JPH0849553A - Internal combustion engine by composite piston and composite cylinder and lubricant guide hole forced feed path and forced feed system with air and air-fuel mixture - Google Patents

Internal combustion engine by composite piston and composite cylinder and lubricant guide hole forced feed path and forced feed system with air and air-fuel mixture

Info

Publication number
JPH0849553A
JPH0849553A JP21035294A JP21035294A JPH0849553A JP H0849553 A JPH0849553 A JP H0849553A JP 21035294 A JP21035294 A JP 21035294A JP 21035294 A JP21035294 A JP 21035294A JP H0849553 A JPH0849553 A JP H0849553A
Authority
JP
Japan
Prior art keywords
air
piston
compound
cylinder
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21035294A
Other languages
Japanese (ja)
Inventor
Taijiro Kawamura
泰次郎 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21035294A priority Critical patent/JPH0849553A/en
Publication of JPH0849553A publication Critical patent/JPH0849553A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce the nitrogen oxide in the exhaust gas by forming three independent rooms of a combustion room, a mixture room, and an air room via the steps in a cylinder generated by the reciprocating motion of a composite piston, and allowing the two-cycle motion with the multiplier effect of three rooms. CONSTITUTION:When a protruded composite piston 4 is inserted into a composite cylinder, a combustion room at the upper section, a fuel-air mixture room 14 at the middle, and an air room 7 at the lower section are formed. When the composite piston 4 is lowered and the space of the air-fuel mixture room 14 is increased, suction force is generated, the air-fuel mixture from an air-fuel mixture suction port 15 is sucked into the air-fuel mixture room 14, and the air in the air room 7 is compressed by the descent of the composite piston 4. When the composite piston 4 is lifted, air is sucked into the air room 7 via an air intake valve 17, an explosion of the air-fuel mixture occurs in the combustion room. When the composite piston 4 is lowered to a prescribed crank angle, the exhaust gas is discharged from a discharge port 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、引火性液体の燃料
を、燃焼室内で爆発させることによって燃焼室内部に組
み込まれたピストンを往復運動させ出力を引き出すピス
トン式内燃機関に関する発明です。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piston type internal combustion engine that explodes a flammable liquid fuel in a combustion chamber to reciprocate a piston incorporated in the combustion chamber to extract output.

【0002】[0002]

【従来の技術】 従来のピストン式内燃機関では燃焼室
の容積を越える空気又は、空気と引火性液体燃料の混合
気(以下、混合気と呼ぶ)を燃焼室部に吸収し出力の増
大を計る場合、排気タービン駆動による過給気とクラン
クシャフトから直接的に回転力を取り出し機械駆動で過
給するスーパー・チャーヂャーなどがあるが、いずれの
方式を用いても燃焼室の容積に対してわずかな空気又は
混合気の増大しかなく、またノンターボエンジンと比較
すると非常に過酷な状態におかれるためエンジンの耐久
性に問題が生じることがあった。
2. Description of the Related Art In a conventional piston type internal combustion engine, an increase in output is measured by absorbing air exceeding the volume of the combustion chamber or a mixture of air and flammable liquid fuel (hereinafter referred to as mixture) into the combustion chamber. In this case, there is a supercharger that uses supercharged air driven by an exhaust turbine and takes out the rotational force directly from the crankshaft and supercharged by mechanical drive. There was a problem in the durability of the engine because there was only an increase in the air or the air-fuel mixture and the condition was very severe as compared with the non-turbo engine.

【0003】そして2サイクル内燃機関においては主燃
料となるガソリンに潤滑油を混入しなければならなかっ
た。さらに従来の内燃機関においては、燃焼室内で爆発
後の残留ガスが二次燃焼されないために、排出される排
気ガス中に窒素酸化物の排出量が非常に多いという問題
点があった。
In the two-cycle internal combustion engine, it has been necessary to mix lubricating oil with gasoline as the main fuel. Further, in the conventional internal combustion engine, the residual gas after the explosion is not secondarily combusted in the combustion chamber, so that there is a problem that the emission amount of nitrogen oxides in the exhaust gas emitted is very large.

【0004】[0004]

【発明が解決しようとする課題】この発明は、いままで
のピストン式内燃機関の種々の問題を解決する2サイク
ル内燃機関の提供を目的としています。
SUMMARY OF THE INVENTION An object of the present invention is to provide a two-cycle internal combustion engine which solves various problems of conventional piston type internal combustion engines.

【0005】[0005]

【課題を解決するための手段】この発明の2サイクル内
燃機関は、円筒形の燃焼室の下部に、その燃焼室よりも
径の大きな円筒形のシリンダーがあり、上部に位置する
円筒形の燃焼室の底辺の円の中心点と、上辺の円の中心
点を結ぶ中心軸が、下部に位置する円筒形のシリンダー
の底辺の円の中心点と、上辺の円の中心点を結ぶ中心軸
と同じ中心軸である。上部に位置する円筒形の燃焼室の
底辺と、下部に位置する円筒形のシリンダの上辺は一体
となっている。
In a two-cycle internal combustion engine of the present invention, a cylindrical combustion chamber having a cylindrical cylinder with a diameter larger than that of the combustion chamber is provided in the lower part of the cylindrical combustion chamber, and a cylindrical combustion chamber located in the upper part. The center axis connecting the center point of the circle at the bottom of the chamber and the center point of the circle at the top is the center axis of the circle at the bottom of the cylindrical cylinder located at the bottom and the center axis connecting the center of the circle at the top. Same central axis. The bottom side of the cylindrical combustion chamber located at the top and the top side of the cylindrical cylinder located at the bottom are integrated.

