JPH0851687A - Sound hologram and related equipment - Google Patents

Sound hologram and related equipment

Info

Publication number
JPH0851687A
JPH0851687A JP6211658A JP21165894A JPH0851687A JP H0851687 A JPH0851687 A JP H0851687A JP 6211658 A JP6211658 A JP 6211658A JP 21165894 A JP21165894 A JP 21165894A JP H0851687 A JPH0851687 A JP H0851687A
Authority
JP
Japan
Prior art keywords
sound
ear
earphone
listening
compatible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6211658A
Other languages
Japanese (ja)
Inventor
Kiyoaki Kakegawa
清明 掛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6211658A priority Critical patent/JPH0851687A/en
Publication of JPH0851687A publication Critical patent/JPH0851687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stereophonic System (AREA)
  • Headphones And Earphones (AREA)
  • Stereophonic Arrangements (AREA)

Abstract

PURPOSE:To provide a 'method for three-dimensional stereophonic reproduction for earphone listening' wherein information on 'difference in arrival time between sound pressure level difference and phase difference of sound reaching the right and left eardrums', explained as both-ear effects, is used for discriminating between the right and left directions and information for discriminating between the front and rear directions or top and bottom directions where the former information has a value '0' is transmitted as on 'change in timbre characteristics that shapes of the right and left pinnas give to an 'arrival sound', and to provide related acoustic equipments such as a three-dimensional stereophonic reproduction signal detector, a microphone, records, earphones and a hearing aid comprising them. CONSTITUTION:A three-dimensional stereophonic reproducing device which utilizes the effects of the ear shapes is composed of signal detection part which detects sound collected at the entrances E1 and E2 of the right and left external auditory meatuses of a virtual listener Q1 in an original sound field with microphones M1 and M2 installed there, the records REC, etc., used for collecting and transmitting detected signals, and a reproduction part which reproduces the signals with the earphones Y1 and Y2 at the entrances E1 and E2 of the right and left external auditory meatuses of a listener Q2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイヤホン受聴による三次
元立体再生方式サウンドフォログラムおよびその関連機
器に関するものである。(なお立体は三次元を意味する
から以下三次元を省略して単に立体再生と記す)。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional stereoscopic reproduction type sound program by listening to earphones and related equipment. (Because three-dimensional means three-dimensional, the following three-dimensional is omitted and is simply described as three-dimensional reproduction).

【0002】[0002]

【従来の技術】近年住宅事情等により特に多く用いられ
る様になったイヤホン/ヘッドホンに関しては、これに
適するレコード類の開発がおくれ、スピーカー用として
制作された通常のレコード類を以て是に当てているのが
一般的な現状である。しかしスピーカー用をイヤホン/
ヘッドホン用として流用した場合、この再生音は左右の
分離度が高ければ高いほど左右両耳と頭部付近に定位し
て極めて狭い範囲から聞こえ、原音場の壮大なスケール
感、臨場感、音源の位置に関する忠実度、パーティー効
果などが著しく損なわれるという問題があり、加えてこ
の再生音が定位する左右の耳元付近は、遠方の音声にた
いしては高く、近ずけば近ずくほど低下する耳の感度の
最低点にあたるため其の音量感に乏しく、この補正によ
る過大音圧によって聴覚上に著しい疲労感をあたえ更に
は聴覚障害をもたらすなどの報告もあって、これ等が現
在のイヤホン/ヘッドホン受聴に関して多くの問題をな
げかけているのである。本発明は、原音場における人体
の左右の鼓膜振動がイヤホン等により聴取者の左右の鼓
膜に正確に再現された場合、聴覚系にはこの鼓膜振動が
原音場によるものか再生音によるものかを全く判別出来
ない、つまり同じ方向にしか知覚出来ないという其の構
造に着目し、実際の鼓膜振動がどの様なものでありどの
様にはたらくかを探る事によって、イヤホン受聴による
立体再生の実現と併せてこの問題を解決しようとする。
2. Description of the Related Art With regard to earphones / headphones, which have come to be used particularly frequently in recent years due to housing conditions and the like, the development of records suitable for this has been delayed, and ordinary records produced for speakers are used for this purpose. Is the general situation. But for the speaker / earphone /
When diverted for headphones, the higher the degree of separation between the left and right, the higher the degree of separation between the left and right, the more localized the sound is located near the left and right ears and the head, and can be heard from an extremely narrow range, creating a magnificent sense of scale, presence, and sound source. There is a problem that position fidelity, party effect, etc. are significantly impaired, and in addition, near the left and right ears where the reproduced sound is localized, it is high for distant sound, and the ear sensitivity decreases as it gets closer. There is also a report that the sound volume is poor because it is the lowest point of the sound pressure, and that the oversound pressure caused by this correction gives a noticeable fatigue to the hearing and further causes hearing impairment. It is leading many problems. The present invention, when the left and right eardrum vibrations of the human body in the original sound field are accurately reproduced on the left and right eardrums of the listener by earphones or the like, whether the eardrum vibrations are due to the original sound field or the reproduced sound to the auditory system. Focusing on the structure that can not be distinguished at all, that is, that it can be perceived only in the same direction, by searching what kind of actual eardrum vibration is and how it works, realization of stereoscopic reproduction by earphone listening We also try to solve this problem.

【0003】われわれは目を閉じていても音がどの方向
から聞こえて来るのか容易にわかる、特に反射音が多い
とか音源が隠れている場合等の特殊な場合を除けば、日
常生活で是等の音源方向を間違える事はほとんど無いと
いえる。このように「左右2つの鼓膜振動から三次元に
渡る音源方向および距離を判別し自らに知覚させる」と
いう人体聴覚系の驚くべき能力に、俄かに注目がそそが
れ始めたのは1900年パリ博覧会において、ステージ
上に配置した左右一対のマイクロホン出力を左右のヘッ
ドホンによりそれぞれ聴取した所、その再生音のリアル
さに参加者全員が驚いたという一名パリ博のハプニング
からである。以来、両耳で音を聴くことの重要さが認識
され数多くの学者が両耳聴の研究に取り組む中で、19
33年米国のベル研究所は、人体と音響的に等質なシリ
コンゴム系の材料を用いて、形状寸法が人体の平均値で
左右の外耳道位置にそれぞれ小型マイクロホンを設定
し、其の検出信号を外部のヘッドホンで聴取できる様に
した「人体ダミー・オスカー氏」をつくり両耳聴の研究
にあてた。これらの研究成果は、人体聴覚系がどのよう
にして音源方向を聞き分けるかについて「左右の鼓膜に
到達する音声の音圧レベル差dvと移相差dfおよび到
着時間差dtをもとに聴覚系がこれを判断する結果知覚
される」として結実し、両耳効果として広く一般に知ら
れる大きな成果を一方でおさめたのではあるが、このと
き「原音場において左右の耳介前面に到達する音声をヘ
ッドホン受聴者の左右の耳介前面に正確に再現すれば此
の受聴者には原音場と同じ方向から其の再生音が聞こえ
る筈」として当初オスカー氏に期待された前後左右を含
む水平面内方向の全方向再生は、前方に定位すべき音声
が上方に定位したり頭内定位したりする問題が最後まで
解決されず遂にその目的を達し得なかった。このオスカ
ー氏または其の頭部を模した人工頭ダミーヘッドのよう
に、左右の外耳道に夫々装填されたマイクロホンM1M
2によるか、または両耳の実質間隔と角度とをあけて左
右に配置した単一指向性マイクロホンM5M6を用いて
原音場を収音しヘッドホンにより聴取する形の収音再生
方法は、以来バイノーラル方式と呼ばれて其の後も研究
が続けられたが、前方に定位すべき再生音像が上方定位
ないし頭内定位して知覚されやすいという問題はなお解
決に至らず、立体再生という大いなる期待が残されたた
まま研究段階の中で衰退した。
We can easily know from which direction the sound comes from even if we close our eyes. Especially, except in special cases such as when there are many reflected sounds or when the sound source is hidden, we can do this in our daily life. It can be said that there is almost no mistake in the sound source direction. In this way, the remarkable ability of the human auditory system to "discriminate the sound source direction and distance in three dimensions from the two left and right eardrum vibrations and let the person perceive it" suddenly began to attract attention in 1900 in Paris. At the exhibition, when a pair of left and right microphone outputs placed on the stage were listened to by the left and right headphones, the participants were surprised at the realism of the reproduced sound. Since then, the importance of listening to sounds with both ears has been recognized, and many scholars have been studying binaural hearing.
In 1933, Bell Laboratories in the United States used silicon rubber-based materials that are acoustically equivalent to the human body and set small microphones at the left and right ear canal positions with the average size of the human body. I made a "human body dummy Oscar" that made it possible to listen to the sound with external headphones, and used it for binaural research. The results of these researches are about how the human auditory system recognizes the direction of a sound source, based on the sound pressure level difference dv, the phase shift difference df, and the arrival time difference dt of the sound reaching the left and right eardrums. However, at this time, the sound that reaches the front surface of the left and right auricles in the original sound field is received by the headphones. It should be possible for the listener to hear the reproduced sound from the same direction as the original sound field if reproduced accurately on the front of the left and right auricles of the listener. " Directional reproduction could not finally achieve its purpose because the problem that the sound that should be localized in the front is localized upward or localized in the head is not solved until the end. Like the artificial head dummy head imitating Mr. Oscar or his head, the microphones M1M loaded in the left and right ear canals respectively
The binaural method has been used since the original sound field is picked up by the unidirectional microphones M5 and M6 which are arranged on the left and right with a substantial interval and angle between the two ears, and the headphone is used for listening. After that, the research continued, but the problem that the reproduced sound image that should be localized in front was easily localized due to upward localization or intracerebral localization was not solved yet, and great expectations for stereoscopic reproduction remain. It declined in the research stage.

【0004】以上のバイノーラル方式は、原音場におい
て左右の耳介前面に到来する音声をヘッドホン受聴者の
左右の耳介前面に正確に再現することにより、聴覚系の
方向感覚を借りて音源方向の判別が行われる筈と期待さ
れたヘッドホンによる全方向再生の方法ではあるが、こ
れについて当時どの程度の音源方向再現を論理的に期待
し得たか、また前方定位に関する問題の原因が何処にあ
り其の解決の手段を現実に導き得る状況にあったかにつ
いての従来技術の範囲は、その再生原理となる両耳効果
の説明によって理解される。即ち両耳効果の説明では、
人体聴覚系がどのようにして音源方向を聞き分けるかに
ついて「左右の鼓膜に到達する音声の音圧レベル差dv
と移相差dfおよび到着時間差dtを基に聴覚系がこの
方向を判別する結果知覚される」として周知されるが、
この音圧レベル差dvと移相差dfおよび到着時間差d
tは共に音源が左右間の中央にあたる「前方→上方→後
方→下方→前方」にある場合、何れの方向も「0」とな
って左右の鼓膜に到達する音声が同じになる。これは丁
度モノーラル信号を左右のヘッドホンで聴取した場合に
一致し、この場合の再生音像が必ず頭の中心部に定位し
て聞こえるように、これら問題となる前後方向ないし上
下方向からの到来音声もまた頭内定位して知覚される以
外を両耳効果では説明できないのであって、従来技術の
範囲を示す問題の原因も今なお此処に見出だされるので
ある。このような関係から、バイノーラル方式における
前方定位の問題は聴覚系の能力の限界によるもので、人
間が現れてから永い間、見えない範囲の音声については
これを聴覚のみで聴取してきたが、前方からの音声につ
いては常に聴覚と視覚との相方によってこれを聴取知覚
してきた関係上、特に前方に対する音の方向感覚がしだ
いに低下して来た結果であろうとし、ヘッドホン受聴に
よる前方からの音声の適正な再生音像の定位は、左右二
つの耳から成る聴覚系のこの構造からではのぞみ得ない
とする見解が現在では一般的となった。
The above binaural system accurately reproduces the sound arriving at the front surface of the left and right auricles in the original sound field on the front surface of the left and right auricles of the headphone listener, thereby borrowing the sense of direction of the auditory system to detect the direction of the sound source. Although it is a method of omnidirectional reproduction with headphones that is expected to be discriminated, how much sound source direction reproduction could be logically expected at that time, and where is the cause of the problem of forward localization. The range of the prior art regarding whether or not the means for solving the above-mentioned situation could be actually led is understood by the explanation of the binaural effect which is the reproduction principle. That is, in the explanation of the binaural effect,
Regarding how the human auditory system recognizes the direction of the sound source, the difference in sound pressure level dv between the sound reaching the left and right eardrums
Is perceived as a result of the auditory system discriminating this direction based on the phase shift difference df and the arrival time difference dt. "
The sound pressure level difference dv, the phase shift difference df, and the arrival time difference d
When both sound sources are “frontward → upward → backward → downward → forward”, which is the center of the sound source between the left and right sides, both directions become “0” and the voices reaching the left and right eardrums are the same. This is exactly the case when listening to the monaural signal with the left and right headphones, and in this case, the reproduced sound image is always localized at the center of the head, so that the incoming sound from the front-back direction or the up-down direction, which is a problem, is also heard. In addition, since the binaural effect cannot explain anything other than the perception by the intra-orbital localization, the cause of the problem showing the scope of the prior art is still found here. From such a relationship, the problem of forward localization in the binaural method is due to the limit of the ability of the auditory system.For a long time after the appearance of humans, we have heard only inaudible range of sounds in the invisible range. As for the sound from the front, it is said that it is a result that the sense of direction of the sound toward the front gradually declines because it has always been perceived by the direction of the hearing and the sight. It is now common to view that the proper localization of the reproduced sound image of is not visible from this structure of the auditory system consisting of two ears, left and right.

