JPH0849093A - Electroplating method - Google Patents

Electroplating method

Info

Publication number
JPH0849093A
JPH0849093A JP20031594A JP20031594A JPH0849093A JP H0849093 A JPH0849093 A JP H0849093A JP 20031594 A JP20031594 A JP 20031594A JP 20031594 A JP20031594 A JP 20031594A JP H0849093 A JPH0849093 A JP H0849093A
Authority
JP
Japan
Prior art keywords
metal
particles
electroplating
layer
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20031594A
Other languages
Japanese (ja)
Inventor
Minoru Ouya
稔 王谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Original Assignee
MEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd filed Critical MEC Co Ltd
Priority to JP20031594A priority Critical patent/JPH0849093A/en
Priority to TW83108434A priority patent/TW254973B/en
Publication of JPH0849093A publication Critical patent/JPH0849093A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • H05K3/424Plated through-holes or plated via connections characterised by electroplating method by direct electroplating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates

Abstract

PURPOSE:To enable electroplating with satisfactory adhesiveness and high reliability in a uniform thickness by sticking graphite particles to a material with an electrically conductive metal and an electric nonconductor exposed to the surface, oxidizing the metal, removing the particles on the surface of the metal and carrying out electro-plating. CONSTITUTION:An <=2mum dispersion liq. contg. at least one of graphite having (2P[Tl average particle diameter and carbon black having <=1mum average particle diameter is brought into contact with a material (e.g. the substrate of a printed board) being disposed with an electrically conductive metal (e.g. copper or iron) and an electric nonconductor (e.g. a resin) to the surface and the graphite or carbon black particles are stuck to the material. The surface of the metal is then oxidized to form metal oxide, the particles on the surface of the metal are removed by etching the metal by 0.01-5mum thickness and electroplating is carried out using the metal and a layer of the particles on the surface of the nonconductor as an electrically conductive layer. Electroplating with high reliability is attained at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばプリント基板の
基材ような導電体と非導電体とが表面に露呈した材料に
電気メッキする方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of electroplating a material having a conductor and a nonconductor exposed on the surface thereof, such as a substrate of a printed circuit board.

【0002】[0002]

【従来の技術】いわゆる両面板や多層板といわれるプリ
ント基板では、絶縁材料で隔てられた回路を電気的に接
続するために、基板にスルーホールと呼ばれる貫通孔を
あけ、その内壁に導電性金属をメッキする必要がある。
2. Description of the Related Art In a printed circuit board called a double-sided board or a multi-layer board, a through hole called a through hole is formed in a board for electrically connecting circuits separated by an insulating material, and a conductive metal is formed on an inner wall of the board. Need to be plated.

【0003】非導電体を含むスルーホール内壁にメッキ
する方法としては、例えばShortt等による米国特
許第3163588号明細書に、スルーホール内壁に
銀、銅、グラファイト等の粒子を付着させて導電性を付
与した後、電気メッキする方法が開示されている。しか
しながら、この明細書に記載の方法では、過剰メッキ部
分の剥離を行なう際、スルーホール内壁のメッキ層にピ
ンホール等の欠陥が生じるため、該内壁に再メッキする
必要があり、工程が複雑になるばかりでなく、高密度で
しかも高い信頼性の要求される現在のプリント基板の製
造に全くそぐわず、対応しきれるものではない。
As a method of plating the inner wall of a through hole containing a non-conductive material, for example, US Pat. No. 3,163,588 by Shortt et al. A method of electroplating after application is disclosed. However, in the method described in this specification, when the overplated portion is peeled off, a defect such as a pinhole occurs in the plated layer on the inner wall of the through hole, and therefore it is necessary to replate the inner wall, which complicates the process. Not only is it unsuitable for the current production of printed circuit boards, which are required to have high density and high reliability, it is not possible to deal with it.

【0004】また、Radovsky等による米国特許
第3099608号明細書には、電気メッキするための
導電層としてグラファイトを用いた場合には、電気メッ
キされる金属の析出性の低さ等の問題のあることが指摘
されている。
Further, in US Pat. No. 3,099,608 by Radovsky et al., When graphite is used as a conductive layer for electroplating, there are problems such as low deposition of metal to be electroplated. It has been pointed out.

【0005】そこで、現在ではスルーホール内壁の金属
メッキとして、無電解銅メッキが行なわれている。しか
しながら、無電解銅メッキには下記のような欠点があ
る。 (1)比較的長い工程時間を必要とする。 (2)多数の処理浴を常時監視する必要がある。(浴の
成分を個々に補給する必要がある。処理浴が汚染に対し
て非常に敏感なので、前工程で用いた成分が持ち込まれ
ないように十分注意する必要がある。) (3)多数の洗浄浴が必要であり、しかも多量の洗浄水
を必要とする。 (4)廃水処理に費用がかかる。
Therefore, at present, electroless copper plating is performed as the metal plating on the inner wall of the through hole. However, electroless copper plating has the following drawbacks. (1) A relatively long process time is required. (2) It is necessary to constantly monitor many processing baths. (It is necessary to replenish the components of the bath individually. Since the treatment bath is very sensitive to contamination, it is necessary to take great care not to bring in the components used in the previous step.) (3) Many A washing bath is required and a large amount of washing water is required. (4) Wastewater treatment is expensive.

【0006】前記のごとき問題を有する無電解銅メッキ
を使用しない方法として、Randolph等による米
国特許第5139642号明細書には、スルーホール内
壁に約3μmよりも小さい平均粒子径を有するカーボン
ブラック粒子および界面活性剤を含有する分散液を接触
させてカーボンブラック層を形成し、さらにそのうえに
約1.5μmよりも小さい平均粒子径を有するグラファ
イト粒子および界面活性剤を含有する分散液を接触させ
てグラファイト層を形成した後、電気メッキする方法が
開示されている。しかしながら、この方法で多層プリン
ト基板に電気メッキすると、スルーホール内壁の金属面
(内層回路の露出している部分)にカーボンブラック粒
子やグラファイト粒子が残りやすく、この部分にメッキ
された金属の密着不良が生じやすい。また、メッキ下地
層としてカーボンブラック層およびグラファイト層の2
層を形成する必要があるため、工程が複雑になり、コス
ト高となる。
As a method without using the electroless copper plating having the above problems, US Pat. No. 5,139,642 to Randolph et al. Discloses carbon black particles having an average particle size of less than about 3 μm on the inner wall of a through hole. A carbon black layer is formed by bringing a dispersion liquid containing a surfactant into contact therewith, and further, a graphite liquid having a mean particle size of less than about 1.5 μm and a dispersion liquid containing a surfactant are brought into contact with the graphite layer. A method of electroplating after forming is disclosed. However, when electroplating a multilayer printed circuit board by this method, carbon black particles or graphite particles are likely to remain on the metal surface of the inner wall of the through hole (exposed portion of the inner layer circuit), resulting in poor adhesion of the plated metal on this portion. Is likely to occur. In addition, a carbon black layer and a graphite layer are used as the plating underlayer.
Since it is necessary to form a layer, the process is complicated and the cost is high.

