JPH0847801A - Cubic boron nitride sintered body for cutting tool and cutting tool - Google Patents

Cubic boron nitride sintered body for cutting tool and cutting tool

Info

Publication number
JPH0847801A
JPH0847801A JP6203054A JP20305494A JPH0847801A JP H0847801 A JPH0847801 A JP H0847801A JP 6203054 A JP6203054 A JP 6203054A JP 20305494 A JP20305494 A JP 20305494A JP H0847801 A JPH0847801 A JP H0847801A
Authority
JP
Japan
Prior art keywords
sintered body
cbn
polycrystalline
boron nitride
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6203054A
Other languages
Japanese (ja)
Other versions
JP3472630B2 (en
Inventor
Masaharu Suzuki
正治 鈴木
Kazuo Yamamoto
和男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Denki Kagaku Kogyo KK filed Critical Mitsubishi Materials Corp
Priority to JP20305494A priority Critical patent/JP3472630B2/en
Publication of JPH0847801A publication Critical patent/JPH0847801A/en
Application granted granted Critical
Publication of JP3472630B2 publication Critical patent/JP3472630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a cutting tool which is capable of cutting for a long time by adjusting oxygen content of polycrystalline cubic boron nitride sintered body obtained by a direct conversion method to a predetermined mol percentage. CONSTITUTION:In a direct conversion method, oxygen content of polycrystalline cBN sintered body and molar ratio of boron for nitrogen are controlled by using no catalyst and binder and by specifying synthesis conditions. The oxygen content of the polycrystalline cBN sintered body is 0.10mol percentage or less. Thus, in the polycrystalline cBN sintered body whose oxygen content is 0.10mol percentage or less, no phase other than cBN is observed among particles, wear during cutting is caused mostly by destruction in cBN particles, no great dropping-out of cBN particles from a surface of sintered body is observed, and the amount of wear is by far small. When a tissue of the sintered body whose oxygen content exceeds 0.10mol percentage is observed by a transmission electron microscope, the existence of an oxide phase containing boron is confirmed among cBN particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は切削加工用工具素材、特
に鋳鉄、超硬合金、焼入鋼等の切削加工やドリル加工等
の機械加工用工具素材として用いられる立方晶窒化ほう
素焼結体及びこの立方晶窒化ほう素焼結体で構成されて
なる切削工具に関するものである。
TECHNICAL FIELD The present invention relates to a cutting tool material, particularly a cubic boron nitride sintered body used as a tool material for machining such as cutting and drilling of cast iron, cemented carbide, hardened steel and the like. And a cutting tool composed of this cubic boron nitride sintered body.

【0002】[0002]

【従来の技術】窒化ほう素の高圧相である立方晶窒化ほ
う素(cBN)はダイヤモンドに次ぐ硬さと熱伝導率を
有し、鉄系金属と反応しないとうダイヤモンドには無い
特徴を持つことから、鉄系金属やコバルトなどの鉄系金
属を多く含む超硬合金の機械加工用工具素材としての利
用が進められている。
BACKGROUND OF THE INVENTION Cubic boron nitride (cBN), which is a high-pressure phase of boron nitride, has hardness and thermal conductivity second only to diamond, and has characteristics that diamond does not react with iron-based metals. , Cemented carbide containing a large amount of iron-based metals and iron-based metals such as cobalt is being used as a tool material for machining.

【0003】近年の機械加工は、高能率化、無人化の方
向にある。高能率化の具体的な方法としては重切削、高
速切削であるが、このような過酷な切削条件下では工
具、特に工具の刃先部分に大きな負荷がかかるため、高
い強度を持つ工具用素材が必要となる。一方、無人化の
ためには長時間使用しても摩耗することなく、工具の交
換を頻繁に必要としない耐摩耗性に優れた長寿命の工具
用素材が必要となる。
In recent years, machining has tended to be highly efficient and unmanned. Heavy cutting and high-speed cutting are the specific methods for achieving high efficiency.However, under such severe cutting conditions, a large load is applied to the tool, especially the cutting edge of the tool, so a tool material with high strength must be used. Will be needed. On the other hand, for unmanned use, a long-life tool material that does not wear even after long-term use and has excellent wear resistance that does not require frequent tool replacement is required.

【0004】しかしながら、従来は、高強度でかつ耐摩
耗性に優れるという二つの機能を同時に満足するような
cBN焼結体工具、特に、鋳鉄や超硬合金などのように
脆いが硬度が大きいという難削材の加工に適するような
ものは、ほとんど開発されていなかった。これは、以下
に述べるような理由による。
[0004] However, conventionally, a cBN sintered body tool capable of simultaneously satisfying the two functions of high strength and excellent wear resistance, particularly brittle but large in hardness such as cast iron and cemented carbide, is said to have a large hardness. Little has been developed that is suitable for processing difficult-to-cut materials. This is for the following reasons.

【0005】(1)従来のcBNのみからなる焼結体
は、焼結体自身の硬度は非常に大きいが、cBN粒子間
の結合強度が小さいためか強度の大きいものが得られ
ず、工具素材に使えるような満足な強度をもつものでは
なかった。
(1) A conventional sintered body made of only cBN has a very high hardness, but it is difficult to obtain a high strength because the bonding strength between the cBN particles is small. It did not have enough strength to be used for.