【0006】この一体となった燃焼室とシリンダー(以
下、複式シリンダーと呼ぶ)に、はめ合う凸型のピスト
ン(以下、複式ピストンと呼ぶ)を設ける。この複式ピ
ストンの上部と下部に位置する円筒形の曲面の高さは、
複式シリンダーの上部と下部に位置する円筒形の曲面の
高さよりも短くなっている。この複式ピストンの往復運
動によって複式シリンダー内部に三つの部屋を作りだす
ことができる。
A convex piston (to be referred to as a compound piston hereinafter) which fits is provided in the combustion chamber and a cylinder (hereinafter to be referred to as a compound cylinder) which are integrated with each other. The height of the cylindrical curved surfaces located at the top and bottom of this compound piston is
It is shorter than the height of the cylindrical curved surfaces located at the top and bottom of the compound cylinder. By the reciprocating motion of this compound piston, three chambers can be created inside the compound cylinder.

【0007】この三つの独立した部屋の上部に位置する
部屋を燃焼室、中部に位置する部屋を混合気を吸入、圧
送する混合気室、(以下、混合気室と呼ぶ)下部に位置
する部屋を空気を吸入、圧送する空気室とし、中部に位
置する混合気室より混合気を混合気圧送管を通り他のコ
ンロッドを介している燃焼室に圧送し、そして他のコン
ロッドを介している混合気室より混合気を自己の燃焼室
に圧送を受け、また下部に位置する空気室より空気圧送
管を通り同じコンロッドを介している燃焼室に空気を圧
送します。
A chamber located in the upper part of the three independent chambers is a combustion chamber, a room in the middle part is a mixture chamber for sucking in and pumping a mixture, and a room in the lower part (hereinafter referred to as mixture chamber) Is an air chamber for inhaling and pumping air, and the air-fuel mixture is pumped from the air-fuel mixture chamber located in the center to the combustion chamber through the other connecting rod through the mixing air pressure feeding pipe, and then through the other connecting rod. The air-fuel mixture is pressure-fed to its own combustion chamber, and air is pressure-fed to the combustion chamber through the same connecting rod from the air chamber located at the bottom.

【0008】さらに潤滑油をオイルポンプにより、複式
シリンダー内に設けられている潤滑油誘導穴圧送経路を
通り、そこより複式ピストン内に設けられている潤滑油
誘導穴圧送経路に取り入れ、複式ピストンの上部円筒形
ピストンリングと下部円筒形ピストンリングに送ること
を特徴とする内燃機関です。
Further, the lubricating oil is passed by an oil pump through a lubricating oil guide hole pressure feed path provided in the compound cylinder, and is introduced into the lubricating oil guide hole pressure feed path provided in the compound piston from there, and the compound piston An internal combustion engine characterized by feeding to an upper cylindrical piston ring and a lower cylindrical piston ring.

【0009】[0009]

【作用】この発明の2サイクル内燃機関には、複式シリ
ンダーとその内部にはめ合うピストンを複式とすること
で複式ピストンの往復運動によって複式シリンダー内部
にできる段差を利用して、燃焼室、混合気室、空気室の
独立した三つの部屋を作る。燃焼室、混合気室、空気室
の相乗効果によって従来の4サイクル内燃機関を2サイ
クルとなしえ、ピストンの働きを半減し、爆発で得た出
力を効果的に引き出すことができるようにした。
In the two-stroke internal combustion engine of the present invention, the double cylinder and the piston fitted in the double cylinder are used as the double cylinder, and the step formed inside the double cylinder by the reciprocating motion of the double piston is used to make the combustion chamber and the air-fuel mixture. Create three independent rooms, an air room and an air room. Due to the synergistic effect of the combustion chamber, air-fuel mixture chamber, and air chamber, the conventional four-cycle internal combustion engine can be made into two cycles, the function of the piston is halved, and the output obtained by the explosion can be effectively extracted.

【0010】また爆発後の残留ガスは空気室より空気
を、爆発後の燃焼室に圧送することにより爆発後の高温
度となっている残留ガスと混じり合って、二次燃焼を起
こし窒素酸化物を減少することができる。従来の過吸気
やスーパーチャージャーなどの別個の機械を取り付ける
ことなく、混合気室、空気室の独立した部屋より燃焼室
内に送り込む空気と混合気量は、自己の燃焼室の容積を
越える容量に達することを可能とした。
The residual gas after the explosion mixes the air from the air chamber to the combustion chamber after the explosion to mix with the residual gas which has a high temperature after the explosion, and causes secondary combustion to generate nitrogen oxides. Can be reduced. Without installing a separate machine such as a conventional super-intake or supercharger, the amount of air and the amount of air-fuel mixture sent into the combustion chamber from independent chambers of the air-fuel mixture chamber and the air chamber reaches a volume that exceeds the volume of its own combustion chamber. Made it possible.