【0005】[0005]

【この発明が解決すべき課題】しかし現状いずれであろ
うとも、われわれは目を閉じた状態で実際に垂直方向を
含むさまざまな音源方向をいとも簡単に知る事ができる
のであって、これと同じ左右の鼓膜振動が再現された場
合の聴取者にもまた、同じ鼓膜振動から同じ音源方向が
同様に知覚される事は、鼓膜振動のみから情報を得て音
源方向の判別を行なう人体聴覚系の構造によって保証さ
れているのである。これは、原音場における鼓膜振動の
正確な再現を条件として立体再生が可能である事を意味
するが、此処にいう「正確に再現された鼓膜振動」とは
実際の鼓膜振動と同じく「原音場における三次元の音源
方向を正確に知覚させ得るもの」と定義されるものでな
ければならない即ち、オスカー氏に代表される従来のバ
イノーラル方式が「原音場で耳介前面に到達する音声を
ヘッドホン受聴者の耳介前面に正確に再現する方法」に
よって全方向再生を試みた経緯から、これが理想的に行
われた場合あたかも原音場と同じ鼓膜振動を再現出来る
かの様な錯覚におちいりやすいが、「耳介前面に到達す
る音声をヘッドホンで耳介前面に正確に再現しても正確
な鼓膜振動は再現できない」と示したのが前記バイノー
ラル方式の限界であり結論でもあったのである。事実、
われわれは片方の耳できく単耳聴の場合であっても、聞
こえる側の頭部半球方向については前後方向ないし上下
方向を含むほとんどの音源方向をかなり正確に聞き分け
ることができるのであって、いずれか一方の鼓膜に到達
する音声の中に、すでに単耳聴の段階から前後方向ない
し上下方向の方向判別にはたらく手がかり即ち方向情報
の存在が明らかに予測されるのである。本発明が解決す
べき主な課題は以上のように、われわれには何故、前後
方向ないし上下方向の音源方向が分かるのかという問題
であり、人体聴覚系が、左右の鼓膜に到達する音声中の
どの様なかたちの情報を見出だして是を判別するかを明
らかにし、これを利用して「イヤホン受聴による立体再
生」サウンドフォログラムの方式を確立するとともに、
その主要部分を構成する立体再生信号の検出装置、同マ
イクロホン、イヤホン、レコード類、および、その主要
部分を包含してなる立体補聴器、遠隔観察用の立体イン
ターホン、ならびに聴覚が心理上生理上におよぼす影響
効果を調べる為の装置など、立体再生における高いパー
ティー効果と高臨場度の特性を生かした関連音響機器の
開発を目的としている。
[Problems to be Solved by the Invention] However, regardless of the current situation, we can easily know various sound source directions including the vertical direction with our eyes closed, and the same as this. When the left and right eardrum vibrations are reproduced, the listener also perceives the same sound source direction from the same eardrum vibration, which means that the human auditory system that obtains information only from the eardrum vibrations to determine the sound source direction. It is guaranteed by the structure. This means that stereoscopic reproduction is possible on the condition that the eardrum vibration in the original sound field is accurately reproduced. However, "accurately reproduced eardrum vibration" here means the same as the actual eardrum vibration. That is, the conventional binaural method represented by Mr. Oscar "receives the sound that reaches the front of the auricle in the original sound field through the headphones." From the history of attempting omnidirectional reproduction by `` a method of accurately reproducing on the front of the listener's auricle, '' it is easy to fall into the illusion that it can reproduce the same eardrum vibration as the original sound field when this is ideally performed, It was the limit and conclusion of the binaural method that it was not possible to accurately reproduce the eardrum vibration even if the sound reaching the front of the auricle was accurately reproduced on the front of the auricle with headphones. It is. fact,
Even in the case of monophonic hearing with one ear, most of the sound source directions including the front-back direction and the up-down direction can be fairly accurately discriminated in the direction of the head hemisphere on the listening side. The presence of clues, that is, directional information, that can be used to discriminate the direction in the front-back direction or the up-down direction from the stage of monophonic hearing is clearly predicted in the voice reaching one eardrum. As described above, the main problem to be solved by the present invention is the question of why we can know the sound source direction in the front-rear direction or the up-down direction. While clarifying what kind of information is to be found and determining whether it is correct or not, and using this to establish the method of "three-dimensional reproduction by listening to earphones" sound follogram,
A device for detecting a stereoscopic reproduction signal that constitutes the main part, the same microphone, earphones, records, and a stereoscopic hearing aid that includes the main part, a stereoscopic intercom for remote observation, and hearing affect psychologically and physiologically. The purpose is to develop related audio equipment, such as a device for investigating the effect of influence, which utilizes the characteristics of high party effect and high presence in stereoscopic reproduction.

【0006】[0006]

【解決の手段】われわれには、一方の耳をぴったりと塞
いだ単耳聴であっても、聞こえる耳が属する左右何れか
の方向と、其の上下方向ないし前後方向の音源方向につ
いては開眼の場合ほとんどそのまま、閉眼の場合約45
度ほど聞こえる耳の方向に偏移するが何れの場合もかな
りはっきりと其の音源方向が知覚される。第1図
(イ)。図中、閉管PXは内径8mm長さ150mmで
一方の端を閉じた中空管、閉じた一端を外側に向け、開
放端を耳栓として外耳道と密着する事により鼓膜振動の
自由度を確保したまま到来音声の外耳道侵入を遮断して
いる。SPはホワイトノイズを発する音源。しかし此の
時、第1図(ロ)のように、聞こえる耳の外耳道を内径
約8mm長さ約150mmの中空パイプ開管P0で耳介
の外部に延長し到来音声に対する耳介形状の影響を避け
ると、この先端に対し前後方向ないし上下方向から到来
する音源SPからの音声は総てこの開管P0の開口方向
のみから聞こえて前後方向ないし上下方向に関する音の
方向感覚が失われる。この現象は単耳聴段階から発揮さ
れる音の方向感覚の内、前後方向ないし上下方向に関す
る音の方向感覚が、到来音声に対する耳介形状(頭部の
一部を含む)のはたらきによって発揮される事を示して
いる。このように「到来音声に対する耳介形状のはたら
きによって音の方向感覚が生ずる事」を以下耳形効果と
いう。これは、到来音声が耳介により外耳道に集音され
る際、前後方向ないし上下方向に対する形状が何れも異
なる耳介の集音特性を反映し、各到来方向ごとに夫々異
なる音色特性が与えられ、是を到来方向の経歴として持
つ音声が外耳道に集音され鼓膜に到達する結果、聴覚系
が、この鼓膜に到達する音声の音色特性ないしその変化
から夫々の経歴を読んで個々の音声の到来方向を判別
し、われわれに前後方向ないし上下方向にわたる各音源
方向が知覚されるものと考えられる。ここにいう音色特
性ないし其の変化とは、主に耳介形状によって到来音声
に与えられた周波数特性の変化を指していうのではある
が、実際問題として音響的にみた耳介形状は大変複雑
で、外耳道、耳甲介腔、耳輪等にそれぞれ共鳴性と残響
性があり変形ホーンを構成している関係上、測定し様と
すると其の共鳴音残響音等が試験信号と干渉しあってサ
イクル単位の山谷を多く生じ、単なる周波数特性として
は極めて測定しにくくまた其の表現も適切を欠く。そこ
で此処ではホワイトノイズを音源とした場合の「周波数
スペクトラムの特性ないし其の変化として観測され聞こ
える音声の音色特性ないし其の変化として知覚される音
響特性」を指して「音色特性ないし其の変化」と定義す
る。音声の到来方向によって鼓膜に到達する音声の音色
特性が変わるとする現象については、事実、片方の耳の
側方で、ホワイトノイズを発する音源を前後方向ないし
上下方向に移動させ、聞こえる音声の特に音色特性に注
意しながら耳元に意識を集中すると、音源が上方にある
場合、シー・・・・ 側方にある場合、サー・・・・下
方にある場合、ゴー・・・と例えられる様に、この音声
の音色が音源の方向と関係して変化する様子が分かる。
前後方向についても明瞭度および音量の変化とともに聞
こえる音声の音色の変化が知覚される これは、左右の耳の指向性が其の形状的な影響によって
概略1Khz〜4Khzの会話音声帯域で左前方45度
と右前方45度の方向、6Khz〜16Khzの高域が
左上方45度と右上方45度の方向に向かって主に発揮
される結果、左右の外耳道に集音されるそれぞれの音声
S1,S2,にこの影響が現れ、到来方向ごとに夫々異
なる音色特性として知覚されるものと考えられる。これ
が、到来音声に対して与える耳介形状のはたらきであ
り、其のはたらきによって前後方向ないし上下方向に関
する音の方向感覚が発揮される状況が、到来音声に対し
耳介形状がはたらく時に音源方向が知覚され、耳介形状
がはたらかない時には知覚されないという前記、第1図
(イ)と第1図(ロ)との比較実験の結果において明確
に示されたのである。以上は、人間の耳に何故この様に
複雑な耳介形状が必要とされるかについての現実の解答
であり、単耳聴段階から発揮される音の方向感覚の内、
特に前後上下をむすぶ垂直面内方向に関する音の方向感
覚が、以上のような耳介のはたらきに拠って発揮され当
該音源方向が知覚される事について述べたものである。
しかし以上は実際の音声に対する単耳聴の耳形効果であ
って、第2図(イ)の様に、原音場における仮の聴取者
Q1の片方の外耳道に集音される音声S2を其の外耳道
に装着されたマイクロホンM2によって検出し、これを
増幅器A2で増幅した後聴取者Q2に装着されたイヤホ
ンY2で再生する「再生音による単耳聴では」、この再
生音はイヤホンY2の方向にだけ定位して聞こえ、前記
耳形効果による音の方向感覚は発揮されない。これは、
実際の音声に対しては音の方向感覚が発揮され再生音に
対しては発揮されないと言う事であるが、実際の音声に
対する単耳聴と再生音に対する単耳聴との条件的な相違
は、この聴取者の周囲に「実際の音声が存在するか否
か」という極めて単純な物理的環境の相違のみであっ
て、この事は実際の音声に対する単耳聴の場合、聴取者
の周囲に到来する実際の音声から何等かの物理量が別の
経路で鼓膜に伝達され、これが通常の経路によって鼓膜
に到達する音声の方向判別にはたらく結果を示している
と見なければならない。
SOLUTION: Even with monophonic hearing in which one ear is tightly closed, we cannot open the left or right direction to which the hearing ear belongs and the direction of the sound source in the up-down direction or the front-back direction. Almost as it is, about 45 with eyes closed
Although it deviates to the direction of the ear to which it can be heard, the direction of the sound source can be perceived quite clearly in any case. Figure 1 (a). In the figure, the closed tube PX has a hollow tube with an inner diameter of 8 mm and a length of 150 mm, and has one end closed, and the closed one end is directed outward, and the open end is used as an earplug to make close contact with the external auditory meatus to ensure the freedom of vibration of the eardrum. It blocks the incoming sound from entering the ear canal. SP is a sound source that emits white noise. However, at this time, as shown in FIG. 1 (b), the external auditory meatus of the audible ear is extended to the outside of the auricle by the hollow pipe open tube P0 having an inner diameter of about 8 mm and a length of about 150 mm to influence the auricle shape on the incoming voice. If it is avoided, all the sound from the sound source SP arriving from the front-back direction or the up-down direction with respect to the tip is heard only from the opening direction of the open tube P0, and the sense of direction of the sound in the front-back direction or the up-down direction is lost. This phenomenon is exhibited by the function of the auricle shape (including a part of the head) for incoming voice in the direction sense of sound in the front-back direction or the up-down direction among the direction sense of sound that is exerted from the monaural listening stage. It shows that In this way, "a sense of direction of sound is generated by the function of the pinna shape with respect to the incoming voice" is referred to as an ear shape effect. This is because when the incoming sound is collected by the auricle to the external auditory meatus, it reflects the sound collection characteristics of the auricle whose front-back direction and up-down shape are different, and different tone color characteristics are given to each incoming direction. , As a result, voices having a history of arrival direction are collected in the external auditory meatus and reach the eardrum, and as a result, the auditory system reads the respective history from the timbre characteristics of the voice reaching the eardrum or its changes, and the individual voices arrive. It is considered that the direction of each sound source is perceived by us by discriminating the direction. The timbre characteristic or its change referred to here mainly refers to the change of the frequency characteristic given to the incoming voice by the shape of the auricle, but as a practical matter, the auricle shape seen acoustically is very complicated. , The external auditory meatus, the concha of the ear, the earring, etc. have resonance and reverberation, respectively, and constitute a deformed horn. Therefore, when measured, the resonance sound reverberation sound interferes with the test signal and is cycled. Many peaks and valleys occur in the unit, and it is extremely difficult to measure it as a mere frequency characteristic, and its expression is also inappropriate. Therefore, here, when white noise is used as a sound source, "the characteristics of the frequency spectrum or the characteristics of the sound that is observed and perceived as the timbre characteristics of the sound that is perceived or the acoustic characteristics that are perceived as the change" are referred to as "the characteristics of the timbre or the change". It is defined as Regarding the phenomenon that the timbre characteristics of the sound that reaches the eardrum changes depending on the direction of arrival of the sound, in fact, the sound source that emits white noise is moved to the front and rear or up and down on one side of the ear, If you concentrate your attention on the ears while paying attention to the timbre characteristics, it can be compared with the case where the sound source is above, seaside ... sideways, sir ... downward, go ... It can be seen that the timbre of this voice changes in relation to the direction of the sound source.
In the front-back direction, a change in the timbre of the audible voice is perceived with a change in clarity and volume. This is because the directivity of the left and right ears is influenced by its shape, and the left front 45 in the conversation voice band of approximately 1 Khz to 4 Khz. And the right front 45 degrees direction, and the high range of 6 Khz to 16 Khz are mainly exerted toward the upper left 45 degrees and the upper right 45 degrees, and as a result, the respective sounds S1 collected in the left and right ear canals. It is considered that this effect appears in S2 and is perceived as different timbre characteristics for each arrival direction. This is the function of the auricle shape given to the incoming voice, and the situation in which the direction sense of the sound in the front-back direction or the up / down direction is exerted by the action is that the direction of the sound source when the auricle shape acts on the incoming voice. It was clearly shown in the result of the comparative experiment of FIG. 1 (a) and FIG. 1 (b) that it was perceived and not perceived when the pinna shape did not work. The above is a real answer as to why the human ear needs such a complicated auricle shape.
In particular, it is described that the sense of direction of sound with respect to the vertical in-plane direction that is swung up and down and up and down is exerted by the action of the auricle as described above, and the sound source direction is perceived.
However, the above is the ear-shaped effect of the monophonic hearing on the actual voice, and the voice S2 collected in one external auditory canal of the temporary listener Q1 in the original sound field is as shown in FIG. Detected by the microphone M2 attached to the ear canal, amplified by the amplifier A2, and then reproduced by the earphone Y2 attached to the listener Q2 "in monophonic listening by reproduced sound", this reproduced sound is directed to the earphone Y2. However, the sense of direction of the sound due to the ear shape effect is not exerted. this is,
It is said that the sense of direction of the sound is exerted for the actual voice, but not for the reproduced sound. However, the difference between the monophonic listening for the actual voice and the monophonic listening for the reproduced sound is conditional. However, there is only a very simple difference in the physical environment "whether or not there is actual voice" around this listener. It must be seen that some physical quantity from the actual voice that arrives is transmitted to the eardrum by another route, which shows the result that works for the direction determination of the voice that reaches the eardrum by the normal route.