【0006】(2)従来の工具用cBN焼結体は、高強
度にするため、cBN粒子にAl,Co等の金属、Ti
N,TiC,Al23 等の炭化物,窒化物,酸化物等
の結合剤を添加し焼結されてなる複合焼結体が用いられ
てきた。しかし、このような複合体は、焼結体中にcB
Nより硬度の小さい結合剤を含むため、焼結体自身の硬
度が小さくなりcBN本来の高硬度の特性を充分に活か
せなかった。
(2) In the conventional cBN sintered body for tools, in order to obtain high strength, metal such as Al and Co, Ti, etc. is added to cBN particles.
A composite sintered body has been used in which a binder such as N, TiC or Al 2 O 3 carbide, nitride, or oxide is added and sintered. However, such a composite does not contain cB in the sintered body.
Since a binder having a hardness smaller than N is included, the hardness of the sintered body itself becomes small, and the inherent high hardness characteristics of cBN cannot be fully utilized.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、上記の
状況に鑑み、鋳鉄や超硬合金などのように脆いが硬度が
大きいとうい難削材の加工に対しても、高強度,高靭性
かつ耐摩耗性に優れるという性能を同時に満足するよう
な切削工具素材を開発することを目的として種々検討し
た結果、多結晶型cBN焼結体の合成方法、酸素含有量
及び窒素とほう素のモル比が、多結晶型cBN焼結体の
特性に以下に示すように深く関係していることを見いだ
し、本発明を完成させたものである。
SUMMARY OF THE INVENTION In view of the above situation, the inventors of the present invention have a high strength for processing difficult-to-cut materials such as cast iron and cemented carbide which are brittle but have high hardness. As a result of various studies aimed at developing a cutting tool material that simultaneously satisfies the requirements of high toughness and excellent wear resistance, a method for synthesizing a polycrystalline cBN sintered body, oxygen content, and nitrogen and boron The present invention has been completed by finding that the molar ratio of is closely related to the characteristics of the polycrystalline cBN sintered body as shown below.

【0008】すなわち、従来より一般的に用いられてき
た結合剤を用いる焼結法ではなく、直接転換法を用いる
とcBNのみからなる硬度の高い多結晶型cBN焼結体
が得られること、しかもその中で合成条件を厳密に制御
することにより酸素含有量が0.10モル%以下である
焼結体が得られ、その焼結体は特に強度が大きくなり耐
摩耗性に著しく優れることがわかった。さらに、合成条
件を工夫することにより、焼結体を構成する窒素に対す
るほう素のモル比を様々に変化させられることがわか
り、特にそのモル比が0.95以上0.99以下である
ものは、著しく優れた耐摩耗性を示すことを見いだした
ものである。
That is, when a direct conversion method is used instead of a sintering method using a binder which has been generally used in the past, a polycrystalline cBN sintered body having a high hardness and composed of only cBN can be obtained. It was found that by strictly controlling the synthesis conditions, a sintered body having an oxygen content of 0.10 mol% or less was obtained, and the sintered body had particularly high strength and was extremely excellent in wear resistance. It was Furthermore, it has been found that the molar ratio of boron to nitrogen constituting the sintered body can be variously changed by devising the synthesis conditions. Particularly, the molar ratio of 0.95 or more and 0.99 or less can be obtained. It has been found that it exhibits remarkably excellent wear resistance.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、直
接転換法によって得られる多結晶型立方晶窒化ほう素焼
結体からなり、その酸素含有量が0.10モル%以下で
あることを特徴とする切削工具用立方晶窒化ほう素焼結
体、この立方晶窒化ほう素焼結体において、窒素に対す
るほう素のモル比が0.95以上0.99以下であるこ
とを特徴とする切削工具用立方晶窒化ほう素焼結体、及
び上記いずれかの切削工具用立方晶窒化ほう素焼結体で
構成されてなることを特徴とする切削工具である。
That is, the present invention comprises a polycrystalline cubic boron nitride sintered body obtained by a direct conversion method, and has an oxygen content of 0.10 mol% or less. And a cubic boron nitride sintered body for a cutting tool, wherein the cubic boron nitride sintered body has a molar ratio of boron to nitrogen of 0.95 or more and 0.99 or less A cutting tool comprising a crystalline boron nitride sintered body and a cubic boron nitride sintered body for any one of the above cutting tools.

【0010】以下、さらに詳しく本発明について説明す
る。
The present invention will be described in more detail below.

【0011】本発明における直接転換法とは、触媒を用
いず固体間の直接相転移によって多結晶型cBN焼結体
を得る方法である。cBNの直接転換焼結体の合成法
は、広く一般に知られており、例えば特公昭63−39
4号公報(米国特許第4,188,194号明細書)、
特公昭63−44417号公報(米国特許第4,28
9,503号明細書)、特開平6−72768号公報等
に述べられているように、低圧相窒化ほう素の一つであ
る熱分解窒化ほう素をcBNの安定領域である高温/高
圧下で処理することによって得ることができる。ここで
いう低圧相BNとは、ほう素、窒素原子が交互に結合さ
れることによって形成される六角網面が積層した構造を
持つものであり、具体的には六方晶系の窒化ほう素(h
BN)、乱層構造の窒化ほう素(tBN)、菱面体晶の
窒化ほう素(rBN)の単体または混合物からなる物質
である。
The direct conversion method in the present invention is a method for obtaining a polycrystalline cBN sintered body by direct phase transition between solids without using a catalyst. A method for synthesizing a direct conversion sintered body of cBN is widely known, and for example, Japanese Patent Publication No. 63-39.
4 (US Pat. No. 4,188,194),
JP-B-63-44417 (US Pat. No. 4,28
As described in JP-A-6-72768, etc., pyrolytic boron nitride, which is one of low-pressure phase boron nitride, is subjected to high temperature / high pressure which is a stable region of cBN. Can be obtained by treating with. The low-pressure phase BN mentioned here has a structure in which hexagonal mesh planes formed by alternately bonding boron and nitrogen atoms are laminated, and specifically, hexagonal boron nitride ( h
BN), a turbostratic boron nitride (tBN), and a rhombohedral boron nitride (rBN), either alone or in a mixture.

【0012】本発明においては、上述した酸素含有量と
窒素に対するほう素のモル比が制御された多結晶型cB
N焼結体を得るために、原料、高温/高圧を発生する反
応室を後述するように厳密に制御する必要がある。
In the present invention, the polycrystalline cB having the above-mentioned oxygen content and the molar ratio of boron to nitrogen is controlled.
In order to obtain the N sintered body, it is necessary to strictly control the raw material and the reaction chamber generating high temperature / high pressure as described later.