【0011】複式シリンダー下部に位置する円筒形の容
積を変えることで燃焼室内部に送り込む混合気と空気の
容量は変えることが可能である。さらに潤滑油誘導穴圧
送経路の潤滑油圧送方式により、潤滑油を複式ピストン
の上部円筒形ピストンリングと下部円筒形ピストンリン
グへと送ることで複式ピストンの焼き付き防止となり、
2サイクル内燃機関の主燃料であるガソリンに潤滑油を
混入することなく、また軽油や重油も使用することが可
能である。
It is possible to change the volumes of the air-fuel mixture and the air fed into the combustion chamber by changing the volume of the cylindrical shape located in the lower part of the double cylinder. Furthermore, by the lubrication oil pressure feeding system of the lubrication oil induction hole pressure feeding path, the lubrication oil is sent to the upper cylindrical piston ring and the lower cylindrical piston ring of the double piston to prevent seizure of the double piston,
It is possible to use light oil or heavy oil without mixing lubricating oil with gasoline, which is the main fuel of a two-cycle internal combustion engine.

【0012】[0012]

【実施例1】図1は、複式ピストンと複式シリンダーに
よる三気筒の2サイクル内燃機関の一例を示した各複式
シリンダーの配置図です。複式シリンダーと複式シリン
ダーの間隔の傾斜角度は60度です。図中央に位置する
複式シリンダー1の爆発順位は一番目を示し、正面左側
に位置する複式シリンダー2の爆発順位は二番目を示
し、正面右側に位置する複式シリンダー3の爆発順位は
三番目を示しています。クランク軸の回転方向は右回り
です。複式シリンダー1にはめ合う複式ピストン4が上
死点の時のクランク角度は0度です。下死点の時のクラ
ンク角度は180度です。
[Embodiment 1] FIG. 1 is a layout drawing of each of the multiple cylinders showing an example of a three-cylinder two-cycle internal combustion engine having multiple pistons and multiple cylinders. The angle of inclination between the double cylinder and the double cylinder is 60 degrees. The explosion order of the compound cylinder 1 located in the center of the figure is the first, the explosion order of the compound cylinder 2 located on the left side of the front is the second, and the explosion order of the compound cylinder 3 located on the right side of the front is the third. I am. The direction of rotation of the crankshaft is clockwise. The crank angle when the compound piston 4 that fits in the compound cylinder 1 is at top dead center is 0 degree. The crank angle at bottom dead center is 180 degrees.

【0013】図2は、複式ピストン4始動時の動きを示
している。複式ピストン4が上死点の位置より下降を始
めます。この下降の動力は電気式モーターの動力を利用
しています。
FIG. 2 shows the movement at the start of the double piston 4. The compound piston 4 starts to descend from the top dead center position. The power of this descent uses the power of the electric motor.

【0014】図3は、複式ピストン4の動きを示し、こ
の複式ピストン4が下降してゆくことによって図1中央
に位置する複式シリンダー1内の混合気室14に空間が
増大してゆきます。密閉の状態から空間が増大してゆく
ことで吸引力が働き混合気室14の混合気吸入口15の
先端に取り付けられたキャブレターを介して、混合気を
混合気室14へ吸入します。
FIG. 3 shows the movement of the compound piston 4. As the compound piston 4 descends, the space in the mixture chamber 14 in the compound cylinder 1 located in the center of FIG. 1 increases. The suction force works as the space increases from the closed state, and the air-fuel mixture is sucked into the air-fuel mixture chamber 14 through the carburetor attached to the tip of the air-fuel mixture inlet 15 of the air-fuel mixture chamber 14.

【0015】この時点で、図1中央に位置する複式シリ
ンダー1内の空気室7に吸入され充満していた空気は、
複式ピストン4の下降に伴って、空気室7で圧縮を始め
ます。圧縮された空気は空気室7の空気吸入口16より
抜けようとしますが、空気室7の空気吸入口16に取り
付けられた空気室7の空気吸入弁17によって阻止され
ます。
At this time, the air sucked and filled in the air chamber 7 in the double cylinder 1 located at the center of FIG.
As the compound piston 4 descends, it begins to compress in the air chamber 7. The compressed air tries to escape from the air intake port 16 of the air chamber 7, but is blocked by the air intake valve 17 of the air chamber 7 attached to the air intake port 16 of the air chamber 7.

【0016】この空気室7の空気吸入弁17は、複式ピ
ストン4の上昇に伴い、空気室7に空気の吸引力が働い
たときにのみ開き、空気室7の空気吸入口16から空気
室7内部側への一方向にしか開きません。複式ピストン
4のクランク角度が120度に達した時点で図1正面左
側に位置する複式ピストン5のクランク角度は300度
となり、この時複式ピストン5は上死点に位置しますの
で爆発が起きます。複式ピストン4の始動時点から複式
ピストン5の上死点までの間に、複式ピストン4のクラ
ンク軸回転角度数は120度進んだことになります。
The air intake valve 17 of the air chamber 7 is opened only when the suction force of air acts on the air chamber 7 as the compound piston 4 moves upward, and the air intake port 16 of the air chamber 7 is opened. It can only open in one direction to the inside. When the crank angle of the compound piston 4 reaches 120 degrees, the crank angle of the compound piston 5 located on the left side of the front of Fig. 1 becomes 300 degrees. At this time, the compound piston 5 is located at the top dead center and an explosion occurs. . From the start of the compound piston 4 to the top dead center of the compound piston 5, the crankshaft rotation angle of the compound piston 4 has advanced by 120 degrees.