【0007】実際の音声から、別の経路を通じて鼓膜に
伝達されると見られる前記物理量が実際にどのようなも
のであるかを調べるため、第2図(ロ)のように、左右
の外耳道を前出の閉管PXで夫々密封し、鼓膜振動の自
由度をこの管内の空間容積で確保したまま外耳道内で実
際に何が聞こえて来るのかを実験すると、問題の物理量
として、主に耳介および耳珠の付近から耳介軟骨部によ
り外耳道壁および鼓膜に伝導されたと見られる到来音声
の低域成分(1Khz以下)S3S4が、聴感上僅か数
DB程度の減衰で、左右方向にのみ方向感が有り前後方
向ないし上下方向に方向感がない状態すなわち何処から
とでも聞こえる状態で聞こえてくる事が分かる。ほかに
鼻腔を通して比較的明瞭に聞こえる音声や体伝導骨伝導
と呼ばれる音声等も聞こえるが、聴感上の音量が前者と
比較して格段に低い事から主に聞こえる音声を以下「耳
介伝導音」伝達様態を「耳介伝導」と記し其の中に含め
る。以上は、実音源に対する単耳聴の場合、まず耳介伝
導音が左右の鼓膜に到達し、そこへ一方の耳介で集音さ
れた音声が到達して此の3種類の音声から夫々の到来方
向が判別される構図となり、他方、再生音に対する単耳
聴では、単に一方の耳介で集音された音声のみが当該鼓
膜に到達して方向判別が行われる構図となって、「実音
源にたいする単耳聴では前後方向ないし上下方向の音源
方向が知覚され再生音に対する単耳聴ではこれが知覚さ
れない」という結果が生じたという説明を可能にするの
である。事実、さきの第2図(イ)の再生音に対する単
耳聴であっても、第3図(イ)のように、他方の耳に其
のとき生じた耳介伝導音S3を再生すると、その瞬間か
ら実音源に対する単耳聴の場合と同様な前後方向ないし
上下方向に関する音の方向感覚が戻ってくるのである。
このとき他方の耳に再生されるのは先の耳介伝導音に限
らず、第3図(ロ)ように、両耳聴の場合他方の耳に再
生される再生音の低域成分であってもほぼ同様の結果が
得られる。図中LFPはローパスフィルター。これは、
実際の音声に対する単耳聴では音源方向が聞き分けら
れ、再生音による単耳聴ではこれが聞き分けられない、
という事に対する現実の解答ではあるが、聴覚系が前後
方向ないし上下方向に関しての音源方向を判別する際、
雷の音は上、水の流れの音は下と言うような、過去の経
験や学習によって得た「記憶」に基いてその方向判別等
が行われるのではないかとする考え方を、この結果は明
らかに否定しているのであって、単耳聴による音の方向
感覚の内、主に前後方向ないし上下方向についての方向
感覚が、過去の記憶によるのではなく到来音声に対し耳
介形状が与えた影響と耳介伝導音等のかかわりによって
行われる事を示し、両耳聴の場合、これに他方の外耳道
に集音される音声の低域成分が加わり其の相方によって
前後方向ないし上下方向についての方向判別が行われる
事を示しているのであって、この複雑な耳介形状と以上
の現象はともに人間には誕生の瞬間から音の来る方向が
わかる事を示しているのである。以上は、単耳聴の段階
から発揮される音の方向感覚の内、主に前後方向ないし
上下方向に関する音の方向感覚について新たな見解を述
べたものであるが、実際には、この単耳聴が左右一対と
なって頭部の左半球方向と右半球方向とに相乗的に働
き、より明確で立体的な音の方向感覚が発揮されるもの
と考えられる。
In order to investigate what the physical quantity actually transmitted from the actual voice to the tympanic membrane through another route looks like, the left and right ear canals are examined as shown in FIG. 2 (b). The above-mentioned closed tubes PX were each sealed, and when what was actually heard in the ear canal was tested while the freedom of vibration of the eardrum was ensured by the spatial volume inside this tube, the physical quantities of the problem were mainly the auricle and The low-frequency component (3 Khz or less) S3S4 of the incoming voice, which is considered to have been conducted from the vicinity of the tragus to the external auditory meatus wall and eardrum by the auricular cartilage part, is attenuated by only a few DB in terms of hearing, and the sense of direction is felt only in the left-right direction. Yes, it can be heard that there is no sense of direction in the front-back direction or the up-down direction, that is, the sound can be heard from anywhere. In addition, you can also hear relatively clear sounds through the nasal cavity and sounds called body conduction bone conduction, but since the volume on hearing is significantly lower than the former, the sounds that you hear mainly are referred to as "auricular conduction sounds" below. The mode of transmission is described as "auricular conduction" and included in it. In the case of monophonic listening to an actual sound source, first, the auricular conduction sound reaches the left and right eardrums, and the sound collected by one auricle arrives there, and each of these three kinds of sounds The composition is such that the direction of arrival is determined, and on the other hand, in mono-aural listening for reproduced sound, the composition is such that only the sound collected by one auricle reaches the eardrum and direction determination is performed. It is possible to explain that the result of "the monophonic listening to the sound source perceives the sound source direction in the front-back direction or the vertical direction and the monophonic listening to the reproduced sound does not perceive". In fact, even in the case of monophonic listening to the reproduced sound of FIG. 2 (a), when the auricular conduction sound S3 generated at that time is reproduced in the other ear as shown in FIG. 3 (a), From that moment, the sense of direction of the sound in the front-back direction or the up-down direction similar to that in the case of monophonic listening to an actual sound source returns.
At this time, what is reproduced in the other ear is not limited to the auricular conduction sound, but in the case of binaural hearing, it is the low-frequency component of the reproduced sound that is reproduced in the other ear, as shown in FIG. However, almost the same result is obtained. In the figure, LFP is a low pass filter. this is,
The direction of the sound source can be discerned by the monophonic listening to the actual sound, and cannot be discerned by the monophonic listening by the reproduced sound.
Although it is a real answer to that, when the auditory system discriminates the sound source direction in the front-back direction or the up-down direction,
This result is based on the idea that the direction of the lightning may be judged based on the "memory" obtained from past experience and learning. It is clearly denied that, among the directional sensations of sound by monophonic hearing, the directional sensation mainly in the anteroposterior direction or the up / down direction is given to the incoming speech by the auricle shape, not by the past memory. It is shown that it is carried out by the influence of the aural conduction sound and the auricular conduction sound, etc., and in the case of binaural hearing, the low frequency component of the sound collected in the other ear canal is added to this, and depending on the partner, the front-back direction or the vertical direction That is, the complicated pinna shape and the above phenomena both show that humans can know the direction of sound from the moment of birth. The above is a new view on the directional sensation of the sound mainly in the front-back direction and the up-down direction among the directional sensations of the sound exerted from the stage of monophonic hearing. It is conceivable that the hearing becomes a pair of left and right and acts synergistically in the left hemisphere direction and the right hemisphere direction of the head, and a more clear and three-dimensional sense of direction of sound is exhibited.

【0008】以上を整理して聴覚系に備わる音の方向感
覚をまとめると。「人体聴覚系には音の立体的な方向感
覚があり、左右方向が判別できる理由については従来の
両耳効果によって、左右の鼓膜に到達する音声の音圧レ
ベル差と移相差および到着時間差をもとに判別が行わ
れ、前後方向ないし上下方向が判別できる理由について
は、左右の耳介によって到来音声がそれぞれの外耳道に
集音される際、その耳介形状の非対称性により各到来方
向ごとに夫々異なる音色特性があたえられ、左右の鼓膜
に到達した音声が有する此の特性から、耳介伝導音など
とのかかわりによって其の音源方向が読みとられる結
果、われわれに前後方向ないし上下方向の音源方向が知
覚される」という説明を可能とする。この新たな音の方
向感覚に関する理論から「理想イヤホン」を対象とし
て、原音場の最適聴取位置における人体Q0の、左右の
外耳道に集音される音声S1S2と、この時、左右の耳
介伝導により外耳道壁を経由して鼓膜に伝達される音声
S3S4をそれぞれ検出し、左の集音々声S1と右の耳
介伝導音S3の和の音声信号L1を得て是を左信号Lと
し、右の集音々声S2と右の耳介伝導音S4の和の音声
信号R1を得て是を右信号Rとする「イヤホン受聴対応
耳形効果型立体再生信号の検出方法」が導かれる。特に
理想イヤホンを対象とした理由は、再生時に耳甲介腔、
外耳道、イヤホン自体に共鳴を生じた場合、これが頭内
定位して聞こえるなど再生音の定位の質を損なう問題が
あり、論理上この影響を排除して原理の適正を期すると
いう目的によるもので、通常のイヤホンであっても実用
上の問題はほとんどない。第4図は通常会話周波数帯1
〜4Khzの範囲に対する耳介の主な指向性方向。第5
図は其周波数帯の上6〜16Khzの範囲に対する耳介
の主な指向性方向。第6図に其の指向性を有する左右の
外耳道入口に夫々マイクロホンM1M2を装着し「イヤ
ホン受聴対応耳形効果型立体再生信号」が検出できる様
にした場合の外耳中耳の模型的断面図を示した。
By summarizing the above, the sense of direction of sounds provided in the auditory system is summarized. "The human auditory system has a sense of stereoscopic direction of sound, and the reason why the left and right directions can be discriminated is that the conventional binaural effect is used to determine the difference in sound pressure level and the phase difference and the arrival time difference between the voices that reach the left and right eardrums. The reason is that discrimination is performed based on the anteroposterior direction or the up-down direction.When the incoming sound is collected by the left and right auricles to each ear canal, the asymmetry of the auricle shape causes each aural direction. Different sound color characteristics are given to each of them, and from this characteristic of the sound that reaches the left and right eardrums, the direction of the sound source can be read in relation to the ear conduction sound, etc. The sound source direction is perceived ". Based on this new theory of directional sense of sound, targeting the “ideal earphones”, the sound S1S2 collected in the left and right external auditory meatus of the human body Q0 at the optimum listening position in the original sound field, and the left and right auricle conduction, The voices S3S4 transmitted to the eardrum via the external auditory meatus wall are respectively detected, and the sum voice signal L1 of the collected voice S1 on the left and the conduction sound S3 on the right is obtained to be the left signal L. A “method for detecting ear-shaped effect type stereoscopic reproduction signal compatible with earphone listening” in which the voice signal R1 that is the sum of the collected voices S2 and the conduction sound S4 on the right auricle is obtained and that is the right signal R is introduced. The reason for targeting ideal earphones in particular is that the concha of the ear,
When resonance occurs in the ear canal or earphone itself, there is a problem that it impairs the localization quality of the reproduced sound, such as being localized in the head, and it is logically intended to eliminate this effect and ensure the properness of the principle. , Even with normal earphones, there are few practical problems. Figure 4 shows normal conversation frequency band 1
The main directional direction of the auricle for a range of ~ 4 Khz. Fifth
The figure shows the main directionality of the auricle in the range of 6 to 16 Khz above the frequency band. FIG. 6 shows a model cross-sectional view of the middle ear of the outer ear when the microphones M1M2 are attached to the left and right ear canal entrances having the directivity and the “ear effect stereoscopic reproduction signal compatible with earphone listening” can be detected. Indicated.