【0013】本発明において、直接転換法を用いる理由
は次の通りである。
The reason why the direct conversion method is used in the present invention is as follows.

【0014】(1)触媒や結合剤を用いた合成法では多
結晶型cBN焼結体の粒内や粒界に触媒や結合剤などが
不純物として残存してしまうために硬度の高い多結晶型
cBN焼結体が得られない。
(1) In the synthesis method using a catalyst and a binder, the catalyst and the binder, etc. remain as impurities in the grains and grain boundaries of the polycrystalline cBN sintered body, so that the polycrystalline type having a high hardness is used. A cBN sintered body cannot be obtained.

【0015】(2)触媒や結合剤を用いた合成法では触
媒や結合剤から酸素が拡散し多結晶型cBN焼結体自体
の酸素含有量を制御することができない。
(2) In the synthesis method using a catalyst or a binder, oxygen is diffused from the catalyst or the binder, and the oxygen content of the polycrystalline cBN sintered body itself cannot be controlled.

【0016】(3)触媒や結合剤の一部がcBNと反応
するために多結晶型cBN焼結体を構成する窒素に対す
るほう素のモル比を制御することができないからであ
る。これに対して、直接転換法では触媒や結合剤を用い
ないため、合成条件を工夫することにより、多結晶型c
BN焼結体中の酸素含有量と窒素に対するほう素のモル
比を制御することができる。
(3) Because the catalyst and a part of the binder react with cBN, the molar ratio of boron to nitrogen constituting the polycrystalline cBN sintered body cannot be controlled. On the other hand, the direct conversion method does not use a catalyst or a binder.
The oxygen content in the BN sintered body and the molar ratio of boron to nitrogen can be controlled.

【0017】本発明における多結晶型cBN焼結体の酸
素含有量は、例えば多結晶型cBN焼結体を不活性ガス
中で溶融分解し、発生する酸素をカーボンと反応させて
二酸化炭素となし、その二酸化炭素をガスクロマトグラ
フにより定量するインパルス融解熱伝導法を用いて分析
することができる。また、多結晶型cBN焼結体中の酸
素の存在形態は、例えば微小部分析装置付き透過型電子
顕微鏡による化学分析と構造解析を併用することによっ
て行なうことができる。
The oxygen content of the polycrystalline cBN sintered body according to the present invention is determined, for example, by melting and decomposing the polycrystalline cBN sintered body in an inert gas and reacting the generated oxygen with carbon to form carbon dioxide. , The carbon dioxide can be analyzed by using an impulse melting heat conduction method for quantifying the carbon dioxide by a gas chromatograph. The existence form of oxygen in the polycrystalline cBN sintered body can be determined by, for example, using chemical analysis and structural analysis in combination with a transmission electron microscope equipped with a micro analyzer.

【0018】本発明において、多結晶型cBN焼結体の
酸素含有量を0.10モル%以下と限定した理由は次の
とおりである。すなわち、酸素はcBN中にほとんど固
溶しないことが知られているが、直接転換法によって製
造された市販の多結晶型cBN焼結体には0.10モル
%をこえる酸素が含まれている。これは、酸素が多結晶
体を構成するcBN粒子間等に存在することを示唆す
る。酸素含有量が0.10モル%をこえる焼結体の組織
を透過型電子顕微鏡により観察するとcBN粒子間にほ
う素を含む酸化物相の存在が確認される。そして、この
焼結体を用いた切削工具の切削中の刃先の微細組織変化
を、金属顕微鏡と走査型電子顕微鏡により詳細に観察す
ると、刃先の焼結体の摩耗が主にcBN粒界での破壊に
よるcBN粒子の脱落により起きていることがわかっ
た。これに対し、酸素含有量が0.10モル%以下であ
る多結晶型cBN焼結体は、粒子間にcBN以外の相は
観察されず、また、切削中の摩耗は主にcBN粒内の破
壊により起こっており、焼結体表面からのcBN粒子の
大きな脱落は見られず摩耗量も格段に小さかった。
The reason why the oxygen content of the polycrystalline cBN sintered body is limited to 0.10 mol% or less in the present invention is as follows. That is, it is known that oxygen hardly forms a solid solution in cBN, but a commercially available polycrystalline cBN sintered body produced by the direct conversion method contains oxygen exceeding 0.10 mol%. . This suggests that oxygen exists between the cBN particles forming the polycrystalline body. When the structure of the sintered body having an oxygen content of more than 0.10 mol% is observed by a transmission electron microscope, the presence of an oxide phase containing boron between cBN particles is confirmed. Then, when the fine structure change of the cutting edge during cutting of the cutting tool using this sintered body is observed in detail by a metal microscope and a scanning electron microscope, the wear of the sintered body of the cutting edge is mainly observed at the cBN grain boundary. It was found that this was caused by the loss of cBN particles due to destruction. On the other hand, in the polycrystalline cBN sintered body having an oxygen content of 0.10 mol% or less, no phase other than cBN was observed between the particles, and wear during cutting was mainly due to wear within the cBN particles. It was caused by the fracture, the cBN particles did not drop off from the surface of the sintered body, and the wear amount was remarkably small.

【0019】また、本発明における多結晶型cBN焼結
体のB/Nモル比は次のようにして測定することができ
る。多結晶型cBN焼結体の窒素分は多結晶型cBN焼
結体をインパルス炉中、不活性ガス雰囲気下で溶融分解
し、発生する窒素ガスをガス分析することによって定量
することができ、また、ほう素分は、多結晶型cBN焼
結体をアルカリと混合し、加熱融解したものを塩酸中に
溶かし、メタノール蒸留法で抽出した試料をアルカリ中
和滴定することによって定量することができる。
The B / N molar ratio of the polycrystalline cBN sintered body of the present invention can be measured as follows. The nitrogen content of the polycrystalline cBN sintered body can be quantified by melting and decomposing the polycrystalline cBN sintered body in an impulse furnace in an inert gas atmosphere, and analyzing the generated nitrogen gas by gas analysis. The boron content can be quantified by mixing the polycrystalline cBN sintered body with an alkali, dissolving the heated and melted product in hydrochloric acid, and subjecting the sample extracted by the methanol distillation method to alkali neutralization titration.