【0017】図4は、複式ピストン4の動きを示し、下
降し続ける複式ピストン4のクランク角度が153度に
達すると、図1中央に位置する複式シリンダー1内の燃
焼室18側壁に設けられた排気口19より排気ガスが爆
発の膨張力によって排気口19より排出されます。この
時点において、混合気室14に混合気は吸入され続け、
空気室7においては空気の圧縮を続けています。
FIG. 4 shows the movement of the compound piston 4, and when the crank angle of the compound piston 4 which continues to descend reaches 153 degrees, it is provided on the side wall of the combustion chamber 18 in the compound cylinder 1 located in the center of FIG. Exhaust gas is discharged from the exhaust port 19 by the expansive force of the explosion. At this point, the air-fuel mixture continues to be sucked into the air-fuel mixture chamber 14,
The air chamber 7 continues to compress the air.

【0018】複式ピストン4はさらに下降を続け、クラ
ンク角度が162度に達すると、空気室7より同じコン
ロッドを介している燃焼室18に空気を送る空気圧送管
20より、空気室7で圧縮され続けていた空気が燃焼室
18に一気に入り、高温度の残留排気ガスと混じり合っ
て排気ガスの二次燃焼を起こし排気口19より排出され
ます。
The compound piston 4 continues to descend, and when the crank angle reaches 162 degrees, the compound piston 4 is compressed in the air chamber 7 by an air pressure feeding pipe 20 which feeds air from the air chamber 7 to the combustion chamber 18 through the same connecting rod. The continued air likes the combustion chamber 18, mixes with the high-temperature residual exhaust gas, causes secondary combustion of the exhaust gas, and is discharged from the exhaust port 19.

【0019】空気室7より圧送された空気の容量は燃焼
室18の容量を越えるために排気ガスの排出に要した空
気の残量で燃焼室18に排気ガスの混入しない空気を満
たすことが可能です。またこの時、混合気室14への混
合気の吸入はされ続けています。空気室7には残留の空
気が残されています。
Since the volume of air pumped from the air chamber 7 exceeds the volume of the combustion chamber 18, it is possible to fill the combustion chamber 18 with air in which exhaust gas is not mixed with the remaining amount of air required for exhaust gas emission. is. At this time, the mixture is continuously sucked into the mixture chamber 14. Residual air is left in the air chamber 7.

【0020】図5は、複式ピストン4の動きを示し、下
降し続ける複式ピストン4のクランク角度が180度に
達すると下死点となり、混合気室14への混合気の吸入
は停止して混合気室14の混合気吸入弁21は閉じて、
これより複式ピストンの上昇行程による混合気の圧縮漏
れを阻止します。また空気室7の空気は同じコンロッド
を介している燃焼室18への圧送を完了します。
FIG. 5 shows the movement of the compound piston 4, and when the crank angle of the compound piston 4 which continues to descend reaches 180 degrees, it reaches the bottom dead center, and the intake of the mixture into the mixture chamber 14 is stopped and the mixture is mixed. The mixture intake valve 21 of the air chamber 14 is closed,
This prevents compression leakage of the air-fuel mixture due to the upward stroke of the double piston. Moreover, the air in the air chamber 7 completes the pressure feeding to the combustion chamber 18 through the same connecting rod.

【0021】複式ピストン4のクランク角度が180度
を過ぎると、複式ピストン4が上昇し始め、混合気室1
4にある混合気は圧縮を始めます。複式ピストン4のク
ランク角度が198度に達すると空気室7より同じコン
ロッドを介している燃焼室18に空気を送る空気圧送管
20送入口は、複式ピストン4の上部円筒形側面によっ
て塞がれ、空気室7に空間が増大してゆきます。密閉の
状態から空間が増大してゆくことによって吸引力が働き
空気を空気室7へ吸入してゆきます。
When the crank angle of the double piston 4 exceeds 180 degrees, the double piston 4 starts to move upward, and the mixture chamber 1
The air-fuel mixture in 4 starts compression. When the crank angle of the double piston 4 reaches 198 degrees, the pneumatic feed pipe 20 inlet for sending air from the air chamber 7 to the combustion chamber 18 via the same connecting rod is closed by the upper cylindrical side surface of the double piston 4, The space increases in the air chamber 7. As the space increases from the closed state, suction force works and air is sucked into the air chamber 7.

【0022】図6は、複式ピストン4の動きを示し、上
昇し続ける複式ピストン4のクランク角度が207度に
達すると、排気口19が複式ピストン4の上部円筒形側
面によって塞がれ、燃焼室18に吸入された空気はこの
時点より圧縮を始めます。この時点において、混合気室
14の混合気は圧縮され続け、空気室7においては空気
の吸入を続けています。
FIG. 6 shows the movement of the compound piston 4, and when the crank angle of the compound piston 4 which continues to rise reaches 207 degrees, the exhaust port 19 is blocked by the upper cylindrical side surface of the compound piston 4, and the combustion chamber is closed. The air sucked in 18 starts to be compressed at this point. At this time, the air-fuel mixture in the air-fuel mixture chamber 14 continues to be compressed, and the air chamber 7 continues to suck air.

