し
た。この負極制限の比較電池を電池(イ)とする。。
Comparative Example 1 The amount of the negative electrode active material of the battery was further reduced so that the chargeable capacity of the negative electrode was 4.
A battery having the same battery configuration as in Example 1 was prepared except that the negative electrode was set to 22 mAh, which was slightly smaller than the charge capacity (23 mAh) up to 5 V (Li / Li + ). This negative electrode limited comparative battery is referred to as battery (a). ..

【0024】上記各種電池について、4.5V〜3.0
Vの間で1.8mAの定電流で充放電を繰り返し、各サ
イクルにおける放電容量を測定した。その結果を図2に
示す。
With respect to the above various batteries, 4.5 V to 3.0
Charge and discharge were repeated at a constant current of 1.8 mA between V and the discharge capacity in each cycle was measured. The result is shown in FIG.

【0025】電池(A),(ア),(イ)ともに良好な
充放電挙動を示し、10サイクル経過後4.5Vまで充
電し電池を分解してたところ、本発明の電池(A)およ
び正極制限の電池(ア)ともに金属リチウムの析出は認
められなかったが、負極制限の電池(イ)では、負極上
に金属リチウムの電析が認められた。これは、比較電池
(イ)において、負極の吸蔵可能な容量を越えて充電を
行ったためと思われる。
The batteries (A), (A), and (B) all showed good charge and discharge behavior, and after 10 cycles, they were charged to 4.5 V and disassembled, and the batteries (A) and No deposition of metallic lithium was observed in the positive electrode limited battery (a), but metallic lithium deposition was observed on the negative electrode in the negative electrode limited battery (a). It is considered that this is because the comparative battery (a) was charged so as to exceed the storable capacity of the negative electrode.

【0026】次に、電池が過充電された場合を想定し、
電池電圧4.5Vを越えてさらに1.8mAの定電流で
強制的に1時間充電した。その後、電池を分解したとこ
ろ本発明電池(A)では金属リチウムの析出が認められ
なかったが、正極制限の比較電池(ア)および負極制限
の比較電池(イ)では、金属リチウムが析出しているの
が認められた。この金属リチウムは、比較電池(ア)で
は電解液中のリチウムイオンが電析したものと思われ、
比較電池(イ)では、正極中および電解液中のリチウム
イオンが電析したものと思われる。
Next, assuming that the battery is overcharged,
It was forcibly charged for 1 hour with a constant current of 1.8 mA exceeding the battery voltage of 4.5 V. After that, when the battery was disassembled, deposition of metallic lithium was not observed in the battery (A) of the present invention, but metallic lithium was deposited in the comparative battery (a) limited to the positive electrode and the comparative battery (a) limited to the negative electrode. Was found to exist. This metallic lithium is considered to be the electrodeposition of lithium ions in the electrolytic solution in the comparative battery (a),
In the comparative battery (a), it is considered that lithium ions in the positive electrode and the electrolytic solution were electrodeposited.

【0027】今回の実験では、比較電池において金属リ
チウムの析出による電池内ショートや発火爆発などは認
められなかったものの、より対向面積の大きな電池もし
くはより大型の電池となれば危険性が大きくなる。
In this experiment, although no battery short circuit or ignition explosion due to the deposition of metallic lithium was observed in the comparative battery, the risk becomes larger if the battery has a larger facing area or a larger battery.

【0028】なお、上記実施例では負極活物質として熱
分解カーボンを用いたが、負極活物質は基本的に限定さ
れるず、リチウム合金やカーボン(たとえばピッチ系カ
ーボン,グラファイト,コークス)などのリチウムイオ
ンを吸蔵放出する物質を用いることができるが、安全性
および充放電可逆性の点でリチウム合金よりもカーボン
を用いた方が電池寿命が長く、より安全な電池を提供す
ることができると考えられる。
Although pyrolytic carbon was used as the negative electrode active material in the above-mentioned examples, the negative electrode active material is not basically limited, and lithium such as lithium alloy or carbon (for example, pitch-based carbon, graphite, coke) is used. Although it is possible to use a substance that occludes and releases ions, it is thought that carbon is more durable than lithium alloy in terms of safety and charge-discharge reversibility, and a safer battery can be provided. Be done.

【0029】正極活物質についても、特に限定されず従
来のリチウム二次電池で用いられている各種の材料を使
用することができる。たとえばTiS2 ,MnO2 ,V
2 5 ,LiCoO2 ,LiMn2 4 等の無機化合物
系、あるいはポリアニリン,ポリピロール等の有機化合
物系活物質を用いることができるが、エネルギー密度の
点からLiCoO2 およびLiMn2 4を用いるのが
好ましい。
The positive electrode active material is not particularly limited, and various materials used in conventional lithium secondary batteries can be used. For example, TiS 2 , MnO 2 , V
An inorganic compound-based active material such as 2 O 5 , LiCoO 2 , or LiMn 2 O 4 or an organic compound-based active material such as polyaniline or polypyrrole can be used, but LiCoO 2 and LiMn 2 O 4 are used in terms of energy density. Is preferred.