【0009】[0009]

【作 用】以下第6図によって其の立体再生信号検出
過程について説明すれば、原音場における到来音声が、
左右の耳介J1J2により集音される左右の外耳道入口
E1E2に、それぞれ「音声が通過でき振動板の質量お
よび弾性が軽微で外耳道内の音響特性を殆ど変化させな
い両指向性マイクロホンM1M2」を装着すると、左の
耳介J1によりその外耳道入口E1に集音される音声S
1と、このとき左の耳介J1に生じて耳介伝導により其
の外耳道壁から鼓膜T1に伝達される耳介伝導音S3
は、ともに左の鼓膜振動と等価な音声信号L1としてマ
イクロホンM1により検出され、右の耳介J2によりそ
の外耳道入口E2に集音される音声S2と、このとき右
の耳介J2に生じて耳介伝導により其の外耳道E2から
鼓膜T2に伝達される耳介伝導音S4は、ともに右の鼓
膜振動と等価な音声信号R1としてマイクロホンM2に
より検出される。以上によって検出される音声信号L1
R1は、前記第4図および第5図の様な複数の指向性を
発揮する左右の耳介J1J2により外耳道E1E2に集
音された音声S1S2と、このとき左右の耳介伝導によ
りそれぞれの外耳道壁を経て左右の鼓膜に到達する耳介
伝導音S3S4の相方を検出し、耳形効果が発揮される
ための要件を満たして「イヤホン受聴対応耳形効果型立
体再生信号」としてはたらく。第7図(イ)は、前記耳
介J1J2に人体Q0の実際の耳介を用いた場合の検出
例。第7図(ロ)は、M1M2の実用形態、装着により
立体マイクロホンを構成する。第8図(イ)は、前記耳
介J1J2に人体を模したダミーD1の耳介を用いた1
例。第8図(ロ)は、前記耳介J1J2に人体の耳介を
模したダミーD2を用いた1例。何れも原音場またはマ
ルチ再生された準原音場において耳形効果を有するイヤ
ホン受聴用の立体再生信号を検出できる。なお前記耳介
J1J2は、第15図の様に是と等価な効果をマイクロ
ホンM1M2の検出信号をL1R1に対して与える形状
であれば特に耳介形状のみに限られる必要はない。また
両指向性マイクロホンM1M2は、耳介伝導音と等価な
音声信号が筐体伝導等により適度に検出される場合、ま
たは他方の検出信号のみで定位に問題を生じない場合、
または目で音源を直接確認できる補聴器等の場合には必
ずしも両指向性である必要はない。
[Operation] The following describes the stereoscopic reproduction signal detection process with reference to FIG.
When the "bidirectional microphone M1M2" which allows sound to pass through and has little mass and elasticity of the diaphragm and which hardly changes the acoustic characteristics in the ear canal is attached to the left and right ear canal entrances E1E2 collected by the left and right auricles J1J2. , Voice S collected at the ear canal entrance E1 by the left auricle J1
1 and the auricular conduction sound S3 which is generated in the left auricle J1 at this time and is transmitted from the external auditory meatus wall to the eardrum T1 by auricular conduction.
Are both detected by the microphone M1 as an audio signal L1 equivalent to the left eardrum vibration, and the sound S2 collected at the ear canal entrance E2 by the right auricle J2 and the ear generated at the right auricle J2 at this time. The auricle conduction sound S4 transmitted from the external auditory meatus E2 to the eardrum T2 by conduction is detected by the microphone M2 as an audio signal R1 equivalent to the right eardrum vibration. Audio signal L1 detected by the above
R1 is a sound S1S2 collected in the ear canal E1E2 by the left and right auricles J1J2 exhibiting a plurality of directivities as shown in FIG. 4 and FIG. By detecting the partner of the auricular conduction sound S3S4 reaching the left and right eardrums via the, and satisfying the requirement for exerting the ear shape effect, it functions as an “ear ear effect type stereoscopic reproduction signal compatible with earphone listening”. FIG. 7A shows an example of detection when the actual auricle of the human body Q0 is used as the auricle J1J2. FIG. 7 (b) shows a practical microphone of M1M2, and a stereo microphone is configured by mounting the microphone. FIG. 8 (a) shows that the auricle J1J2 is a dummy D1 that imitates a human body.
Example. FIG. 8B shows an example in which a dummy D2 imitating a human auricle is used as the auricle J1J2. In either case, a stereoscopic reproduction signal for earphone listening having an ear effect can be detected in the original sound field or the multi-reproduced quasi original sound field. The auricle J1J2 is not limited to the auricle shape as long as the auricle J1J2 has a shape that provides the detection signal of the microphone M1M2 to L1R1 as shown in FIG. Further, in the bidirectional microphone M1M2, when an audio signal equivalent to the auricular conduction sound is appropriately detected by the conduction of the casing or the like, or when only the other detection signal causes no localization problem,
Alternatively, in the case of a hearing aid or the like, which can directly confirm the sound source with eyes, it does not necessarily have to be bidirectional.

【0010】以上は、原音場の音声を直接「イヤホン受
聴対応耳形効果型立体再生信号」として検出する方法で
あるが、すでに録音済みの音声信号G1〜Gnをイヤホ
ン受聴用に変換したい場合がある。以下その方法につい
て説明する。特定信号G1を特定位置X1に定位させ様
とする場合、まず左右の外耳道にマイクロホンM1M2
装着した人体Q0を配置し、このQ0から見て再生音が
定位すべき位置X1X1に音源SPを配置する。次に位
置X1と人体Q0が装着したマイクロホンM1M2の
内、 (1)まずX1−M1間の音声伝達特性K1 を前記音
源SPとマイクロホンM1間で測定。 (2)次にX1−M2間の音声伝達特性K1を前記音
源SPとマイクロホンM2間で測定。 (3)測定された音声伝達特性K1,K1と等価な信
号伝達特性B1,B1をそれぞれ入出力間特性として
有する一対の特性制御回路βを準備し、第9図の様に構
成して入力端子IN−1から特定信号G1を並列入力す
れば、その出力としてQ0の左右の外耳道に装着された
マイクロホンM1M2による場合と等価な左信号L1と
右信号R1が検出される。また是を必要な組数用いてマ
ルチ再生される複数の音声信号G1〜Gnを前記M1M
2によるものと等価な左信号L1と右信号R1とに変換
できる。 以上は、位置X1の音源SPに対する前記Q0の聴取条
件を、正確に特性制御回路内にB1,B1として置換
するもので、第9図の回路は、前記M1M2によるもの
と等価な「イヤホン受聴対応耳形効果型立体再生信号検
出装置」としてはたらく。また前記Q0の左右の外耳道
に装着されたマイクロホンM1M2の検出信号を用いて
音声伝達特性K1K1の測定が求められる理由は、到
来音声に対する耳介の集音特性と耳介の伝導特性の相方
を伝達特性K1K2の測定結果として得る事が望まれる
ためで、これをB1,B1として特性制御回路β内に
置換する事によって耳介伝導音を含む音声信号の検出が
可能となる。
The above is the method of directly detecting the sound in the original sound field as "ear-ear effect stereoscopic reproduction signal compatible with earphone listening". However, there are cases where it is desired to convert already recorded audio signals G1 to Gn for earphone listening. is there. The method will be described below. In order to localize the specific signal G1 to the specific position X1, first, the microphones M1M2 are attached to the left and right ear canals.
The mounted human body Q0 is arranged, and the sound source SP is arranged at the position X1X1 where the reproduced sound should be localized when viewed from this Q0. Next, among the microphones M1M2 attached to the position X1 and the human body Q0, (1) First, the voice transfer characteristic K1 between X1 and M1 is measured between the sound source SP and the microphone M1. (2) then measuring the sound transfer characteristics K1 1 between X1-M2 between the sound source SP and the microphone M2. (3) A pair of characteristic control circuits β having the signal transfer characteristics B1 and B1 1 equivalent to the measured audio transfer characteristics K1 and K1 1 as input-output characteristics are prepared and configured as shown in FIG. When the specific signal G1 is input in parallel from the input terminal IN-1, the left signal L1 and the right signal R1 equivalent to the case of the microphones M1M2 attached to the left and right ear canals of Q0 are detected as the outputs. In addition, a plurality of audio signals G1 to Gn which are multi-reproduced using the required number of sets are used as the M1M.
2 can be converted into a left signal L1 and a right signal R1 which are equivalent to those in FIG. Above, the listening condition of the Q0 for sound source SP positions X1, those that substitute as B1, B1 1 to accurately characterize the control circuit, the circuit of FIG. 9 is an equivalent "earphones listening to that according to the M1M2 It works as a compatible ear-shaped stereoscopic reproduction signal detecting device ". Further, the reason why the measurement of the voice transfer characteristic K1K1 1 using the detection signals of the microphones M1M2 attached to the left and right ear canals of Q0 is required is because there is a difference between the pick-up characteristic of the auricle and the conduction characteristic of the auricle with respect to the incoming voice. because it is desired to obtain a measurement result of the transfer characteristic K1K2, it is possible to detect the audio signal including the auricle conduction sound thereby that replaces the characteristic control circuit β as B1, B1 1.

