JP3027822U - Sound program and related equipment - Google Patents

Sound program and related equipment

Info

Publication number
JP3027822U
JP3027822U JP1994011022U JP1102294U JP3027822U JP 3027822 U JP3027822 U JP 3027822U JP 1994011022 U JP1994011022 U JP 1994011022U JP 1102294 U JP1102294 U JP 1102294U JP 3027822 U JP3027822 U JP 3027822U
Authority
JP
Japan
Prior art keywords
sound
ear
earphone
effect
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1994011022U
Other languages
Japanese (ja)
Inventor
清明 掛川
Original Assignee
清明 掛川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清明 掛川 filed Critical 清明 掛川
Priority to JP1994011022U priority Critical patent/JP3027822U/en
Application granted granted Critical
Publication of JP3027822U publication Critical patent/JP3027822U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Stereophonic Arrangements (AREA)

Abstract

(57)【要約】 【目的】 両耳効果として説明される「左右の鼓膜に到
達する音声の音圧レベル差dVと位相差df到着時間差
dt」を左右方向を判別するための情報とし、この情報
が何れも「0」となる前後方向ないし上下方向を判別す
る為の情報を「到来音声に対し左右の耳介形状が与えた
音色特性の変化」として伝送する形の「イヤホン受聴用
三次元立体再生の方法」およびこれを実施するための、
三次元立体再生信号検出装置、マイクロホン、レコード
類、イヤホン類、ならびに是等を包含してなる補聴器な
どの関連音響機器を提供する。 【構成】 原音場における仮の聴取者Q1の、左右の外
耳道入口E1E2に集音される音声S1S2を、この位
置に装着されたマイクロホンM1M2で検出する形の信
号検出部と、この信号を収録して伝送する形のレコード
類REC,及びこの信号を聴取者Q2の左右の外耳道入
口E1E2にイヤホンY1Y2で再生する形の再生部か
らなり、耳形の効果を利用した三次元立体再生装置を構
成する。
(57) [Abstract] [Purpose] "The sound pressure level difference dV and the phase difference df arrival time difference dt of the voice reaching the left and right eardrums" described as the binaural effect are used as the information for discriminating the left and right directions. "Earphone listening three-dimensional" in the form of transmitting information for discriminating the front-back direction or the up-down direction in which all information is "0" as "change in timbre characteristics given by left and right auricle shape to incoming voice" Method of stereoscopic reproduction "and for implementing this,
Provided is a three-dimensional stereoscopic reproduction signal detection device, a microphone, records, earphones, and related audio equipment such as a hearing aid including the above. [Structure] A signal detector configured to detect a sound S1S2 collected at the left and right ear canal entrances E1E2 of a temporary listener Q1 in an original sound field by a microphone M1M2 attached at this position, and the signal detector. And a reproducing unit configured to reproduce the signal with the earphones Y1Y2 at the left and right ear canal entrances E1E2 of the listener Q2, thus forming a three-dimensional stereoscopic reproducing apparatus using the effect of the ear shape. .

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案はイヤホン受聴による三次元立体再生方式サウンドフォログラムおよび その関連機器に関するものである。 (なお立体は三次元を意味するから以下三次元を省略して単に立体再生と記す) 。 TECHNICAL FIELD The present invention relates to a three-dimensional stereophonic reproduction type sound foggram and its related equipment. (Note that 3D means 3D, so 3D is omitted and is simply described as 3D reproduction).

【0002】[0002]

【従来の技術】[Prior art]

近年住宅事情等により特に多く用いられる様になったイヤホン/ヘッドホンに 関しては、これに適するレコード類の開発がおくれ、スピーカー用として制作さ れた通常のレコード類を以て是に当てているのが一般的な現状である。 しかしスピーカー用をイヤホン/ヘッドホン用として流用した場合、この再生 音は左右の分離度が高ければ高いほど左右両耳と頭部付近に定位して極めて狭い 範囲から聞こえ、原音場の壮大なスケール感、臨場感、音源の位置に関する忠実 度、パーティー効果などが著しく損なわれるという問題があり、 加えてこの再生音が定位する左右の耳元付近は、遠方の音声にたいしては高く 、近ずけば近ずくほど低下する耳の感度の最低点にあたるため其の音量感に乏し く、この補正による過大音圧によって聴覚上に著しい疲労感をあたえ更には聴覚 障害をもたらすなどの報告もあって、これ等が現在のイヤホン/ヘッドホン受聴 に関して多くの問題をなげかけているのである。 本考案は、原音場における人体の左右の鼓膜振動がイヤホン等により聴取者の 左右の鼓膜に正確に再現された場合、聴覚系にはこの鼓膜振動が原音場によるも のか再生音によるものかを全く判別出来ない、つまり同じ方向にしか知覚出来な いという其の構造に着目し、実際の鼓膜振動がどの様なものでありどの様にはた らくかを探る事によって、イヤホン受聴による立体再生の実現と併せてこの問題 を解決しようとする。 With regard to earphones / headphones, which have become widely used in recent years due to housing conditions, etc., the development of records suitable for this has been delayed, and the usual records produced for speakers are used for this purpose. This is the general situation. However, when the speakers are used as earphones / headphones, the reproduced sound is localized near the left and right ears and the head as the degree of separation between the left and right becomes higher, and it can be heard from an extremely narrow range, creating a magnificent sense of the original sound field. , The sense of presence, the fidelity of the sound source position, and the party effect are significantly impaired. In addition, near the left and right ears where the reproduced sound is localized, it is high for distant sounds, and the closer it gets closer. There is also a report that the volume sensitivity is low because it falls to the lowest point of the ear sensitivity, and the oversound pressure caused by this correction gives a marked fatigue to the hearing and causes hearing impairment. It presents many problems regarding the current listening of earphones / headphones. In the present invention, when the left and right eardrum vibrations of the human body in the original sound field are accurately reproduced on the left and right eardrums of the listener by earphones, etc., the auditory system determines whether the eardrum vibrations are due to the original sound field or the reproduced sound. Focusing on the structure that cannot be distinguished at all, that is, that it can be perceived only in the same direction, and by exploring what the actual eardrum vibration is and how it is useful, stereoscopic playback by listening to earphones We will try to solve this problem together with the realization of.

【0003】 われわれは目を閉じていても音がどの方向から聞こえて来るのか容易にわかる 、特に反射音が多いとか音源が隠れている場合等の特殊な場合を除けば、日常生 活で是等の音源方向を間違える事はほとんど無いといえる。 このように「左右2つの鼓膜振動から三次元に渡る音源方向および距離を判別 し自らに知覚させる」という人体聴覚系の驚くべき能力に、俄かに注目がそそが れ始めたのは1900年パリ博覧会において、ステージ上に配置した左右一対の マイクロホン出力を左右のヘッドホンによりそれぞれ聴取した所、その再生音の リアルさに参加者全員が驚いたという一名パリ博のハプニングからである。 以来、両耳で音を聴くことの重要さが認識され数多くの学者が両耳聴の研究に 取り組む中で、1933年米国のベル研究所は、人体と音響的に等質なシリコン ゴム系の材料を用いて、形状寸法が人体の平均値で左右の外耳道位置にそれぞれ 小型マイクロホンを設定し、其の検出信号を外部のヘッドホンで聴取できる様に した「人体ダミー・オスカー氏」をつくり両耳聴の研究にあてた。 これらの研究成果は、人体聴覚系がどのようにして音源方向を聞き分けるかに ついて「左右の鼓膜に到達する音声の音圧レベル差dVと移相差dfおよび到着 時間差dtをもとに聴覚系がこれを判断する結果知覚される」として結実し、両 耳効果として広く一般に知られる大きな成果を一方でおさめたのではあるが、 このとき「原音場において左右の耳介前面に到達する音声をヘッドホン受聴者 の左右の耳介前面に正確に再現すれば此の受聴者には原音場と同じ方向から其の 再生音が聞こえる筈」として当初オスカー氏に期待された前後左右を含む水平面 内方向の全方向再生は、前方に定位すべき音声が上方に定位したり頭内定位した りする問題が最後まで解決されず遂にその目的を達し得なかった。 このオスカー氏または其の頭部を模した人工頭ダミーヘッドのように、左右の 外耳道に夫々装填されたマイクロホンM1M2によるか、または両耳の実質間隔 と角度とをあけて左右に配置した単一指向性マイクロホンM5M6を用いて原音 場を収音しヘッドホンにより聴取する形の収音再生方法は、以来バイノーラル方 式と呼ばれて其の後も研究が続けられたが、前方に定位すべき再生音像が上方定 位ないし頭内定位して知覚されやすいという問題はなお解決に至らず、立体再生 という大いなる期待が残されたたまま研究段階の中で衰退した。We can easily know from which direction the sound comes from even if we close our eyes. Especially in special cases such as when there are a lot of reflected sounds or when the sound source is hidden, we can use it in daily life. It can be said that there is almost no mistake in the sound source direction such as. In this way, the surprising ability of the human auditory system to "discriminate the direction and distance of three-dimensional sound source from the two left and right eardrum vibrations and make it perceived by itself" suddenly began to attract attention in 1900 in Paris. At the Expo, when a pair of left and right microphone outputs placed on the stage were heard through the left and right headphones respectively, the participants were surprised at the realism of the reproduced sound. Since then, as many scholars have been working on binaural research, recognizing the importance of hearing with both ears, Bell Laboratories in the United States in 1933 established a silicone rubber system that is acoustically equivalent to the human body. Using a material, small microphones were set at the left and right ear canal positions with the average size of the human body, and the detection signals of the small microphones could be heard with external headphones. Dedicated to hearing research. The results of these researches are about how the human auditory system recognizes the direction of a sound source, based on the sound pressure level difference dV, the phase shift difference df, and the arrival time difference dt of the sound reaching the left and right eardrums. As a result, it was perceived as a result of judging this, and it achieved one of the major results widely known as the binaural effect, but at this time, the sound reaching the front of the left and right auricles in the original sound field was heard. It should be possible for this listener to hear the reproduced sound from the same direction as the original sound field if reproduced accurately on the front of the left and right ear of the listener. The omnidirectional reproduction was not able to finally achieve its purpose because the problem that the sound that should be localized in the front was localized upward or localized in the head was not solved until the end. Like Mr. Oscar or an artificial head dummy head that imitates his head, either by the microphones M1M2 loaded in the left and right ear canals respectively, or by the left and right separated by a substantial distance and angle between both ears. The sound collecting and reproducing method of collecting the original sound field using the directional microphones M5 and M6 and listening through the headphones has been called the binaural method since then, and research was continued after that. The problem that the sound image is easily localized due to upward localization or intracerebral localization has not been solved yet, and it declined during the research stage with great expectations for stereoscopic reproduction.

【0004】 以上のバイノーラル方式は、原音場において左右の耳介前面に到来する音声を ヘッドホン受聴者の左右の耳介前面に正確に再現することにより、聴覚系の方向 感覚を借りて音源方向の判別が行われる筈と期待されたヘッドホンによる全方向 再生の方法ではあるが、これについて当時どの程度の音源方向再現を論理的に期 待し得たか、また前方定位に関する問題の原因が何処にあり其の解決の手段を現 実に導き得る状況にあったかについての従来技術の範囲は、その再生原理となる 両耳効果の説明によって理解される。 即ち両耳効果の説明では、人体聴覚系がどのようにして音源方向を聞き分ける かについて「左右の鼓膜に到達する音声の音圧レベル差dVと移相差dfおよび 到着時間差dtを基に聴覚系がこの方向を判別する結果知覚される」として周知 されるが、この音圧レベル差dVと移相差dfおよび到着時間差dtは共に音源 が左右間の中央にあたる「前方→上方→後方→下方→前方」にある場合、何れの 方向も「O」となって左右の鼓膜に到達する音声が同じになる。 これは丁度モノーラル信号を左右のヘッドホンで聴取した場合に一致し、この 場合の再生音像が必ず頭の中心部に定位して聞こえるように、これら問題となる 前後方向ないし上下方向からの到来音声もまた頭内定位して知覚される以外を両 耳効果では説明できないのであって、従来技術の範囲を示す問題の原因も今なお 此処に見出だされるのである。 このような関係から、バイノーラル方式における前方定位の問題は聴覚系の能 力の限界によるもので、人間が現れてから永い間、見えない範囲の音声について はこれを聴覚のみで聴取してきたが、前方からの音声については常に聴覚と視覚 との相方によってこれを聴取知覚してきた関係上、特に前方に対する音の方向感 覚がしだいに低下して来た結果であろうとし、ヘッドホン受聴による前方からの 音声の適正な再生音像の定位は、左右二つの耳から成る聴覚系のこの構造からで はのぞみ得ないとする見解が現在では一般的となった。The above binaural system accurately reproduces the sound arriving at the front surface of the left and right auricles in the original sound field on the front surface of the left and right auricles of the headphone listener, thereby borrowing the sense of direction of the auditory system to detect the direction of the sound source. Although it is a method of omnidirectional reproduction with headphones, which is expected to be discriminated, how much sound source direction reproduction could be logically expected at that time, and where is the cause of the problem of forward localization. The range of the prior art as to whether or not the means for solving the problem could be actually introduced can be understood by the explanation of the binaural effect which is the reproduction principle. That is, in the explanation of the binaural effect, regarding how the human auditory system recognizes the direction of the sound source, "the auditory system is based on the sound pressure level difference dV, the phase shift difference df, and the arrival time difference dt of the voices reaching the left and right eardrums. It is well known that it is perceived as a result of discriminating this direction. ”The sound pressure level difference dV, the phase shift difference df, and the arrival time difference dt are all“ front → upward → rearward → downward → forward ”where the sound source is in the center between the left and right. In the case of, the voices reaching the left and right eardrums are the same because both directions are “O”. This is exactly the case when the monaural signal is heard with the left and right headphones, and in this case, the reproduced sound image is always localized at the center of the head, so that the incoming sound from the front-back direction or the up-down direction, which causes these problems, is also heard. In addition, the binaural effect cannot explain anything other than perceptual localization, and the cause of the problem that indicates the scope of the prior art is still found here. From such a relationship, the problem of forward localization in the binaural method is due to the limit of the ability of the auditory system, and for a long time after the appearance of humans, we have only heard this in the invisible range. Regarding the sound from the front, it is said that it is a result that the sense of direction of the sound toward the front gradually declines because it has always been heard and perceived by the direction of the hearing and the sight. It is now generally accepted that the proper localization of the reproduced sound image of the voice is impossible from this structure of the auditory system consisting of two ears.