【0023】図7は、複式ピストン4の動きを示し、上
昇し続ける複式ピストン4のクランク角度が210度に
達すると、燃焼室18頭部に取り付けられている混合気
吸入弁22が開き、図1正面右側に位置する複式シリン
ダー3内の混合気室10から混合気を混合気圧送管12
を通り一気に圧送されます。燃焼室18の空気と圧送さ
れた混合気が混じり合います。この時点において、混合
気室14の混合気は圧縮を続け、空気室7においては空
気の吸入を続けています。
FIG. 7 shows the movement of the compound piston 4, and when the crank angle of the compound piston 4 which continues to rise reaches 210 degrees, the mixture intake valve 22 attached to the head of the combustion chamber 18 opens, 1. Mixing air pressure mixture pipe 12 for mixing air-fuel mixture from air-fuel mixture chamber 10 in compound cylinder 3 located on the front right side
Will be pumped all at once. The air in the combustion chamber 18 and the pumped air-fuel mixture are mixed. At this point, the air-fuel mixture in the air-fuel mixture chamber 14 continues to be compressed and air is continuously sucked in the air chamber 7.

【0024】図8は、複式ピストン4の動きを示し、上
昇し続ける複式ピストン4のクランク角度が240度に
達すると、混合気室10から圧送された混合気の燃焼室
18への受入れが終わり、燃焼室18の混合気吸入弁2
2は閉じます。この時点で、図1正面右側に位置する複
式ピストン6のクランク角度は60度となり、この時複
式ピストン6は上死点に位置しますので爆発が起きま
す。
FIG. 8 shows the movement of the compound piston 4, and when the crank angle of the compound piston 4 which continues to rise reaches 240 degrees, the acceptance of the gas mixture pumped from the gas mixture chamber 10 into the combustion chamber 18 ends. , The mixture intake valve 2 of the combustion chamber 18
2 is closed. At this point, the crank angle of the compound piston 6 located on the front right side of Fig. 1 becomes 60 degrees, and at this time the compound piston 6 is located at the top dead center, so an explosion occurs.

【0025】複式ピストン5の上死点から複式ピストン
6の上死点の間に複式ピストン4のクランク軸回転角度
数は120度です。複式ピストン4の始動時から計24
0度進んでいます。複式ピストン6は爆発後下降してゆ
き、図1正面右側に位置する複式シリンダー3内の混合
気室10に空間が増大してゆきます。
Between the top dead center of the double piston 5 and the top dead center of the double piston 6, the crankshaft rotation angle of the double piston 4 is 120 degrees. 24 from the start of the compound piston 4
0 degrees ahead. The compound piston 6 descends after the explosion, and the space increases to the mixture chamber 10 in the compound cylinder 3 located on the right side of the front of Fig. 1.

【0026】密閉の状態から空間が増大してゆくことに
よって吸引力が働き、混合気室10の混合気吸入口11
の先端に取り付けられたキャブレターを介して、混合気
を混合気室10へ吸入してゆきます。
A suction force acts by increasing the space from the closed state, and the air-fuel mixture intake port 11 of the air-fuel mixture chamber 10 is activated.
The air-fuel mixture is drawn into the air-fuel mixture chamber 10 through the carburetor attached to the tip of the.

【0027】複式ピストン4のクランク角度が330度
に達すると混合気室14で圧縮された混合気は混合気圧
送管13を通り、図1正面左側に位置する複式シリンダ
ー2内の燃焼室8に圧送を開始します。この時点で、複
式ピストン5のクランク角度数は150度で燃焼室8の
混合気吸入弁9が開き始めます。
When the crank angle of the double piston 4 reaches 330 degrees, the air-fuel mixture compressed in the air-fuel mixture chamber 14 passes through the air-pressure mixture pipe 13 and enters the combustion chamber 8 in the double-sided cylinder 2 located on the left side in front of FIG. Start pumping. At this point, the crank angle of the double piston 5 is 150 degrees and the mixture intake valve 9 of the combustion chamber 8 starts to open.

【0028】図9は、複式ピストン4の動きを示し、上
昇し続ける複式ピストン4のクランク角度が360度に
達すると、上死点となり爆発が起きます。この時点で混
合気室14より燃焼室8への混合気の圧送を終わりま
す。空気室7の空気の吸入も終わります。これより複式
ピストン4は下降してゆきます。
FIG. 9 shows the movement of the compound piston 4, and when the crank angle of the compound piston 4 which continues to rise reaches 360 degrees, it becomes a top dead center and an explosion occurs. At this point, pressure feeding of the air-fuel mixture from the air-fuel mixture chamber 14 to the combustion chamber 8 ends. Inhalation of air in the air chamber 7 is also over. The compound piston 4 will descend from this.