【0011】第10図、第11図、第12図に人体の耳
介または其のダミーを用いた場合と同様にはたらく「イ
ヤホン受聴対応耳形効果型立体マイクロホン」の構成図
を示した。第10図(イ)は、一端に幅約2mm長さ約
8mmの窓(2)を設けた、内径約8mmφ長さ約40
mmの中空管(1)。図は側面図およびその上面図。同
図(ロ)は、前記中空管(1)の中央付近に、両指向
性マイクロホン(3)を窓(2)に接して装填し固定し
た状態。図は透視図で図中の点線はマイクロホン(3)
の指向性方向を示す。同 図(ハ)は、マイクロホン
(3)を装填し固定した前記中空管(1)の両端に、吸
音材4、4を接着して固定した伏態。図は透視図。以
上第10図により制作される部分の構成は、前記マイク
ロホン(3)に人体の耳介J1J2が発揮するものと類
似した高域指向性Hf(第5図)を発揮させるためのも
ので、超音波笛に類似したこの構成によって前記マイク
ロホン(3)は、主に中空管の窓(2)の開口方向に向
かって可聴周波数帯中の高域指向性Hfが発揮されるよ
うになる。第11図(イ)は、会話周波数帯に対する集
音板(6).材質はシリコンゴム正面図。同 図(ロ)
は、これを側面から見た場合の1部断面図。直径約10
〜12cm程度 同 図(ハ)は、構造図、前記集音板(6)の貫通口
(12)に第10図(ハ)の中空管(1)を貫通して固
定し、窓(2)を上方として集音板(6)の貫通口背部
(7)を無共振ゴムの準密閉箱(8)で保持している。
以上第11図(ハ)の構造により可聴周波数帯中、会話
音声帯域1〜4Khz範囲の帯域指向性Mfが主に前方
に向かって発揮され、其の上6〜16Khzの高域指向
性Hfが主に上方に向かって発揮される第12図左のよ
うな形となり、人体Q0の耳介J1J2に両指向性マイ
クロホンM1M2を装着した場合と類似した指向性分布
となる。第12図は前記マイクロホン一対を、スタンド
上部(10)のマイクロホン取付け台(11)に幅約2
0cm開角約90度で取付けた状態。正面を向いて描か
れているのが左のマイクロホン、側方を向いて一部断面
図で描かれているのが右のマイクロホンで、矢印点線が
示すMfは可聴周波数帯中会話帯域における指向性方
向、Hfは同高域指向性の方向を示す。左のマイクロホ
ンも同様にして図の正面方向に現れる一方中空管(1)
のマイクロホン(3)から吸音体(4)までの空間お
よび準密閉箱(8)の内部空間は、外耳道から中耳に至
る間の音響特性に近似させて実際と同様な特性を検出信
号にあたえる。耳介伝導音にあたる音声はシリコンゴム
系の集音板(6)捕捉されて中空管(1)に伝えられ、
中空管(1)と内部の空気分子の慣性による相対的な運
動よってマイクロホン(3)に適度に検出される。以上
第12図の如く構成されたマイクロホンは、スタンド等
により原音場において聴取者の頭部の高さに設定する
と、人体Q0の耳介による場合とほとんど同様な音声信
号L1R1を検出し「イヤホン受聴対応耳形効果型立体
マイクロホン」としてはたらく。なお第10図の構成
は、マイクロホン(3)の高域指向性Hfが上方に向か
って適度に発揮される事が条件で開口径1〜3cmの微
小ホーンをマイクロホン(3)に取り付け上方に向けた
構成でも同様な結果が得られる。また耳介伝導音と等価
な信号が筐体伝導などにより適度に検出される場合、ま
たは他方で検出される音声信号の低域成分が十分にはた
らく等の場合には、前記マイクロホン3は無指向性とし
てよい。この場合(3)から吸音体(4)までの空間
および準密閉箱(8)の内部空間は必要ない。
FIG. 10, FIG. 11 and FIG. 12 are block diagrams of an “ear-ear effect type stereo microphone capable of listening to earphones” which operates in the same manner as when the auricle of the human body or its dummy is used. FIG. 10 (a) shows an inner diameter of about 8 mm and a length of about 40 with a window (2) having a width of about 2 mm and a length of about 8 mm.
mm hollow tube (1). The figure is a side view and its top view. FIG. 2B shows a state in which the bidirectional microphone (3) is loaded and fixed in contact with the window (2) near the center of the hollow tube (1). The figure is a perspective view and the dotted line in the figure is the microphone (3).
Indicates the directivity direction of. FIG (c) is Fukutai that both ends of the microphone the hollow tube with loading the fixed (3) (1), and fixed by adhering a sound-absorbing material 4, 4 1. The figure is a perspective view. The configuration of the portion produced by FIG. 10 is for making the microphone (3) exhibit high-frequency directivity Hf (FIG. 5) similar to that exhibited by the auricle J1J2 of the human body. With this configuration similar to a sound wave whistle, the microphone (3) exhibits high frequency directivity Hf in the audible frequency band mainly toward the opening direction of the window (2) of the hollow tube. FIG. 11 (a) shows a sound collecting plate (6). The material is silicon rubber front view. Same figure (b)
Is a partial cross-sectional view of the same when viewed from the side. Diameter about 10
About 12 cm The figure (c) is a structural drawing, the hollow tube (1) of FIG. 10 (c) is penetrated and fixed to the through hole (12) of the sound collecting plate (6), and the window (2) ) Is the upper side, and the back portion (7) of the through-hole of the sound collecting plate (6) is held by a non-resonant rubber quasi-closed box (8).
With the structure shown in FIG. 11C, the band directivity Mf in the conversation voice band 1 to 4 Khz range is mainly exerted forward in the audible frequency band, and the high frequency directivity Hf of 6 to 16 Khz is further exerted. The shape shown in the left of FIG. 12 is mainly exhibited upward, and the directivity distribution is similar to that when the bidirectional microphone M1M2 is attached to the auricle J1J2 of the human body Q0. FIG. 12 shows that the pair of microphones are mounted on the microphone mount (11) on the upper part of the stand (10) with a width of about 2 mm.
The state that it was installed with the opening angle of 0 cm at about 90 degrees. The left microphone is drawn to the front, the right microphone is drawn to the side in a partial cross-sectional view, and Mf indicated by the dotted arrow is the directivity in the speech band in the audible frequency band. The direction and Hf indicate the same high frequency direction. Similarly, the left microphone also appears in the front direction in the figure, while the hollow tube (1)
The space from the microphone (3) to the sound absorbing body (4 1 ) and the internal space of the semi-enclosed box (8) are approximated to the acoustic characteristics from the ear canal to the middle ear, and the characteristics similar to the actual one are used as detection signals. Give The sound corresponding to the auricle conduction sound is captured by the silicon rubber-based sound collecting plate (6) and transmitted to the hollow tube (1),
The microphone (3) is appropriately detected by the relative motion of the hollow tube (1) and the internal air molecules due to inertia. When the microphone configured as shown in FIG. 12 is set to the height of the listener's head in the original sound field by a stand or the like, it detects an audio signal L1R1 almost the same as the case of the auricle of the human body Q0, and the "earphone listening" is performed. It works as a compatible ear-shaped stereo microphone. The configuration shown in FIG. 10 is attached upward to the microphone (3) with a minute horn having an opening diameter of 1 to 3 cm provided that the high frequency directivity Hf of the microphone (3) is appropriately exerted upward. Similar results can be obtained with this configuration. Further, when a signal equivalent to the auricular conduction sound is appropriately detected by conduction through the housing, or when the low-frequency component of the audio signal detected on the other side is sufficiently working, the microphone 3 is omnidirectional. Good as a sex. In this case, the space from (3) to the sound absorbing body (4 1 ) and the internal space of the semi-closed box (8) are not necessary.

【0012】第13図に理想イヤホンの原理図を示し
た。これは「イヤホン受聴対応耳形効果型立体再生信
号」の検出用マイクロホンM1M2がおかれた外耳道入
口E1E2に、直径5〜6mmφのマイクロスピーカー
μSを背面開放の状態で図のように設定し左右のイヤホ
ンY1Y2としたもので、これにより外耳道入口E1E
2から鼓膜方向を見た内部音響インピーダンスZiZi
と耳介方向を見た外部音響インピーダンスZoZo
の両負荷が、信号検出時におけるマイクロホンM1M2
の場合と同様にイヤホンY1Y2の振動板の前後に加わ
る状態となる。この状態でM1M2による検出信号がマ
イクロスピーカーμSにより再生されると、後方に向か
う音声は音波の可逆性により外部音響インピーダンスZ
oZoを介して原音場の場合と等価な音響状態を左右
の耳甲介腔内に再現し、前方に向かう音声は、これを背
景として信号検出時と等価な内部音響インピーダンスZ
iZiを介して左右の鼓膜に到達し原音場の場合と等
価な鼓膜振動を再現させる。以上の結果、第13図の左
右の外耳道入口E1E2に背面開放の状態で配置された
前記マイクロスピーカーμSは、振動板の質量および弾
性が軽微で再生音の周波数特性が平坦な理想特性である
場合、原音場における耳孔介腔内の音声と、鼓膜に到達
する音声の相方を耳形効果を乱す事なく聴取者側に再現
できる条件を満たし、これを主体とするイヤホンY1Y
2は「イヤホン受聴対応耳形効果型立体再生信号」に対
し「理想イヤホン」としてはたらく事になる。第13図
(ロ)はこれを実用化するための原形で、聴診器形状と
することによりイヤホン部分を左右の外耳道に装着でき
るようにしている。第7図(ロ)と対応。前記マイクロ
スピーカーは現在10mmφ前後まで実用化されている
が、外耳道内における信号音響変換能率は耳孔介腔内で
再生される場合と比較して聴覚上数倍の上昇が見込まれ
るから、現状性能を維持したままでの小形化にはさほど
大きな問題は予想されない。
FIG. 13 shows a principle diagram of an ideal earphone. This is set to the external auditory meatus entrance E1E2 in which the earphone effect type stereoscopic reproduction signal for earphone listening M1M2 is placed, and the microspeaker μS with a diameter of 5 to 6 mmφ is set as shown in the figure with the back open. Earphones Y1Y2 are used, which allows ear canal entrance E1E.
Internal acoustic impedance ZiZi viewed from the eardrum direction from 2
1 and external acoustic impedance ZoZo 1 looking at the pinna
Both loads are microphones M1M2 at the time of signal detection.
In the same manner as in the above case, the earphones Y1 and Y2 are in a state of being added to the front and rear of the diaphragm. In this state, when the detection signal from M1M2 is reproduced by the micro speaker μS, the backward sound is reversible by sound waves, and the external acoustic impedance Z
A sound state equivalent to that in the case of the original sound field is reproduced in the concha of the left and right concha through oZo 1 , and the forward sound is equivalent to the internal acoustic impedance Z at the time of signal detection against this background.
Reach the left and right eardrums via iZi 1 and reproduce the eardrum vibration equivalent to that in the original sound field. As a result, in the case where the microspeaker μS arranged in the left and right external auditory meatus entrances E1E2 in FIG. 13 with the back surface open is an ideal characteristic in which the vibration plate has a small mass and elasticity and the reproduced sound has a flat frequency characteristic. , An earphone Y1Y which mainly satisfies the condition that the partner of the sound in the ear canal cavity in the original sound field and the sound reaching the eardrum can be reproduced on the listener side without disturbing the ear shape effect.
2 works as an "ideal earphone" for the "ear effect stereoscopic reproduction signal compatible with earphone listening". FIG. 13 (B) is an original shape for putting this into practical use, and by making it a stethoscope shape, earphone parts can be attached to the left and right ear canals. Corresponds to Figure 7 (b). Although the micro speaker has been practically used up to about 10 mmφ, the signal-to-sound conversion efficiency in the external auditory canal is expected to increase several times in hearing compared with the case of being reproduced in the ear canal cavity. No major problems are expected for miniaturization while maintaining.

【0013】前記「理想イヤホン」の再生原理を展開し
今後の理想再生志向イヤホン類に求められる条件を列記
すれば概略つぎの5項目となる。即ち、 (1)耳孔介腔の共鳴点がその装着により変化しないこ
と。 (2)外耳道内の共鳴点がその装着により変化しないこ
と。 (3)相方に新たな共鳴点がその装着により発生しない
事。 (4)共鳴点が再生音受給点の不整合により発生しない
事。 (5)再生音の受給点が耳孔介腔下部外耳道付近である
事。 第1項および2項において共鳴点が変化し新たな共鳴点
を生じた場合、または第3項による新たな共鳴点を生じ
た場合または第4項により共鳴点を生じた場合、新たな
共鳴点に当る部分の再生音が頭内定位ないし上方定位に
おちいりやすい等、再生音の主に定位に関する障害とな
る事が実験的に認められる理由による。第5項は再生時
における耳孔介腔内の音響状態を原音場における場合と
類似させるための要件で、音声信号を外耳道付近で再生
した場合、この再生音は原音場とは逆に、耳甲介腔の下
部、中部、上部、耳輪、という流れで上昇し順次耳介の
外側に放出されるが、この逆流によって耳介内部の定在
波分布等を含む音響状態は原音場における収音時と類似
したものとなり、再生時における音響状態が収音時と異
なる事によって引起こされる定位不良の問題を軽減し回
避できる。以上第1項から第5項までの条件によって導
かれる理想再生志向のイヤホンは、本体Y1Y2を適度
の音響カプラーを介して左右の耳孔介腔下部の外側第1
3図(ハ)のY1及び其の対称位置に夫々装着する形
となり、是によって実用上支障のない優れた再生音定位
のイヤホンが得られる。この時耳甲介腔の上部から放出
される音声を上部の吸音体で吸収する構造を含めて全体
を一体化すれば同上の性能を有するヘッドホンが得られ
る(例スピーカー開口径20mmφ音響カプラー3CC
軽接)。
The following five items can be summarized by developing the reproduction principle of the "ideal earphones" and listing the conditions required for future ideal reproduction-oriented earphones. That is, (1) The resonance point of the ear canal cavity does not change due to the wearing. (2) The resonance point in the ear canal does not change due to the wearing. (3) A new resonance point on the other side should not occur due to the mounting. (4) Resonance points do not occur due to mismatch of playback sound receiving points. (5) The point of receiving the reproduced sound is near the external auditory meatus below the ear canal cavity. When the resonance point is changed and a new resonance point is generated in the first and second terms, or when a new resonance point is generated by the third term or a resonance point is generated by the fourth term, a new resonance point The reason is that it is experimentally recognized that the reproduced sound of the part that hits the head is easily disturbed in the intra-orientation or the upper localization, which is an obstacle to the localization of the reproduced sound. The fifth item is a requirement for making the acoustic state in the ear canal cavity at the time of reproduction similar to that in the original sound field. When an audio signal is reproduced in the vicinity of the ear canal, this reproduced sound is opposite to the original sound field and The lower part, the middle part, the upper part of the acupuncture cavity, the ear ring, and the like rise and then are sequentially released to the outside of the auricle. The problem of localization failure caused by the fact that the acoustic state during reproduction differs from that during sound collection can be reduced and avoided. The ideal reproduction-oriented earphones guided by the above-mentioned conditions 1 to 5 have the body Y1Y2 on the outer side of the lower part of the left and right ear canal through the appropriate acoustic coupler.
As shown in FIG. 3 (c), Y1 1 and its symmetrical positions are mounted respectively, and as a result, an earphone with excellent reproduced sound localization that does not hinder practical use can be obtained. At this time, if the whole structure including the structure in which the sound emitted from the upper part of the concha of the ear is absorbed by the upper sound absorber is integrated, a headphone having the same performance can be obtained (eg, speaker opening diameter 20 mmφ acoustic coupler 3CC.
Light contact).