【0007】[0007]

【発明が解決しようとする課題】本発明者等は、電気メ
ッキの下地層としてカーボンブラック層とグラファイト
層の2層を用いる前記方法よりもさらに信頼性が高く、
コストもかからない導電体と非導電体が混在する材料の
表面に電気メッキする方法、特にプリント基板のスルー
ホール内壁に電気メッキする方法を提供するべく鋭意検
討を重ねた結果、本発明に到達した。
DISCLOSURE OF THE INVENTION The present inventors have found that the reliability is higher than that of the above method using two layers of a carbon black layer and a graphite layer as an underlayer for electroplating.
The present invention has been achieved as a result of intensive studies to provide a method of electroplating the surface of a material in which a conductor and a non-conductor are mixed at low cost, particularly a method of electroplating the inner wall of a through hole of a printed circuit board.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、導
電体と非導電体とが表面に露呈した材料に電気メッキす
る方法であって、(a)導電性である金属と非導電体と
が表面に露呈した材料に、平均粒子径が最大2μmのグ
ラファイト粒子および平均粒子径が最大1μmのカーボ
ンブラック粒子のうちの少なくとも1種(以下、特定の
炭素粒子という)を含有する水分散液を接触させ、該粒
子を付着させた後、(b)導電性である金属の表面を酸
化し、(c)該材料表面に付着したグラファイト粒子お
よびカーボンブラック粒子のうち、金属表面上の粒子
を、該金属層を0.01〜5μmエッチングすることに
より除去し、(d)ついで金属と非導電体表面の該粒子
の層とを導電層として電気メッキすることを特徴とする
電気メッキ法、および前記(a)工程の後(b)工程に
入る前に、導電性である金属と非道電体とが表面に露呈
した材料をpH3以下の強酸性水溶液に浸漬して材料表
面の前記粒子を凝集させる工程(a−2)を追加した電
気メッキ方法に関する。以下に本発明を詳細に説明す
る。
That is, the present invention is a method for electroplating a material in which a conductor and a non-conductor are exposed on the surface, which comprises (a) a conductive metal and a non-conductor. To the material exposed on the surface thereof, an aqueous dispersion containing at least one kind of graphite particles having an average particle size of up to 2 μm and carbon black particles having an average particle size of up to 1 μm (hereinafter referred to as specific carbon particles). After contacting and adhering the particles, (b) the surface of the conductive metal is oxidized, and (c) of the graphite particles and the carbon black particles adhering to the surface of the material, the particles on the metal surface are An electroplating method, characterized in that the metal layer is removed by etching by 0.01 to 5 μm, and (d) an electroplating is then performed with the metal and the layer of the particles on the non-conductive surface as a conductive layer; After the step (a) and before the step (b), the material on the surface of which the conductive metal and the non-electric conductor are exposed is immersed in a strongly acidic aqueous solution of pH 3 or less to aggregate the particles on the surface of the material. The present invention relates to an electroplating method in which the step (a-2) is added. The present invention will be described in detail below.

【0009】本発明の方法では、まず電気メッキしよう
とする導電性である金属と非導電体とが表面に露呈した
材料に特定の炭素粒子を含有する水分散液を接触させ、
特定の炭素粒子を付着させる((a)工程)。
In the method of the present invention, first, an electrically conductive metal to be electroplated and a non-conductive material exposed on the surface are brought into contact with an aqueous dispersion containing specific carbon particles,
Specific carbon particles are attached (step (a)).

【0010】本発明の方法に用いる被処理材料は、金属
と非導電体とが表面に露呈した材料であり、例えば銅、
鉄、錫、亜鉛、アルミニウム、ニッケル、マグネシウ
ム、クロムまたはこれらの合金等と、樹脂、セラミッ
ク、ガラス、ゴム、木材、紙等とが混在する材料があげ
られる。具体的には電子機器に使用されるプリント基板
のほか、装飾品等があげられるが、これらに限定される
ものではない。前記プリント基板は、紙基材フェノール
樹脂銅張積層板、ガラス基材エポキシ樹脂銅張積層板、
コンポジット銅張積層板、ポリイミド銅張積層板、フッ
素樹脂銅張積層板、フレキシブル用銅張積層板等を基材
とするものである。
The material to be treated used in the method of the present invention is a material in which a metal and a non-conductor are exposed on the surface, such as copper,
Materials in which iron, tin, zinc, aluminum, nickel, magnesium, chromium, or alloys thereof are mixed with resin, ceramic, glass, rubber, wood, paper or the like can be given. Specific examples thereof include printed circuit boards used for electronic devices, decorative items, and the like, but are not limited thereto. The printed circuit board is a paper-based phenolic resin copper-clad laminate, a glass-based epoxy resin copper-clad laminate,
The base material is a composite copper clad laminate, a polyimide copper clad laminate, a fluororesin copper clad laminate, a flexible copper clad laminate, and the like.