【0030】尚、LiCoO2 を正極に用いた電池で
は、深い充放電を行うとLiCoO2 の劣化が大きいた
め、通常はLiCoO2からLi(1-X) CoO2 (0<
X≦0.5)までの範囲で用いられる。
[0030] In the battery using LiCoO 2 for the positive electrode, the deep for charging and discharging performed when deterioration of LiCoO 2 to large, usually from LiCoO 2 Li (1-X) CoO 2 (0 <
It is used in the range of X ≦ 0.5).

【0031】過充電の際には0.5<X≦1まで充電さ
れる可能性があるため、負極の吸蔵可能なリチウムイオ
ン量を、正極および電解質から放出可能なリチウムイオ
ン量以上とするためには、負極容量を正極の通常の充放
電容量の2倍以上としなければならないために電池エネ
ルギー密度が大きく低下する。
Since there is a possibility of being charged to 0.5 <X ≦ 1 when overcharged, the amount of lithium ions that can be stored in the negative electrode is set to be equal to or more than the amount of lithium ions that can be released from the positive electrode and the electrolyte. In addition, since the negative electrode capacity must be twice or more the normal charge / discharge capacity of the positive electrode, the battery energy density is significantly reduced.

【0032】一方、LiMn2 4 はLiMn2 4
らLi(1-X) Mn2 4 (0<X≦1)までの範囲で充
放電を行うため、負極容量は正極充放電容量と電解質中
のイオン量の和以上であればよく、正極活物質にLiM
2 4 を用いることでエネルギー密度が高く、過充電
の際にも安全な非水電解質二次電池を提供できる。
On the other hand, since LiMn 2 O 4 charges and discharges in the range from LiMn 2 O 4 to Li (1-X) Mn 2 O 4 (0 <X ≦ 1), the negative electrode capacity is the positive electrode charge / discharge capacity. The amount of ions in the electrolyte should be at least the sum, and LiM should be used as the positive electrode active material.
By using n 2 O 4 , it is possible to provide a non-aqueous electrolyte secondary battery that has a high energy density and is safe even when overcharged.

【0033】また、リチウムイオン伝導性物質である有
機溶媒や固体のイオン導電体も基本的に限定されず、従
来の有機電解液二次電池に用いられているものを用いる
ことが出来る。たとえば、有機溶媒としては非プロトン
溶媒であるエチレンカーボネイトなどの環状エステル類
およびテトラハイドロフラン,ジオキソランなどのエー
テル類があげられ、これら単独もしくは2種以上を混合
した溶媒を用いることが出来る。固体のイオン導電体と
しては、リチウムイオン導電性を有するものであれば用
いることが出来る。その代表的なものとして、ポリエチ
レンオキサイドなどがあげられる。
Further, the organic solvent which is a lithium ion conductive material and the solid ionic conductor are basically not limited, and those used in the conventional organic electrolyte secondary battery can be used. Examples of the organic solvent include cyclic esters such as ethylene carbonate which is an aprotic solvent and ethers such as tetrahydrofuran and dioxolane. These can be used alone or in a mixture of two or more kinds. As the solid ionic conductor, any substance having lithium ion conductivity can be used. A typical example thereof is polyethylene oxide.

【0034】また、このような有機溶媒あるいは固体の
イオン導電体に溶解される支持電解質も基本的に限定さ
れるものではない。たとえば、 LiAsF6 , LiClO4 ,Li
BF4 ,LiPF6 ,LiCF3 SO3 などの1種以上を用いること
ができる。
Also, the supporting electrolyte dissolved in such an organic solvent or solid ionic conductor is not basically limited. For example, LiAsF 6 , LiClO 4 , Li
One or more of BF 4 , LiPF 6 and LiCF 3 SO 3 can be used.

【0035】なお、前記の実施例に係る電池はいずれも
ボタン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above-mentioned embodiments are all button type batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0036】[0036]

【発明の効果】以上詳述した如く、本発明によれば高い
安全性と優れたサイクル寿命性能を有する高エネルギー
密度の非水電解質二次電池を提供することができるもの
である。
As described in detail above, according to the present invention, a high energy density non-aqueous electrolyte secondary battery having high safety and excellent cycle life performance can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解質二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【図2】試験電池のサイクルと放電容量を示した図。FIG. 2 is a diagram showing cycles and discharge capacities of test batteries.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 Battery Case 2 Sealing Plate 3 Negative Electrode 4 Gasket 5 Separator 6 Positive Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出する物質から
なる負極と、正極と、リチウムイオンを含むイオン導電
体を電解質とする非水電解質二次電池において、負極の
吸蔵可能なリチウムイオン量は、正極および電解質から
放出可能なリチウムイオン量以上であることを特徴とす
る非水電解質二次電池。
1. In a non-aqueous electrolyte secondary battery having a negative electrode made of a substance capable of occluding and releasing lithium ions, a positive electrode, and an ionic conductor containing lithium ions as an electrolyte, the storable amount of lithium ions in the negative electrode is And a non-aqueous electrolyte secondary battery in which the amount of lithium ions that can be released from the electrolyte is greater than or equal to the amount.
JP3215900A 1991-07-31 1991-07-31 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2734822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3215900A JP2734822B2 (en) 1991-07-31 1991-07-31 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3215900A JP2734822B2 (en) 1991-07-31 1991-07-31 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0541251A true JPH0541251A (en) 1993-02-19
JP2734822B2 JP2734822B2 (en) 1998-04-02