【0029】複式ピストン6の上死点から複式ピストン
4の上死点までの間に複式ピストン4のクランク軸回転
角度数は120度です。始動時から計360度進んでい
ます。この時点で複式ピストン4は二行程を進行しクラ
ンク軸は一回転したことになります。これより図3へと
移行して複式ピストン4は往復運動をし続けるのです
Between the top dead center of the double piston 6 and the top dead center of the double piston 4, the crankshaft rotation angle of the double piston 4 is 120 degrees. It has advanced 360 degrees from the start. At this point, the compound piston 4 has traveled two strokes and the crankshaft has made one revolution. From this, it moves to Fig. 3 and the double piston 4 continues to reciprocate.

【実施例2】Example 2

【0030】図10は、潤滑油をオイルポンプにより複
式シリンダーのピストンリングに送る潤滑油誘導穴圧送
経路の潤滑油圧送方式を示しています。オイルポンプに
より潤滑油が複式シリンダー内潤滑油誘導穴圧送経路2
3を通り複式シリンダーと複式ピストンとの最下部接点
に設けられた溝24に圧力がかかり充満し、複式ピスト
ンの往復運動に伴いオイルチェックバルブ25が複式シ
リンダーと複式ピストンとの下部接点に設けられた溝2
4の位置に来ると、圧力のかかった潤滑油はこの時にの
みオイルチェックバルブ25が開き通過できる。
FIG. 10 shows a lubricating hydraulic pressure feeding system of a lubricating oil guide hole pressure feeding path for feeding lubricating oil to a piston ring of a double cylinder by an oil pump. Lubricating oil is supplied by the oil pump. Lubrication oil guide hole pressure feed path 2 in the double cylinder.
3, the groove 24 provided at the lowermost contact point between the compound cylinder and the compound piston is filled with pressure, and an oil check valve 25 is provided at the lower contact point of the compound cylinder and compound piston as the compound piston reciprocates. Groove 2
At position 4, the oil check valve 25 can open and pass the lubricating oil under pressure only at this time.

【0031】さらに潤滑油は、複式ピストン内潤滑油誘
導穴圧送経路26を通り、複式ピストンの上部円筒形ピ
ストンリング27と下部円筒形ピストンリング28へと
中心軸から放射状に送られ、複式ピストンの焼き付き防
止となる。
Further, the lubricating oil is radially sent from the central axis to the upper cylindrical piston ring 27 and the lower cylindrical piston ring 28 of the compound piston through the lubricating oil guide hole pressure feeding path 26 in the compound piston, and the compound piston It will prevent seizure.

【0032】[0032]

【発明の効果】この発明の内燃機関は、複式シリンダー
内の複式ピストンが往復運動することによって複式シリ
ンダーの内部に独立した三つの部屋を作りだし、それぞ
れの部屋が独自の働きをすることによってガソリン内燃
機関の2サイクル化を可能とし、軽油燃料を使用すれば
2サイクルディーゼル内燃機関として使用でき、混合油
燃料を使用すれば混合油2サイクル内燃機関として使用
できる特性を備えた内燃機関です。
According to the internal combustion engine of the present invention, the double piston in the double cylinder reciprocates to create three independent chambers inside the double cylinder. It is an internal combustion engine with the characteristics that it can be used as a 2-cycle diesel internal combustion engine by using light oil fuel and can be used as a mixed oil 2-cycle internal combustion engine by using mixed oil fuel.

【0033】また2サイクルの利点を生かし、低回転数
で高出力を引き出すことができます。燃焼室内に圧縮空
気を爆発直後に大量に送り込むことによって排気ガスの
二次燃焼を促進して窒素酸化物を大気中に排出すること
を減少する効果を有しています。そしてこの内燃機関は
三気筒以上であれば、従来の内燃機関と同じく使用可能
である。
By taking advantage of the two cycles, high output can be obtained at low speed. By sending a large amount of compressed air into the combustion chamber immediately after the explosion, it has the effect of promoting secondary combustion of exhaust gas and reducing the emission of nitrogen oxides into the atmosphere. If the internal combustion engine has three or more cylinders, it can be used like a conventional internal combustion engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】 三気筒の2サイクル内燃機関の配置の一例を
示した各複式シリンダーの断面図です。
[Fig. 1] Fig. 1 is a cross-sectional view of each compound cylinder showing an example of arrangement of a three-cylinder two-cycle internal combustion engine.

【図2】 図1中央に位置する複式ピストンの動きを示
した断面図です
[Fig. 2] Fig. 2 is a sectional view showing the movement of the compound piston located in the center of Fig. 1.

【図3】 図1中央に位置する複式ピストンの動きを示
した断面図です
FIG. 3 is a cross-sectional view showing the movement of the compound piston located in the center of FIG.

【図4】 図1中央に位置する複式ピストンの動きを示
した断面図です
FIG. 4 is a cross-sectional view showing the movement of the compound piston located in the center of FIG.

【図5】 図1中央に位置する複式ピストンの動きを示
した断面図です
FIG. 5 is a cross-sectional view showing the movement of the compound piston located in the center of FIG.

【図6】 図1中央に位置する複式ピストンの動きを示
した断面図です
FIG. 6 is a cross-sectional view showing the movement of the compound piston located in the center of FIG.

【図7】 図1中央に位置する複式ピストンの動きを示
した断面図です
[Fig. 7] Fig. 7 is a sectional view showing the movement of the double piston located in the center of Fig. 1.