【0011】前記特定の炭素粒子におけるグラファイト
粒子としては、平均粒子径が最大2μm、好ましくは最
大1μm、さらに好ましくは最大0.7μmの超微粒子
が使用される。前記平均粒子径が2μmを越えると導電
性が低下し、さらに非導電体と電気メッキされる金属の
層との付着性も低下する。一方、カーボンブラック粒子
としては、平均粒子径が最大1μm、好ましくは最大
0.5μm、さらに好ましくは最大0.3μmの超微粒
子が使用される。前記平均粒子径が1μmを越えると電
気メッキ後に金属が付着していない部分、即ちボイドの
発生する確率が高くなり、メッキの信頼性が低下する。
本発明に用いるグラファイト粒子およびカーボンブラッ
ク粒子の平均粒子径に下限は特になく、前述の上限を越
えないものであれば使用することがでる。前記グラファ
イト粒子とカーボンブラック粒子はそれぞれ単独で用い
てもよく、併用してもよい。
Ultrafine particles having an average particle size of at most 2 μm, preferably at most 1 μm, more preferably at most 0.7 μm are used as the graphite particles in the specific carbon particles. When the average particle size exceeds 2 μm, the conductivity is lowered, and further the adhesion between the non-conductor and the electroplated metal layer is lowered. On the other hand, as the carbon black particles, ultrafine particles having an average particle size of at most 1 μm, preferably at most 0.5 μm, and more preferably at most 0.3 μm are used. If the average particle diameter exceeds 1 μm, the probability that a portion where no metal is adhered after electroplating, that is, a void is increased, and the plating reliability is reduced.
There is no particular lower limit to the average particle size of the graphite particles and carbon black particles used in the present invention, and any particles that do not exceed the above-mentioned upper limit can be used. The graphite particles and the carbon black particles may be used alone or in combination.

【0012】前記水分散液中の特定の炭素粒子の含有量
は6%(重量%、以下同様)以下、さらには1〜5%で
あるのが好ましい。前記含有量が6%を越えると非導電
体と電気メッキされる金属の層との間で密着不良が生じ
る傾向があり、1%未満ではグラファイト粒子やカーボ
ンブラック粒子の層中の粒子密度が小さく、充分な導電
性が得にくくなる。
The content of the specific carbon particles in the aqueous dispersion is preferably 6% (wt%, the same applies hereinafter), or more preferably 1 to 5%. If the content exceeds 6%, poor adhesion tends to occur between the non-conductor and the electroplated metal layer, and if it is less than 1%, the particle density in the layer of graphite particles or carbon black particles is small. , It becomes difficult to obtain sufficient conductivity.

【0013】前記特定の炭素粒子を含有する水分散液に
は、特定の炭素粒子のほかに、必要に応じて種々の成分
を配合することができる。前記配合成分としては、例え
ば特定の炭素粒子の非導電体表面への付着性を向上させ
るバインダー、前記付着性や液の安定性を向上させる界
面活性剤、液の安定性を向上させる水溶性高分子化合物
等があげられる。
In addition to the specific carbon particles, various components can be added to the aqueous dispersion containing the specific carbon particles, if necessary. Examples of the blending component include a binder that improves the adhesion of specific carbon particles to the surface of the non-conductive material, a surfactant that improves the adhesion and the stability of the liquid, and a high water-solubility that improves the stability of the liquid. Examples include molecular compounds.

【0014】前記バインダーは有機系バインダーであっ
てもよく、無機系バインダーであってもよいが無機系バ
インダーが好ましく、例えばケイ酸ナトリウム、ケイ酸
カリウム等が好ましい。前記バインダーの水分散液中の
含有量は、通常0.05〜5%である。バインダーの含
有量が多すぎると導電性や製膜性が低下する。また、前
記界面活性剤としては、例えばカルボン酸系、ポリカル
ボン酸系、ナフタレンスルホン酸系、中性リン酸エステ
ル系等のアニオン系界面活性剤があげられるが、分散液
の状態によっては非イオン系界面活性剤やカチオン系界
面活性剤や両性界面活性剤を使用してもよい。また、前
記水溶性高分子化合物としては、例えばカルボキシメチ
ルセルロース、でんぷん、アラビアゴム等があげられ
る。さらに、アンモニア、水酸化ナトリウム、水酸化カ
リウム等、好ましくはアンモニアを添加し、分散液のp
Hを9〜13程度にするのが好ましい。
The binder may be an organic binder or an inorganic binder, but an inorganic binder is preferable, and for example, sodium silicate, potassium silicate and the like are preferable. The content of the binder in the aqueous dispersion is usually 0.05 to 5%. If the content of the binder is too large, the conductivity and the film forming property are deteriorated. Examples of the surfactant include anionic surfactants such as carboxylic acid-based, polycarboxylic acid-based, naphthalenesulfonic acid-based, and neutral phosphate ester-based ones, but depending on the state of the dispersion liquid, they may be nonionic. A surfactant, a cationic surfactant or an amphoteric surfactant may be used. Examples of the water-soluble polymer compound include carboxymethyl cellulose, starch, gum arabic and the like. Further, ammonia, sodium hydroxide, potassium hydroxide or the like, preferably ammonia, is added to the dispersion liquid,
It is preferable to set H to about 9 to 13.

【0015】前記特定の炭素粒子の水分散液がグラファ
イト粒子の水分散液の場合、湿式でグラファイトを粉砕
・分散・分級して製造したものが、安定した分散性を有
し、粒子径分布範囲が狭いという点で好ましい。
When the aqueous dispersion of the specific carbon particles is an aqueous dispersion of graphite particles, a product prepared by pulverizing, dispersing and classifying graphite by a wet method has stable dispersibility and has a particle size distribution range. Is preferable because it is narrow.

【0016】前記特定の炭素粒子を含有する水分散液を
被処理材料表面に接触させる方法に特に限定はなく、例
えば該水分散液をスプレー、浸漬、塗布等の方法で被処
理材料に塗布すればよい。
The method of contacting the surface of the material to be treated with the aqueous dispersion containing the specific carbon particles is not particularly limited. For example, the aqueous dispersion is applied to the material to be treated by a method such as spraying, dipping or coating. Good.

【0017】次に被処理材料の表面を酸化する((b)
工程)。金属酸化物は金属よりもエッチングされやすい
ため、この処理によって、次のエッチング工程で導電性
金属が容易にエッチングされ、導電性金属表面の特定の
炭素粒子が充分に除去されるようになる。
Next, the surface of the material to be treated is oxidized ((b)).
Process). Since the metal oxide is more easily etched than the metal, this treatment facilitates the etching of the conductive metal in the next etching step, and the specific carbon particles on the surface of the conductive metal are sufficiently removed.

【0018】前記酸化の方法に特に限定はないが、例え
ば被処理材料を酸化性の気体や液体に暴露させる方法が
あげられる。前記酸化性の気体としては、例えばヨウ素
等のハロゲンガス、オゾン、塩化水素等があげられ、酸
化性の液体としては、例えば過酸化水素等の過酸化物の
水溶液、過ホウ酸、過炭酸等の過酸化酸(ペルオキシ
酸)またはそれらの塩の水溶液、クロム酸またはその塩
の水溶液、過マンガン酸またはその塩の水溶液、次亜塩
素酸等の酸素酸またはそれらの塩の水溶液等があげられ
る。この酸化は、金属表面に厚さ0.1〜2μmの酸化
皮膜を形成する程度が好ましい。
The oxidizing method is not particularly limited, and examples thereof include a method of exposing the material to be treated to an oxidizing gas or liquid. Examples of the oxidizing gas include halogen gas such as iodine, ozone, hydrogen chloride and the like, and examples of the oxidizing liquid include aqueous solution of peroxide such as hydrogen peroxide, perboric acid and percarbonate. Peroxidic acid (peroxy acid) or an aqueous solution of a salt thereof, chromic acid or an aqueous solution of a salt thereof, an aqueous solution of permanganic acid or a salt thereof, an oxygen acid such as hypochlorous acid, or an aqueous solution of a salt thereof. . The oxidation is preferably performed to the extent that an oxide film having a thickness of 0.1 to 2 μm is formed on the metal surface.

【0019】次に前記材料表面に付着したグラファイト
粒子およびカーボンブラック粒子のうち、金属表面の粒
子を、該金属層を0.01〜5μmエッチングすること
により除去する((c)工程)。この処理は、導電性で
ある金属および非導電体の表面に形成された特定の炭素
粒子の層のうち、金属表面の粒子層は該金属と電気メッ
キされる金属との密着性を低下させ、また電気抵抗とし
て作用するため、それを除去するための処理である。こ
の処理は特定の炭素粒子に直接作用するのではなく、そ
の下の金属表面をエッチングすることにより、特定の炭
素粒子を除去するものである。本発明においては、エッ
チングされる表面が酸化処理されているため、酸化処理
しない場合に比べて均一なエッチングを速やかに確実に
行なうことができる。
Next, of the graphite particles and carbon black particles adhering to the surface of the material, particles on the metal surface are removed by etching the metal layer by 0.01 to 5 μm (step (c)). This treatment, of the layer of specific carbon particles formed on the surface of the conductive metal and the non-conductive material, the particle layer of the metal surface reduces the adhesion between the metal and the metal to be electroplated, Further, since it acts as an electric resistance, it is a process for removing it. This treatment does not act directly on the specific carbon particles, but removes the specific carbon particles by etching the underlying metal surface. In the present invention, since the surface to be etched is subjected to oxidation treatment, uniform etching can be promptly and surely performed as compared with the case where no oxidation treatment is performed.

【0020】前記エッチング法に特に限定はないが、例
えば硫酸/過酸化水素系エッチング液、塩化銅系エッチ
ング液、塩化鉄系エッチング液、過硫酸塩系エッチング
液、アルカリエッチング液等で被処理材を浸漬処理また
はスプレー処理する方法があげられる。エッチング量
は、0.01〜5μm、好ましくは0.1〜3μm、さ
らに好ましくは0.1〜1.2μmである。前記エッチ
ング量が0.01μm未満では金属表面上に特定の炭素
粒子が残りやすく、メッキに膨らみや密着不良が生じや
すくなり、5μmを越えると金属がオーバーエッチング
されて金属と非導電体表面の特定の炭素粒子の層との導
通が失われ、メッキボイドが生じる傾向がある。
Although the etching method is not particularly limited, for example, a sulfuric acid / hydrogen peroxide-based etching solution, a copper chloride-based etching solution, an iron chloride-based etching solution, a persulfate-based etching solution, an alkali etching solution, or the like is used as the material to be treated. Examples of the method include dipping treatment or spray treatment. The etching amount is 0.01 to 5 μm, preferably 0.1 to 3 μm, and more preferably 0.1 to 1.2 μm. If the etching amount is less than 0.01 μm, specific carbon particles are likely to remain on the metal surface, and swelling or poor adhesion is likely to occur in the plating. If it exceeds 5 μm, the metal is over-etched to identify the metal and the non-conductive surface The conduction with the layer of carbon particles is lost, and plating voids tend to occur.

【0021】ついで被処理材料の金属と非導電体上の特
定の炭素粒子の層とを導電層として金属が電気メッキさ
れる((d)工程)。
Then, the metal of the material to be treated and the layer of the specific carbon particles on the non-conductive material are used as conductive layers to electroplate the metal (step (d)).

【0022】前記電気メッキの方法に特に限定はなく、
例えば通常の電気メッキ浴を用い、常温、1.5〜3A
/dm2 、60〜90分間程度の条件でメッキする方法
があげられる。前記メッキされる金属にも特に限定はな
く、例えば銅、ニッケル等、用途に応じて種々の金属を
メッキすることができる。
The electroplating method is not particularly limited,
For example, using a normal electroplating bath, room temperature, 1.5 ~ 3A
/ Dm 2 , and a method of plating under the condition of 60 to 90 minutes. The metal to be plated is not particularly limited, and various metals such as copper and nickel can be plated according to the application.

【0023】以上のごとき本発明の方法は、導電性であ
る金属と非導電体が混在する種々の材料の電気メッキに
適用し得るが、得られるメッキ皮膜は付き回り性が良好
で密着性に優れ、信頼性が高いため、例えばプリント基
板のスルーホールの中でもバイアホールと呼ばれる径
0.1〜0.5mmの小径孔の内壁にも、均一な厚さで
付着性がよい信頼性の高い電気メッキを施すことができ
る。
The method of the present invention as described above can be applied to electroplating of various materials in which a conductive metal and a non-conductive material are mixed, but the plating film obtained has good throwing power and adhesion. Since it is excellent and highly reliable, it has a uniform thickness and good adhesion to the inner wall of a small diameter hole with a diameter of 0.1 to 0.5 mm called a via hole among through holes of a printed circuit board. Can be plated.