Family

ID=16680116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3215900A Expired - Lifetime JP2734822B2 (en) 1991-07-31 1991-07-31 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2734822B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856043A (en) * 1996-06-12 1999-01-05 Nikkiso Company Ltd. Non-aqueous electrolyte secondary battery
EP0954044A2 (en) * 1998-03-23 1999-11-03 Ngk Insulators, Ltd. Lithium secondary battery
US6346995B1 (en) 1993-06-29 2002-02-12 Canon Kabushiki Kaisha Communication apparatus with outgoing call limiting
CN100380714C (en) * 2003-09-29 2008-04-09 新神户电机株式会社 Battery pack and electric vehicle
US7648801B2 (en) * 2004-04-01 2010-01-19 3M Innovative Properties Company Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
US7811710B2 (en) 2004-04-01 2010-10-12 3M Innovative Properties Company Redox shuttle for rechargeable lithium-ion cell
WO2011074083A1 (en) 2009-12-16 2011-06-23 トヨタ自動車株式会社 Lithium ion secondary battery
US8101302B2 (en) 2008-02-12 2012-01-24 3M Innovative Properties Company Redox shuttles for high voltage cathodes
WO2016121734A1 (en) * 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 Secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249364A (en) * 1988-05-11 1990-02-19 Matsushita Electric Ind Co Ltd Lithium accumulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249364A (en) * 1988-05-11 1990-02-19 Matsushita Electric Ind Co Ltd Lithium accumulator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346995B1 (en) 1993-06-29 2002-02-12 Canon Kabushiki Kaisha Communication apparatus with outgoing call limiting
US5856043A (en) * 1996-06-12 1999-01-05 Nikkiso Company Ltd. Non-aqueous electrolyte secondary battery
EP0954044A2 (en) * 1998-03-23 1999-11-03 Ngk Insulators, Ltd. Lithium secondary battery
US6506515B1 (en) 1998-03-23 2003-01-14 Ngk Insulators, Ltd. Lithium secondary battery
EP0954044A3 (en) * 1998-03-23 2003-04-16 Ngk Insulators, Ltd. Lithium secondary battery
US6616715B2 (en) 1998-03-23 2003-09-09 Ngk Insulators, Ltd. Batteries having desired working volume ratios of positive and negative materials
US6800394B2 (en) 1998-03-23 2004-10-05 Ngk Insulators, Ltd. Lithium secondary battery
CN100380714C (en) * 2003-09-29 2008-04-09 新神户电机株式会社 Battery pack and electric vehicle
US7648801B2 (en) * 2004-04-01 2010-01-19 3M Innovative Properties Company Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
US7811710B2 (en) 2004-04-01 2010-10-12 3M Innovative Properties Company Redox shuttle for rechargeable lithium-ion cell
US8101302B2 (en) 2008-02-12 2012-01-24 3M Innovative Properties Company Redox shuttles for high voltage cathodes
WO2011074083A1 (en) 2009-12-16 2011-06-23 トヨタ自動車株式会社 Lithium ion secondary battery
US8936875B2 (en) 2009-12-16 2015-01-20 Toyota Jidosha Kabushiki Kaisha Negative electrode containing graphite for lithium ion secondary battery
WO2016121734A1 (en) * 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 Secondary battery
CN107210494A (en) * 2015-01-30 2017-09-26 Nec 能源元器件株式会社 Secondary cell
JPWO2016121734A1 (en) * 2015-01-30 2017-11-16 Necエナジーデバイス株式会社 Secondary battery
EP3252862A4 (en) * 2015-01-30 2018-08-08 NEC Energy Devices, Inc. Secondary battery
US10217988B2 (en) 2015-01-30 2019-02-26 Nec Energy Devices, Ltd. Secondary battery

Also Published As

Publication number Publication date
JP2734822B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5478675A (en) Secondary battery
CA2522107C (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
EP1009055A1 (en) Nonaqueous electrolyte battery and charging method therefor
KR20070100957A (en) Lithium-ion secondary battery
JP3436600B2 (en) Rechargeable battery
US6541157B1 (en) Nonaqueous electrolyte battery having large capacity and long cycle life
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
JPH0536411A (en) Nonaqueous solvent secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3394020B2 (en) Lithium ion secondary battery
JP3452488B2 (en) Non-aqueous electrolyte lithium secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP2002110160A (en) Nonaqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JP2000277113A (en) Lithium secondary battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH04181660A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14