【0005】[0005]

【この考案が解決すべき課題】[Problems to be solved by this device]

しかし現状いずれであろうとも、われわれは目を閉じた状態で実際に垂直方向 を含むさまざまな音源方向をいとも簡単に知る事ができるのであって、これと同 じ左右の鼓膜振動が再現された場合の聴取者にもまた、同じ鼓膜振勤から同じ音 源方向が同様に知覚される事は、鼓膜振動のみから情報を得て音源方向の判別を 行なう人体聴覚系の構造によって保証されているのである。 これは、原音場における鼓膜振動の正確な再現を条件として立体再生が可能で ある事を意味するが、此処にいう「正確に再現された鼓膜振動」とは実際の鼓膜 振動と同じく「原音場における三次元の音源方向を正確に知覚させ得るもの」と 定義されるものでなければならない即ち、 オスカー氏に代表される従来のバイノーラル方式が「原音場で耳介前面に到達 する音声をヘッドホン受聴者の耳介前面に正確に再現する方法」によって全方向 再生を試みた経緯から、これが理想的に行われた場合あたかも原音場と同じ鼓膜 振動を再現出来るかの様な錯覚におちいりやすいが、「耳介前面に到達する音声 をヘッドホンで耳介前面に正確に再現しても正確な鼓膜振動は再現できない」と 示したのが前記バイノーラル方式の限界であり結論でもあったのである。 事実、われわれは片方の耳できく単耳聴の場合であっても、聞こえる側の頭部 半球方向については前後方向ないし上下方向を含むほとんどの音源方向をかなり 正確に聞き分けることができるのであって、いずれか一方の鼓膜に到達する音声 の中に、すでに単耳聴の段階から前後方向ないし上下方向の方向判別にはたらく 手がかり即ち方向情報の存在が明らかに予測されるのである。 本考案が解決すべき主な課題は以上のように、われわれには何故、前後方向な いし上下方向の音源方向が分かるのかという問題であり、人体聴覚系が、左右の 鼓膜に到達する音声中のどの様なかたちの情報を見出だして是を判別するかを明 らかにし、これを利用して「イヤホン受聴による立体再生」サウンドフォログラ ムの方式を確立するとともに、その主要部分を構成する立体再生信号の検出装置 、同マイクロホン、イヤホン、レコード類、および、その主要部分を包含してな る立体補聴器、遠隔観察用の立体インターホン、ならびに聴覚が心理上生理上に およぼす影響効果を調べる為の装置など、立体再生における高いパーティー効果 と高臨場度の特性を生かした関連音響機器の開発を目的としている。 However, no matter what the current situation is, we can easily know various sound source directions including the vertical direction with the eyes closed, and the left and right eardrum vibrations were reproduced in the same way. In this case, the listener also perceives the same sound source direction from the same eardrum tremor, which is guaranteed by the structure of the human auditory system, which obtains information only from the eardrum vibration to determine the sound source direction. Of. This means that stereoscopic reproduction is possible on condition that the eardrum vibration in the original sound field is accurately reproduced. However, "accurately reproduced eardrum vibration" here means the same as the actual eardrum vibration. That is, the conventional binaural method represented by Mr. Oscar "reproduces the sound that reaches the front of the auricle in the original sound field through the headphones. From the background of attempting omnidirectional reproduction by `` a method of accurately reproducing on the front surface of the listener's auricle, '' it is easy to fall into the illusion that it can reproduce the same eardrum vibration as the original sound field if this is ideally performed. It is the limit of the binaural method and it is concluded that it is not possible to accurately reproduce the eardrum vibration even if the sound that reaches the front surface of the auricle is accurately reproduced on the front surface of the auricle with headphones. Than it was Tsu. In fact, even in the case of monophonic hearing with one ear, most of the sound source directions including the front-back direction and the up-down direction can be recognized fairly accurately in the direction of the head hemisphere on the listening side. However, it is clearly predicted that the cues that reach the eardrum of either one of the cues, that is, the directional information, which can be used to discriminate the direction in the anteroposterior direction or the up-down direction from the stage of monophonic hearing. As described above, the main problem to be solved by the present invention is the question of why we know the direction of the sound source in the front-back direction or in the up-down direction. Clarify what kind of information is detected and determine whether it is correct, and use this to establish the method of "stereoscopic playback by listening to earphones" sound program, and configure the main part of it. 3D reproduction signal detection device, same microphone, earphones, records, and 3D hearing aid including main parts, 3D intercom for remote observation, and psychological and physiological effects of hearing The purpose is to develop related audio equipment that utilizes the characteristics of a high party effect and a high degree of presence in stereoscopic reproduction, such as equipment for sound reproduction.

【0006】[0006]

【解決の手段】 われわれには、一方の耳をぴったりと塞いだ単耳聴であっても、聞こえる耳が 属する左右何れかの方向と、其の上下方向ないし前後方向の音源方向については 開眼の場合ほとんどそのまま、閉眼の場合約45度ほど聞こえる耳の方向に偏移 するが何れの場合もかなりはっきりと其の音源方向が知覚される。第1図(イ) 。 図中、閉管PXは内径8mm長さ150mmで一方の端を閉じた中空管、閉じ た一端を外側に向け、開放端を耳栓として外耳道と密着する事により鼓膜振動の 自由度を確保したまま到来音声の外耳道侵入を遮断している。SPはホワイトノ イズを発する音源。 しかし此の時、第1図(ロ)のように、聞こえる耳の外耳道を内径約8mm長 さ約150mmの中空パイプ開管POで耳介の外部に延長し到来音声に対する耳 介形状の影響を避けると、この先端に対し前後方向ないし上下方向から到来する 音源SPからの音声は総てこの開管POの開口方向のみから聞こえて前後方向な いし上下方向に関する音の方向感覚が失われる。 この現象は単耳聴段階から発揮される音の方向感覚の内、前後方向ないし上下 方向に関する音の方向感覚が、到来音声に対する耳介形状(頭部の一部を含む) のはたらきによって発揮される事を示している。このように「到来音声に対する 耳介形状のはたらきによって音の方向感覚が生ずる事」を以下耳形効果という。 これは、到来音声が耳介により外耳道に集音される際、前後方向ないし上下方 向に対する形状が何れも異なる耳介の集音特性を反映し、各到来方向ごとに夫々 異なる音色特性が与えられ、是を到来方向の経歴として持つ音声が外耳道に集音 され鼓膜に到達する結果、聴覚系が、この鼓膜に到達する音声の音色特性ないし その変化から夫々の経歴を読んで個々の音声の到来方向を判別し、われわれに前 後方向ないし上下方向にわたる各音源方向が知覚されるものと考えられる。 ここにいう音色特性ないし其の変化とは、主に耳介形状によって到来音声に与 えられた周波数特性の変化を指していうのではあるが、実際問題として音響的に みた耳介形状は大変複雑で、外耳道、耳甲介腔、耳輪等にそれぞれ共鳴性と残響 性があり変形ホーンを構成している関係上、測定し様とすると其の共鳴音残響音 等が試験信号と干渉しあってサイクル単位の山谷を多く生じ、単なる周波数特性 としては極めて測定しにくくまた其の表現も適切を欠く。そこで此処ではホワイ トノイズを音源とした場合の「周波数スペクトラムの特性ないし其の変化として 観測され聞こえる音声の音色特性ないし其の変化として知覚される音響特性」を 指して「音色特性ないし其の変化」と定義する。 音声の到来方向によって鼓膜に到達する音声の音色特性が変わるとする現象に ついては、事実、片方の耳の側方で、ホワイトノイズを発する音源を前後方向な いし上下方向に移動させ、聞こえる音声の特に音色特性に注意しながら耳元に意 識を集中すると、音源が上方にある場合、シー・・・・ 側方にある場合、サー ・・・・下方にある場合、ゴー・・・と例えられる様に、この音声の音色が音源 の方向と関係して変化する様子が分かる。前後方向についても明瞭度および音量 の変化とともに聞こえる音声の音色の変化が知覚される これは、左右の耳の指向性が其の形状的な影響によって概略1Khz〜4Kh zの会話音声帯域で左前方45度と右前方45度の方向、6Khz〜16Khz の高域が左上方45度と右上方45度の方向に向かって主に発揮される結果、左 右の外耳道に集音されるそれぞれの音声S1,S2,にこの影響が現れ、到来方 向ごとに夫々異なる音色特性として知覚されるものと考えられる。 これが、到来音声に対して与える耳介形状のはたらきであり、其のはたらきに よって前後方向ないし上下方向に関する音の方向感覚が発揮される状況が、到来 音声に対し耳介形状がはたらく時に音源方向が知覚され、耳介形状がはたらかな い時には知覚されないという前記、第1図(イ)と第1図(ロ)との比較実験の 結果において明確に示されたのである。 以上は、人間の耳に何故この様に複雑な耳介形状が必要とされるかについての 現実の解答であり、単耳聴段階から発揮される音の方向感覚の内、特に前後上下 をむすぶ垂直面内方向に関する音の方向感覚が、以上のような耳介のはたらきに 拠って発揮され当該音源方向が知覚される事について述べたものである。 しかし以上は実際の音声に対する単耳聴の耳形効果であって、第2図(イ)の 様に、原音場における仮の聴取者Q1の片方の外耳道に集音される音声S2を其 の外耳道に装着されたマイクロホンM2によって検出し、これを増幅器A2で増 幅した後聴取者Q2に装着されたイヤホンY2で再生する「再生音による単耳聴 では」、この再生音はイヤホンY2の方向にだけ定位して聞こえ、前記耳形効果 による音の方向感覚は発揮されない。 これは、実際の音声に対しては音の方向感覚が発揮され再生音に対しては発揮 されないと言う事であるが、実際の音声に対する単耳聴と再生音に対する単耳聴 との条件的な相違は、この聴取者の周囲に「実際の音声が存在するか否か」とい う極めて単純な物理的環境の相違のみであって、この事は実際の音声に対する単 耳聴の場合、聴取者の周囲に到来する実際の音声から何等かの物理量が別の経路 で鼓膜に伝達され、これが通常の経路によって鼓膜に到達する音声の方向判別に はたらく結果を示していると見なければならない。SOLUTION: Even with mono-hearing in which one ear is tightly closed, we do not open the left or right direction to which the hearing ear belongs and the sound source direction in the up-down direction or front-back direction. In almost all cases, when the eyes are closed, there is a shift of about 45 degrees in the direction of the ears, but in each case the direction of the sound source is fairly clearly perceived. Figure 1 (a). In the figure, the closed tube PX has a hollow tube with an inner diameter of 8 mm and a length of 150 mm, and one end is closed. The closed end is directed outward and the open end is used as an earplug to closely contact the external auditory meatus to ensure the freedom of vibration of the eardrum. It blocks the incoming sound from entering the ear canal. SP is a sound source that emits white noise. However, at this time, as shown in Fig. 1 (b), the ear canal of the ears that can be heard is extended to the outside of the auricle by a hollow pipe open tube PO having an inner diameter of about 8 mm and a length of about 150 mm, and the influence of the auricle shape on the incoming sound is affected. If it is avoided, all the sound from the sound source SP arriving from this front end in the front-back direction or the up-down direction is heard only from the opening direction of the open tube PO, and the sense of direction of the sound in the front-back direction or the up-down direction is lost. This phenomenon is exhibited by the action of the auricle shape (including a part of the head) of incoming sound in the direction sense of sound in the anteroposterior direction or the up / down direction among the direction sense of sound exerted from the mono-ear listening stage. It shows that In this way, "the effect of the auricle shape on the incoming voice to give a sense of direction to the sound" is called the ear shape effect. This is because when the incoming sound is collected by the auricle to the external auditory meatus, it reflects the sound collection characteristics of the auricle that have different shapes in the front-back direction and in the up-down direction, and gives different tone color characteristics for each arrival direction. As a result, the voice having the history of the direction of arrival is collected in the ear canal and reaches the eardrum.As a result, the auditory system reads each history from the timbre characteristics of the voice reaching the eardrum or its changes, It is considered that the direction of arrival is discriminated and that the sound source directions in the front-rear direction and the up-down direction are perceived by us. The timbre characteristic or its change referred to here mainly refers to the change of the frequency characteristic given to the incoming voice by the shape of the auricle, but as a practical matter, the auricle shape seen acoustically is very complicated. Since the external auditory meatus, concha cavity, and ear ring have resonance and reverberation, which constitute a deformed horn, the resonance sound reverberation sound interferes with the test signal when measured. Many ridges and valleys occur in cycle units, which is extremely difficult to measure as a simple frequency characteristic, and its expression is also inappropriate. Therefore, here, when white noise is used as the sound source, we refer to the "characteristics of the frequency spectrum or the timbre characteristics of the sound that is observed and perceived as a change thereof, or the acoustic characteristics perceived as a change thereof". It is defined as Regarding the phenomenon that the timbre characteristics of the sound that reaches the eardrum changes depending on the direction of arrival of the sound, in fact, the sound source that emits white noise is moved to the side of one ear in the vertical or vertical direction, and If we concentrate our attention on the ears, paying particular attention to the timbre characteristics, it can be compared with the case where the sound source is at the top, the sea is at the side, the sir is at the bottom, and the go is at the bottom. Similarly, it can be seen that the timbre of this voice changes in relation to the direction of the sound source. In the front-back direction, a change in the timbre of the audible voice is perceived as well as a change in the clarity and volume. This is because the directivity of the left and right ears affects the left front in the conversation voice band of approximately 1 Khz to 4 Khz. 45 degrees and 45 degrees to the right front, and 6Khz to 16Khz high range is mainly exerted toward 45 degrees to the upper left and 45 degrees to the upper right, and as a result, each sound collected in the left and right ear canals It is considered that this effect appears in S1 and S2 and is perceived as different timbre characteristics for each arrival direction. This is the function of the auricle shape given to the incoming voice.The situation in which the direction sense of the sound in the front-back direction or the up / down direction is exerted by that action is the direction of the sound source when the auricle shape acts on the incoming voice. Was clearly perceived in the result of the comparative experiment of FIG. 1 (a) and FIG. 1 (b), in which the perceptual noise was perceived and the auricle shape was not perceived when it was not working. The above is a real answer as to why the human ear needs such a complicated auricle shape, and in particular the front, back, up, and down of the direction sense of the sound exerted from the monaural listening stage. This is a description of how the sense of direction of sound in the vertical in-plane direction is exerted by the action of the auricle as described above, and the sound source direction is perceived. However, the above is the ear-shaped effect of the monophonic hearing on the actual voice, and as shown in FIG. 2 (a), the voice S2 collected in one external ear canal of the temporary listener Q1 in the original sound field is used. Detected by the microphone M2 attached to the ear canal, amplified by the amplifier A2, and then reproduced by the earphone Y2 attached to the listener Q2 "In monophonic listening by reproduced sound", this reproduced sound is in the direction of the earphone Y2. Only the sound is localized and the directional sense of the sound due to the ear effect is not exerted. This means that the sense of direction of the sound is exerted on the actual voice, but not on the reproduced sound, but the condition of mono-aural hearing for the actual sound and mono-aural hearing for the reproduced sound is conditional. The only difference is the extremely simple physical environment difference "whether or not there is actual sound" around this listener. It must be seen that some physical quantity is transmitted from the actual voice arriving around the person to the tympanic membrane via another route, and this shows the result that helps determine the direction of the voice arriving at the tympanic membrane via the normal route.