【0020】本発明においては、多結晶型cBN焼結体
のB/Nモル比は0.95以上0.99以下であること
が好ましく、その理由はこのようなモル比を有する多結
晶型cBN焼結体を切削工具として用いた場合に著しく
優れた耐摩耗性を示すからである。このようなモル比を
有する多結晶型cBN焼結体は、原料のB/Nモル比を
厳密に制御することによって製造することができる。
In the present invention, the B / N molar ratio of the polycrystalline cBN sintered body is preferably 0.95 or more and 0.99 or less because the polycrystalline cBN having such a molar ratio is used. This is because when the sintered body is used as a cutting tool, it exhibits extremely excellent wear resistance. The polycrystalline cBN sintered body having such a molar ratio can be manufactured by strictly controlling the B / N molar ratio of the raw material.

【0021】本発明で使用される多結晶型cBN焼結体
は、例えば以下のようにして製造することができる。す
なわち、基本的には、例えば特公昭63−394号公報
(米国特許第4,188,194号明細書)、特公昭6
3−44417号公報(米国特許第4,289,503
号明細書)、特開平6−72768号公報等に述べられ
ているように、熱分解窒化ほう素をcBNの安定領域で
ある高温/高圧下で処理することによって得ることがで
きる。ただし、本発明においては、原料、高温/高圧下
を発生する反応室を以下に述べるように精密に制御して
酸素含有量を制御した燒結体を得る必要があり、さらに
はB/Nモル比を制御した焼結体を得ることが好まし
い。
The polycrystalline cBN sintered body used in the present invention can be manufactured, for example, as follows. That is, basically, for example, Japanese Examined Patent Publication No. 63-394 (US Pat. No. 4,188,194) and Japanese Examined Patent Publication 6
3-44417 (U.S. Pat. No. 4,289,503)
Specification), Japanese Patent Application Laid-Open No. 6-72768, etc., it can be obtained by treating pyrolytic boron nitride at a high temperature / high pressure which is a stable region of cBN. However, in the present invention, it is necessary to precisely control the raw material and the reaction chamber for generating high temperature / high pressure as described below to obtain a sintered body in which the oxygen content is controlled. It is preferable to obtain a sintered body in which the temperature is controlled.

【0022】まず、原料としては熱分解窒化ほう素など
の高純度の低圧相窒化ほう素が望ましく、低圧相窒化ほ
う素の純度としては、99.99%以上であることが好
ましい。また、その形状は粉末状であるよりも例えば市
販の熱分解窒化ほう素のように板状のものであることが
望ましい。粉末状のものでは表面積が大きいため酸素が
表面に吸着されやすい。
First, as the raw material, high-purity low-pressure phase boron nitride such as pyrolytic boron nitride is desirable, and the purity of the low-pressure phase boron nitride is preferably 99.99% or more. Further, the shape thereof is preferably a plate-like one such as commercially available pyrolytic boron nitride, rather than a powdery one. Oxygen tends to be adsorbed on the surface of the powder because of its large surface area.

【0023】さらに、B/Nモル比が0.95以上0.
99以下の多結晶型cBN焼結体を得るには、合成時に
cBNが分解し揮発成分である窒素が散逸することによ
りほう素分が過剰になるため、原料となる低圧相窒化ほ
う素のB/Nモル比を0.90〜0.97程度に調整し
ておくのが望ましい。B/Nモル比が0.90〜0.9
7の低圧相窒化ほう素は、例えば、熱分解窒化ほう素を
合成する際の原料ガスの組成を、窒素成分の過剰な条件
にすることによって合成することができる。
Furthermore, the B / N molar ratio is 0.95 or more,
In order to obtain a polycrystalline cBN sintered body of 99 or less, cBN is decomposed during synthesis and nitrogen which is a volatile component is dissipated, so that the boron content becomes excessive. It is desirable to adjust the / N molar ratio to about 0.90 to 0.97. B / N molar ratio is 0.90 to 0.9
The low-pressure phase boron nitride of No. 7 can be synthesized, for example, by setting the composition of the raw material gas at the time of synthesizing the pyrolytic boron nitride so that the nitrogen component is excessive.

【0024】原料は、乾燥した不活性雰囲気中で高純度
のカーボン容器中に封入する。カーボン容器中に封入す
る理由は、多結晶型cBN焼結体合成時の高温状態下に
おいて原料周囲の雰囲気を還元性に保つためである。封
入された原料はカーボン容器ごと窒素雰囲気中温度70
0〜900℃程度にて30分間程度の熱処理を行なう。
これにより原料表面に吸着する酸素を容器のカーボンと
の反応により除去することができる。ここで、熱処理を
減圧下で行なったり、温度を1400℃以上に高くする
と、特公昭63−44417号公報(米国特許第4,2
89,503号明細書)に開示されているように、原料
の表面から窒素成分が揮発し遊離ほう素が生成し、B/
Nモル比が1.00を越えてしまい、B/Nモル比を
0.90〜0.97に制御しにくくなる。原料が封入さ
れたカーボン容器は、次いで、フラットベルト型超高温
高圧装置中で高温高圧処理が行なわれて多結晶型cBN
焼結体が合成される。
The raw materials are enclosed in a high purity carbon container in a dry, inert atmosphere. The reason for enclosing in a carbon container is to keep the atmosphere around the raw material in a reducing state under high temperature conditions during the synthesis of the polycrystalline cBN sintered body. The enclosed raw material is 70 in a nitrogen atmosphere together with the carbon container.
Heat treatment is performed at 0 to 900 ° C. for about 30 minutes.
As a result, the oxygen adsorbed on the surface of the raw material can be removed by the reaction with the carbon in the container. Here, if the heat treatment is performed under reduced pressure or the temperature is raised to 1400 ° C. or higher, JP-B-63-44417 (US Pat.
89,503), nitrogen components are volatilized from the surface of the raw material to produce free boron, and B /
The N molar ratio exceeds 1.00, making it difficult to control the B / N molar ratio to 0.90 to 0.97. The carbon container in which the raw material is sealed is then subjected to high temperature and high pressure processing in a flat belt type ultra high temperature and high pressure apparatus to obtain polycrystalline cBN.
A sintered body is synthesized.