【図8】 図1中央に位置する複式ピストンの動きを示
した断面図です
FIG. 8 is a cross-sectional view showing the movement of the compound piston located in the center of FIG.

【図9】 図1中央に位置する複式ピストンの動きを示
した断面図です
FIG. 9 is a cross-sectional view showing the movement of the compound piston located in the center of FIG.

【図10】 複式シリンダー、複式ピストン内の潤滑油
の経路を示す断面図です。
[Fig. 10] A cross-sectional view showing the paths of lubricating oil in the compound cylinder and compound piston.

【符号の説明】[Explanation of symbols]

1、三気筒の中央に位置する複式シリンダー 2、三気筒の正面左側に位置する複式シリンダー 3、三気筒の正面右側に位置する複式シリンダー 4、複式シリンダー1にはめ合う複式ピストン 5、複式シリンダー2にはめ合う複式ピストン 6、複式シリンダー3にはめ合う複式ピストン 7、空気室 8、燃燃室 9、燃燃室混合気吸入弁 10、混合気室 11、混合気室混合気吸入口 12、混合気室10から伸びている混合気圧送管 13、混合気室14から伸びている混合気圧送管 14、混合気室 15、混合気室混合気吸入口 16、空気室空気吸入口 17、空気室空気吸入弁 18、燃焼室 19、燃焼室排気口 20、空気圧送管 21、混合気室混合気吸入弁 22、燃焼室混合気吸入弁 23、複式シリンダー内潤滑油誘導穴圧送経路 24、複式シリンダーと複式ピストンとの最下部接点に
ある溝 25、オイルチェックバルブ 26、複式ピストン内潤滑油誘導穴圧送経路 27、複式ピストン上部円筒形ピストンリング 28、複式ピストン下部円筒形ピストンリング
1, a double cylinder located in the center of the three cylinders, a double cylinder located on the left side of the front of the three cylinders, a double cylinder located on the right side of the front of the three cylinders, a double piston fitted to the double cylinder 5, a double cylinder 2 Double piston 6 to be fitted, Double piston 7 to be fitted to double cylinder 3, Air chamber 8, Fuel / combustion chamber 9, Fuel / fuel chamber Mixture intake valve 10, Mixture chamber 11, Mixture chamber Mixture inlet 12, Mixing Mixing air pressure pipe 13 extending from the air chamber 10, mixing air pressure pipe 14 extending from the air mixture chamber 14, mixture air chamber 15, mixture air chamber mixture intake port 16, air chamber air intake port 17, air chamber Air intake valve 18, Combustion chamber 19, Combustion chamber exhaust port 20, Air pressure feeding pipe 21, Mixture chamber mixture mixture intake valve 22, Combustion chamber mixture mixture intake valve 23, Duplex in-cylinder lubricating oil guide hole pressure feed route 24 The bottom contact of the double cylinder and double piston groove 25, the oil check valve 26, double piston within the lubricant guiding hole pumping path 27, double piston upper cylindrical piston rings 28, double piston lower cylindrical piston rings