【0014】第14図に「イヤホン受聴対応耳形効果型
立体再生」の原理図を示した。図中Q1は原音場に位置
する仮の聴取者、その左右の外耳道に第7図(ロ)に示
すマイクロホンM1M2が装着され、そのM1M2の出
力信号L1R1が左信号増幅器A1右信号増幅器A2を
介して伝送され、聴取者Q2の左右の外耳道に装着され
た第13図(ロ)に示すイヤホンY1Y2に供給される
構成となっている。この構成により仮の聴取者Q1の側
から伝送される耳形効果を有する音声信号L1R1が聴
取者Q2の側で再生され、Q2が有する音の方向感覚に
よってQ1に対する原音場の立体的な音源方向が知覚さ
れる。同図において人体Q1Q2間の耳介形状の相違が
問題になるのではないかと懸念されるが、其の主なる相
違は耳翼部の大小や前傾の度合い耳垂の形状および肥厚
の度合等であって、耳甲介腔・耳珠・対珠、耳輪、等を
形成する耳介軟骨部の形状にほとんど大差はない。因み
に日本人と外国人との相方について外耳道入口に集音さ
れる音声の音圧周波数特性を測定すると、その体形の明
らかな相違に反し測定結果は何れも同様な特性となって
情報の共通を示すのである。これ等の事は収音時に適正
な形状の耳介所有者を選定し仮の聴取者Q1とすれば、
聴取者Q2の耳介形状を特に問題にする事なく日本人か
ら外国人におよぶ広範囲の聴取者に対し、ほぼ共通の条
件下で「イヤホン受聴対応耳形効果型立体再生」が実施
可能である事を意味する。また音色特性ないしその変化
としてQ1側からQ2側に伝送される方向情報に関し、
一連の実験を通してしばしば経験する事は、特に会話音
声中「サシスセソ」の子音等に代表される高域かつ広帯
域性の音声部分が到来した場合、又は衝撃音など音声の
エンベロープが急変して高域かつ広帯域性の成分を伴う
音声部分が到来した場合、それまでぼんやりと知覚され
ていた音源方向が「瞬時明確」に知覚され再びぼんやり
の状態にもどるという現象である。これは聴覚系が音源
方向を判別する際、常にはおおまかな方向判別が行なわ
れ、特に高域かつ広帯域性で方向判別に最適な形の音声
部分が到来した瞬間・選択的に此の部分の方向判別が明
確に行なわれ、それまで大まかに知覚されていた音源方
向が此の瞬間明確な音源位置として確定し知覚されると
いう、方向判別の二重性と、高域かつ広帯域性の音声部
分の周波数スペクトラムの特性ないしその変化から確定
段階の音源方向および距離が選択的に読み取られる事を
示し、第14図においてQ1側からQ2側に伝送される
音声信号L1R1の周波数特性に、仮にも平坦とはいえ
ない独特の特性が要求される事の合理性を示している。
FIG. 14 shows the principle of "ear effect stereoscopic reproduction for earphone listening". In the figure, Q1 is a temporary listener located in the original sound field, the microphones M1M2 shown in FIG. 7B are attached to the left and right ear canals, and the output signal L1R1 of the M1M2 is passed through the left signal amplifier A1 and the right signal amplifier A2. And transmitted to the earphones Y1Y2 shown in FIG. 13 (B) attached to the left and right ear canals of the listener Q2. With this configuration, the audio signal L1R1 having the ear effect that is transmitted from the temporary listener Q1 side is reproduced on the listener Q2 side, and the stereophonic sound source direction of the original sound field with respect to Q1 is sensed by the sense of the direction of the sound of Q2. Is perceived. In the figure, there is a concern that the difference in the shape of the pinna between the human bodies Q1Q2 may cause a problem. The main differences are the size of the ears and the degree of forward lean, the shape of the ear lobe, and the degree of thickening. However, there is almost no difference in the shape of the auricular cartilage that forms the concha of the concha, the tragus, the antitragus, the earring, etc. By the way, when the sound pressure frequency characteristics of the sound collected at the entrance of the ear canal of the Japanese and foreigners are measured, the measurement results show the same characteristics in contrast to the obvious difference in body shape, and the information is common. To show. If these things are selected as a temporary listener Q1 by selecting an auricle owner with an appropriate shape at the time of sound collection,
It is possible to carry out “ear-ear effect stereoscopic playback compatible with earphone listening” for a wide range of listeners from Japanese to foreigners without making the shape of the auricle of the listener Q2 a particular problem. Mean a thing. Further, regarding the directional information transmitted from the Q1 side to the Q2 side as the tone color characteristic or its change,
What I often experience through a series of experiments is that when a high-bandwidth and wide-band voice part, such as the consonant of "Sasississo", arrives in a conversational voice, or when the sound envelope such as an impact sound suddenly changes, In addition, when a voice portion accompanied by a broadband component arrives, the direction of the sound source, which was previously vaguely perceived, is perceived as "instantaneously clear" and returns to the vague state again. This is because when the auditory system discriminates the direction of a sound source, a rough direction discrimination is always performed, and especially at the moment when a voice part of a shape suitable for direction discrimination with a high frequency band and a wide band characteristic arrives. The direction is clearly discriminated, and the sound source direction that was roughly perceived until then is determined and perceived as a clear sound source position at this moment, and the duality of the direction discrimination and the frequency of the high-frequency and wide-band voice part. It is shown that the sound source direction and the distance at the final stage can be selectively read from the characteristic of the spectrum or its change. In FIG. 14, the frequency characteristic of the audio signal L1R1 transmitted from the Q1 side to the Q2 side is assumed to be flat. It shows the rationality of requiring unique characteristics that cannot be said.

【0015】[0015]

【実施例1】第15図に「イヤホン受聴対応耳形効果型
立体再生」の総合的な実施例を示した。図中Q1は原音
場における仮の聴取者、J1J2は耳介、その左右の外
耳道入口E1E2に第7図(ロ)の両指向性マイクロホ
ンM1M2を装着し、その検出信号L1R1を「イヤホ
ン受聴対応耳形効果型立体再生信号」の出力として「信
号検出部」を構成する。 *第7図(イ),第8図(イ),第8図(ロ),第9
図, *第12図,等によりこれと等価な音声信号を検出でき
る。 次のRECは伝送系に属する録音再生機器であって前段
の出力L1R1を左右の信号L,R,として記録し「イ
ヤホン受聴対応耳形効果型立体レコード類」が得られ
る。 *前記レコード類は、テープ,音声記憶IC,ディスク
類等 つぎのLiRiは次段入力部で前段レコード類の再生信
号を受け、増幅器A1A2で夫々増幅した後この出力L
oRoを聴取者Q2が左右の外耳道に装着した第13図
(ロ)のイヤホンY1Y2に供給して再生し、仮の聴取
者Q1に対する原音場の立体的な音源方向を耳形効果に
より聴取者Q2に知覚させる構成となっている。 *第13図(イ)は理想イヤホンの模型的原理図,断面
図。 *同 図(ロ)は理想イヤホン準処の実用例1,外観
図。 *同 図(ハ)はイヤホン類の論理的装着位置,説明
図。
[Embodiment 1] FIG. 15 shows a comprehensive embodiment of "ear-shaped stereoscopic reproduction compatible with earphone listening". In the figure, Q1 is a tentative listener in the original sound field, J1J2 is an auricle, and the bidirectional microphone M1M2 of FIG. 7 (b) is attached to the left and right external auditory meatus entrances E1E2, and the detection signal L1R1 is read as “earphone compatible ear. The "signal detection unit" is configured as an output of the "shape effect type stereoscopic reproduction signal". * Figure 7 (a), Figure 8 (a), Figure 8 (b), and 9
A voice signal equivalent to this can be detected from Fig. 12, Fig. 12 and so on. The next REC is a recording / reproducing device belonging to the transmission system, and the output L1R1 of the preceding stage is recorded as left and right signals L and R, so that "ear-ear effect stereoscopic records corresponding to earphone listening" can be obtained. * The above-mentioned records are tapes, audio storage ICs, disks, etc. The next LiRi receives the reproduction signal of the previous-stage records at the input unit of the next stage, amplifies them by the amplifier A1A2, and outputs this output L
oRo is supplied to the earphones Y1Y2 of FIG. 13 (b) which the listener Q2 wears on the left and right ear canals to reproduce, and the three-dimensional sound source direction of the original sound field with respect to the temporary listener Q1 is listened to by the listener Q2. It is designed to be perceived by. * Fig. 13 (a) is a model principle diagram and sectional view of the ideal earphone. * The same figure (b) is a practical example 1 of the ideal earphone application, and an external view. * The figure (c) is an illustration of the logical mounting position of earphones.

【0016】[0016]

【実施例2】第16図および第17図に、本実施例と類
似する従来のバイノーラル方式の実施例を従来の関係書
籍から示し、前第15図との比較により其の相違点を明
確にする。まず第16図は前出オスカー氏に代表される
バイノーラル方式の原形。図中Q1は原音場における仮
の聴取者で、その左右の耳介J1J2の外耳道入口E1
E2にそれぞれマイクロホンM1M2を装着し、これに
よって左右の外耳道に到達する音声の音声信号L1R1
を検出する。但し、ここまでの段階は第15図に同じ。
第16図は以下検出された音声信号L1R1から、耳介
J1J2の影響により生じた周波数特性の乱れを特性補
正回路EQで再び平坦な特性にもどし、耳介前面に到達
する音声の音声信号L,R,とほぼ等価な特性の音声信
号として信号検出部の出力とする。第17図は前記仮の
聴取者Q1の頭部の位置に、左右の耳介J1J2間の実
質距離凡そ200mm角度凡そ90度を隔てて単一指向
性マイクロホンM5M6を設定し、これにより耳介前面
に到達する音声と等価な音声信号L,R,を検出し信号
検出部の出力とする。第16図および第17図の信号検
出部出力L,R,は以下、伝送系REC,増幅器A1A
2を経て聴取者Q2が左右の耳介に装着したヘッドホン
H1H2に送られ、この振動板により聴取者Q2の左右
の耳介前面に、原音場において仮の聴取者Q1の耳介前
面に到達した音声と等価な左右の到来音声を再現し其の
音源方向を知覚させ様とする。以上を整理すれば、
(1)従来のバイノーラル方式は左右の「耳介前面」に
到達する音声の音声信号を検出し、再生時「ヘッドホ
ン」により聴取者の左右の耳介前面に是を再生する事に
より立体再生を行おうとする「耳介前面型の再生方法」
として独立し、(2)サウンドフォログラム方式は左右
の「外耳道」に集音される音声の音声信号を検出し、再
生時「イヤホン」により聴取者の左右の外耳道にこれを
再生する事により立体再生を行おうとする「外耳道型の
再生方法」として独立する。またバイノーラル方式の条
件の一つヘッドホンは、左右の耳介前面に音声信号をそ
れぞれ再生するように作られた構造上、外耳道に向けて
音声信号を再生しても、耳甲介腔の共鳴等により特性が
変化して正確な再生音は外耳道に到達しない。つまりヘ
ッドホンを用いて論理的に正確な再生を行おうとする場
合の入力信号は、原音場において仮の聴取者Q1の左右
の耳介前面に到達する音声の音声信号に限られるのであ
る。これに対し、本発明の条件の一つイヤホンは、左右
の外耳道入口に音声信号を夫々再生するように作られた
構造上、これを用いて論理的に正確な再生を行おうとす
る場合の入力信号は、前記、仮の聴取者Q1の左右の外
耳道に集音される音声の音声信号に限られるのであっ
て、以上の事は、本発明に係る第15図の信号検出部と
バイノーラル方式に係る第16図の信号検出部とが,方
法は同じながら思想および目標を異にし、加えて本発明
のものが「耳介前面に到達する音声が更に外耳道に集音
される間に耳介形状の影響によりこの音声に与えられる
音色特性の変化を再生音の定位に関する方向情報として
検出」しようとする点の新規性と合わせ、それぞれ先例
後例の関係に当たらない事を示している。
[Embodiment 2] FIGS. 16 and 17 show an embodiment of a conventional binaural system similar to this embodiment from a related related book, and the differences are clarified by comparison with FIG. 15 above. To do. First, Fig. 16 shows the original form of the binaural system represented by Mr. Oscar. In the figure, Q1 is a temporary listener in the original sound field, and the ear canal entrances E1 of the left and right auricles J1J2.
A microphone M1M2 is attached to each of E2, and by this, a voice signal L1R1 of a voice that reaches the left and right ear canals
To detect. However, the steps up to this point are the same as in FIG.
FIG. 16 shows that, from the detected audio signal L1R1, the disturbance of the frequency characteristic caused by the influence of the auricle J1J2 is returned to the flat characteristic again by the characteristic correction circuit EQ, and the audio signal L of the voice reaching the front surface of the auricle, The signal is output as a voice signal having a characteristic almost equivalent to R. FIG. 17 shows that a unidirectional microphone M5M6 is set at the position of the head of the tentative listener Q1 with a substantial distance between the left and right auricles J1J2 separated by an angle of about 200 mm and an angle of about 90 degrees. The voice signals L and R equivalent to the voice reaching the are detected and output as the output of the signal detector. The signal detection unit outputs L and R shown in FIGS. 16 and 17 are respectively referred to as a transmission system REC and an amplifier A1A below.
The listener Q2 is sent to the headphones H1H2 attached to the left and right auricles via 2 and reaches the front of the left and right auricles of the listener Q2 by this diaphragm, and reaches the front of the auricles of the temporary listener Q1 in the original sound field. The left and right incoming voices equivalent to the voice are reproduced to perceive the direction of the sound source. If you arrange the above,
(1) The conventional binaural system detects stereophonic signals that reach the left and right "front of the auricle" and reproduces them on the front of the left and right auricles of the listener by "headphones" during reproduction, thereby performing stereoscopic reproduction. "Playing method for front type of auricle"
Independently, (2) the sound-fologram method detects the audio signal of the sound collected in the left and right "external ear canal" and reproduces it in the left and right external ear canal of the listener by the "earphone" during reproduction. It becomes independent as "external ear canal type reproduction method". In addition, headphones, which is one of the conditions for the binaural system, are structured to reproduce audio signals on the front surfaces of the left and right auricles respectively.Therefore, even if audio signals are reproduced toward the ear canal, resonance of the concha of the ear, etc. As a result, the characteristics change and the accurate reproduced sound does not reach the ear canal. That is, the input signal in the case of performing logically accurate reproduction using the headphones is limited to the voice signal of the voice that reaches the front of the left and right auricles of the temporary listener Q1 in the original sound field. On the other hand, one of the conditions of the present invention is that the earphones are structured to reproduce the audio signals at the left and right ear canal entrances respectively. The signal is limited to the voice signal of the voice collected in the left and right external auditory meatus of the temporary listener Q1, and the above is the case with the signal detection unit and the binaural system of FIG. 15 according to the present invention. The signal detecting unit of FIG. 16 differs from the signal detecting unit of FIG. 16 in the same way but in the same concept and the same purpose. In addition to the novelty of detecting the change of the timbre characteristic given to the voice as direction information regarding the localization of the reproduced sound due to the effect of the above, it shows that they do not satisfy the relationship of the precedent and the latter.