【0024】次に、強酸性水溶液による処理工程(a−
2)を追加した本発明のメッキ法を説明する。この処理
は、(a)工程で特定の炭素粒子の水分散液に接触さ
せ、表面に該粒子を付着させた被処理材料を、pH3以
下の強酸性水溶液に浸漬することにより、被処理材表面
に付着した特定の炭素粒子を凝集させるものである。こ
の処理の後は、前述の方法と同様に(b)〜(d)の工
程の処理が行なわれる。この強酸性水溶液による処理に
より特定の炭素粒子が凝集する結果、次の金属の表面を
酸化する工程で、被処理材料に付着した特定の炭素粒子
が脱落しにくくなり、作業性も向上する。
Next, a treatment step (a-
The plating method of the present invention with the addition of 2) will be described. This treatment is performed by contacting the aqueous dispersion of specific carbon particles in step (a) and immersing the material to be treated with the particles attached to the surface in a strongly acidic aqueous solution having a pH of 3 or less. The specific carbon particles adhered to are agglomerated. After this process, the processes of the steps (b) to (d) are performed in the same manner as the above-mentioned method. As a result of the specific carbon particles aggregating by the treatment with the strongly acidic aqueous solution, the specific carbon particles attached to the material to be treated are less likely to fall off in the step of oxidizing the surface of the next metal, and the workability is also improved.

【0025】前記pH3以下の強酸性水溶液、好ましく
はpH0.1〜1の水溶液としては、例えば硫酸、塩
酸、硝酸等の水溶液があげられる。前記pHが3を越え
るとグラファイト粒子またはカーボンブラック粒子がそ
の水溶液中に分散してしまい、非処理材料表面に付着し
にくくなる。なお、本発明に用いる強酸性水溶液のpH
に下限は特になく、前述の上限を越えないものであれば
使用することができる。
Examples of the strongly acidic aqueous solution having a pH of 3 or less, preferably an aqueous solution having a pH of 0.1 to 1, include aqueous solutions of sulfuric acid, hydrochloric acid, nitric acid and the like. If the pH exceeds 3, the graphite particles or the carbon black particles will be dispersed in the aqueous solution and it will be difficult to adhere to the surface of the untreated material. The pH of the strongly acidic aqueous solution used in the present invention
There is no particular lower limit, and any one can be used as long as it does not exceed the above-mentioned upper limit.

【0026】つぎに、本発明をプリント基板のスルーホ
ール内壁の電気メッキに適用する場合の代表的な工程を
示す。
Next, a typical process for applying the present invention to electroplating the inner wall of a through hole of a printed circuit board will be described.

【0027】例として表裏の両面に銅箔を有するガラス
基材エポキシ樹脂銅張積層板のスルーホール内壁を電気
メッキする場合を説明するが、この場合、次の(1)〜
(7)の工程によって電気メッキが行なわれる。
As an example, the case of electroplating the inner wall of the through hole of the glass-based epoxy resin copper-clad laminate having copper foils on both front and back sides will be described. In this case, the following (1) to
Electroplating is performed by the step (7).

【0028】(1)基板表面の洗浄:スルーホール内壁
の清浄化するための処理であり、基板を例えばリン酸エ
ステル等のアニオン系界面活性剤を含むpH9〜12程
度の弱アルカリ液で、通常35〜65℃で約20〜60
秒間洗浄した後、水洗する。
(1) Cleaning of substrate surface: This is a treatment for cleaning the inner wall of the through hole, and the substrate is usually treated with a weak alkaline liquid having a pH of about 9 to 12 containing an anionic surfactant such as phosphate ester. 20 to 60 at 35 to 65 ° C
After washing for 2 seconds, wash with water.

【0029】(2)コンディショニング処理:清浄化さ
れたスルーホール内壁への特定の炭素粒子の付着を促進
するための処理であり、例えばポリアミン系、ポリアミ
ド系等のカチオン系界面活性剤を含むpH9〜12程度
の弱アルカリ液で、通常20〜60℃で約20〜60秒
間処理した後、水洗する。
(2) Conditioning treatment: a treatment for promoting adhesion of specific carbon particles to the cleaned inner wall of the through hole. For example, a pH of 9 to 10 containing a cationic surfactant such as polyamine or polyamide is used. It is treated with a weak alkaline solution of about 12 at 20 to 60 ° C. for about 20 to 60 seconds and then washed with water.

【0030】(3)特定の炭素粒子の付着:基板を特定
の炭素粒子を含有する水分散液に、通常20〜60℃で
約30〜90秒間浸漬処理し、基板表面に特定の炭素粒
子を付着させる。
(3) Adhesion of specific carbon particles: The substrate is immersed in an aqueous dispersion containing the specific carbon particles at usually 20 to 60 ° C. for about 30 to 90 seconds to form the specific carbon particles on the surface of the substrate. Attach it.

【0031】(4)酸処理:基板を強酸性水溶液に、通
常20〜60℃で約30〜100秒間浸漬処理した後、
水洗する。
(4) Acid treatment: The substrate is immersed in a strongly acidic aqueous solution at 20 to 60 ° C. for about 30 to 100 seconds, and then,
Wash with water.

【0032】(5)酸化処理:基板を例えば1〜6%の
過酸化水素水溶液中に、通常5〜25℃で約10〜60
秒間浸漬処理した後、乾燥する。乾燥は、60〜90℃
のエアーブローに30〜90秒間曝すことにより行なう
のが酸化を促進させる効果もあるので好ましい。
(5) Oxidation treatment: The substrate is immersed in, for example, a 1 to 6% hydrogen peroxide aqueous solution, usually at 5 to 25 ° C. and about 10 to 60.
After dipping for a second, it is dried. Drying is 60-90 ℃
It is preferable to carry out exposure to the air blow of 30 to 90 seconds because it has an effect of promoting oxidation.

【0033】(6)マイクロエッチング:基板を硫酸/
過酸化水素系のエッチング液で、通常20〜30℃で約
20〜90秒間のスプレー処理した後水洗し、乾燥す
る。
(6) Micro etching: Sulfuric acid on the substrate /
It is sprayed with a hydrogen peroxide-based etching solution at 20 to 30 ° C. for about 20 to 90 seconds, washed with water and dried.

【0034】(7)電気メッキ:通常の電気メッキ浴を
用い、常温、1.5〜3A/dm2で60〜90分間の
条件でメッキする。
(7) Electroplating: Using an ordinary electroplating bath, plating is performed at room temperature at 1.5 to 3 A / dm 2 for 60 to 90 minutes.

【0035】前記(1)の基材表面の洗浄と(2)のコ
ンディショニング処理とを1工程で行なうことも可能で
ある。この場合、たとえばポリアミン系、ポリアミド系
等のカチオン系界面活性剤、エタノールアミン等の溶剤
を含み、pH9〜12程度の弱アルカリ液で20〜60
℃で約20〜60秒処理した後、水洗すればよい。
It is also possible to carry out the cleaning of the substrate surface in (1) and the conditioning treatment in (2) in one step. In this case, for example, a cationic alkaline surfactant such as polyamine-based or polyamide-based, a solvent such as ethanolamine, etc., and a weak alkaline solution having a pH of about 9-12 is used for 20-60.
It may be treated with water for 20 to 60 seconds and then washed with water.

【0036】[0036]

【実施例】【Example】

実施例1 厚さ35μmの銅箔とガラス布基材にエポキシ樹脂を含
浸させた絶縁層とを交互に積層してなり、最外層の2層
の銅箔を含めて6層の銅箔を有する基板(幅約10c
m、長さ約25cm、厚さ1.6mm)であって、直径
0.3〜0.8mmのスルーホール約960個を穿孔し
た基板を下記のように処理した。まず、前記基板を、カ
チオン系界面活性剤0.5%、アミン1.0%、残部水
からなる液(クリーナー・コンディショナー)に45℃
で40秒間浸漬した後、水洗した(洗浄・コンディショ
ニング)。ついで平均粒子径0.4μmのグラファイト
粒子4.0%、カルボキシメチルセルロース0.5%、
ケイ酸ナトリウム0.5%、アニオン系界面活性剤1.
0%、残部水からなり、アンモニアでpH10に調整し
たグラファイト分散液に25℃で60秒間浸漬した。つ
いで硫酸(62.5%水溶液)10%、残部水からなる
pH0.2の水溶液に20℃で30秒間浸漬した後、水
洗した(酸処理)。ついで過酸化水素3%、分解防止剤
0.5%、残部水からなる液に20℃で20秒間浸漬し
た後、90℃で100秒間加熱し、乾燥した(酸化処
理)。ついで硫酸、過酸化水素等からなる液(メック
(株)製のCA−90)で25℃、20秒間のスプレー
処理した後、水洗し、乾燥した(マイクロエッチン
グ)。このマイクロエッチングにより銅が1μmエッチ
ングされた。
Example 1 A copper foil having a thickness of 35 μm and an insulating layer in which a glass cloth base material is impregnated with an epoxy resin are alternately laminated, and 6 layers of copper foil including 2 layers of outermost copper foil are provided. Substrate (width about 10c
m, length about 25 cm, thickness 1.6 mm) and a substrate having about 960 through holes with a diameter of 0.3 to 0.8 mm were processed as follows. First, the substrate is placed in a liquid (cleaner / conditioner) containing 0.5% of a cationic surfactant, 1.0% of amine and the balance of water at 45 ° C.
After dipping for 40 seconds, it was washed with water (washing / conditioning). Then, 4.0% of graphite particles having an average particle diameter of 0.4 μm, 0.5% of carboxymethyl cellulose,
Sodium silicate 0.5%, anionic surfactant 1.
It was immersed for 60 seconds at 25 ° C. in a graphite dispersion liquid which was composed of 0% and the balance water and whose pH was adjusted to 10 with ammonia. Then, it was immersed in an aqueous solution of 10% sulfuric acid (62.5% aqueous solution) and the balance of water at pH 0.2 for 30 seconds at 20 ° C. and then washed with water (acid treatment). Then, after immersing in a liquid consisting of 3% hydrogen peroxide, 0.5% decomposition inhibitor and the balance water at 20 ° C. for 20 seconds, it was heated at 90 ° C. for 100 seconds and dried (oxidation treatment). Then, after spray treatment with a liquid (CA-90 manufactured by MEC Co., Ltd.) composed of sulfuric acid, hydrogen peroxide, etc. at 25 ° C. for 20 seconds, it was washed with water and dried (micro etching). Copper was etched by 1 μm by this micro-etching.

【0037】前記基板を通常の銅電気メッキ浴を用い、
2A/dm2 の電流密度で25℃で90分間銅を電気メ
ッキした。
Using the usual copper electroplating bath for the substrate,
Copper was electroplated at 25 ° C. for 90 minutes at a current density of 2 A / dm 2 .

【0038】得られた基板をバックライトテストによ
り、またクロスセクションの観察により検査した結果、
孔壁は均一な厚さの銅でメッキされており、内層の銅箔
とメッキされた銅とが完全に一体化してなり、孔径が
0.6〜0.8mmの比較的大きい孔はもちろんのこ
と、0.3〜0.5mmの小径孔にもボイドもなく良好
にメッキされていた。また、ソルダーショックテスト
(JIS C 5012に準じ、オイルを260〜26
5℃のはんだに変えて10サイクル行なった)により密
着性を試験したところ、孔壁にメッキされた銅の剥離は
なかった。
The obtained substrate was inspected by a backlight test and by observing a cross section,
The hole wall is plated with copper of uniform thickness, and the inner layer copper foil and the plated copper are completely integrated, and of course a relatively large hole with a hole diameter of 0.6 to 0.8 mm. That is, the small-diameter holes of 0.3 to 0.5 mm were plated well without voids. In addition, solder shock test (according to JIS C 5012, oil is 260-26
Adhesion was tested by changing to 5 ° C. solder for 10 cycles) and no peeling of the plated copper on the hole walls was observed.

【0039】実施例2 グラファイト分散液として平均粒子径0.4μmのグラ
ファイト粒子3%、ケイ酸カリウム0.5%、カチオン
系界面活性剤1%、残部水からなり、アンモニアでpH
10に調整したグラファイト分散液を用いたほかは、実
施例1と同様にして基板を処理し、電気メッキした。
Example 2 As a graphite dispersion liquid, 3% of graphite particles having an average particle diameter of 0.4 μm, 0.5% of potassium silicate, 1% of a cationic surfactant and the balance of water were used.
The substrate was treated and electroplated as in Example 1 except that the graphite dispersion adjusted to 10 was used.

【0040】得られた基板を実施例1と同様に評価した
ところ、孔壁は均一な厚さの銅でメッキされており、内
層の銅箔とメッキされた銅とが完全に一体化してなり、
孔径が0.3〜0.5mmの小径孔にもボイドもなく良
好にメッキされていた。また、密着性試験の後も孔壁か
らの電気メッキされた銅の剥離はなかった。
When the obtained substrate was evaluated in the same manner as in Example 1, the hole walls were plated with copper having a uniform thickness, and the inner layer copper foil and the plated copper were completely integrated. ,
The small-diameter holes having a diameter of 0.3 to 0.5 mm were well plated without voids. Also, there was no peeling of the electroplated copper from the hole walls after the adhesion test.

【0041】実施例3 グラファイト分散液のかわりに平均粒子径0.1μmの
カーボンブラック粒子3.0%、カチオン系界面活性剤
1%、残部水からなり、水酸化カリウムでpH10に調
整したカーボンブラック分散液を用いたほかは、実施例
1と同様にして基板を処理し、電気メッキした。
Example 3 Instead of the graphite dispersion, carbon black particles having an average particle diameter of 0.1 μm (3.0%), a cationic surfactant (1%), and the balance water were used. The carbon black was adjusted to pH 10 with potassium hydroxide. The substrate was treated and electroplated as in Example 1 except that the dispersion was used.

【0042】得られた基板を実施例1と同様に評価した
ところ、孔壁は均一な厚さの銅でメッキされており、内
層の銅箔とメッキされた銅とが完全に一体化してなり、
孔径が0.3〜0.5mmの小径孔にもボイドもなく良
好にメッキされていた。また、密着性試験の後も孔壁か
らの電気メッキされた銅の剥離はなかった。
When the obtained substrate was evaluated in the same manner as in Example 1, the hole walls were plated with copper of a uniform thickness, and the inner layer copper foil and the plated copper were completely integrated. ,
The small-diameter holes having a diameter of 0.3 to 0.5 mm were well plated without voids. Also, there was no peeling of the electroplated copper from the hole walls after the adhesion test.

【0043】実施例4 実施例1と同様に洗浄・コンディショニングし、グラフ
ァイト分散液に浸漬した後、90℃で100秒間加熱
し、乾燥した。ついで過酸化水素3%、分解防止剤0.
5%、残部水からなる液に20℃で20秒間浸漬した
(酸化処理)後、メック(株)製のCA−90で25
℃、20秒間のスプレー処理し、水洗し、乾燥した(マ
イクロエッチング)。このマイクロエッチングにより銅
が1μmエッチングされた。ついで実施例1と同様に電
気メッキした。
Example 4 Washing and conditioning were carried out in the same manner as in Example 1, immersed in the graphite dispersion liquid, then heated at 90 ° C. for 100 seconds and dried. Then hydrogen peroxide 3%, decomposition inhibitor 0.
After immersing in a liquid consisting of 5% and the balance water for 20 seconds at 20 ° C. (oxidation treatment), 25 with CA-90 manufactured by MEC Co., Ltd.
It was sprayed at 20 ° C. for 20 seconds, washed with water, and dried (micro etching). Copper was etched by 1 μm by this micro-etching. Then, electroplating was performed in the same manner as in Example 1.

【0044】得られた基板を実施例1と同様に評価した
ところ、孔壁は均一な厚さの銅でメッキされており、内
層の銅箔とメッキされた銅とが完全に一体化してなり、
孔径が0.3〜0.5mmの小径孔にもボイドもなく良
好にメッキされていた。また、密着性試験の後も孔壁か
らの電気メッキされた銅の剥離はなかった。
When the obtained substrate was evaluated in the same manner as in Example 1, the hole walls were plated with a uniform thickness of copper, and the inner layer copper foil and the plated copper were completely integrated. ,
The small-diameter holes having a diameter of 0.3 to 0.5 mm were well plated without voids. Also, there was no peeling of the electroplated copper from the hole walls after the adhesion test.

【0045】比較例1 グラファイト分散液として平均粒子径3μmのグラファ
イトを3.0%含有する分散液を用い、過酸化水素水溶
液による酸化処理をしなかったほかは、実施例1と同様
にして基板を処理し、電気メッキした。
Comparative Example 1 A substrate was prepared in the same manner as in Example 1 except that 3.0% of graphite having an average particle size of 3 μm was used as the graphite dispersion and no oxidation treatment with an aqueous hydrogen peroxide solution was carried out. Treated and electroplated.

【0046】得られた基板を実施例1と同様に評価した
ところ、孔径が0.6〜0.8mmの孔のうち約70%
に内層の銅箔とメッキされた銅との間にグラファイトが
認められ、孔径が0.3〜0.5mmの孔径の殆ど全て
に内層の銅箔とメッキされた銅との間にグラファイトが
認められた。また、孔径が0.8mmの穴について密着
性試験を行なったが、孔中の電気メッキされた銅は剥離
してしまい、不合格であった。
When the obtained substrate was evaluated in the same manner as in Example 1, about 70% of the holes having a diameter of 0.6 to 0.8 mm were evaluated.
Graphite is found between the inner layer copper foil and the plated copper, and graphite is found between the inner layer copper foil and the plated copper in almost all of the hole diameters of 0.3 to 0.5 mm. Was given. Further, an adhesion test was conducted on a hole having a hole diameter of 0.8 mm, but the electroplated copper in the hole was peeled off and was unacceptable.

【0047】以上の結果から、本発明に方法によれば、
グラファイトの平均粒子径が2μmを越える範囲に分布
しているグラファイト分散液を用い、また酸化処理をし
なっかった比較例に比べ、付き回り性および付着力に優
れた電気メッキをし得ることがわかる。
From the above results, according to the method of the present invention,
It is possible to perform electroplating which is excellent in throwing power and adhesive force as compared with Comparative Example in which a graphite dispersion liquid in which the average particle diameter of graphite is distributed in a range exceeding 2 μm is used and which is not oxidized. Recognize.