【0007】 実際の音声から、別の経路を通じて鼓膜に伝達されると見られる前記物理量が 実際にどのようなものであるかを調べるため、第2図(ロ)のように、左右の外 耳道を前出の閉管PXで夫々密封し、鼓膜振動の自由度をこの管内の空間容積で 確保したまま外耳道内で実際に何が聞こえて来るのかを実験すると、問題の物理 量として、主に耳介および耳珠の付近から耳介軟骨部により外耳道壁および鼓膜 に伝導されたと見られる到来音声の低域成分(1Khz以下)S3S4が、聴感 上僅か数DB程度の減衰で、左右方向にのみ方向感が有り前後方向ないし上下方 向に方向感がない状態すなわち何処からとでも聞こえる状態で聞こえてくる事が 分かる。 ほかに鼻腔を通して比較的明瞭に聞こえる音声や体伝導骨伝導と呼ばれる音声 等も聞こえるが、聴感上の音量が前者と比較して格段に低い事から主に聞こえる 音声を以下「耳介伝導音」伝達様態を「耳介伝導」と記し其の中に含める。 以上は、実音源に対する単耳聴の場合、まず耳介伝導音が左右の鼓膜に到達し 、そこへ一方の耳介で集音された音声が到達して此の3種類の音声から夫々の到 来方向が判別される構図となり、他方、再生音に対する単耳聴では、単に一方の 耳介で集音された音声のみが当該鼓膜に到達して方向判別が行われる構図となっ て、「実音源にたいする単耳聴では前後方向ないし上下方向の音源方向が知覚さ れ再生音に対する単耳聴ではこれが知覚されない」という結果が生じたという説 明を可能にするのである。 事実、さきの第2図(イ)の再生音に対する単耳聴であっても、第3図(イ) のように、他方の耳に其のとき生じた耳介伝導音S3を再生すると、その瞬間か ら実音源に対する単耳聴の場合と同様な前後方向ないし上下方向に関する音の方 向感覚が戻ってくるのである。このとき他方の耳に再生されるのは先の耳介伝導 音に限らず、第3図(ロ)ように、両耳聴の場合他方の耳に再生される再生音の 低域成分であってもほぼ同様の結果が得られる。図中LFPはローパスフィルタ ー。 これは、実際の音声に対する単耳聴では音源方向が聞き分けられ、再生音によ る単耳聴ではこれが聞き分けられない、という事に対する現実の解答ではあるが 、聴覚系が前後方向ないし上下方向に関しての音源方向を判別する際、雷の音は 上、水の流れの音は下と言うような、過去の経験や学習によって得た「記憶」に 基いてその方向判別等が行われるのではないかとする考え方を、この結果は明ら かに否定しているのであって、 単耳聴による音の方向感覚の内、主に前後方向ないし上下方向についての方向 感覚が、過去の記憶によるのではなく到来音声に対し耳介形状が与えた影響と耳 介伝導音等のかかわりによって行われる事を示し、両耳聴の場合、これに他方の 外耳道に集音される音声の低域成分が加わり其の相方によって前後方向ないし上 下方向についての方向判別が行われる事を示しているのであって、この複雑な耳 介形状と以上の現象はともに人間には誕生の瞬間から音の来る方向がわかる事を 示しているのである。 以上は、単耳聴の段階から発揮される音の方向感覚の内、主に前後方向ないし 上下方向に関する音の方向感覚について新たな見解を述べたものであるが、実際 には、この単耳聴が左右一対となって頭部の左半球方向と右半球方向とに相乗的 に働き、より明確で立体的な音の方向感覚が発揮されるものと考えられる。In order to investigate what the physical quantity actually transmitted from the actual voice to the eardrum through another route is like, as shown in FIG. 2B, the left and right outer ears are examined. The passages were sealed with the closed tubes PX described above, and experiments were conducted to find out what was actually heard in the ear canal with the freedom of vibration of the eardrum being ensured by the spatial volume in this tube. The low-frequency component (3 Khz or less) S3S4 of the incoming voice that is considered to have been transmitted to the wall of the external auditory meatus and the eardrum by the auricular cartilage from the vicinity of the auricle and tragus, is attenuated by only a few DB in the auditory sense, and only in the lateral direction. It can be seen that there is a sense of direction and there is no sense of direction in the front-back direction or in the upward and downward directions, that is, it can be heard from anywhere. In addition, we can hear a relatively clear sound through the nasal cavity and a sound called body conduction bone conduction, but since the sound volume on hearing is much lower than that of the former, the sound that is mainly heard is the `` aural conduction sound ''. The mode of transmission is described as "auricular conduction" and included in it. In the case of monophonic listening to a real sound source, first, the auricle conduction sound reaches the left and right eardrums, and the sound collected by one auricle reaches there, and these three kinds of sounds The composition is such that the direction of arrival is discriminated.On the other hand, in mono-aural listening for reproduced sound, only the voice collected by one auricle reaches the eardrum and the direction is discriminated. It is possible to explain that a monophonic listening to a real sound source perceives a sound source direction in the front-back direction or a vertical direction and a monophonic listening to a reproduced sound does not perceive this. In fact, even in the case of monophonic listening to the reproduced sound of FIG. 2 (a), when the auricular conduction sound S3 generated at that time is reproduced in the other ear as shown in FIG. 3 (a), From that moment, the directional sensation of the sound in the front-back direction or the up-down direction similar to the case of monophonic listening to the real sound source returns. At this time, what is reproduced in the other ear is not limited to the ear-conducted sound, but in the case of binaural hearing, as shown in Fig. 3 (b), the low-frequency component of the reproduced sound is reproduced in the other ear. However, almost the same result is obtained. In the figure, LFP is a low-pass filter. This is an actual solution to the fact that the direction of the sound source can be recognized by mono-hearing with respect to the actual sound, and cannot be recognized by mono-hearing by the reproduced sound. When discriminating the sound source direction, the sound of the lightning is said to be up and the sound of the flow of water is said to be down, and the direction is not discriminated based on the "memory" obtained from past experience and learning. This result clearly denies this idea, and among the directional sensations of the sound due to monophonic hearing, the directional sensation mainly in the front-back direction or the up-down direction may be due to past memories. It is shown that it is performed by the influence of the shape of the auricle on the incoming voice and the influence of the auricular conduction sound, etc., and in the case of binaural hearing, the low frequency component of the voice collected in the other ear canal is added to this. Front and back depending on its partner This indicates that the direction is discriminated from the direction of the head or the direction of the upper and lower sides, and both the complicated shape of the pinna and the above phenomena show that humans can know the direction of sound from the moment of birth. Is there. The above is a new view on the directional sensation of sound mainly in the anteroposterior direction or the up / down direction among the directional sensations of sound that are exhibited from the stage of monophonic hearing. It is considered that the hearing acts as a pair of left and right and works synergistically in the left hemisphere direction and the right hemisphere direction of the head, and a more clear and three-dimensional sense of direction of sound is exhibited.

【0008】 以上を整理して聴覚系に備わる音の方向感覚をまとめると。 「人体聴覚系には音の立体的な方向感覚があり、左右方向が判別できる理由につ いては従来の両耳効果によって、左右の鼓膜に到達する音声の音圧レベル差と移 相差および到着時間差をもとに判別が行われ、前後方向ないし上下方向が判別で きる理由については、左右の耳介によって到来音声がそれぞれの外耳道に集音さ れる際、その耳介形状の非対称性により各到来方向ごとに夫々異なる音色特性が あたえられ、左右の鼓膜に到達した音声が有する此の特性から、耳介伝導音など とのかかわりによって其の音源方向が読みとられる結果、われわれに前後方向な いし上下方向の音源方向が知覚される」という説明を可能とする。 この新たな音の方向感覚に関する理論から「理想イヤホン」を対象として、 原音場の最適聴取位置における人体Q0の、左右の外耳道に集音される音声S1 S2と、この時、左右の耳介伝導により外耳道壁を経由して鼓膜に伝達される音 声S3S4をそれぞれ検出し、左の集音々声S1と右の耳介伝導音S3の和の音 声信号L1を得て是を左信号Lとし、右の集音々声S2と右の耳介伝導音S4の 和の音声信号R1を得て是を右信号Rとする「イヤホン受聴対応耳形効果型立体 再生信号の検出方法」が導かれる。 特に理想イヤホンを対象とした理由は、再生時に耳甲介腔、外耳道、イヤホン 自体に共鳴を生じた場合、これが頭内定位して聞こえるなど再生音の定位の質を 損なう問題があり、論理上この影響を排除して原理の適正を期するという目的に よるもので、通常のイヤホンであっても実用上の問題はほとんどない。 第4図は通常会話周波数帯1〜4Khzの範囲に対する耳介の主な指向性方向 。 第5図は其周波数帯の上6〜16Khzの範囲に対する耳介の主な指向性方向 。 第6図に其の指向性を有する左右の外耳道入口に夫々マイクロホンM1M2を 装着し「イヤホン受聴対応耳形効果型立体再生信号」が検出できる様にした場合 の外耳中耳の模型的断面図を示した。By summarizing the above, the sense of direction of sounds provided in the auditory system is summarized. `` The reason why the human auditory system has a stereoscopic sense of direction of sound, and the reason why the left and right directions can be discriminated is that the conventional binaural effect causes the difference in sound pressure level and the phase difference and arrival of the sound that reaches the left and right eardrums. The reason is that discrimination is performed based on the time difference, and the front-back direction or the vertical direction can be discriminated.When the incoming voice is collected by the left and right auricles to the respective ear canals, the asymmetry of the auricle shape causes Different sound color characteristics are given to each direction of arrival, and from this characteristic of the sound that reaches the left and right eardrums, the direction of the sound source can be read in relation to the auricular conduction sound, etc. The vertical direction of the sound source is perceived. ” From this new theory of directional sense of sound, targeting the “ideal earphones”, the sounds S1 and S2 collected in the left and right ear canals of the human body Q0 at the optimal listening position in the original sound field and the left and right ear conduction Each of the voices S3S4 transmitted to the eardrum through the wall of the ear canal is detected by, and the sum voice signal L1 of the left collected voice S1 and the right auricular conduction sound S3 is obtained, and the result is set as the left signal L. , A method for detecting an ear-shaped stereoscopic reproduction signal compatible with earphone listening is obtained in which a right voice signal R1 is obtained by obtaining the sum voice signal R1 of the right collected voice S2 and the right auricle conduction sound S4. In particular, the reason for targeting ideal earphones is that if resonance occurs in the concha of ear, external auditory meatus, or the earphone itself during playback, there is a problem that the quality of the localization of the reproduced sound is impaired, such as the fact that this is localized in the head, which is a logical issue. The purpose of this is to eliminate this effect and ensure the properness of the principle, and even with normal earphones, there are almost no practical problems. FIG. 4 shows the main directivity directions of the auricle in the normal conversation frequency band of 1 to 4 Khz. FIG. 5 shows the main directivity directions of the auricle in the range of 6 to 16 Khz above the frequency band. Fig. 6 shows a model cross-sectional view of the middle ear of the outer ear when microphones M1M2 are attached to the left and right ear canal entrances having the directivity, respectively, and "ear effect stereoscopic reproduction signal compatible with earphone listening" can be detected. Indicated.

【0009】[0009]

【作 用】[Work]

以下第6図によって其の立体再生信号検出過程について説明すれば、 原音場における到来音声が、左右の耳介J1J2により集音される左右の外耳道 入口E1E2に、それぞれ「音声が通過でき振動板の質量および弾性が軽微で外 耳道内の音響特性を殆ど変化させない両指向性マイクロホンM1M2」を装着す ると、 左の耳介J1によりその外耳道入口E1に集音される音声S1と、このとき左 の耳介J1に生じて耳介伝導により其の外耳道壁から鼓膜T1に伝達される耳介 伝導音S3は、ともに左の鼓膜振動と等価な音声信号L1としてマイクロホンM 1により検出され、 右の耳介J2によりその外耳道入口E2に集音される音声 S2と、このとき右の耳介J2に生じて耳介伝導により其の外耳道E2から鼓膜 T2に伝達される耳介伝導音S4は、ともに右の鼓膜振動と等価な音声信号R1 としてマイクロホンM2により検出される。 以上によって検出される音声信号L1R1は、 前記第4図および第5図の様な複数の指向性を発揮する左右の耳介J1J2によ り外耳道E1E2に集音された音声S1S2と、このとき左右の耳介伝導により それぞれの外耳道壁を経て左右の鼓膜に到達する耳介伝導音S3S4の相方を検 出し、耳形効果が発揮されるための要件を満たして「イヤホン受聴対応耳形効果 型立体再生信号」としてはたらく。 第7図(イ)は、前記耳介J1J2に人体Q0の実際の耳介を用いた場合の検 出例。 第7図(ロ)は、M1M2の実用形態、装着により立体マイクロホンを構成す る。 第8図(イ)は、前記耳介J1J2に人体を模したダミーD1の耳介を用いた 1例。 第8図(ロ)は、前記耳介J1J2に人体の耳介を模したダミーD2を用いた 1例。 何れも原音場またはマルチ再生された準原音場において耳形効果を有するイヤ ホン受聴用の立体再生信号を検出できる。 なお前記耳介J1J2は、第15図の様に是と等価な効果をマイクロホンM1 M2の検出信号をL1R1に対して与える形状であれば特に耳介形状のみに限ら れる必要はない。 また両指向性マイクロホンM1M2は、耳介伝導音と等価な音声信号が筐体伝 導等により適度に検出される場合、または他方の検出信号のみで定位に問題を生 じない場合、または目で音源を直接確認できる補聴器等の場合には必ずしも両指 向性である必要はない。 The process of detecting the stereoscopic reproduction signal will be described below with reference to FIG. 6. Incoming sound in the original sound field is transmitted to the left and right ear canal entrances E1E2 collected by the left and right auricles J1J2. When the bidirectional microphone M1M2, which has a small mass and elasticity and hardly changes the acoustic characteristics in the external auditory meatus, is attached, the sound S1 collected at the external auditory meatus entrance E1 by the left auricle J1 and the left side at this time. The auricular conduction sound S3 generated in the auricle J1 of the ear and transmitted to the eardrum T1 from the external auditory meatus wall by the auricle conduction is detected by the microphone M 1 as the audio signal L1 equivalent to the left eardrum vibration, and the right ear The sound S2 collected by the auricle J2 at the ear canal entrance E2, and the ear that is generated in the right auricle J2 and is transmitted from the outer ear canal E2 to the eardrum T2 by auricular conduction. Conduction sound S4 is detected by the microphone M2 together as right tympanic vibrations equivalent audio signal R1. The voice signal L1R1 detected by the above is the voice S1S2 collected in the external auditory meatus E1E2 by the left and right auricles J1J2 exhibiting a plurality of directivities as shown in FIG. 4 and FIG. The ear conduction effect S3S4, which reaches the left and right eardrums through the respective ear canal walls, is detected by the ear's ear conduction, and the requirements for the ear effect to be fulfilled are satisfied. Serves as a "playback signal". FIG. 7A shows an example of detection when the actual auricle of the human body Q0 is used as the auricle J1J2. FIG. 7B shows a practical microphone of M1M2, and a stereo microphone is configured by mounting the microphone. FIG. 8 (a) shows an example in which a dummy D1 auricle that imitates a human body is used as the auricle J1J2. FIG. 8B shows an example in which a dummy D2 simulating a human auricle is used as the auricle J1J2. Both of them can detect a stereoscopic reproduction signal for earphone listening having an ear-shaped effect in the original sound field or the multi-reproduced quasi-original sound field. The auricle J1J2 need not be limited to the auricle shape as long as it has a shape that gives the detection signal of the microphones M1 and M2 to L1R1 an effect equivalent to that shown in FIG. The bidirectional microphones M1M2 are used when the sound signal equivalent to the auricular conduction sound is appropriately detected by the case conduction or the like, or when only the other detection signal does not cause a localization problem, or by visual observation. In the case of a hearing aid that can directly confirm the sound source, it does not necessarily have to be bidirectional.