【0017】[0017]

【発明の効果】第15図において仮の聴取者Q1を原音
場に配置すると、この左右の耳介J1J2に到達した音
声は其の耳介形状によってそれぞれ左右の外耳道に向け
て集音され、外耳道入口E1E2に装着されたマイクロ
ホンM1M2により耳形効果を有する左右の音声信号L
1R1として検出される。この検出信号L1R1は以
下、レコード類等を媒体とする信号伝送系RECを介し
て信号再生部分に送られ、増幅器A1A2で適度に増幅
されたのち、聴取者Q2が装着するイヤホンY1Y2に
おくられ、ここで聴取者Q2の左右の外耳道に耳形効果
を有する再生音が再生される。この結果イヤホンY1Y
2の特性が適切な場合、仮の聴取者Q1に対する原音場
の立体的な音源方向が、そのまま聴取者Q2によってか
なり鮮明に知覚される。その数例をあげれば、仮の聴取
者Q1の前方約3mの位置に、ホワイトノイズを音源と
して大きさ約1mの音文字を空間に描いた場合、この
文字がアラビヤ数字、アルファベット或いはカタカナ程
度の簡単なものであれば、遠方に隔離された閉眼の聴取
者Q2によって其の大半が読み取られ耳形効果が確認さ
れる。また、この聴取者Q2をモニターしながら実験の
合間をぬって「電話のベル・雷鳴・玄関口での呼び声な
ど」必然性の高い再生音を流すと、これが再生音である
か実際の音声であるかの判断がつくまでの間、聴取者Q
2は反射的に電話をさがし、イヤホンをはずして空を見
上げ、耳をすまして様子を窺いやがて玄関口に立つ等の
確認動作がに誘発され聴覚的な忠実度の高さを示す。ま
た観衆に混じって収録した墨田川の花火の再生音は、花
火の炸裂音が上空から聞こえ、其の反射音は岸辺のビル
の方向から順次返ってそれぞれの方向を知覚させ、更に
雑踏中の個々の観衆の声は騒音とならずに夫々分離して
明瞭に聞き分けられてパーティー効果の高さを示す。ま
た左右にスピーカーを用いた従来のステレオ再生では、
左遠方から接近して前方を通過し右遠方に遠ざかる列車
の通過音が「左スピーカーの後方から接近し左右のスピ
ーカー間を横断して右スピーカー後方に遠ざかる」いわ
ゆる擦り鉢形の軌跡を描いて再生されるなど、原音場の
スケールが左右のスピーカー間距離を越える場合には適
正な再生音場を望み得なかったのであるが、本発明の再
生音は左遠方から接近して前方を通過し右遠方に一直線
に遠ざかる適正な軌跡を採って再生され、大編成のオー
ケストラを再生する場合に課せられるのと同じ条件下で
通常のステレオ再生をはるかに凌ぐ広大なスケールと高
い臨場感が得られる。また原音場において検出信号を直
接イヤホン受聴した場合、この再生音は実際の音声と聞
分けが困難な程の忠実度と明瞭度をもって聞こえるほか
に、一度音量調整すると以後は音源が近ずいても遠ざか
っても聴覚系の対応により音量調節の要望が起こらず、
軽度難聴の補聴器使用者に此の再生音を聞かせると従来
の2/3程度の再生音圧で非常に明瞭に聞こえるという
解答がぼぼ全員からかえってくる等「聴覚の支援に適す
る顕著な特徴」が認められる。また映像の音声をサウン
ドフォログラグラムで収録し再生した場合、この再生音
は単に画面の中ばかりでなく、画面の外に移動した音源
までを含めて在るべき位置にそれぞれの音源を再現で
き、従来にない特別な演出効果が得られる。総じていえ
ば本発明にかかる「イヤホン受聴対応耳形効果型立体再
生」の再生音は、聴覚系とよく適合して「聴取者自身が
有する音の方向感覚を実際の音声と同様この再生音に対
しても発揮させる」という特徴があり、特に音響芸術の
分野、映像音響の分野、聴覚支援等の医療機器分野、精
神の安静から睡眠にいたる間の音響生理学的な分野まで
に其の応用が期待され実用化が待たれる。
As shown in FIG. 15, when a temporary listener Q1 is placed in the original sound field, the sounds that reach the left and right auricles J1J2 are collected by the auricle shape toward the left and right ear canals, respectively. Left and right audio signals L having an ear shape effect by the microphones M1M2 attached to the entrances E1E2
It is detected as 1R1. This detection signal L1R1 will be sent to the signal reproducing portion via the signal transmission system REC using a record or the like as a medium, appropriately amplified by the amplifier A1A2, and then placed on the earphone Y1Y2 worn by the listener Q2. Here, the reproduced sound having the ear shape effect is reproduced in the left and right external auditory meatus of the listener Q2. As a result, earphone Y1Y
When the characteristic of 2 is appropriate, the stereoscopic sound source direction of the original sound field with respect to the temporary listener Q1 is perceived by the listener Q2 as sharp as it is. To give a few examples, when a sound character of about 1 m 2 in size is drawn in the space about 3 m in front of the tentative listener Q1 with white noise as a sound source, this character is about Arabic numerals, alphabets, or katakana. If it is simple, most of it is read by the listener Q2 who has eyes closed, and the ear shape effect is confirmed. Also, while monitoring the listener Q2, if a play sound with a high inevitability such as "a telephone bell, a thunder, a call at the entrance door, etc." is played during the experiment, this is the play sound or the actual sound. Until the decision is made, the listener Q
Reference numeral 2 indicates a high auditory fidelity by being reflexively searched for a phone, taking off the earphones to look up at the sky, listening to the situation, and then standing at the front door. In addition, the playback sound of the Sumida River fireworks recorded mixed with the audience was heard from the sky, and the reflected sound was returned from the direction of the building on the shore in order to perceive each direction, and further The voices of the individual spectators are separated from each other without being noisy, and can be clearly heard to show the high party effect. Also, in conventional stereo playback using speakers on the left and right,
A train passing sound that approaches from the far left and passes through the front and moves away to the far right "Plays as a so-called mortar-shaped locus" that approaches from the rear of the left speaker, crosses between the left and right speakers, and moves away from the right speaker. However, when the scale of the original sound field exceeds the distance between the left and right speakers, a proper reproduced sound field could not be expected.However, the reproduced sound of the present invention approaches from the far left and passes through the front to the right. It is reproduced by taking a proper trajectory that goes away in a straight line at a distance, and under the same conditions that are imposed when playing a large-scale orchestra, a vast scale and a high sense of presence that far exceed normal stereo reproduction can be obtained. In addition, when the detection signal is heard directly in the original sound field, the reproduced sound is heard with fidelity and intelligibility that makes it difficult to distinguish it from the actual voice. Even if you move away, the request for volume control does not occur due to the correspondence of the auditory system,
"A remarkable feature that is suitable for hearing support" is that the hearing sounds of hearing-impaired users who have mild hearing loss can be heard very clearly at a sound pressure of about 2/3 of the conventional sound level. Is recognized. In addition, when the sound of the video is recorded and played as a sound follogram, this sound can be reproduced not only inside the screen but also at the position where it should be, including the sound source moved to the outside of the screen. , You can get a special effect that has never been seen before. Generally speaking, the reproduction sound of the “earphone-effect-type stereoscopic reproduction compatible with earphone listening” according to the present invention is well compatible with the auditory system, and “the sense of direction of the sound possessed by the listener himself becomes similar to that of the actual sound. It has a feature of "demonstrating even against", especially its application in the fields of acoustic arts, audiovisual fields, medical device fields such as hearing aids, and sonophysiological fields from mental rest to sleep. Expected to be put to practical use.

【0018】以上耳形効果の確認に基いて以下の4項が
新規に実用化され、 1,イヤホン受聴対応耳形効果型立体再生信号の検出方
法および装置。 2,イヤホン受聴対応耳形効果型立体マイクロホン。 3,イヤホン受聴対応耳形効果型立体再生用レコード
類。 4,前記1,2,3,を包含して成るイヤホン受聴対応
耳形効果型立体音響機器。理想イヤホンの原理に従って
以下の2項が新規に実用化される。 5,耳形効果型立体再生対応イヤホン。 6,耳形効果型立体再生対応イヤホン類。
Based on the above confirmation of the ear effect, the following four items are newly put into practical use: 1. A method and apparatus for detecting an ear effect stereoscopic reproduction signal compatible with earphone listening. 2, Ear-shaped stereo microphone for listening to earphones. 3, Ear type effect stereoscopic record for earphone listening. 4. An ear-shaped stereophonic device compatible with earphones, which includes the above 1, 2, 3, and 3. The following two terms are newly put into practical use according to the principle of the ideal earphone. 5. Ear effect type earphones for stereoscopic playback. 6, Ear effect type earphones for stereoscopic playback.