【0025】高温高圧処理過程では汚染が起こらないよ
うに、反応室の材質もcBNと反応せず純度の高いもの
を用いる必要がある。具体的には半導体グレードの9
9.9%以上の高純度カーボンを加熱用ヒーターとして
用い、高純度で酸素をほとんど含まないNaCl粉末の
円筒成形体からなるブッシングをヒーター外部に配する
構造を用いると良い。一般に反応セル構造中のブッシン
グには、例えば特公昭63−394号公報(米国特許第
4,188,194号明細書)に示されるような滑石や
パイロフィライト等の溶岩が使用されるが、これらは主
成分として酸素を多く含むので、合成中にカーボン容器
を通して酸素が拡散し合成中の試料を汚染するので、本
発明のブッシング材質として不適当である。
In order to prevent contamination during the high temperature and high pressure process, it is necessary to use a material having a high purity that does not react with cBN in the reaction chamber. Specifically, semiconductor grade 9
It is preferable to use a structure in which 9.9% or more of high-purity carbon is used as a heater for heating and a bushing made of a cylindrical compact of NaCl powder of high purity and containing almost no oxygen is arranged outside the heater. Generally, lava such as talc and pyrophyllite as shown in Japanese Patent Publication No. 63-394 (US Pat. No. 4,188,194) is used for the bushing in the reaction cell structure. Since these contain a large amount of oxygen as the main component, oxygen diffuses through the carbon container during synthesis and contaminates the sample being synthesized, and is therefore unsuitable as the bushing material of the present invention.

【0026】これに対し、高純度のNaCl粉末をブッ
シング材質として用いれば、合成中に酸素の汚染等がな
いため、試料中の酸素不純物量を厳密に制御することが
できる。具体的には純度99.9%以上のNaCl粉末
を窒素雰囲気のグローブボックス内で酸素や水分と触れ
ないように成形した円筒成形体を用いると良い。高温高
圧下で保持する温度、圧力はcBNが熱力学的に安定な
条件であり、圧力6GPa以上、温度1500℃以上が
望ましい。
On the other hand, if high-purity NaCl powder is used as the bushing material, oxygen contamination or the like does not occur during synthesis, so that the amount of oxygen impurities in the sample can be strictly controlled. Specifically, it is preferable to use a cylindrical compact formed by molding NaCl powder having a purity of 99.9% or more in a glove box in a nitrogen atmosphere so as not to come into contact with oxygen and moisture. The temperature and pressure maintained under high temperature and high pressure are conditions under which cBN is thermodynamically stable, and a pressure of 6 GPa or higher and a temperature of 1500 ° C. or higher are desirable.

【0027】[0027]

【作用】本発明のような多結晶型cBN焼結体を切削工
具素材とすることによって、鋳鉄、超硬合金、焼入鋼等
の切削加工に適したものとなる理由は以下のことが考え
られる。
The reason why the use of the polycrystalline cBN sintered body of the present invention as a cutting tool material makes it suitable for cutting cast iron, cemented carbide, hardened steel, etc. is considered as follows. To be

【0028】硬度のそれほど大きくない金属を加工する
際には、工具と被削材の間の硬度差が大きいため、工具
の刃先は被削材に容易に食い込み、工具自体にそれほど
大きな力はかからない。これに対し、鋳鉄や超硬合金は
脆いが硬度が大きいので、加工する際に工具の先端には
大きなせん断力が衝撃的にかかる。
When processing a metal having a not so high hardness, since the hardness difference between the tool and the work material is large, the cutting edge of the tool easily digs into the work material, and the tool itself does not exert so much force. . On the other hand, cast iron and cemented carbide are brittle but have a high hardness, so that a large shearing force is applied to the tip of the tool when processing.

【0029】本発明のように直接転換法によって得られ
る酸素含有量が0.10モル%以下の多結晶型cBN焼
結体には、その多結晶粒子間にcBN以外の相は観察さ
れないので、多結晶cBN粒子間の強度が大きくなり、
切削中に工具の先端に大きなせん断力が衝撃的にかかっ
てもその摩耗は主にcBN粒内の破壊により起こるため
に、焼結体表面からのcBN粒子の大きな脱落が起こら
ずに摩耗量も格段に小さくなると考えられる。
In the polycrystalline cBN sintered body having an oxygen content of 0.10 mol% or less obtained by the direct conversion method as in the present invention, no phase other than cBN is observed between the polycrystalline particles. The strength between the polycrystalline cBN particles increases,
Even if a large shearing force is applied to the tip of the tool during cutting, the wear is mainly caused by the destruction within the cBN grains, so the cBN grains do not drop off from the surface of the sintered body and the wear amount is also large. It is considered to be much smaller.