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円筒形の燃焼室の下部に、その燃焼室よ
りも径の大きな円筒形のシリンダーがあり、上部に位置
する円筒形の燃焼室の底辺の円の中心点と、上辺の円の
中心点を結ぶ中心軸が、下部に位置する円筒形のシリン
ダーの底辺の円の中心点と、上辺の円の中心点を結ぶ中
心軸と同じ中心軸であり、上部に位置する円筒形の燃焼
室の底辺と下部に位置する円筒形のシリンダーは一体で
構成される凸型の複式シリンダー。
1. A cylindrical cylinder having a diameter larger than that of the combustion chamber is provided in the lower part of the cylindrical combustion chamber, and the center point of the circle at the bottom of the cylindrical combustion chamber located at the upper part and the circle at the upper side. The center axis connecting the center points of is the same as the center axis connecting the center points of the bottom circle and the top circle of the cylindrical cylinder located at the bottom, and the It is a convex double cylinder that is composed of a cylindrical cylinder located at the bottom and the bottom of the combustion chamber.
【請求項2】 請求項1に記載の複式シリンダーにはめ
合う凸型の複式ピストン。
2. A convex compound piston that fits in the compound cylinder according to claim 1.
【請求項3】 請求項2に記載の複式ピストンの往復運
動によって請求項1に記載の複式シリンダー内に作られ
る混合気室の混合気を他のコンロッドを介している請求
項2に記載の複式ピストンの往復運動によって請求項1
に記載の複式シリンダー内に作られる燃焼室への圧送管
による圧送方式。
3. The compound type according to claim 2, wherein the air-fuel mixture in the gas mixture chamber created in the compound cylinder according to claim 1 by the reciprocating motion of the compound piston according to claim 2 is passed through another connecting rod. The reciprocating motion of a piston according to claim
The pressure feed system by the pressure feed pipe to the combustion chamber created in the double cylinder described in.
【請求項4】 請求項2に記載の複式ピストンの往復運
動によって請求項1に記載の複式シリンダー内に作られ
る空気室の空気を同じコンロッドを介している請求項2
に記載の複式ピストンの往復運動によって請求項1に記
載の複式シリンダー内に作られる燃焼室への圧送管によ
る圧送方式。
4. The air in the air chamber created in the double cylinder according to claim 1 by the reciprocating motion of the double piston according to claim 2 is passed through the same connecting rod.
A method of pressure feeding by a pressure feeding pipe to a combustion chamber formed in the double cylinder according to claim 1 by reciprocating movement of the double piston according to claim 1.
【請求項5】 請求項1に記載の複式シリンダーと請求
項2に記載の複式ピストン最下部接点の請求項1に記載
の複式シリンダーに設けられた、オイルポンプより送ら
れた潤滑油をストックする溝を含む請求項1に記載の複
式シリンダー内に設けられた複式シリンダー内潤滑油誘
導穴圧送経路。
5. The lubricating oil sent from an oil pump, which is provided in the compound cylinder according to claim 1 and the compound piston bottom contact of claim 2, provided in the compound cylinder according to claim 1, is stocked. The dual cylinder internal lubricating oil guide hole pressure feed path provided in the double cylinder according to claim 1, including a groove.
【請求項6】 請求項5に記載の複式シリンダー内潤滑
油誘導穴圧送経路より潤滑油を取り入れることのできる
請求項2に記載の複式ピストンに設けられたオイルチェ
ックバルブを含む請求項2に記載の複式ピストン内に設
けられた複式ピストン内潤滑油誘導穴圧送経路。
6. The oil check valve provided in the double piston according to claim 2, wherein the lubricating oil can be taken in from the lubricating oil guide hole pressure feeding path in the double cylinder according to claim 5. Lubricating oil guide hole pumping path inside the compound piston provided in the compound piston.
JP21035294A 1994-08-02 1994-08-02 Internal combustion engine by composite piston and composite cylinder and lubricant guide hole forced feed path and forced feed system with air and air-fuel mixture Pending JPH0849553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21035294A JPH0849553A (en) 1994-08-02 1994-08-02 Internal combustion engine by composite piston and composite cylinder and lubricant guide hole forced feed path and forced feed system with air and air-fuel mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21035294A JPH0849553A (en) 1994-08-02 1994-08-02 Internal combustion engine by composite piston and composite cylinder and lubricant guide hole forced feed path and forced feed system with air and air-fuel mixture

Publications (1)

Publication Number Publication Date
JPH0849553A true JPH0849553A (en) 1996-02-20

Family

ID=16587979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21035294A Pending JPH0849553A (en) 1994-08-02 1994-08-02 Internal combustion engine by composite piston and composite cylinder and lubricant guide hole forced feed path and forced feed system with air and air-fuel mixture

Country Status (1)

Country Link
JP (1) JPH0849553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2515254A (en) * 2013-04-05 2014-12-24 Osp Engines Ltd Opposed stepped piston engine power cylinder lubrication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106456A (en) * 1991-10-17 1993-04-27 Kawasaki Heavy Ind Ltd Multi-cylinder two cycle engine with stepped piston

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106456A (en) * 1991-10-17 1993-04-27 Kawasaki Heavy Ind Ltd Multi-cylinder two cycle engine with stepped piston

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2515254A (en) * 2013-04-05 2014-12-24 Osp Engines Ltd Opposed stepped piston engine power cylinder lubrication system
GB2515254B (en) * 2013-04-05 2016-07-20 Osp Engines Ltd Opposed stepped piston engine power cylinder lubrication system

Similar Documents

Publication Publication Date Title
US4879974A (en) Crankcase supercharged 4 stroke, 6 cycle engine
JP2012503741A (en) Internal combustion engine with dual chamber cylinder
US20100192878A1 (en) Air hybrid engine with dual chamber cylinder
JP2003518222A (en) Reciprocating internal combustion engine with balancing and supercharging functions
US6450135B1 (en) Two-stroke internal combustion engine
US6499445B2 (en) Two-stroke engine
US20040035377A1 (en) Two-stroke cycle, free piston, shaft power engine
US4813387A (en) Internal combustion, reciprocating piston engine
JPH07305636A (en) Offset engine
US5797359A (en) Stepped piston two-cycle internal combustion engine
US5314314A (en) Two-cycle engine compressor
US7895978B2 (en) Non-polluting two-stroke engine with air-cooled piston
US3377997A (en) Two-stroke cycle engine
JPH0849553A (en) Internal combustion engine by composite piston and composite cylinder and lubricant guide hole forced feed path and forced feed system with air and air-fuel mixture
CN1610791A (en) Internal combustion engine with harmonic synchroniser system
US7255071B2 (en) Supercharged two-stroke engine with upper piston extensions
EP1282764B1 (en) Improved two-stroke internal combustion engine, with increased efficiency and low emission of polluting gas
US20190170055A1 (en) Two-stroke engine with improved performance
JP3176512B2 (en) Two-cycle uniflow spark ignition engine
JPS587813B2 (en) 2 cycle kikan
JP2007529680A (en) Device comprising a piston with an upper piston extension
US10830128B2 (en) Two-stroke engine having fuel/air transfer piston
JP3187650B2 (en) Two-stroke cycle engine
JP2799917B2 (en) 2-4 cycle switching turbo compound engine
EP0223435B1 (en) A two stroke internal combustion engine