【0010】 以上は、原音場の音声を直接「イヤホン受聴対応耳形効果型立体再生信号」と して検出する方法であるが、すでに録音済みの音声信号G1〜Gnをイヤホン受 聴用に変換したい場合がある。以下その方法について説明する。 特定信号G1を特定位置X1に定位させ様とする場合、まず左右の外耳道にマ イクロホンM1M2装着した人体Q0を配置し、このQ0から見て再生音が定位 すべき位置X1X1に音源SPを配置する。次に位置X1と人体Q0が装着した マイクロホンM1M2の内、(1)まずX1−M1間の音声伝達特性K1を前記 音源SPとマイクロホンM1間で測定。(2)次にX1−M2間の音声伝達特性 K1を前記音源SPとマイクロホンM2間で測定。(3)測定された音声伝達 特性K1,K1と等価な信号伝達特性B1,B1をそれぞれ入出力間特性と して有する一対の特性制御回路βを準備し、第9図の様に構成して入力端子IN −1から特定信号G1を並列入力すれば、その出力としてQ0の左右の外耳道に 装着されたマイクロホンM1M2による場合と等価な左信号L1と右信号R1が 検出される。また是を必要な組数用いてマルチ再生される複数の音声信号G1〜 Gnを前記M1M2によるものと等価な左信号L1と右信号R1とに変換できる 。 以上は、位置X1の音源SPに対する前記Q0の聴取条件を、正確に特性制御 回路内にB1,B1として置換するもので、第9図の回路は、前記M1M2に よるものと等価な「イヤホン受聴対応耳形効果型立体再生信号検出装置」として はたらく。 また前記Q0の左右の外耳道に装着されたマイクロホンM1M2の検出信号を 用いて音声伝達特性K1K1の測定が求められる理由は、到来音声に対する耳 介の集音特性と耳介の伝導特性の相方を伝達特性K1K2の測定結果として得る 事が望まれるためで、これをB1,B1として特性制御回路β内に置換する事 によって耳介伝導音を含む音声信号の検出が可能となる。The above is the method of directly detecting the sound in the original sound field as the “earphone effect type stereoscopic reproduction signal compatible with earphone listening”, but the already recorded sound signals G1 to Gn are converted for earphone listening. You may want to. The method will be described below. In order to localize the specific signal G1 to the specific position X1, first, the human body Q0 with the microphones M1M2 attached is placed in the left and right ear canals, and the sound source SP is placed at the position X1X1 where the reproduced sound should be localized when viewed from this Q0. . Next, among the microphones M1M2 attached to the position X1 and the human body Q0, (1) First, the voice transfer characteristic K1 between X1 and M1 is measured between the sound source SP and the microphone M1. (2) Next, the voice transfer characteristic K1 1 between X1 and M2 is measured between the sound source SP and the microphone M2. (3) Prepared a pair of characteristic control circuits β having the signal transmission characteristics B1 and B1 1 equivalent to the measured voice transmission characteristics K1 and K1 1 as the input-output characteristics, and configured as shown in FIG. Then, when the specific signal G1 is input in parallel from the input terminal IN-1, the left signal L1 and the right signal R1 equivalent to the case of the microphones M1M2 attached to the left and right ear canals of Q0 are detected as the outputs. Further, it is possible to convert a plurality of audio signals G1 to Gn which are multi-reproduced by using the required number of sets into a left signal L1 and a right signal R1 which are equivalent to those by the M1M2. In the above, the listening condition of Q0 with respect to the sound source SP at the position X1 is accurately replaced by B1 and B1 1 in the characteristic control circuit. The circuit of FIG. 9 is equivalent to that of the M1M2 "earphone". It acts as an ear-shaped effect type stereoscopic reproduction signal detection device ". The reason why the measurement of the voice transfer characteristic K1K1 1 is required by using the detection signals of the microphones M1M2 attached to the left and right ear canals of Q0 is because of the difference between the ear pickup characteristics and the ear conduction characteristics for the incoming voice. because it is desired to obtain a measurement result of the transfer characteristic K1K2, it is possible to detect the audio signal including the auricle conduction sound thereby that replaces the characteristic control circuit β as B1, B1 1.

【0011】 第10図、第11図、第12図に人体の耳介または其のダミーを用いた場合と 同様にはたらく「イヤホン受聴対応耳形効果型立体マイクロホン」の構成図を示 した。 第10図(イ)は、一端に幅約2mm長さ約8mmの窓(2)を設けた、内径 約8mmφ長さ約40mmの中空管(1)。図は側面図およびその上面図。 同 図(ロ)は、前記中空管(1)の中央付近に、両指向性マイクロホン(3 )を窓(2)に接して装填し固定した状態。図は透視図で図中の点線はマイクロ ホン(3)の指向性方向を示す。 同 図(ハ)は、マイクロホン(3)を装填し固定した前記中空管(1)の両 端に、吸音材4、4を接着して固定した状態。図は透視図。 以上第10図により制作される部分の構成は、前記マイクロホン(3)に人体 の耳介J1J2が発揮するものと類似した高域指向性Hf(第5図)を発揮させ るためのもので、超音波笛に類似したこの構成によって前記マイクロホン(3) は、主に中空管の窓(2)の開口方向に向かって可聴周波数帯中の高域指向性H fが発揮されるようになる。 第11図(イ)は、会話周波数帯に対する集音板(6)材質はシリコンゴム正 面図。 同 図(ロ)は、これを側面から見た場合の1部断面図。直径約10〜12c m程度 同 図(ハ)は、構造図、前記集音板(6)の貫通口(12)に第10図(ハ )の中空管(1)を貫通して固定し、窓(2)を上方として集音板(6)の貫通 口背部(7)を無共振ゴムの準密閉箱(8)で保持している。 以上第11図(ハ)の構造により可聴周波数帯中、会話音声帯域1〜4Khz 範囲の帯域指向性Mfが主に前方に向かって発揮され、其の上6〜16Khzの 高域指向性Hfが主に上方に向かって発揮される第12図左のような形となり、 人体Q0の耳介J1J2に両指向性マイクロホンM1M2を装着した場合と類似 した指向性分布となる。 第12図は前記マイクロホン一対を、スタンド上部(10)のマイクロホン取 付け台(11)に幅約20cm開角約90度で取付けた状態。正面を向いて描か れているのが左のマイクロホン、側方を向いて一部断面図で描かれているのが右 のマイクロホンで、矢印点線が示すMfは可聴周波数帯中会話帯域における指向 性方向、Hfは同高域指向性の方向を示す。左のマイクロホンも同様にして図の 正面方向に現れる 一方中空管(1)のマイクロホン(3)から吸音体(4)までの空間および 準密閉箱(8)の内部空間は、外耳道から中耳に至る間の音響特性に近似させて 実際と同様な特性を検出信号にあたえる。耳介伝導音にあたる音声はシリコンゴ ム系の集音板(6)捕捉されて中空管(1)に伝えられ、中空管(1)と内部の 空気分子の慣性による相対的な運動よってマイクロホン(3)に適度に検出され る。 以上第12図の如く構成されたマイクロホンは、スタンド等により原音場にお いて聴取者の頭部の高さに設定すると、人体Q0の耳介による場合とほとんど同 様な音声信号L1R1を検出し「イヤホン受聴対応耳形効果型立体マイクロホン 」としてはたらく。 なお第10図の構成は、マイクロホン(3)の高域指向性Hfが上方に向かっ て適度に発揮される事が条件で開口径1〜3cmの微小ホーンをマイクロホン( 3)に取り付け上方に向けた構成でも同様な結果が得られる。また耳介伝導音と 等価な信号が筐体伝導などにより適度に検出される場合、または他方で検出され る音声信号の低域成分が十分にはたらく等の場合には、前記マイクロホン3は無 指向性としてよい。この場合(3)から吸音体(4)までの空間および準密閉 箱(8)の内部空間は必要ない。FIG. 10, FIG. 11 and FIG. 12 show configuration diagrams of an “earpiece effect type stereoscopic microphone compatible with earphone listening” which works in the same manner as when the auricle of the human body or its dummy is used. FIG. 10 (a) shows a hollow tube (1) having an inner diameter of about 8 mm and a length of about 40 mm with a window (2) having a width of about 2 mm and a length of about 8 mm. The figure is a side view and its top view. FIG. 2B shows a state in which a bidirectional microphone (3) is loaded and fixed in contact with the window (2) near the center of the hollow tube (1). The figure is a perspective view and the dotted line in the figure shows the directionality of the microphone (3). FIG (c) shows a state where both ends were fixed by adhering a sound-absorbing material 4, 4 1 of the microphone (3) the hollow tube loaded fixing the (1). The figure is a perspective view. The configuration of the part produced by FIG. 10 is for causing the microphone (3) to exhibit high-frequency directivity Hf (FIG. 5) similar to that exhibited by the auricle J1J2 of the human body. With this configuration similar to the ultrasonic whistle, the microphone (3) exhibits high frequency directivity H f in the audible frequency band mainly toward the opening direction of the window (2) of the hollow tube. . FIG. 11 (a) is a front view of silicone rubber for the material of the sound collecting plate (6) for the conversation frequency band. The same figure (b) is a partial cross-sectional view when viewed from the side. About 10 to 12 cm in diameter The figure (c) is a structural drawing, and the hollow tube (1) of FIG. 10 (c) is fixed through the through hole (12) of the sound collecting plate (6). With the window (2) facing upward, the through hole back part (7) of the sound collecting plate (6) is held by a semi-closed box (8) made of non-resonant rubber. With the structure shown in FIG. 11C, the band directivity Mf in the conversation voice band of 1 to 4 Khz is mainly exerted forward in the audible frequency band, and the high frequency directivity Hf of 6 to 16 Khz is further exerted. The shape shown in the left of FIG. 12 is mainly exhibited upward, and the directivity distribution is similar to that when the bidirectional microphone M1M2 is attached to the auricle J1J2 of the human body Q0. FIG. 12 shows a state in which the pair of microphones are attached to the microphone mounting base (11) on the upper part (10) of the stand with a width of about 20 cm and an opening angle of about 90 degrees. The microphone on the left is drawn facing the front, the microphone on the right is drawn in a partial sectional view facing the side, and Mf indicated by the dotted arrow is the directivity in the speech band in the audible frequency band. The direction and Hf indicate the same high frequency direction. The left microphone also appears in the front direction of the figure in the same way, while the space from the microphone (3) of the hollow tube (1) to the sound absorber (4 1 ) and the internal space of the semi-sealed box (8) are from the external ear canal to the middle. The characteristics similar to the actual characteristics are applied to the detection signal by approximating the acoustic characteristics up to the ear. The sound that corresponds to the auricular conduction sound is captured by the silicon rubber type sound collecting plate (6) and transmitted to the hollow tube (1), and the microphone is generated by the relative motion of the hollow tube (1) and the inertial air molecules inside. Appropriately detected in (3). When the microphone configured as shown in FIG. 12 above is set at the height of the listener's head in the original sound field with a stand or the like, it detects an audio signal L1R1 that is almost the same as that from the auricle of the human body Q0. It works as an “ear effect stereoscopic microphone for earphone listening”. The configuration shown in FIG. 10 has a microphone (3) with a minute horn having an opening diameter of 1 to 3 cm and is directed upwards under the condition that the high frequency directivity Hf of the microphone (3) is appropriately exerted upwards. Similar results can be obtained with this configuration. In addition, when a signal equivalent to the auricular conduction sound is appropriately detected by the conduction of the casing or the like, or when the low-frequency component of the audio signal detected on the other side works sufficiently, the microphone 3 is omnidirectional. Good as a sex. In this case, the space from (3) to the sound absorbing body (4 1 ) and the internal space of the semi-closed box (8) are not necessary.