【0030】一方、B/Nモル比を0.95以上0.9
9以下の多結晶型cBN焼結体が著しく優れた耐摩耗性
を示す理由は定かではないが、例えば次のように考える
ことができる。切削中に工具の先端温度は摩擦により1
000℃以上の温度にも上昇する。cBNは化学的に極
めて安定な物質であるが、高温では分解し揮発成分であ
る窒素が散逸してほう素分が過剰になる。すなわち、B
/Nモル比が化学量論比の1.00より大きくなること
が予想される。B/Nモル比が化学量論比の1.00か
らずれたものは、結晶構造中に欠陥を持つために、その
欠陥を通じての不純物元素の拡散が起こりやすくなり化
学的に不安定となって被削材の鉄等と反応しやすくな
る。これに対し、あらかじめB/Nモル比が化学量論比
よりも若干小さい焼結体を切削工具素材として用いる
と、実際の切削中には揮発成分である窒素が散逸しても
B/Nモル比が化学量論比の1.00に近い状態にする
ことができ、上記問題を解決することができる。ただ
し、B/Nモル比が0.95未満と化学量論比よりも大
きくずれた焼結体では元々の焼結体中のほう素欠陥が多
すぎるために、cBN本来の硬度等の特性が低下してし
まっており耐摩耗性に劣る。
On the other hand, the B / N molar ratio is 0.95 or more and 0.9.
The reason why the polycrystalline cBN sintered body of 9 or less exhibits remarkably excellent wear resistance is not clear, but it can be considered as follows, for example. The tip temperature of the tool is 1 due to friction during cutting.
It also rises to temperatures above 000 ° C. Although cBN is a chemically extremely stable substance, it decomposes at high temperatures and nitrogen, which is a volatile component, is dissipated and boron content becomes excessive. That is, B
It is expected that the / N molar ratio will be greater than the stoichiometric ratio of 1.00. When the B / N molar ratio deviates from the stoichiometric ratio of 1.00, the crystal structure has a defect, so that an impurity element easily diffuses through the defect and becomes chemically unstable. It becomes easy to react with the work material such as iron. On the other hand, if a sintered body whose B / N molar ratio is slightly smaller than the stoichiometric ratio is used as a cutting tool material in advance, even if nitrogen, which is a volatile component, is dissipated during actual cutting, The ratio can be brought to a state close to the stoichiometric ratio of 1.00, and the above problem can be solved. However, in a sintered body having a B / N molar ratio of less than 0.95, which is greatly deviated from the stoichiometric ratio, there are too many boron defects in the original sintered body. It has deteriorated and is inferior in wear resistance.

【0031】[0031]

【実施例】次に実施例、比較例をあげてさらに具体的に
本発明を説明する。
EXAMPLES Next, the present invention will be described more specifically by way of examples and comparative examples.

【0032】実施例1〜6 純度99.9%以上の円板状の熱分解窒化ほう素を純度
99.99%以上の高純度カーボン中に封入した後、窒
素雰囲気中で表1に示す温度で30分間の熱処理を行な
った。このように熱処理した原料をカーボンに封入した
まま、上記高純度カーボンを加熱用ヒーターとする構造
の反応セル中に配置し、フラットベルト型超高圧高温発
生装置に充填して、温度2100℃、圧力7.3GPa
の条件で60分間処理する直接転換法によって、多結晶
型cBN焼結体を合成した。合成に使用した反応セル
は、高純度(純度99.9%以上)NaCl粉末を窒素
雰囲気のグローブボックス内で成形した円筒成形体から
なるブッシュをヒーター外部に配する構造とした。
Examples 1 to 6 Disc-shaped pyrolytic boron nitride having a purity of 99.9% or more was filled in high purity carbon having a purity of 99.99% or more, and then the temperature shown in Table 1 was applied in a nitrogen atmosphere. Was heat-treated for 30 minutes. While the raw material thus heat-treated is enclosed in carbon, it is placed in a reaction cell having a structure in which the above-mentioned high-purity carbon is used as a heater for heating, and it is filled in a flat belt type ultra-high pressure and high temperature generator, and the temperature is 2100 ° C. and pressure is 2100 ° C. 7.3 GPa
A polycrystalline cBN sintered body was synthesized by the direct conversion method in which the treatment was carried out for 60 minutes under the conditions. The reaction cell used in the synthesis had a structure in which a bush made of a cylindrical molded body obtained by molding high-purity (purity of 99.9% or more) NaCl powder in a nitrogen atmosphere glove box was arranged outside the heater.

【0033】合成された多結晶型cBN焼結体の一部を
用い、インパルス融解熱伝導法による酸素含有量と多結
晶型cBN焼結体のB/Nモル比を窒素分及びほう素分
を次のように測定して求めた。窒素分は、多結晶型cB
N焼結体をインパルス炉中、不活性ガス雰囲気下で溶融
分解し、発生する窒素ガスをガス分析することによって
定量し、また、ほう素分は、多結晶型cBN焼結体をア
ルカリと混合し、加熱融解したものを塩酸中に溶かし、
メタノール蒸留法で抽出した試料をアルカリ中和滴定す
ることによって定量した。
Using a part of the synthesized poly-crystalline cBN sintered body, the oxygen content and the B / N molar ratio of the poly-crystalline cBN sintered body determined by the impulse fusion heat conduction method were determined as nitrogen content and boron content. It was determined by measuring as follows. Nitrogen content is polycrystalline cB
N sintered body is melted and decomposed in an impulse furnace in an inert gas atmosphere, and nitrogen gas generated is quantified by gas analysis. Boron content is obtained by mixing polycrystalline cBN sintered body with alkali. Then, melt what was heated and melted in hydrochloric acid,
The sample extracted by the methanol distillation method was quantified by alkali neutralization titration.

【0034】次に、上記で得られた多結晶型cBN焼結
体から、工具用チップブランクをダイヤモンド砥石を用
いた研削加工により切りだした。このチップブランクを
バイトの台座状に機械的にクランプして、切削試験用の
工具とし、以下の条件で、鋳鉄および超硬合金を被削材
として切削試験を実施した。切削試験後に工具先端の欠
け状態および逃げ面摩耗幅を測定した。それらの結果を
表2に示す。
Next, from the polycrystalline cBN sintered body obtained above, a chip blank for a tool was cut out by a grinding process using a diamond grindstone. This chip blank was mechanically clamped in the shape of a pedestal of a cutting tool to be used as a tool for a cutting test, and a cutting test was carried out using cast iron and cemented carbide as a work material under the following conditions. After the cutting test, the chipped state of the tool tip and the flank wear width were measured. Table 2 shows the results.