【図面の簡単な説明】[Brief description of drawings]

【第1図】(イ)単耳聴の 説明図 (ロ)耳形効果の説明図[Fig. 1] (a) Explanatory diagram of monophonic hearing (b) Explanatory diagram of ear shape effect

【第2図】(イ)単耳再生の説明図 (ロ)耳介伝導音説明図[Fig. 2] (a) Illustration of single ear reproduction (b) Illustration of auricular conduction sound

【第3図】(イ)伝導音作用説明図 (ロ)他方音作用説明図[FIG. 3] (a) Illustration of conduction sound effect (b) Illustration of other sound effect

【第4図】(イ)中域指向性説明図1 (ロ)中域指向性説明図2[FIG. 4] (a) Illustration of mid-range directivity 1 (b) Illustration of mid-range directivity 2

【第5図】(イ)高域指向性説明図1 (ロ)高域指向性説明図2[FIG. 5] (a) High-frequency directivity explanatory diagram 1 (b) High-frequency directivity explanatory diagram 2

【第6図】(イ)右耳介模型断面図 (ロ)左耳介模型断面図[Fig. 6] (a) Cross section of right auricle model (b) Cross section of left auricle model

【第7図】(イ)信号検出法説明図1 (ロ)検出マイク外観図[Fig. 7] (a) Illustration of signal detection method 1 (b) External view of detection microphone

【第8図】(イ)信号検出法説明図2 (ロ)信号検出法説明図3[FIG. 8] (a) Signal detection method explanatory diagram 2 (b) Signal detection method explanatory diagram 3

【第9図】 検出装置の構成図[Fig. 9] Configuration diagram of a detection device

【第10図】(イ)中空管側面上面図 (ロ)マイク装填透視図 (ハ)マイク機構透視図[Fig. 10] (a) Side view of hollow tube (b) Perspective view of microphone loading (c) Perspective view of microphone mechanism

【第11図】(イ)集音板 正面図 (ロ)側面の一部断面図 (ハ)組付の一部断面図[Fig. 11] (a) Sound collecting plate Front view (b) Partial sectional view of side surface (c) Partial sectional view of assembly

【第12図】 組合せ一部断面図[Fig. 12] Partial sectional view of combination

【第13図】(イ)耳介模型 断面図 (ロ)新イヤホン外観図 (ハ)装着位置の説明図[Fig. 13] (A) Cross section of auricle model (B) External view of new earphone (C) Explanatory diagram of mounting position

【第14図】 新立体再生原理図[Fig.14] New stereoscopic reproduction principle diagram

【第15図】 新立体再生構成図[Fig. 15] New stereoscopic playback configuration diagram

【第16図】 旧立体再生構成図1[Fig. 16] Old stereoscopic reproduction configuration diagram 1

【第17図】 旧立体再生構成図2[FIG. 17] Old stereoscopic playback configuration diagram 2

【符号の説明】[Explanation of symbols]

1 中 空 管 d 下 方
P0 両端開放中空管 2 中空管の窓 D1 頭部ダミー
PX 一端密封中空管 3 マイクロホン D2 耳介ダミー
μS 微小スピーカー 4 吸 音 材 EQ イコライザー
Q0 人 体 5 出 力 線 E1 左外耳道入口
Q1 仮の聴取者 6 集 音 板 E2 右外耳道入口
Q2 聴 取 者 7 貫通口背部 f 前 方
Ro 右信号出力 8 準密閉箱 G1 特定信号1
R1 右立体信号 9 固定ネジ G2 特定信号2
Ri 右信号入力 10 スタンド上部 Gn 特定信号n
R 右 信 号 11 取付け板 H1 ヘッドホン左
r 右 12 貫 通 口 H2 ヘッドホン右
RECレコード類 A1 左信号増幅器 Hf 高域指向性
SP 音 源 A2 右信号増幅器 IN 入力端子
S1 左耳介集音々声 A1左信号加算器 J1 耳 介 左
S2 右耳介集音々声 A2右信号加算器 J2 耳 介 右
S3 左耳介伝導音 β 特性制御回路 K1 左音声伝達特性
S4 右耳介伝導音 B1 左信号伝達特性1 K1右音声伝達特性
T1 左 鼓 膜 B1右信号伝達特性1 L 左 信 号
T2 右 鼓 膜 B2 左信号伝達特性2 L1 左立体信号
u 上 方 B2右信号伝達特性2 Li 左信号入力
W ワイヤーフレーム Bn 左信号伝達特性n Lo 左信号出力
Y1 左イヤホン Bn右信号伝達特性n LFPローパスフィルタ
Y2 右イヤホン b 後 方 l 左 方
Zi 左内部音響負荷 C1 鼓 室 左 M1 左マイクロホン
Zo 左外部音響負荷 C2 鼓 室 右 M2 右マイクロホン
Zi右内部音響負荷 C0M接地端子 Mf 中域指向性
Zo右外部音響負荷
1 Mid-air tube d Lower
P0 Both ends open hollow tube 2 Hollow tube window D1 Head dummy
PX One end sealed hollow tube 3 Microphone D2 Auricle dummy
μS Micro speaker 4 Sound absorbing material EQ equalizer
Q0 Human body 5 Output line E1 Left ear canal entrance
Q1 Temporary listener 6th sound board E2 Right ear canal entrance
Q2 listener 7 through mouth back f front
Ro Right signal output 8 Semi-closed box G1 Specific signal 1
R1 Right stereo signal 9 Fixing screw G2 Specific signal 2
Ri Right signal input 10 Stand upper part Gn Specific signal n
R right signal 11 mounting plate H1 headphone left
r right 12 through hole H2 headphone right
REC records A1 Left signal amplifier Hf High frequency directivity
SP sound source A2 right signal amplifier IN input terminal
S1 Left auricular voice collection A1 1 Left signal adder J1 Auricle left
S2 right auricle pick-up voice A2 1 right signal adder J2 auricle right
S3 Left ear conduction sound β characteristic control circuit K1 Left voice transfer characteristic
S4 Right ear conduction sound B1 Left signal transfer characteristic 1 K1 1 Right voice transfer characteristic
T1 Left eardrum B1 1 Right signal transfer characteristic 1 L Left signal
T2 Right eardrum B2 Left signal transfer characteristic 2 L1 Left stereo signal
u Upper B2 1 Right signal transfer characteristic 2 Li Left signal input
W Wireframe Bn Left signal transfer characteristic n Lo Left signal output
Y1 Left earphone Bn 1 Right signal transfer characteristic n LFP Low pass filter
Y2 right earphone b rear l left
Zi Left internal acoustic load C1 Drum chamber Left M1 Left microphone
Zo Left external acoustic load C2 Drum chamber right M2 right microphone
Zi 1 Right internal acoustic load C0M Ground terminal Mf Mid-range directivity
Zo 1 right external acoustic load

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 左右一対の立体音声信号中少なくとも上
下方向に関する再生音定位方向変化の情報を各再生音の
音色特性の変化として検出する事を主な特徴とする「イ
ヤホン受聴対応耳形効果型立体再生信号の検出方法およ
び装置」。
1. An earphone effect-compatible earphone effect type, which is characterized mainly in that information about a change in a localization direction of a reproduced sound at least in a vertical direction is detected as a change in a tone color characteristic of each reproduced sound in a pair of left and right stereoscopic audio signals. Method and apparatus for detecting stereoscopic reproduction signal ".
【請求項2】 通常使用の状態において左右一対の立体
音声信号中少なくとも上下方向に関する再生音定位方向
変化の情報を各再生音の音色特性の変化として検出する
事を主な徴とする「イヤホン受聴対応耳形効果型立体マ
イクロホン」。
2. In a normal use state, "earphone listening" is a main characteristic of detecting information of a reproduced sound localization direction change in at least a vertical direction in a pair of left and right stereophonic signals as a change of a tone color characteristic of each reproduced sound. Corresponding ear shape stereo microphone.
【請求項3】 左右一対の立体音声信号中少なくとも上
下方向に関する再生音定位方向変化の情報を各再生音の
音色特性の変化として記録する事を主な特徴とする「イ
ヤホン受聴対応耳形効果型立体再生用レコード類」。
3. The earphone effect type compatible with earphone listening, which is characterized mainly in that information about a change in a localization direction of a reproduced sound in at least a vertical direction is recorded as a change of a tone color characteristic of each reproduced sound in a pair of left and right stereoscopic audio signals. Records for stereoscopic playback. "
【請求項4】 通常の使用状態において一部に特許請求
の範囲第1項記載「イヤホン受聴対応耳形効果型立体再
生信号の検出装置」を構成し、または内臓する事を主な
特徴とする「イヤホン受聴対応耳形効果型立体音響機
器」。
4. The main feature of the present invention is that it constitutes or has a built-in "ear effect stereoscopic reproduction signal detection device for earphone listening" which is partially described in claim 1 in a normal use state. "Ear effect stereoscopic audio equipment compatible with earphone listening".
【請求項5】 通常の使用状態において一部に特許請求
の範囲第2項記載「イヤホン受聴対応耳形効果型立体マ
イクロホン」を構成し、または内臓する事を主な特徴と
する「イヤホン受聴対応耳形効果型立体音響機器」。
5. The earphone listening-compatible, which is mainly characterized in that it constitutes or has a built-in “ear-ear effect type three-dimensional microphone compatible with earphone listening” partially in a normal use state. Ear-shaped three-dimensional sound equipment ".
【請求項6】 通常の使用状態において一部に特許請求
の範囲第3項記載「イヤホン受聴対応耳形効果型立体再
生用レコード類」を構成し、または内臓する事を主な特
徴とする「イヤホン受聴対応耳形効果型立体音響機
器」。
6. The main feature of the present invention is that, in a normal state of use, it partially constitutes or has a built-in "ear-effect stereoscopic playback record compatible with earphone listening" according to claim 3. Ear-shaped effect type stereophonic equipment compatible with earphone listening. "
【請求項7】 振動板の正面を外耳道内に音響結合し背
面を耳甲介腔内に音響結合する事を主な特徴とする「耳
形効果型立体再生対応イヤホン」
7. An ear-effect stereoscopic playback-compatible earphone whose main feature is to acoustically couple the front side of the diaphragm into the external auditory meatus and the rear side into the concha of the ear.
【請求項8】 使用状態において耳甲介腔下部の外側に
再生音の開口部が位置する構成である事を主な特徴とす
る「耳形効果型立体再生対応イヤホン類」。
8. "Ear effect stereoscopic playback compatible earphones", which is characterized mainly in that the opening of the reproduced sound is located outside the lower concha of the ear in use.
JP6211658A 1994-08-03 1994-08-03 Sound hologram and related equipment Pending JPH0851687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6211658A JPH0851687A (en) 1994-08-03 1994-08-03 Sound hologram and related equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6211658A JPH0851687A (en) 1994-08-03 1994-08-03 Sound hologram and related equipment

Publications (1)

Publication Number Publication Date
JPH0851687A true JPH0851687A (en) 1996-02-20

Family

ID=16609451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6211658A Pending JPH0851687A (en) 1994-08-03 1994-08-03 Sound hologram and related equipment

Country Status (1)

Country Link
JP (1) JPH0851687A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034574A1 (en) * 2003-10-02 2005-04-14 Isamu Koizumi Device for 3-dimensional acoustic reproduction using headphones
CN109756876A (en) * 2017-11-01 2019-05-14 宏达国际电子股份有限公司 Multi-connection device and multi-connection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129123A (en) * 1974-09-04 1976-03-12 Kyoei Steel Ltd JIKAIMAIKUROPPONSHISUTEMU
JPS5311001A (en) * 1976-07-19 1978-02-01 Hitachi Ltd Headphone stereo reproducting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129123A (en) * 1974-09-04 1976-03-12 Kyoei Steel Ltd JIKAIMAIKUROPPONSHISUTEMU
JPS5311001A (en) * 1976-07-19 1978-02-01 Hitachi Ltd Headphone stereo reproducting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034574A1 (en) * 2003-10-02 2005-04-14 Isamu Koizumi Device for 3-dimensional acoustic reproduction using headphones
CN109756876A (en) * 2017-11-01 2019-05-14 宏达国际电子股份有限公司 Multi-connection device and multi-connection method

Similar Documents

Publication Publication Date Title
US3985960A (en) Stereophonic sound reproduction with acoustically matched receiver units effecting flat frequency response at a listener's eardrums
JP3435141B2 (en) SOUND IMAGE LOCALIZATION DEVICE, CONFERENCE DEVICE USING SOUND IMAGE LOCALIZATION DEVICE, MOBILE PHONE, AUDIO REPRODUCTION DEVICE, AUDIO RECORDING DEVICE, INFORMATION TERMINAL DEVICE, GAME MACHINE, COMMUNICATION AND BROADCASTING SYSTEM
US20120057734A1 (en) Hearing Device System and Method
JP2017528972A (en) System and apparatus for generating head audio transfer function
US8442244B1 (en) Surround sound system
KR20110069112A (en) Method of rendering binaural stereo in a hearing aid system and a hearing aid system
TW200908670A (en) Earphone microphone
JP2000509226A (en) Sound reproduction device worn on the user's body
US11405723B2 (en) Method and apparatus for processing an audio signal based on equalization filter
Tikander et al. An augmented reality audio headset
Toole The acoustics and psychoacoustics of headphones
US20240107232A1 (en) Directional sound recording and playback
KR20030003744A (en) Method of deriving a head-related transfer function
US3790711A (en) Sterophony - simulating earphone
JPH0851687A (en) Sound hologram and related equipment
JP3027822U (en) Sound program and related equipment
Tikander et al. Sound quality of an augmented reality audio headset
US4010335A (en) Microphone apparatus
Sigismondi Personal monitor systems
JPH0851686A (en) Closed type stereophonic headphone device
US11240620B2 (en) Methods for making spatial microphone subassemblies, recording system and method for recording left and right ear sounds for use in virtual reality playback
Griesinger Accurate reproduction of binaural recordings through individual headphone equalization and time domain crosstalk cancellation
Kinnunen Headphone development research
Griesinger Frequency response adaptation in binaural hearing
JPH05130696A (en) Binaural type cordless hearing aid device