【0012】 第13図に理想イヤホンの原理図を示した。これは「イヤホン受聴対応耳形効 果型立体再生信号」の検出用マイクロホンM1M2がおかれた外耳道入口E1E 2に、直径5〜6mmφのマイクロスピーカーμSを背面開放の状態で図のよう に設定し左右のイヤホンY1Y2としたもので、これにより外耳道入口E1E2 から鼓膜方向を見た内部音響インピーダンスZiZiと耳介方向を見た外部音 響インピーダンスZoZoの両負荷が、信号検出時におけるマイクロホンM1 M2の場合と同様にイヤホンY1Y2の振動板の前後に加わる状態となる。 この状態でM1M2による検出信号がマイクロスピーカーμSにより再生され ると、後方に向かう音声は音波の可逆性により外部音響インピーダンスZoZo を介して原音場の場合と等価な音響状態を左右の耳甲介腔内に再現し、前方に 向かう音声は、これを背景として信号検出時と等価な内部音響インピーダンスZ iZiを介して左右の鼓膜に到達し原音場の場合と等価な鼓膜振動を再現させ る。 以上の結果、第13図の左右の外耳道入口E1E2に背面開放の状態で配置さ れた前記マイクロスピーカーμSは、振動板の質量および弾性が軽微で再生音の 周波数特性が平坦な理想特性である場合、原音場における耳孔介腔内の音声と、 鼓膜に到達する音声の相方を耳形効果を乱す事なく聴取者側に再現できる条件を 満たし、これを主体とするイヤホンY1Y2は「イヤホン受聴対応耳形効果型立 体再生信号」に対し「理想イヤホン」としてはたらく事になる。 第13図(ロ)はこれを実用化するための原形で、聴診器形状とすることによ りイヤホン部分を左右の外耳道に装着できるようにしている。第7図(ロ)と対 応。 前記マイクロスピーカーは現在10mmφ前後まで実用化されているが、外耳 道内における信号音響変換能率は耳孔介腔内で再生される場合と比較して聴覚上 数倍の上昇が見込まれるから、現状性能を維持したままでの小形化にはさほど大 きな問題は予想されない。FIG. 13 shows a principle diagram of an ideal earphone. This is set at the ear canal entrance E1E2 where the microphone M1M2 for detecting "ear effect-type stereoscopic reproduction signal compatible with earphone listening" is placed, and the microspeaker µS with a diameter of 5 to 6 mmφ is opened as shown in the figure. obtained by the left and right earphones Y1Y2, thereby both load the ear external sound viewed internal acoustic impedance zizi 1 and the auricle direction viewed eardrum direction from introducing port E1E2 sound impedance ZOZO 1 is microphone M1 at the time of signal detection M2 In the same manner as in the above case, the earphones Y1 and Y2 are in a state of being added to the front and rear of the diaphragm. When the detection signal from M1M2 is reproduced by the microspeaker μS in this state, the backward sound is transmitted through the external acoustic impedance ZoZo 1 due to the reversibility of the sound wave, and an acoustic state equivalent to that of the original sound field is generated on the left and right concha. The sound that is reproduced in the cavity and goes forwards reaches the left and right eardrums through the internal acoustic impedance Z iZi 1 equivalent to that at the time of signal detection against this background, and reproduces the eardrum vibration equivalent to that in the case of the original sound field. . As a result of the above, the microspeaker μS disposed in the left and right ear canal entrances E1E2 in FIG. 13 with the back surface open is an ideal characteristic in which the vibration plate has a small mass and elasticity and the reproduced sound has a flat frequency characteristic. In this case, the earphone Y1Y2, which mainly complies with the condition that the voice in the ear canal cavity in the original sound field and the voice that reaches the eardrum can be reproduced on the listener side without disturbing the ear shape effect, "Earphone listening compatible" It acts as an "ideal earphone" for the "ear effect vertical reproduction signal". Fig. 13 (b) shows the original shape for practical use. By making it into a stethoscope, the earphone parts can be attached to the left and right ear canals. Corresponds to Figure 7 (b). Currently, the microspeaker has been put into practical use up to around 10 mmφ, but the signal-to-sound conversion efficiency in the external auditory canal is expected to increase several times in terms of hearing compared with the case where it is reproduced in the ear canal cavity. No major problems are expected in miniaturization while maintaining.

【0013】 前記「理想イヤホン」の再生原理を展開し今後の理想再生志向イヤホン類に求 められる条件を列記すれば概略つぎの5項目となる。即ち、 (1)耳孔介腔の共鳴点がその装着により変化しないこと。 (2)外耳道内の共鳴点がその装着により変化しないこと。 (3)相方に新たな共鳴点がその装着により発生しない事。 (4)共鳴点が再生音受給点の不整合により発生しない事。 (5)再生音の受給点が耳孔介腔下部外耳道付近である事。 第1項および2項において共鳴点が変化し新たな共鳴点を生じた場合、または 第3項による新たな共鳴点を生じた場合または第4項により共鳴点を生じた場合 、新たな共鳴点に当る部分の再生音が頭内定位ないし上方定位におちいりやすい 等、再生音の主に定位に関する障害となる事が実験的に認められる理由による。 第5項は再生時における耳孔介腔内の音響状態を原音場における場合と類似さ せるための要件で、音声信号を外耳道付近で再生した場合、この再生音は原音場 とは逆に、耳甲介腔の下部、中部、上部、耳輪、という流れで上昇し順次耳介の 外側に放出されるが、この逆流によって耳介内部の定在波分布等を含む音響状態 は原音場における収音時と類似したものとなり、再生時における音響状態が収音 時と異なる事によって引起こされる定位不良の問題を軽減し回避できる。 以上第1項から第5項までの条件によって導かれる理想再生志向のイヤホンは 、本体Y1Y2を適度の音響カプラーを介して左右の耳孔介腔下部の外側第13 図(ハ)のY1及び其の対称位置に夫々装着する形となり、是によって実用上 支障のない優れた再生音定位のイヤホンが得られる。この時耳甲介腔の上部から 放出される音声を上部の吸音体で吸収する構造を含めて全体を一体化すれば同上 の性能を有するヘッドホンが得られる(例スピーカー開口径20mmφ音響カプ ラー3CC軽接)。The following 5 items can be summarized by developing the playback principle of the “ideal earphones” and listing the conditions required for future ideal playback-oriented earphones. That is, (1) The resonance point of the ear canal cavity does not change due to the wearing. (2) The resonance point in the ear canal does not change due to the wearing. (3) A new resonance point on the other side should not occur due to the mounting. (4) Resonance points do not occur due to mismatch of playback sound receiving points. (5) The point of receiving the reproduced sound is near the external auditory meatus below the ear canal cavity. When the resonance point is changed and a new resonance point is generated in the first and second terms, or when a new resonance point is generated by the third term or a resonance point is generated by the fourth term, a new resonance point The reason is that it is experimentally recognized that the reproduced sound of the part that hits the head is easily disturbed in the intra-orientation or the upward localization, which is an obstacle mainly to the localization of the reproduced sound. Item 5 is a requirement to make the acoustic state in the ear canal cavity during reproduction similar to that in the original sound field. When an audio signal is reproduced near the ear canal, this reproduced sound is opposite to the original sound field. The lower part, the middle part, the upper part of the concha cavity, the ear ring, and the like rise and are sequentially released to the outside of the auricle, but due to this backflow, the acoustic conditions, including the distribution of standing waves inside the auricle, are recorded in the original sound field. It becomes similar to the time, and it is possible to reduce and avoid the problem of localization failure caused by the fact that the acoustic state during reproduction differs from that during sound collection. Or earphones ideal reproduction oriented guided by the condition of the first term to the fifth term, Y1 1 and其outer Fig.13 ear Anakai腔下portions of the left and right through the moderate acoustic coupler body Y1Y2 (c) As a result, the earphones with excellent reproduced sound localization that does not hinder practical use can be obtained. At this time, headphones with the same performance can be obtained by integrating the entire structure including the structure in which the sound emitted from the upper part of the concha of the ear is absorbed by the upper sound absorber (eg speaker opening diameter 20 mmφ acoustic coupler 3CC). Light contact).

【0014】 第14図に「イヤホン受聴対応耳形効果型立体再生」の原理図を示した。図中 Q1は原音場に位置する仮の聴取者、その左右の外耳道に第7図(ロ)に示すマ イクロホンM1M2が装着され、そのM1M2の出力信号L1R1が左信号増幅 器A1右信号増幅器A2を介して伝送され、聴取者Q2の左右の外耳道に装着さ れた第13図(ロ)に示すイヤホンY1Y2に供給される構成となっている。 この構成により仮の聴取者Q1の側から伝送される耳形効果を有する音声信号 L1R1が聴取者Q2の側で再生され、Q2が有する音の方向感覚によってQ1 に対する原音場の立体的な音源方向が知覚される。 同図において人体Q1Q2間の耳介形状の相違が問題になるのではないかと懸 念されるが、其の主なる相違は耳翼部の大小や前傾の度合い耳垂の形状および肥 厚の度合等であって、耳甲介腔・耳珠・対珠、耳輪、等を形成する耳介軟骨部の 形状にほとんど大差はない。因みに日本人と外国人との相方について外耳道入口 に集音される音声の音圧周波数特性を測定すると、その体形の明らかな相違に反 し測定結果は何れも同様な特性となって情報の共通を示すのである。 これ等の事は収音時に適正な形状の耳介所有者を選定し仮の聴取者Q1とすれ ば、聴取者Q2の耳介形状を特に問題にする事なく日本人から外国人におよぶ広 範囲の聴取者に対し、ほぼ共通の条件下で「イヤホン受聴対応耳形効果型立体再 生」が実施可能である事を意味する。 また音色特性ないしその変化としてQ1側からQ2側に伝送される方向情報に 関し、一連の実験を通してしばしば経験する事は、特に会話音声中「サシスセソ 」の子音等に代表される高域かつ広帯域性の音声部分が到来した場合、又は衝撃 音など音声のエンベロープが急変して高域かつ広帯域性の成分を伴う音声部分が 到来した場合、それまでぼんやりと知覚されていた音源方向が「瞬時明確」に知 覚され再びぼんやりの状態にもどるという現象である。 これは聴覚系が音源方向を判別する際、常にはおおまかな方向判別が行なわれ 、特に高域かつ広帯域性で方向判別に最適な形の音声部分が到来した瞬間・選択 的に此の部分の方向判別が明確に行なわれ、それまで大まかに知覚されていた音 源方向が此の瞬間明確な音源位置として確定し知覚されるという、方向判別の二 重性と、高域かつ広帯域性の音声部分の周波数スペクトラムの特性ないしその変 化から確定段階の音源方向および距離が選択的に読み取られる事を示し、第14 図においてQ1側からQ2側に伝送される音声信号L1R1の周波数特性に、仮 にも平坦とはいえない独特の特性が要求される事の合理性を示している。FIG. 14 shows the principle diagram of “ear effect stereoscopic reproduction compatible with earphone listening”. In the figure, Q1 is a temporary listener located in the original sound field, and the microphones M1M2 shown in Fig. 7 (b) are attached to the left and right ear canals, and the output signal L1R1 of the M1M2 is left signal amplifier A1 right signal amplifier A2. And is supplied to the earphones Y1Y2 shown in FIG. 13 (B) attached to the left and right ear canals of the listener Q2. With this configuration, the audio signal L1R1 having an ear effect transmitted from the tentative listener Q1 is reproduced on the listener Q2 side, and the stereophonic sound source direction of the original sound field with respect to Q1 is sensed by the sense of the direction of the sound of Q2. Is perceived. In the figure, it is suspected that the difference in the pinna shape between the human bodies Q1 and Q2 may be a problem, but the main differences are the size of the auricle and the degree of forward lean, the shape of the ear lobe, and the degree of thickening. There is almost no difference in the shape of the auricular cartilage that forms the concha cavity, tragus, antitragus, earring, etc. By the way, when the sound pressure frequency characteristics of the sound collected at the entrance of the external auditory meatus were measured for the companionship between Japanese and foreigners, the measurement results showed similar characteristics, despite the apparent difference in body shape. Is shown. These things are not limited to a temporary listener Q1 by selecting an earphone owner with a proper shape at the time of sound collection. This means that “ear effect stereoscopic reproduction compatible with earphone listening” can be implemented for listeners in a range under almost common conditions. In addition, it is often experienced through a series of experiments regarding the directional information transmitted from the Q1 side to the Q2 side as a timbre characteristic or a change in the timbre characteristic, that it is a high frequency and wide band characteristic especially in the consonant of "Sasississo" in conversational speech. When a voice part of the sound source arrives, or when a voice part such as a shocking sound suddenly changes and a component with a high-frequency and wide-band component arrives, the direction of the sound source that has been vaguely perceived until then is “instantly clear”. It is a phenomenon in which the person becomes aware of and returns to the vague state again. This is because when the auditory system discriminates the direction of a sound source, a rough direction discrimination is always performed. In particular, at the moment when a voice part of a high-frequency and wide-band shape that is most suitable for the direction discrimination arrives, this region is selectively selected. Directional distinction is performed clearly, and the sound source direction that was roughly perceived until then is confirmed and perceived as a clear sound source position at this moment. It is shown that the sound source direction and distance in the definite stage are selectively read from the characteristic of the frequency spectrum of the part or its change, and the frequency characteristic of the audio signal L1R1 transmitted from the Q1 side to the Q2 side in FIG. However, it shows the rationality of requiring unique characteristics that are not flat.

【0015】[0015]

【実施例1】 第15図に「イヤホン受聴対応耳形効果型立体再生」の総合的な実施例を示し た。図中Q1は原音場における仮の聴取者、J1J2は耳介、その左右の外耳道 入口E1E2に第7図(ロ)の両指向性マイクロホンM1M2を装着し、その検 出信号L1R1を「イヤホン受聴対応耳形効果型立体再生信号」の出力として「 信号検出部」を構成する。 *第7図(イ),第8図(イ),第8図(ロ),第9図, *第12図,等によりこれと等価な音声信号を検出できる。 次のRECは伝送系に属する録音再生機器であって前段の出力L1R1を左右 の信号L,R,として記録し「イヤホン受聴対応耳形効果型立体レコード類」が 得られる。 *前記レコード類は、テープ,音声記憶IC,ディスク類等 つぎのLiRiは次段入力部で前段レコード類の再生信号を受け、増幅器A1 A2で夫々増幅した後この出力LoRoを聴取者Q2が左右の外耳道に装着した 第13図(ロ)のイヤホンY1Y2に供給して再生し、仮の聴取者Q1に対する 原音場の立体的な音源方向を耳形効果により聴取者Q2に知覚させる構成となっ ている。 *第13図(イ)は理想イヤホンの模型的原理図,断面図。 *同 図(ロ)は理想イヤホン準処の実用例1,外観図。 *同 図(ハ)はイヤホン類の論理的装着位置,説明図。[Embodiment 1] FIG. 15 shows a comprehensive embodiment of "ear effect stereoscopic reproduction compatible with earphone listening". In the figure, Q1 is a tentative listener in the original sound field, J1J2 is an auricle, and the bidirectional microphone M1M2 of FIG. 7 (b) is attached to the left and right external ear canal entrances E1E2, and the detection signal L1R1 is set to “earphone compatible”. The "signal detector" is configured as the output of the "ear effect stereoscopic reproduction signal". * A sound signal equivalent to this can be detected from FIG. 7 (a), FIG. 8 (a), FIG. 8 (b), FIG. 9, and FIG. The next REC is a recording / reproducing device belonging to the transmission system, and the output L1R1 of the preceding stage is recorded as the left and right signals L and R, and "ear-ear effect stereoscopic records corresponding to earphone listening" are obtained. * The above-mentioned records are tapes, voice storage ICs, disks, etc. The next LiRi receives the playback signal of the previous-stage records at the input stage of the next stage, and after amplifying each by amplifiers A1 and A2, this output LoRo is left and right by the listener Q2. The earphone Y1Y2 shown in Fig. 13 (b) attached to the external ear canal is supplied and played back, so that the stereoscopic sound source direction of the original sound field with respect to the temporary listener Q1 is perceived by the listener Q2 by the ear shape effect. There is. * Fig. 13 (a) is a model principle diagram and sectional view of the ideal earphone. * The same figure (b) is a practical example 1 of the ideal earphone application, and an external view. * The figure (c) is an illustration of the logical mounting position of earphones.