【0035】〔鋳鉄の場合〕 被削材 :鋳鉄(FC25) チップ形状:TNGN332 切削油 :ユシロ化学工業社製「ユシローケンHDE
30」 使用機械 :日立精機社製「日立NK25S−110
0」 切削速度 :V=900m/min 送り :f=0.1mm/rev 切込み :d=0.1mm 切削時間 :60min
[Cast Iron] Work Material: Cast Iron (FC25) Tip Shape: TNGN332 Cutting Oil: Yushiro Ken HDE
30 ”Machine used:“ Hitachi NK25S-110 ”manufactured by Hitachi Seiki Co., Ltd.
0 "Cutting speed: V = 900 m / min Feed: f = 0.1 mm / rev Depth of cut: d = 0.1 mm Cutting time: 60 min

【0036】〔超硬合金の場合〕 被削材 :超硬合金[WC−16%Co合金(GTi
30S,HRA84.5)] チップ形状:TNGN332 切削油 :ユシロ化学工業社製「ユンシローケンHD
E80」(30倍希釈) 使用機械 :日立精機社製「日立NK25S−110
0」 切削速度 :V=30m/min 送り :f=0.2mm/rev 切込み :d=0.5mm 切削時間 :20min
[Cemented Carbide] Work Material: Cemented Carbide [WC-16% Co Alloy (GTi
30S, HRA84.5)] Tip shape: TNGN332 Cutting oil: Yunshiro Ken HD manufactured by Yushiro Chemical Co., Ltd.
E80 "(30-fold dilution) Machine used:" Hitachi NK25S-110 "manufactured by Hitachi Seiki Co., Ltd.
0 "Cutting speed: V = 30 m / min Feed: f = 0.2 mm / rev Depth of cut: d = 0.5 mm Cutting time: 20 min

【0037】比較例1、比較例5 超高圧高温処理時の反応セルのブッシュ材質をパイロフ
ィライトにした以外は、実施例2及び実施例5に準じて
多結晶型cBN焼結体を合成し、評価試験を行なった。
それらの結果を表2に示す。
Comparative Examples 1 and 5 Polycrystalline cBN sintered bodies were synthesized in accordance with Examples 2 and 5 except that the bush material of the reaction cell at the time of ultrahigh pressure and high temperature treatment was pyrophyllite. An evaluation test was conducted.
Table 2 shows the results.

【0038】比較例2、比較例6 純度99.9%以上の粉末状の熱分解窒化ほう素を原料
とした以外は、実施例2及び実施例5に準じて多結晶型
cBN燒結体を合成し、評価試験を行なった。それらの
結果を表2に示す。
Comparative Examples 2 and 6 Polycrystalline cBN sintered bodies were synthesized according to Examples 2 and 5 except that powdery pyrolytic boron nitride having a purity of 99.9% or higher was used as a raw material. Then, an evaluation test was conducted. Table 2 shows the results.

【0039】比較例3、比較例7 特公昭63−394号公報(米国特許第4,188,1
94号明細書)に示される反応セル及び特公昭63−4
4417号公報(米国特許第4,289,503号明細
書)に示される方法を用い実施例2及び実施例5に準じ
て多結晶型cBN焼結体を合成し、評価試験を行なっ
た。それらの結果を表2に示す。
Comparative Examples 3 and 7 Japanese Patent Publication No. 63-394 (US Pat. No. 4,188,1)
94) and Japanese Patent Publication No. 63-4
Polycrystalline cBN sintered bodies were synthesized using the method disclosed in Japanese Patent No. 4417 (US Pat. No. 4,289,503) according to Example 2 and Example 5, and evaluation tests were conducted. Table 2 shows the results.

【0040】比較例4、比較例8 特開平6−72768号公報に開示された多結晶型cB
N焼結体を実施例2及び実施例5に準じて合成し、評価
試験を行なった。それらの結果を表2に示す。
Comparative Examples 4 and 8 Polycrystalline cB disclosed in JP-A-6-72768
N sintered bodies were synthesized according to Example 2 and Example 5 and evaluated. Table 2 shows the results.

【0041】比較例9 市販のセラミックス結合剤を含んだ多結晶型cBN焼結
体を用い、実施例1と同一の方法で工具先端の欠け状態
および逃げ面摩耗幅を測定した。その結果を表2に示
す。
Comparative Example 9 Using a commercially available polycrystalline cBN sintered body containing a ceramics binder, the chipped state of the tool tip and the flank wear width were measured in the same manner as in Example 1. The results are shown in Table 2.

【0042】比較例10 市販の金属結合剤を含んだ多結晶型cBN焼結体を用い
実施例1と同一の方法で工具先端の欠け状態および逃げ
面摩耗幅を測定した。その結果を表2に示す。
Comparative Example 10 Using a commercially available polycrystalline cBN sintered body containing a metallic binder, the chipped state of the tool tip and the flank wear width were measured in the same manner as in Example 1. The results are shown in Table 2.