【0048】[0048]

【発明の効果】本発明の方法によれば、導電性金属と非
導電体とが表面に露呈した材料に信頼性の高い電気メッ
キをコストのかからない方法で実施することができる。
本発明の方法は、特に小径孔を有する多層のプリント配
線板にも適用し得る信頼性の高いものである。
According to the method of the present invention, highly reliable electroplating can be performed on a material having a conductive metal and a non-conductive material exposed on the surface thereof at a low cost.
The method of the present invention is highly reliable, particularly applicable to a multilayer printed wiring board having small diameter holes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】導電体と非導電体とが表面に露呈した材料
に電気メッキする方法であって、 (a)導電性である金属と非導電体とが表面に露呈した
材料に、平均粒子径が最大2μmのグラファイト粒子お
よび平均粒子径が最大1μmのカーボンブラック粒子の
うちの少なくとも1種を含有する水分散液を接触させ、
該粒子を付着させた後、 (b)導電性である金属の表面を酸化し、 (c)該材料表面に付着したグラファイト粒子およびカ
ーボンブラック粒子のうち、金属表面上の粒子を、該金
属層を0.01〜5μmエッチングすることにより除去
し、 (d)ついで金属と非導電体表面の該粒子の層とを導電
層として電気メッキすることを特徴とする電気メッキ
法。
1. A method of electroplating a material in which a conductor and a non-conductor are exposed on the surface, comprising: (a) a material in which a conductive metal and a non-conductor are exposed on the surface, and an average particle An aqueous dispersion containing at least one of graphite particles having a maximum diameter of 2 μm and carbon black particles having an average particle diameter of maximum 1 μm is contacted,
After adhering the particles, (b) oxidizing the surface of a conductive metal, and (c) among the graphite particles and carbon black particles adhering to the surface of the material, the particles on the metal surface are converted into the metal layer. Is removed by etching 0.01 to 5 μm, and (d) an electroplating method is then performed by electroplating the metal and the layer of the particles on the non-conductive surface as a conductive layer.
【請求項2】導電体と非導電体とが表面に露呈した材料
に電気メッキする方法であって、 (a)導電性である金属と非導電体とが表面に露呈した
材料に、平均粒子径が最大2μmのグラファイト粒子お
よび平均粒子径が最大1μmのカーボンブラック粒子の
うちの少なくとも1種を含有する水分散液を接触させ、
該粒子を付着させた後、(a−2)該材料をpH3以下
の強酸性水溶液に浸漬して材料表面の前記粒子を凝集さ
せ、 (b)ついで導電性である金属の表面を酸化し、 (c)該材料表面に付着したグラファイト粒子およびカ
ーボンブラック粒子のうち、金属表面上の粒子を、該金
属層を0.01〜5μmエッチングすることにより除去
し、 (d)ついで金属と非導電体表面の該粒子の層とを導電
層として電気メッキすることを特徴とする電気メッキ
法。
2. A method of electroplating a material in which a conductor and a non-conductor are exposed on the surface, comprising: (a) a material in which a conductive metal and a non-conductor are exposed on the surface, and an average particle An aqueous dispersion containing at least one of graphite particles having a maximum diameter of 2 μm and carbon black particles having an average particle diameter of maximum 1 μm is contacted,
After adhering the particles, (a-2) dipping the material in a strongly acidic aqueous solution having a pH of 3 or less to aggregate the particles on the surface of the material, (b) then oxidizing the surface of the conductive metal, (C) Of graphite particles and carbon black particles adhering to the surface of the material, particles on the metal surface are removed by etching the metal layer by 0.01 to 5 μm, and (d) then the metal and non-conductor. An electroplating method which comprises electroplating the layer of particles on the surface as a conductive layer.
【請求項3】前記導電性である金属と非導電体とが表面
に露呈した材料が、金属層と非導電体層とが積層され、
スルーホールが形成されたプリント基板である請求項1
または2記載の方法。
3. A material in which a conductive metal and a non-conductive material are exposed on the surface, a metal layer and a non-conductive material layer are laminated,
A printed circuit board having a through hole formed therein.
Or the method described in 2.
JP20031594A 1994-08-03 1994-08-03 Electroplating method Pending JPH0849093A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20031594A JPH0849093A (en) 1994-08-03 1994-08-03 Electroplating method
TW83108434A TW254973B (en) 1994-08-03 1994-09-13 An electroplating process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20031594A JPH0849093A (en) 1994-08-03 1994-08-03 Electroplating method

Publications (1)

Publication Number Publication Date
JPH0849093A true JPH0849093A (en) 1996-02-20

Family

ID=16422270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20031594A Pending JPH0849093A (en) 1994-08-03 1994-08-03 Electroplating method

Country Status (2)

Country Link
JP (1) JPH0849093A (en)
TW (1) TW254973B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202569A (en) * 2005-01-19 2006-08-03 Japan Aviation Electronics Industry Ltd Contact, connector using it, and method of manufacturing contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202569A (en) * 2005-01-19 2006-08-03 Japan Aviation Electronics Industry Ltd Contact, connector using it, and method of manufacturing contact

Also Published As

Publication number Publication date
TW254973B (en) 1995-08-21

Similar Documents

Publication Publication Date Title
JP3481379B2 (en) Electroplating method
JPH07268682A (en) Method for electroplating surface of electric nonconductor
JPS59104197A (en) Machining method for clarifying hole of printed circuit board by using permanganate and caustic treating solution
US5725807A (en) Carbon containing composition for electroplating
JP2008516088A (en) Method of processing non-conductive substrate for electroplating
US5690805A (en) Direct metallization process
JP4129665B2 (en) Manufacturing method of substrate for semiconductor package
JP7161597B2 (en) Carbon-based direct plating process
JPH0897559A (en) Method and solution for treating copper foil of circuit board for inner layer of multilayer printed wiring board
JPH0849093A (en) Electroplating method
JPH07123181B2 (en) Manufacturing method of printed wiring board
GB2274853A (en) Process for electroplating nonconductive surface e.g through holes in print wiring board
JPH05259611A (en) Production of printed wiring board
JPH06280089A (en) Method for electroplating surface of nonconductor
JP2000114693A (en) Manufacture of wiring board
JP2000309887A (en) Method for removing chromate rust preventive film and production of wiring substrate
US20100034965A1 (en) Direct Metallization Process
JPH06216520A (en) Manufacture of multilayer printed board
JPH04247694A (en) Method for treating copper circuit of circuit board for inner layer
JPH11236690A (en) Pretreating liquid for copper lining substrate and pretreatment
JPH10242648A (en) Manufacturing method of multilayered printed wiring board
JP2001274549A (en) Manufacturing method of multilayer printed wiring board
JPH0665755B2 (en) Dispersions suitable for enhancing metal plating
JPH10173340A (en) Method of manufacturing multilayer printed-wiring board
JPH06252547A (en) Roughening method for copper circuit of wiring board for inner layer