【0016】[0016]

【実施例2】 第16図および第17図に、本実施例と類似する従来のバイノーラル方式の実 施例を従来の関係書籍から示し、前第15図との比較により其の相違点を明確に する。 まず第16図は前出オスカー氏に代表されるバイノーラル方式の原形。図中Q 1は原音場における仮の聴取者で、その左右の耳介J1J2の外耳道入口E1E 2にそれぞれマイクロホンM1M2を装着し、これによって左右の外耳道に到達 する音声の音声信号L1R1を検出する。但し、ここまでの段階は第15図に同 じ。 第16図は以下検出された音声信号L1R1から、耳介J1J2の影響により 生じた周波数特性の乱れを特性補正回路EQで再び平坦な特性にもどし、耳介前 面に到達する音声の音声信号L,R,とほぼ等価な特性の音声信号として信号検 出部の出力とする。 第17図は前記仮の聴取者Q1の頭部の位置に、左右の耳介J1J2間の実質 距離凡そ200mm角度凡そ90度を隔てて単一指向性マイクロホンM5M6を 設定し、これにより耳介前面に到達する音声と等価な音声信号L,R,を検出し 信号検出部の出力とする。 第16図および第17図の信号検出部出力L,R,は以下、伝送系REC,増 幅器A1A2を経て聴取者Q2が左右の耳介に装着したヘッドホンH1H2に送 られ、この振動板により聴取者Q2の左右の耳介前面に、原音場において仮の聴 取者Q1の耳介前面に到達した音声と等価な左右の到来音声を再現し其の音源方 向を知覚させ様とする。以上を整理すれば 、(1)従来のバイノーラル方式は左右の「耳介前面」に到達する音声の音声信 号を検出し、再生時「ヘッドホン」により聴取者の左右の耳介前面に是を再生す る事により立体再生を行おうとする「耳介前面型の再生方法」として独立し、 (2)サウンドフォログラム方式は左右の「外耳道」に集音される音声の音声信 号を検出し、再生時「イヤホン」により聴取者の左右の外耳道にこれを再生する 事により立体再生を行おうとする「外耳道型の再生方法」として独立する。 またバイノーラル方式の条件の一つヘッドホンは、左右の耳介前面に音声信号 をそれぞれ再生するように作られた構造上、外耳道に向けて音声信号を再生して も、耳甲介腔の共鳴等により特性が変化して正確な再生音は外耳道に到達しない 。つまりヘッドホンを用いて論理的に正確な再生を行おうとする場合の入力信号 は、原音場において仮の聴取者Q1の左右の耳介前面に到達する音声の音声信号 に限られるのである。 これに対し、本考案の条件の一つイヤホンは、左右の外耳道入口に音声信号を 夫々再生するように作られた構造上、これを用いて論理的に正確な再生を行おう とする場合の入力信号は、前記、仮の聴取者Q1の左右の外耳道に集音される音 声の音声信号に限られるのであって、 以上の事は、本考案に係る第15図の信号検出部とバイノーラル方式に係る第 16図の信号検出部とが,方法は同じながら思想および目標を異にし、加えて本 考案のものが「耳介前面に到達する音声が更に外耳道に集音される間に耳介形状 の影響によりこの音声に与えられる音色特性の変化を再生音の定位に関する方向 情報として検出」しようとする点の新規性と合わせ、それぞれ先例後例の関係に 当たらない事を示している。[Embodiment 2] FIGS. 16 and 17 show an embodiment of a conventional binaural system similar to this embodiment from a related related book, and the differences are clarified by comparison with FIG. 15 above. To First, Fig. 16 shows the original form of the binaural system represented by Mr. Oscar. In the figure, Q1 is a temporary listener in the original sound field, and microphones M1M2 are attached to the ear canal entrances E1E2 of the left and right auricles J1J2, and the voice signal L1R1 of the voice reaching the left and right ear canals is detected by this. However, the steps up to this point are the same as in Fig. 15. FIG. 16 shows that from the detected voice signal L1R1, the disturbance of the frequency characteristic caused by the influence of the auricle J1J2 is returned to the flat characteristic again by the characteristic correction circuit EQ, and the voice signal L of the voice reaching the front surface of the auricle is returned. , R, and the output of the signal detection section as an audio signal with almost the same characteristics. FIG. 17 shows that a unidirectional microphone M5M6 is set at the position of the head of the tentative listener Q1 with a substantial distance between the left and right auricles J1J2 separated by an angle of about 200 mm and an angle of about 90 degrees. The voice signals L and R, which are equivalent to the voice arriving at, are detected and used as the output of the signal detector. The signal detection unit outputs L and R in FIGS. 16 and 17 are sent to the headphones H1H2 worn by the listener Q2 on the left and right auricles via the transmission system REC and the amplifier A1A2. On the front of the left and right auricles of the listener Q2, the left and right incoming voices equivalent to the voice that has reached the front of the auricle of the temporary listener Q1 in the original sound field are reproduced to perceive the sound source direction. Summarizing the above, (1) the conventional binaural method detects the voice signal of the voice reaching the left and right “front of the auricle”, and the “headphones” are applied to the front of the left and right auricle of the listener during playback. Independently as a “frontal auricle-type playback method” in which stereoscopic playback is performed by playing back, (2) the sound follogram method detects the voice signal of the sound collected in the “external ear canal” on the left and right, It becomes independent as an “external ear canal type reproduction method” in which stereoscopic reproduction is performed by reproducing this to the left and right ear canals of the listener during playback. Headphones, which is one of the conditions for the binaural system, are designed to reproduce the audio signals on the front of the left and right auricles respectively.Therefore, even if the audio signals are reproduced toward the external auditory meatus, resonance of the concha of the ear, etc. As a result, the characteristics change and the accurate reproduced sound does not reach the ear canal. That is, the input signal in the case of theoretically accurate reproduction using the headphones is limited to the audio signal of the voice that reaches the front of the left and right auricles of the temporary listener Q1 in the original sound field. On the other hand, one of the conditions of the present invention is that the earphones are structured to reproduce the audio signals at the left and right ear canal entrances respectively. The input signal is limited to the voice signal of the voice collected in the left and right external auditory meatus of the temporary listener Q1. The above is the signal detection unit and the binaural of FIG. 15 according to the present invention. The signal detecting section of FIG. 16 according to the method is the same as the method, but the idea and the target are different. In addition, the present invention has a feature that “the sound reaching the front surface of the auricle is further collected in the ear canal. In addition to the novelty of trying to detect the change of the timbre characteristic given to the voice by the influence of the interposition shape as the direction information regarding the localization of the reproduced sound, it shows that they do not satisfy the relationship of precedent and posterior.

【0017】[0017]

【考案の効果】 第15図において仮の聴取者Q1を原音場に配置すると、この左右の耳介J1 J2に到達した音声は其の耳介形状によってそれぞれ左右の外耳道に向けて集音 され、外耳道入口E1E2に装着されたマイクロホンM1M2により耳形効果を 有する左右の音声信号L1R1として検出される。 この検出信号L1R1は以下、レコード類等を媒体とする信号伝送系RECを 介して信号再生部分に送られ、増幅器A1A2で適度に増幅されたのち、聴取者 Q2が装着するイヤホンY1Y2におくられ、ここで聴取者Q2の左右の外耳道 に耳形効果を有する再生音が再生される。この結果イヤホンY1Y2の特性が適 切な場合、仮の聴取者Q1に対する原音場の立体的な音源方向が、そのまま聴取 者Q2によってかなり鮮明に知覚される。 その数例をあげれば、仮の聴取者Q1の前方約3mの位置に、ホワイトノイズ を音源として大きさ約1mの音文字を空間に描いた場合、この文字がアラビヤ 数字、アルファベット或いはカタカナ程度の簡単なものであれば、遠方に隔離さ れた閉眼の聴取者Q2によって其の大半が読み取られ耳形効果が確認される。 また、この聴取者Q2をモニターしながら実験の合間をぬって「電話のベル・ 雷鳴・玄関口での呼び声など」必然性の高い再生音を流すと、これが再生音であ るか実際の音声であるかの判断がつくまでの間、聴取者Q2は反射的に電話をさ がし、イヤホンをはずして空を見上げ、耳をすまして様子を窺いやがて玄関口に 立つ等の確認動作がに誘発され聴覚的な忠実度の高さを示す。 また観衆に混じって収録した墨田川の花火の再生音は、花火の炸裂音が上空か ら聞こえ、其の反射音は岸辺のビルの方向から順次返ってそれぞれの方向を知覚 させ、更に雑踏中の個々の観衆の声は騒音とならずに夫々分離して明瞭に聞き分 けられてパーティー効果の高さを示す。 また左右にスピーカーを用いた従来のステレオ再生では、左遠方から接近して 前方を通過し右遠方に遠ざかる列車の通過音が「左スピーカーの後方から接近し 左右のスピーカー間を横断して右スピーカー後方に遠ざかる」いわゆる擦り鉢形 の軌跡を描いて再生されるなど、原音場のスケールが左右のスピーカー間距離を 越える場合には適正な再生音場を望み得なかったのであるが、本考案の再生音は 左遠方から接近して前方を通過し右遠方に一直線に遠ざかる適正な軌跡を採って 再生され、大編成のオーケストラを再生する場合に課せられるのと同じ条件下で 通常のステレオ再生をはるかに凌ぐ広大なスケールと高い臨場感が得られる。 また原音場において検出信号を直接イヤホン受聴した場合、この再生音は実際 の音声と聞分けが困難な程の忠実度と明瞭度をもって聞こえるほかに、一度音量 調整すると以後は音源が近ずいても遠ざかっても聴覚系の対応により音量調節の 要望が起こらず、軽度難聴の補聴器使用者に此の再生音を聞かせると従来の2/ 3程度の再生音圧で非常に明瞭に聞こえるという解答がぼぼ全員からかえってく る等「聴覚の支援に適する顕著な特徴」が認められる。 また映像の音声をサウンドフォログラグラムで収録し再生した場合、この再生 音は単に画面の中ばかりでなく、画面の外に移動した音源までを含めて在るべき 位置にそれぞれの音源を再現でき、従来にない特別な演出効果が得られる。 総じていえば本考案にかかる「イヤホン受聴対応耳形効果型立体再生」の再生 音は、聴覚系とよく適合して「聴取者自身が有する音の方向感覚を実際の音声と 同様この再生音に対しても発揮させる」という特徴があり、特に音響芸術の分野 、映像音響の分野、聴覚支援等の医療機器分野、精神の安静から睡眠にいたる間 の音響生理学的な分野までに其の応用が期待され実用化が待たれる。Effects of the Invention When a temporary listener Q1 is placed in the original sound field in FIG. 15, the sounds reaching the left and right auricles J1 and J2 are collected by the auricle shape toward the left and right ear canals, respectively. The left and right audio signals L1R1 having an ear-shaped effect are detected by the microphones M1M2 attached to the ear canal entrance E1E2. This detection signal L1R1 will be sent to the signal reproducing section via the signal transmission system REC using records as a medium, appropriately amplified by the amplifier A1A2, and then placed on the earphone Y1Y2 worn by the listener Q2. Here, a reproduced sound having an ear shape effect is reproduced in the left and right ear canals of the listener Q2. As a result, when the characteristics of the earphones Y1 and Y2 are appropriate, the stereoscopic sound source direction of the original sound field with respect to the temporary listener Q1 is perceived by the listener Q2 as is as it is. To give a few examples, if a sound character of about 1 m 2 in size is drawn in the space about 3 m in front of the tentative listener Q1 with white noise as a sound source, this character is about Arabic numerals, alphabets, or katakana. If it is a simple one, most of it is read by a listener Q2 with a closed eye and the ear shape effect is confirmed. Also, while monitoring this listener Q2, if a playback sound with a high inevitability such as "a telephone bell, thunder, and a call at the entrance door" is played during the experiment, whether this is the playback sound or not The listener Q2 reflexively calls the phone, removes the earphones, looks up at the sky, listens to the situation, and finally confirms that he / she is standing at the front door until it can determine whether there is any. It shows high auditory fidelity. In addition, the sound of the fireworks of Sumida River recorded mixed with the audience was heard from above the explosion of the fireworks, and the reflected sound was returned from the direction of the building on the shore in order to perceive each direction, and during the crowds. The voices of the individual spectators of each of them show a high party effect by being separated and clearly heard without becoming noise. Also, in conventional stereo playback using speakers on the left and right, the passing sound of a train approaching from the far left and passing in front and distant to the far right is `` coming from behind the left speaker and crossing between the left and right speakers to cross the right speaker. When the scale of the original sound field exceeds the distance between the left and right speakers, it was impossible to expect a proper reproduction sound field.For example, the reproduction of the present invention was not possible. The sound is played back in a proper trajectory, approaching from the far left, passing in the front, and distant in a straight line to the far right, which is much more normal stereophonic reproduction under the same conditions imposed when playing a large orchestra. You can get a vast scale and a high sense of realism. In addition, when the detection signal is heard directly in the original sound field through the earphone, the reproduced sound is heard with fidelity and intelligibility that makes it difficult to distinguish it from the actual sound. There is no need to adjust the volume due to the response of the auditory system even if it goes away, and the answer is that if the hearing aid user who has mild hearing loss hears this playback sound, it will be heard very clearly at the playback sound pressure of about 2/3 of the conventional one. "Remarkable features suitable for assisting hearing" such as returning from all the members are recognized. Also, when the sound of the video is recorded and played back as a sound follogram, it is possible to reproduce each sound source not only inside the screen but also at the position where it should be, including the sound source moved outside the screen. , You can get a special effect that has never been seen before. Generally speaking, the playback sound of the “earphone-type stereoscopic playback compatible with earphone listening” according to the present invention is well compatible with the auditory system, and “the sense of direction of the sound that the listener himself has is reproduced to this playback sound like the actual sound. It has a feature of `` demonstrating even against '', and its application is particularly applicable to the field of acoustic arts, the field of audiovisual, the field of medical devices such as hearing aids, and the field of acoustic physiology from the rest of the mind to sleep. Expected to be put to practical use.

【0018】 以上耳形効果の確認に基いて以下の4項が新規に実用化され、 1,イヤホン受聴対応耳形効果型立体再生信号の検出方法および装置。 2,イヤホン受聴対応耳形効果型立体マイクロホン。 3,イヤホン受聴対応耳形効果型立体再生用レコード類。 4,前記1,2,3,を包含して成るイヤホン受聴対応耳形効果型立体音響機器 。 理想イヤホンの原理に従って以下の2項が新規に実用化される。 5,耳形効果型立体再生対応イヤホン。 6,耳形効果型立体再生対応イヤホン類。Based on the above confirmation of the ear-shaped effect, the following four items are newly put into practical use: 1. A method and apparatus for detecting an ear-shaped stereoscopic reproduction signal compatible with earphone listening. 2, Ear-shaped stereo microphone for listening to earphones. 3, Ear type effect stereoscopic record for earphone listening. 4. An ear-shaped stereophonic device compatible with earphone listening, including the above-mentioned 1, 2, and 3. The following two terms are newly put into practical use according to the principle of the ideal earphone. 5. Ear effect type earphones for stereoscopic playback. 6, Ear effect type earphones for stereoscopic playback.

【提出日】平成6年12月10日[Submission date] December 10, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】考案の詳細な説明[Compensation target item name] Detailed explanation of the device

【補正方法】変更[Correction method] Change

【補正内容】[Correction content] 【考案の詳細な説明】[Detailed description of the device]

【0008】 以上を整理して聴覚系に備わる音の方向感覚をまとめると。 「人体聴覚系には音の立体的な方向感覚があり、左右方向が判別できる理由につ いては従来の両耳効果によって、左右の鼓膜に到達する音声の音圧レベル差と移 相差および到着時間差をもとに判別が行われ、前後方向ないし上下方向が判別で きる理由については、左右の耳介によって到来音声がそれぞれの外耳道に集音さ れる際、その耳介形状の非対称性により各到来方向ごとに夫々異なる音色特性が あたえられ、左右の鼓膜に到達した音声が有する此の特性から、耳介伝導音など とのかかわりによって其の音源方向が読みとられる結果、われわれに前後方向な いし上下方向の音源方向が知覚される」という説明を可能とする。 この新たな音の方向感覚に関する理論から「理想イヤホン」を対象として、原 音場の最適聴取位置における人体Q0の、左右の外耳道に集音される音声S1S 2と、この時、左右の耳介伝導により外耳道壁を経由して鼓膜に伝達される音声 S3S4をそれぞれ検出し、左の集音々声S1と左の耳介伝導音S3の和の音声 信号L1を得て是を左信号Lとし、右の集音々声S2と右の耳介伝導音S4の和 の音声信号R1を得て是を右信号Rとする「イヤホン受聴対応耳形効果型立体再 生信号の検出方法」が導かれる。 特に理想イヤホンを対象とした理由は、再生時に耳甲介腔、外耳道、イヤホン 自体に共鳴を生じた場合、これが頭内定位して聞こえるなど再生音の定位の質を 損なう問題があり、論理上この影響を排除して原理の適正を期するという目的に よるもので、通常のイヤホンであっても実用上の問題はほとんどない。 第4図は通常会話周波数帯1〜4Khzの範囲に対する耳介の主な指向性方向 。 第5図は其周波数帯の上6〜16Khzの範囲に対する耳介の主な指向性方向 。 第6図に其の指向性を有する左右の外耳道入口に夫々マイクロホンM1M2を 装着し「イヤホン受聴対応耳形効果型立体再生信号」が検出できる様にした場合 の外耳中耳の模型的断面図を示した。By summarizing the above, the sense of direction of sounds provided in the auditory system is summarized. `` The reason why the human auditory system has a stereoscopic sense of direction of sound, and the reason why the left and right directions can be discriminated is that the conventional binaural effect causes the difference in sound pressure level and the phase difference and arrival of the sound that reaches the left and right eardrums. The reason is that discrimination is performed based on the time difference, and the front-back direction or the vertical direction can be discriminated.When the incoming voice is collected by the left and right auricles to the respective ear canals, the asymmetry of the auricle shape causes Different sound color characteristics are given to each direction of arrival, and from this characteristic of the sound that reaches the left and right eardrums, the direction of the sound source can be read in relation to the auricular conduction sound, etc. The vertical direction of the sound source is perceived. ” Based on this new theory of directional sense of sound, targeting the “ideal earphones”, the sound S1S2 collected in the left and right ear canals of the human body Q0 at the optimum listening position in the original sound field, and the left and right auricles at this time. Each of the voices S3S4 transmitted to the eardrum via the external auditory meatus wall by conduction is detected, and a sum voice signal L1 of the left collected voice S1 and the left auricle conduction sound S3 is obtained to be the left signal L, A “method for detecting ear-shaped effect type stereoscopic reproduction signal compatible with earphone listening” is obtained in which the right sound signal R1 is obtained by obtaining the sum sound signal R1 of the right collected voice S2 and the right auricle conduction sound S4. In particular, the reason for targeting ideal earphones is that if resonance occurs in the concha of ear, external auditory meatus, or the earphone itself during playback, there is a problem that the quality of the localization of the reproduced sound is impaired, such as the fact that this is localized in the head, which is a logical issue. The purpose of this is to eliminate this effect and ensure the properness of the principle, and even with normal earphones, there are almost no practical problems. FIG. 4 shows the main directivity directions of the auricle in the normal conversation frequency band of 1 to 4 Khz. FIG. 5 shows the main directivity directions of the auricle in the range of 6 to 16 Khz above the frequency band. Fig. 6 shows a model cross-sectional view of the middle ear of the outer ear when microphones M1M2 are attached to the left and right ear canal entrances having the directivity, respectively, and "ear effect stereoscopic reproduction signal compatible with earphone listening" can be detected. Indicated.

【0010】 以上は、原音場の音声を直接「イヤホン受聴対応耳形効果型立体再生信号」と して検出する方法であるが、すでに録音済みの音声信号G1〜Gnをイヤホン受 聴用に変換したい場合がある。以下その方法について説明する。 特定信号G1を特定位置X1に定位させ様とする場合、まず左右の外耳道にマ イクロホンM1M2装着した人体Q0を配置し、このQ0から見て再生音が定位 すべき位置X1に音源SPを配置する。次に位置X1と人体Q0が装着したマイ クロホンM1M2の内、 (1)まずX1−M1間の音声伝達特性K1 を前記音源SPとマイクロホンM 1間で測定。 (2)次にX1−M2間の音声伝達特性K1を前記音源SPとマイクロホンM 2間で測定。 (3)測定された音声伝達特性K1,K1と等価な信号伝達特性B1,B1 をそれぞれ入出力間特性として有する一対の特性制御回路βを準備し、第9図の 様に構成して入力端子IN−1から特定信号G1を並列入力すれば、その出力と してQ0の左右の外耳道に装着されたマイクロホンM1M2による場合と等価な 左信号L1と右信号R1が検出される。また是を必要な組数用いてマルチ再生さ れる複数の音声信号G1〜Gnを前記M1M2によるものと等価な左信号L1と 右信号R1とに変換できる。 以上は、位置X1の音源SPに対する前記Q0の聴取条件を、正確に特性制御 回路内にB1,B1として置換するもので、第9図の回路は、前記M1M2に よるものと等価な「イヤホン受聴対応耳形効果型立体再生信号検出装置」として はたらく。 また前記Q0の左右の外耳道に装着されたマイクロホンM1M2の検出信号を 用いて音声伝達特性K1K1の測定が求められる理由は、到来音声に対する耳 介の集音特性と耳介の伝導特性の相方を伝達特性K1K2の測定結果として得る 事が望まれるためで、これをB1,B1として特性制御回路β内に置換する事 によって耳介伝導音を含む音声信号の検出が可能となる。The above is the method of directly detecting the sound in the original sound field as the “earphone effect type stereoscopic reproduction signal compatible with earphone listening”, but the already recorded sound signals G1 to Gn are converted for earphone listening. You may want to. The method will be described below. When the specific signal G1 is to be localized at the specific position X1, the human body Q0 with the microphones M1M2 is first placed in the left and right ear canals, and the sound source SP is placed at the position X1 where the reproduced sound should be localized when viewed from Q0. . Next, among the microphones M1M2 attached to the position X1 and the human body Q0, (1) First, the voice transfer characteristic K1 between X1 and M1 is measured between the sound source SP and the microphone M1. (2) Next, the voice transfer characteristic K1 1 between X1 and M2 is measured between the sound source SP and the microphone M 2. (3) A pair of characteristic control circuits β having the signal transfer characteristics B1 and B1 1 equivalent to the measured voice transfer characteristics K1 and K1 1 as input-output characteristics are prepared and configured as shown in FIG. When the specific signal G1 is input in parallel from the input terminal IN-1, as its output, the left signal L1 and the right signal R1 equivalent to those obtained by the microphones M1M2 attached to the left and right ear canals of Q0 are detected. Further, it is possible to convert a plurality of audio signals G1 to Gn, which are multi-reproduced by using the required number of sets, into a left signal L1 and a right signal R1 which are equivalent to those of M1M2. In the above, the listening condition of Q0 with respect to the sound source SP at the position X1 is accurately replaced by B1 and B1 1 in the characteristic control circuit. The circuit of FIG. 9 is equivalent to that of the M1M2 "earphone". It acts as an ear-shaped effect type stereoscopic reproduction signal detection device ". The reason why the measurement of the voice transfer characteristic K1K1 1 is required by using the detection signals of the microphones M1M2 attached to the left and right ear canals of Q0 is because of the difference between the ear pickup characteristics and the ear conduction characteristics for the incoming voice. because it is desired to obtain a measurement result of the transfer characteristic K1K2, it is possible to detect the audio signal including the auricle conduction sound thereby that replaces the characteristic control circuit β as B1, B1 1.

【提出日】平成7年12月29日[Submission date] December 29, 1995

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】 以上を整理して聴覚系に備わる音の方向感覚をまとめると。 「人体聴覚系には音の立体的な方向感覚があり、左右方向が判別できる理由につ いては従来の両耳効果によって、左右の鼓膜に到達する音声の音圧レベル差と移 相差および到着時間差をもとに判別が行われ、前後方向ないし上下方向が判別で きる理由については、左右の耳介によって到来音声がそれぞれの外耳道に集音さ れる際、その耳介形状の非対称性により各到来方向ごとに夫々異なる音色特性が あたえられ、左右の鼓膜に到達した音声が有する此の特性から、耳介伝導音など とのかかわりによって其の音源方向が読みとられる結果、われわれに前後方向な いし上下方向の音源方向が知覚される」という説明を可能とする。 この新たな音の方向感覚に関する理論から「理想イヤホン」を対象として、 原音場の最適聴取位置における人体Q0の、左右の外耳道に集音される音声S1 S2と、この時、左右の耳介伝導により外耳道壁を経由して鼓膜に伝達される音 声S3S4をそれぞれ検出し、左の集音々声S1と左の耳介伝導音S3の和の音 声信号L1を得て是を左信号Lとし、右の集音々声S2と右の耳介伝導音S4の 和の音声信号R1を得て是を右信号Rとする「イヤホン受聴対応耳形効果型立体 再生信号の検出方法」が導かれる。 特に理想イヤホンを対象とした理由は、再生時に耳甲介腔、外耳道、イヤホン 自体に共鳴を生じた場合、これが頭内定位して聞こえるなど再生音の定位の質を 損なう問題があり、論理上この影響を排除して原理の適正を期するという目的に よるもので、通常のイヤホンであっても実用上の問題はほとんどない。 第4図は通常会話周波数帯1〜4Khzの範囲に対する耳介の主な指向性方向 。 第5図は其周波数帯の上6〜16Khzの範囲に対する耳介の主な指向性方向 。 第6図に其の指向性を有する左右の外耳道入口に夫々マイクロホンM1M2を 装着し「イヤホン受聴対応耳形効果型立体再生信号」が検出できる様にした場合 の外耳中耳の模型的断面図を示した。」By summarizing the above, the sense of direction of sounds provided in the auditory system is summarized. `` The reason why the human auditory system has a stereoscopic sense of direction of sound, and the reason why the left and right directions can be discriminated is that the conventional binaural effect causes the difference in sound pressure level and the phase difference and arrival of the sound that reaches the left and right eardrums. The reason is that discrimination is performed based on the time difference, and the front-back direction or the vertical direction can be discriminated.When the incoming voice is collected by the left and right auricles to the respective ear canals, the asymmetry of the auricle shape causes Different sound color characteristics are given to each direction of arrival, and from this characteristic of the sound that reaches the left and right eardrums, the direction of the sound source can be read in relation to the auricular conduction sound, etc. The vertical direction of the sound source is perceived. ” From this new theory of directional sense of sound, targeting the “ideal earphones”, the sounds S1 and S2 collected in the left and right ear canals of the human body Q0 at the optimal listening position in the original sound field and the left and right ear conduction Each of the voices S3S4 transmitted to the eardrum via the wall of the ear canal is detected by, and a sum voice signal L1 of the left collected voice S1 and the left ear-conducted sound S3 is obtained, and the left signal L is defined as , A method for detecting an ear-shaped stereoscopic reproduction signal compatible with earphone listening is obtained in which a right voice signal R1 is obtained by obtaining the sum voice signal R1 of the right collected voice S2 and the right auricle conduction sound S4. In particular, the reason for targeting ideal earphones is that if resonance occurs in the concha of ear, external auditory meatus, or the earphone itself during playback, there is a problem that the quality of the localization of the reproduced sound is impaired, such as the fact that this is localized in the head, which is a logical issue. The purpose of this is to eliminate this effect and ensure the properness of the principle, and even with normal earphones, there are almost no practical problems. FIG. 4 shows the main directivity directions of the auricle in the normal conversation frequency band of 1 to 4 Khz. FIG. 5 shows the main directivity directions of the auricle in the range of 6 to 16 Khz above the frequency band. Fig. 6 shows a model cross-sectional view of the middle ear of the outer ear when microphones M1M2 are attached to the left and right ear canal entrances having the directivity, respectively, and "ear effect stereoscopic reproduction signal compatible with earphone listening" can be detected. Indicated. "

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】 以上は、原音場の音声を直接「イヤホン受聴対応耳形効果型立体再生信号」と して検出する方法であるが、すでに録音済みの音声信号G1〜Gnをイヤホン受 聴用に変換したい場合がある。以下その方法について説明する。 特定信号G1を特定位置X1に定位させ様とする場合、まず左右の外耳道にマ イクロホンM1M2を装着した人体Q0を配置し、このQ0から見て再生音が定 位すべき位置X1に音源SPを配置する。つぎに位置X1と人体Q0が装着した マイクロホンM1M2の内、 (1)まずX1−M1間の音声伝達特性K1を前記音源SPとマイクロホンM1 間で測定。 (2)次にX1−M2間の音声伝達特性K1を前記音源SPとマイクロホンM 2間で測定。 (3)測定された音声伝達特性K1,K1と等価な信号伝達特性B1,B1 をそれぞれ入出力間特性として有する一対の特性制御回路βを準備し、第9図の 様に構成して入力端子IN−1から特定信号G1を並列入力すれば、その出力と してQ0の左右の外耳道に装着されたマイクロホンM1M2による場合と等価な 左信号L1と右信号R1が検出される。また是を必要な組数用いてマルチ再生さ れる複数の音声信号G1〜Gnを前記M1M2によるものと等価な左信号L1と 右信号R1とに変換できる。 以上は、位置X1の音源SPに対する前記Q0の聴取条件を、正確に特性制御 回路内にB1,B1として置換するもので、第9図の回路は、前記M1M2に よるものと等価な「イヤホン受聴対応耳形効果型立体再生信号検出装置」として はたらく。 また前記Q0の左右の外耳道に装着されたマイクロホンM1M2の検出信号を 用いて音声伝達特性K1K1の測定が求められる理由は、到来音声に対する耳 介の集音特性と耳介の伝導特性の相方を伝達特性K1K2の測定結果として得る 事が望まれるためで、これをB1,B1として特性制御回路β内に置換する事 によって耳介伝導音を含む音声信号の検出が可能となる。」The above is the method of directly detecting the sound in the original sound field as the “earphone effect type stereoscopic reproduction signal compatible with earphone listening”, but the already recorded sound signals G1 to Gn are converted for earphone listening. You may want to. The method will be described below. In order to localize the specific signal G1 to the specific position X1, first place the human body Q0 with the microphones M1M2 on the left and right ear canals, and place the sound source SP at the position X1 where the reproduced sound should be localized when viewed from this Q0. Deploy. Next, among the microphones M1M2 attached to the position X1 and the human body Q0, (1) First, the voice transfer characteristic K1 between X1 and M1 is measured between the sound source SP and the microphone M1. (2) Next, the voice transfer characteristic K1 1 between X1 and M2 is measured between the sound source SP and the microphone M 2. (3) A pair of characteristic control circuits β having the signal transfer characteristics B1 and B1 1 equivalent to the measured voice transfer characteristics K1 and K1 1 as input-output characteristics are prepared and configured as shown in FIG. When the specific signal G1 is input in parallel from the input terminal IN-1, as its output, the left signal L1 and the right signal R1 equivalent to those obtained by the microphones M1M2 attached to the left and right ear canals of Q0 are detected. Further, it is possible to convert a plurality of audio signals G1 to Gn, which are multi-reproduced by using the required number of sets, into a left signal L1 and a right signal R1 which are equivalent to those of M1M2. In the above, the listening condition of Q0 with respect to the sound source SP at the position X1 is accurately replaced by B1 and B1 1 in the characteristic control circuit. The circuit of FIG. 9 is equivalent to that of the M1M2 "earphone". It acts as an ear-shaped effect type stereoscopic reproduction signal detection device ". The reason why the measurement of the voice transfer characteristic K1K1 1 is required by using the detection signals of the microphones M1M2 attached to the left and right ear canals of Q0 is because of the difference between the ear pickup characteristics and the ear conduction characteristics for the incoming voice. because it is desired to obtain a measurement result of the transfer characteristic K1K2, it is possible to detect the audio signal including the auricle conduction sound thereby that replaces the characteristic control circuit β as B1, B1 1. "

【図面の簡単な説明】[Brief description of drawings]

【第1図】(イ)単耳聴の説明図 (ロ)耳形効果の説明図[Fig. 1] (a) Explanatory diagram of monophonic hearing (b) Explanatory diagram of ear shape effect

【第2図】(イ)単耳再生の説明図 (ロ)耳介伝導音説明図[Fig. 2] (a) Illustration of single ear reproduction (b) Illustration of auricular conduction sound

【第3図】(イ)伝導音作用説明図 (ロ)他方音作用説明図[FIG. 3] (a) Illustration of conduction sound effect (b) Illustration of other sound effect

【第4図】(イ)中域指向性説明図1 (ロ)中域指向性説明図2[FIG. 4] (a) Illustration of mid-range directivity 1 (b) Illustration of mid-range directivity 2

【第5図】(イ)高域指向性説明図1 (ロ)高域指向性説明図2[FIG. 5] (a) High-frequency directivity explanatory diagram 1 (b) High-frequency directivity explanatory diagram 2

【第6図】(イ)右耳介模型断面図 (ロ)左耳介模型断面図[Fig. 6] (a) Cross section of right auricle model (b) Cross section of left auricle model

【第7図】(イ)信号検出法説明図1 (ロ)検出マイク外観図[Fig. 7] (a) Illustration of signal detection method 1 (b) External view of detection microphone

【第8図】(イ)信号検出法説明図2 (ロ)信号検出法説明図3[FIG. 8] (a) Signal detection method explanatory diagram 2 (b) Signal detection method explanatory diagram 3

【第9図】 検出装置の構成図[Fig. 9] Configuration diagram of a detection device

【第10図】(イ)中空管側面上面図 (ロ)マイク装填透視図 (ハ)マイク機構透視図[Fig. 10] (a) Side view of hollow tube (b) Perspective view of microphone loading (c) Perspective view of microphone mechanism

【第11図】(イ)集音板 正面図 (ロ)側面の一部断面図 (ハ)組付の一部断面図[Fig. 11] (a) Sound collecting plate Front view (b) Partial sectional view of side surface (c) Partial sectional view of assembly

【第12図】 組合せ一部断面図[Fig. 12] Partial sectional view of combination

【第13図】(イ)耳介模型 断面図 (ロ)新イヤホン外観図 (ハ)装着位置の説明図[Fig. 13] (A) Cross section of auricle model (B) External view of new earphone (C) Explanatory diagram of mounting position

【第14図】 新立体再生原理図[Fig.14] New stereoscopic reproduction principle diagram

【第15図】 新立体再生構成図[Fig. 15] New stereoscopic playback configuration diagram

【第16図】 旧立体再生構成図1[Fig. 16] Old stereoscopic reproduction configuration diagram 1

【第17図】 旧立体再生構成図2[FIG. 17] Old stereoscopic playback configuration diagram 2

【符号の説明】[Explanation of symbols]

1 中 空 管 d 下 方
P0 両端開放中空管 2 中空管の窓 D1 頭部ダミー
PX 一端密封中空管 3 マイクロホン D2 耳介ダミー
μs 微小スピーカー 4 吸 音 材 EQ イコライザー
Q0 人 体 5 出 力 線 E1 左外耳道入口
Q1 仮の聴取者 6 集 音 板 E2 右外耳道入口
Q2 聴 取 者 7 貫通口背部 f 前 方
R0 右信号出力 8 準密閉箱 G1 特定信号1
R1 右立体信号 9 固定ネジ G2 特定信号2
Ri 右信号入力 10 スタンド上部 Gn 特定信号n
R 右 信 号 11 取付け板 H1 ヘッドホン左
r 右 12 貫 通 口 H2 ヘッドホン右
RECレコード類 A1 左信号増幅器 Hf 高域指向性
SP 音 源 A2 右信号増幅器 IN 入力端子
S1 左耳介集音々声 A1左信号加算器 J1 耳 介 左
S2 右耳介集音々声 A2右信号加算器 J2 耳 介 右
S3 左耳介伝導音 β 特性制御回路 K1 左音声伝達特性
S4 右耳介伝導音 B1 左信号伝達特性1 K1右音声伝達特性
T1 左 鼓 膜 B1右信号伝達特性1 L 左 信 号
T2 右 鼓 膜 B2 左信号伝達特性2 L1 左立体信号
u 上 方 B2右信号伝達特性2 Li 左信号入力
W ワイヤーフレーム Bn 左信号伝達特性n Lo 左信号出力
Y1 左イヤホン Bn右信号伝達特性n LFPローパスフィルタ
Y2 右イヤホン b 後 方 1 左 方
Zi 左内部音響負荷 c1 鼓 室 左 M1 左マイクロホン
Zo 左外部音響負荷 C2 鼓 室 右 M2 右マイクロホン
Zi右内部音響負荷 COM接地端子 Mf 中域指向性
Zo右外部音響負荷
1 Mid-air tube d Lower
P0 Both ends open hollow tube 2 Hollow tube window D1 Head dummy
PX One end sealed hollow tube 3 Microphone D2 Auricle dummy
μs Micro speaker 4 Sound absorption material EQ equalizer
Q0 Human body 5 Output line E1 Left ear canal entrance
Q1 Temporary listener 6th sound board E2 Right ear canal entrance
Q2 listener 7 through mouth back f front
R0 Right signal output 8 Semi-closed box G1 Specific signal 1
R1 Right stereo signal 9 Fixing screw G2 Specific signal 2
Ri Right signal input 10 Stand upper part Gn Specific signal n
R right signal 11 mounting plate H1 headphone left
r right 12 through hole H2 headphone right
REC records A1 Left signal amplifier Hf High frequency directivity
SP sound source A2 right signal amplifier IN input terminal
S1 Left auricular voice collection A1 1 Left signal adder J1 Auricle left
S2 right auricle pick-up voice A2 1 right signal adder J2 auricle right
S3 Left ear conduction sound β characteristic control circuit K1 Left voice transfer characteristic
S4 Right ear conduction sound B1 Left signal transfer characteristic 1 K1 1 Right voice transfer characteristic
T1 Left eardrum B1 1 Right signal transfer characteristic 1 L Left signal
T2 Right eardrum B2 Left signal transfer characteristic 2 L1 Left stereo signal
u Upper B2 1 Right signal transfer characteristic 2 Li Left signal input
W Wireframe Bn Left signal transfer characteristic n Lo Left signal output
Y1 Left earphone Bn 1 Right signal transfer characteristic n LFP Low pass filter
Y2 Right earphone b Rear 1 Left
Zi Left internal acoustic load c1 Drum chamber left M1 left microphone
Zo Left external acoustic load C2 Drum chamber right M2 right microphone
Zi 1 Right internal acoustic load COM Ground terminal Mf Mid-range directivity
Zo 1 right external acoustic load

【手続補正書】[Procedure amendment]

【提出日】平成6年12月10日[Submission date] December 10, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】実用新案登録請求の範囲[Name of item to be amended] Scope of utility model registration request

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【実用新案登録請求の範囲】[Scope of utility model registration request]

Claims (8)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 左右一対の立体音声信号中少なくとも上
下方向に関する再生音定位方向変化の情報を各再生音の
音色特性の変化として検出する事を主なる特徴とする
「イヤホン受聴対応耳形効果型立体再生信号の検出方法
および装置」。
1. An earphone-type earphone-effect-type capable of listening to earphones, which is characterized mainly in that information about a change in a localization direction of a reproduced sound in at least a vertical direction is detected as a change in a tone color characteristic of each reproduced sound in a pair of left and right stereoscopic audio signals. Method and apparatus for detecting stereoscopic reproduction signal ".
【請求項2】 通常使用の状態において左右一対の立体
音声信号中少なくとも上下方向に関する再生音定位方向
変化の情報を各再生音の音色特性の変化として検出する
事を主な徴とする「イヤホン受聴対応耳形効果型立体マ
イクロホン」。
2. In a normal use state, "earphone listening" is a main characteristic of detecting information of a reproduced sound localization direction change in at least a vertical direction in a pair of left and right stereophonic signals as a change of a tone color characteristic of each reproduced sound. Corresponding ear shape stereo microphone.
【請求項3】 左右一対の立体音声信号中少なくとも上
下方向に関する再生音定位方向変化の情報を各再生音の
音色特性の変化として記録する事を主なる特徴とする
「イヤホン受聴対応耳形効果型立体再生用レコード
類」。
3. The earphone-type ear-effect type compatible with listening to earphones, which is characterized mainly in that information about a change in a localization direction of a reproduced sound in at least an up-and-down direction is recorded as a change of a tone color characteristic of each reproduced sound in a pair of left and right stereoscopic audio signals. Records for stereoscopic playback. "
【請求項4】 通常の使用状態において一部に実用新案
登録請求の範囲第1項記載「イヤホン受聴対応耳形効果
型立体再生信号の検出装置」を構成し、または内臓する
事を主な特徴とする「イヤホン受聴対応耳形効果型立体
音響機器」。
4. The main feature of the invention is that it constitutes or has a built-in "earpiece effect type stereoscopic reproduction signal detection device compatible with earphone listening" according to claim 1 in a part of the utility model registration under normal use conditions. "Ear effect stereophonic device compatible with earphone listening".
【請求項5】 通常の使用状態において一部に実用新案
登録請求の範囲第2項記載「イヤホン受聴対応耳形効果
型立体マイクロホン」を構成し、または内臓する事を主
な特徴とする「イヤホン受聴対応耳形効果型立体音響機
器」。
5. An earphone, which is characterized mainly by constituting or having a built-in "ear effect stereoscopic microphone compatible with earphone listening" according to claim 2 in a part of utility model registration under normal use condition. Ear-effect stereophonic device compatible with listening. "
【請求項6】 通常の使用状態において一部に実用新案
登録請求の範囲第3項記載「イヤホン受聴対応耳形効果
型立体再生用レコード類」を構成し、または内臓する事
を主な特徴とする「イヤホン受聴対応耳形効果型立体音
響機器」。
6. The main feature of the present invention is that, in a normal use state, a part of the utility model registration is the "ear-effect stereoscopic playback records compatible with earphone listening" described in claim 3. "Ear effect stereoscopic sound equipment for earphone listening".
【請求項7】 振動板の正面を外耳道内に音響結合し背
面を耳甲介腔内に音響結合する事を主な特徴とする「耳
形効果型立体再生対応イヤホン」
7. An ear-effect stereoscopic playback-compatible earphone whose main feature is to acoustically couple the front side of the diaphragm into the external auditory meatus and the rear side into the concha of the ear.
【請求項8】 使用状態において耳甲介腔下部の外側に
再生音の開口部が位置する構成である事を主な特徴とす
る「耳形効果型立体再生対応イヤホン類」。
8. "Ear effect stereoscopic playback compatible earphones", which is characterized mainly in that the opening of the reproduced sound is located outside the lower concha of the ear in use.
JP1994011022U 1994-08-03 1994-08-03 Sound program and related equipment Expired - Lifetime JP3027822U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1994011022U JP3027822U (en) 1994-08-03 1994-08-03 Sound program and related equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1994011022U JP3027822U (en) 1994-08-03 1994-08-03 Sound program and related equipment

Publications (1)

Publication Number Publication Date
JP3027822U true JP3027822U (en) 1996-08-20

Family

ID=43162916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1994011022U Expired - Lifetime JP3027822U (en) 1994-08-03 1994-08-03 Sound program and related equipment

Country Status (1)

Country Link
JP (1) JP3027822U (en)

Similar Documents

Publication Publication Date Title
US11722812B2 (en) Non-blocking dual driver earphones
US9615189B2 (en) Artificial ear apparatus and associated methods for generating a head related audio transfer function
US5073936A (en) Stereophonic microphone system
US3985960A (en) Stereophonic sound reproduction with acoustically matched receiver units effecting flat frequency response at a listener's eardrums
US8638963B2 (en) Ear defender with concha simulator
KR20200143707A (en) Audio enhancement hearing protection system
TW200908670A (en) Earphone microphone
US8442244B1 (en) Surround sound system
US5031216A (en) Device for stereophonic recording of sound events
Poldy Headphones
US20210250686A1 (en) Method and apparatus for processing an audio signal based on equalization filter
Toole The acoustics and psychoacoustics of headphones
JP3027822U (en) Sound program and related equipment
US3790711A (en) Sterophony - simulating earphone
CA1050655A (en) Microphone apparatus
JPH0851687A (en) Sound hologram and related equipment
JPS62199198A (en) Muffler for reproducing sound field
JP3047451B2 (en) Sound reproduction device
US11240620B2 (en) Methods for making spatial microphone subassemblies, recording system and method for recording left and right ear sounds for use in virtual reality playback
JPH0851686A (en) Closed type stereophonic headphone device
WO2021129196A1 (en) Voice signal processing method and device
JPH0260400A (en) Sound reproducing system
Kinnunen Headphone development research
US9860631B2 (en) Sound recording module
JPH05130696A (en) Binaural type cordless hearing aid device