【0043】実施例7〜14 純度99.9%以上で表1に示すB/Nモル比を有する
円板状の熱分解窒化ほう素を用い、実施例2及び実施例
5に準じて多結晶型cBN焼結体を合成し、切削工具の
評価試験を行なった。それらの結果を表2に示す。
Examples 7 to 14 Using disk-shaped pyrolytic boron nitride having a B / N molar ratio shown in Table 1 with a purity of 99.9% or more, polycrystals were obtained according to Examples 2 and 5. A type cBN sintered body was synthesized and an evaluation test of a cutting tool was performed. Table 2 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】本発明の切削工具用多結晶型cBN焼結
体及び切削工具は、被削材が鋳鉄、超硬合金、焼入鋼等
のように高硬度なものの切削に適するほど十分な強度を
有し、かつ、従来の切削工具素材に比べて格段に長寿命
の切削加工が実現できる。
INDUSTRIAL APPLICABILITY The polycrystalline cBN sintered body for a cutting tool and the cutting tool of the present invention are sufficient to be suitable for cutting of a material having a high hardness such as cast iron, cemented carbide, and hardened steel. It has strength and can realize cutting processing with a much longer life than conventional cutting tool materials.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直接転換法によって得られる多結晶型立
方晶窒化ほう素焼結体からなり、その酸素含有量が0.
10モル%以下であることを特徴とする切削工具用立方
晶窒化ほう素焼結体。
1. A polycrystalline cubic boron nitride sintered body obtained by a direct conversion method, having an oxygen content of 0.
A cubic boron nitride sintered body for a cutting tool, which is 10 mol% or less.
【請求項2】 窒素に対するほう素のモル比が0.95
以上0.99以下であることを特徴とする請求項1記載
の切削工具用立方晶窒化ほう素焼結体。
2. The molar ratio of boron to nitrogen is 0.95.
The cubic boron nitride sintered body for a cutting tool according to claim 1, wherein the cubic boron nitride sintered body is at least 0.99.
【請求項3】 請求項1又は2記載の切削工具用立方晶
窒化ほう素焼結体で構成されてなることを特徴とする切
削工具。
3. A cutting tool comprising the cubic boron nitride sintered body for a cutting tool according to claim 1 or 2.
JP20305494A 1994-08-05 1994-08-05 Cubic boron nitride sintered body for cutting tools and cutting tools Expired - Fee Related JP3472630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20305494A JP3472630B2 (en) 1994-08-05 1994-08-05 Cubic boron nitride sintered body for cutting tools and cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20305494A JP3472630B2 (en) 1994-08-05 1994-08-05 Cubic boron nitride sintered body for cutting tools and cutting tools

Publications (2)

Publication Number Publication Date
JPH0847801A true JPH0847801A (en) 1996-02-20
JP3472630B2 JP3472630B2 (en) 2003-12-02

Family

ID=16467583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20305494A Expired - Fee Related JP3472630B2 (en) 1994-08-05 1994-08-05 Cubic boron nitride sintered body for cutting tools and cutting tools

Country Status (1)

Country Link
JP (1) JP3472630B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071841A (en) * 1996-11-28 2000-06-06 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and method of preparing the same
US6716544B2 (en) 2000-03-08 2004-04-06 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
US6737377B1 (en) 1998-05-22 2004-05-18 Sumitomo Electric Industries, Ltd. Cutting tool of a cubic boron nitride sintered compact
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
DE102015206749A1 (en) 2014-04-18 2015-10-22 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing a polycrystal of cubic boron nitride
WO2018066261A1 (en) 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071841A (en) * 1996-11-28 2000-06-06 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and method of preparing the same
US6737377B1 (en) 1998-05-22 2004-05-18 Sumitomo Electric Industries, Ltd. Cutting tool of a cubic boron nitride sintered compact
US6716544B2 (en) 2000-03-08 2004-04-06 Sumitomo Electric Industries, Ltd. Coated sinter of cubic-system boron nitride
WO2013031681A1 (en) 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
EP2942341A1 (en) 2011-08-30 2015-11-11 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
US9416304B2 (en) 2011-08-30 2016-08-16 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystal and manufacturing method therefor, and cutting tool, wire-drawing die and grinding tool
DE102015206749A1 (en) 2014-04-18 2015-10-22 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing a polycrystal of cubic boron nitride
US10562822B2 (en) 2015-02-04 2020-02-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystalline material, cutting tool, wear resistant tool, grinding tool, and method of manufacturing cubic boron nitride polycrystalline material
US10519068B2 (en) 2015-02-09 2019-12-31 Sumitomo Electric Industries, Ltd. Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
WO2018066261A1 (en) 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
US11453589B2 (en) 2016-10-06 2022-09-27 Sumitomo Electric Industries, Ltd. Method of producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resisting tool, and grinding tool

Also Published As

Publication number Publication date
JP3472630B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
KR100843994B1 (en) Sintered compact
JP5189504B2 (en) Composite sintered body
JP2020515490A (en) Sintered polycrystalline cubic boron nitride material
JP2005514300A (en) Low oxygen cubic boron nitride and its products
JP2009067609A (en) High purity diamond polycrystalline body and method of manufacturing the same
JPH11246271A (en) Cubic boron nitride sintered body and its production
KR100567279B1 (en) Cubic system boron nitride sintered body cutting tool
JP3472630B2 (en) Cubic boron nitride sintered body for cutting tools and cutting tools
US5691260A (en) Cubic system boron nitride sintered body for a cutting tool
EP0816304B1 (en) Ceramic bonded cubic boron nitride compact
EP0256829B1 (en) Abrasive and wear resistant material
JP2003192443A (en) Cubic boron nitride sintered compact and production method therefor
JP5002886B2 (en) Method for producing cubic boron nitride polycrystal
JPH09142932A (en) Diamond sintered compact and its production
JP4110339B2 (en) Cubic boron nitride sintered body
JPH09142933A (en) Diamond sintered compact and its production
JP3411593B2 (en) Cubic boron nitride sintered body for cutting tools
JPH11335174A (en) Cubic boron nitride sintered compact
JP2002029845A (en) Super-hard sintered compact
JPH0455144B2 (en)
JPH03215363A (en) Production of ceramic material based on cubic boron nitride having high toughness
JP4636574B2 (en) Ceramic-based sintered material for tool and manufacturing method thereof
JPS639009B2 (en)
JPH05194032A (en) Production of diamond-based ultra-high pressure sintered material for highly heat-resistant machining tool

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020514

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees