JPH0835031A - Sintered hard alloy having super hard film and tool for plastic working - Google Patents

Sintered hard alloy having super hard film and tool for plastic working

Info

Publication number
JPH0835031A
JPH0835031A JP18902794A JP18902794A JPH0835031A JP H0835031 A JPH0835031 A JP H0835031A JP 18902794 A JP18902794 A JP 18902794A JP 18902794 A JP18902794 A JP 18902794A JP H0835031 A JPH0835031 A JP H0835031A
Authority
JP
Japan
Prior art keywords
alloy
carbide
coating
cemented carbide
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18902794A
Other languages
Japanese (ja)
Inventor
Yoshinobu Saito
吉信 斎藤
Hiromasa Takeda
裕正 武田
Hirokatsu Oikawa
広勝 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Original Assignee
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Tokushuko KK, Tohoku Steel Co Ltd filed Critical Tohoku Tokushuko KK
Priority to JP18902794A priority Critical patent/JPH0835031A/en
Publication of JPH0835031A publication Critical patent/JPH0835031A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sintered hard alloy having a super hard film excellent in wear resistance by subjecting a sintered compact, formed under specific conditions and consisting of WC and Fe-C alloy, to immersion treatment in a molten borax bath in which Group Va elements are dissolved. CONSTITUTION:A sintered hard alloy, which is a sintered compact consisting of WC and 2.5-50wt.% Fe-C alloy and in which the amount of C in this Fe-C alloy is regulated to >=0.25wt.%, is prepared. This sintered hard alloy is immersed in a molten borax or borate bath in which one or >=2 kinds among the group Va and VIa elements are dissolved, and a super hard layer consisting of a carbide film of >=about 5mum film thickness is formed on the sintered hard alloy. By this method, the sintered hard alloy can be coated with the stable and uniform super hard layer in a short period of time, and the sintered hard alloy having extremely excellent wear resistance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばバイトやドリ
ル等の切削工具、ダイス、絞り型等の耐摩耗工具、ビッ
ト等の耐衝撃用工具といった各種工具をはじめとして、
超高圧や耐食性が要求される用途の部材に用いて好適な
超硬質被膜をそなえる超硬合金及び塑性加工用工具に関
するものである。
BACKGROUND OF THE INVENTION The present invention includes various tools such as cutting tools such as cutting tools and drills, wear-resistant tools such as dies and drawing dies, and impact-resistant tools such as bits.
The present invention relates to a cemented carbide and a tool for plastic working, which is suitable for a member for applications requiring ultra-high pressure and corrosion resistance, and is provided with a suitable super-hard coating.

【0002】[0002]

【従来の技術】表面処理を施した従来の被覆超硬合金と
しては、WCを主成分とする炭化物粉末に結合材として
のCo粉末を混合し液相焼結したWC−Co系の超硬合金を
母材として、この母材にPVD処理やCVD処理により
硬質セラミックスを形成させたものや、母材を炭化物形
成元素を溶融させたほう(硼)砂又はほう(硼)酸塩浴
中に浸漬させて該炭化物形成元素と超硬合金中のCとを
反応させる処理(以下、K−TD処理という)により炭
化物を形成させたものがある。
2. Description of the Related Art As a conventional coated cemented carbide having a surface treatment, a WC-Co type cemented carbide obtained by liquid phase sintering by mixing Co powder as a binder with carbide powder containing WC as a main component. The base material is a base material on which hard ceramics have been formed by PVD or CVD treatment, or the base material is immersed in a borax sand or borate salt bath in which a carbide-forming element is melted. In some cases, carbides are formed by a treatment for reacting the carbide-forming element with C in the cemented carbide (hereinafter referred to as K-TD treatment).

【0003】[0003]

【発明が解決しようとする課題】上述した被覆超硬合金
のうちPVD処理をしたものは、形成した被膜の密着性
が十分ではなく、面圧のかかる塑性加工用工具等として
用いた場合には短時間で被膜がはく離するため、かかる
使途には不向きであった。
Among the above-mentioned coated cemented carbides, the ones subjected to PVD treatment do not have sufficient adhesion of the formed coating, and when they are used as a tool for plastic working to which surface pressure is applied, etc. Since the film peels off in a short time, it was not suitable for such use.

【0004】また、CVD処理やK−TD処理をしたも
のは、これらの処理がいずれも高温処理であるために、
マトリックス中の炭素が一部消費されて被膜直下にη
(Co33 C)相が生じる。このη相は極めて脆いこと
から、超硬材料のじん性を劣化させるとともに、やはり
面圧のかかる塑性加工用工具に用いた場合には、比較的
短時間に被膜がはく離するため、長寿命を得難かった。
Further, in the case of the CVD treatment or the K-TD treatment, since these treatments are all high temperature treatments,
Part of the carbon in the matrix is consumed and η
The (Co 3 W 3 C) phase occurs. Since this η phase is extremely brittle, it deteriorates the toughness of the cemented carbide material, and when it is used for a plastic working tool that is also subject to surface pressure, the coating film peels off in a relatively short time, resulting in a long life. It was hard to get.

【0005】この発明は、上記の問題を有利に解決する
もので、高温で炭化物被覆処理を行ってもη相の発生が
ないために高寿命で、しかも炭化物被膜の成長速度が比
較的速く密着性が良好であるため特に耐摩耗性を必要と
する分野に使用して有利な、超硬質被膜をそなえる超硬
合金及び塑性加工用工具を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems and has a long life because the η phase is not generated even if the carbide coating treatment is carried out at a high temperature, and the growth rate of the carbide coating is relatively fast. It is an object of the present invention to provide a cemented carbide and a tool for plastic working having a superhard coating, which is advantageous in use in fields requiring good wear resistance because of its good properties.

【0006】[0006]

【課題を解決するための手段】発明者らは、被覆超硬合
金に関して鋭意研究開発を進めた結果、主成分がWCの
炭化物粉末に結合材としてC量を0.25wt%以上含むFe−
C系の粉末を2.5 〜50%混合し焼結をして得た超硬合金
に対して、周期律表のVa 族やVIa 族の炭化物形成元素
を溶解させたほう砂又はほう酸塩の溶融浴に浸漬して炭
化物を形成する処理を施すことにより、η相の発生がな
く格段に耐摩耗性が改善された超硬質被膜被覆合金や超
硬質被覆塑性加工用工具が得られることを見出した。こ
の発明は、上記の知見に立脚するものである。
Means for Solving the Problems As a result of intensive research and development on coated cemented carbides, the inventors have found that Fe-containing Fe powder containing 0.25 wt% or more of C as a binder in a carbide powder whose main component is WC.
Molten bath of borax or borate in which carbide forming element of Va group or VIa group of the periodic table is dissolved in cemented carbide obtained by mixing 2.5 to 50% of C type powder and sintering. It has been found that the superhard coating alloy and the superhard coating plastic working tool having no significant η phase and significantly improved wear resistance can be obtained by performing a treatment for forming a carbide by immersing in the steel. The present invention is based on the above findings.

【0007】すわなち、この発明は、超硬質層を表面に
被成してなる超硬合金であって、上記超硬合金がWCと
2.5 〜50wt%の範囲で含有するFe−C系合金との焼結体
でかつこのFe−C系合金中のC量が0.25wt%以上である
こと並びに上記超硬質層がVa 族及びVIa 族元素の1種
又は2種以上を溶解させたほう砂又はほう酸塩の溶融浴
中への浸漬処理により形成した炭化物被膜であることの
要素結合を特徴とする、超硬質被膜をそなえる超硬合金
(第1発明)である。
That is, the present invention is a cemented carbide formed by coating a cemented carbide layer on the surface, wherein the cemented carbide is WC.
Sintered body with Fe-C alloy contained in the range of 2.5 to 50 wt% and the amount of C in the Fe-C alloy is 0.25 wt% or more, and the superhard layer is Va group or VIa group. A cemented carbide with a superhard coating, characterized by the elemental bond of being a carbide coating formed by immersion treatment of borax or borate in which one or more elements are dissolved in a molten bath ( The first invention).

【0008】また、この発明は、超硬質層を表面に被成
してなる超硬合金であって、上記超硬合金がWCに加え
てIVa 族、Va 族及びVIa 族元素の炭化物の1種又は2
種以上と2.5 〜50wt%の範囲で含有するFe−C系合金と
の焼結体でかつこのFe−C系合金中のC量が0.25wt%以
上であること並びに上記超硬質層がVa 族及びVIa 族元
素の1種又は2種以上を溶解させたほう砂又はほう酸塩
の溶融浴中への浸漬処理により形成した炭化物被膜であ
ることの要素結合を特徴とする、超硬質被膜をそなえる
超硬合金(第2発明)である。
Further, the present invention is a cemented carbide obtained by forming a cemented carbide layer on the surface, wherein the cemented carbide is one of carbides of IVa group, Va group and VIa group elements in addition to WC. Or 2
A sintered body of a Fe-C alloy containing at least 2.5% by weight and a Fe-C alloy contained in the range of 2.5 to 50 wt%, and the amount of C in the Fe-C alloy is 0.25 wt% or more; And a super hard coating having an ultra-hard coating characterized by the elemental bond of a carbide coating formed by immersion treatment of borax or borate in which one or more VIa group elements are dissolved in a molten bath. It is a hard alloy (second invention).

【0009】この発明において、炭化物被膜がV炭化
物、Nb炭化物及びCr炭化物の1種又は2種以上であるこ
とが好ましい(第3発明)。
In the present invention, it is preferable that the carbide coating is one kind or two or more kinds of V carbide, Nb carbide and Cr carbide (third invention).

【0010】さらにこの発明は、第1発明、第2発明又
は第3発明の超硬質被膜をそなえる超硬合金を用いるこ
とを特徴とする塑性加工用工具(第4発明)である。
Further, the present invention is a plastic working tool (fourth invention) characterized by using a cemented carbide having the superhard coating of the first invention, the second invention or the third invention.

【0011】[0011]

【作用】この発明では、結合材としてFe−C系合金を用
いる。かかるFe−C系合金を用いることにより、炭化物
被膜を形成する際はFe−C系合金から炭化物源としての
Cが供給されることになるから、η相の発生を有効に抑
制することができると考えられる。
In the present invention, a Fe-C type alloy is used as the binder. By using such an Fe-C alloy, since C as a carbide source is supplied from the Fe-C alloy when forming the carbide coating, it is possible to effectively suppress the generation of the η phase. it is conceivable that.

【0012】このFe−C系合金中のC量は、2.5 wt%以
上とする。その理由は、以下の実験に基づく。粒径1〜
1.5 μm のWC粉末に粒径5μm 以下のFe粉末及びC粉
末を合計で10wt%の割合になる量で添加した。その際、
C量を変化させてFe−C合金に換算した量中で0〜2%
の範囲になる種々の量とした。これらの粉末を混合後、
室温にて2t/cm2 の加圧力で加圧成形し次いで真空中14
00℃で焼結を行った。なお、この焼結の際にFe粉末とC
粉末とは相互拡散してFe−C合金となる。この焼結体を
Fe−Nbを含むほう砂浴中に浸漬して1000℃、10時間のK
−TD処理を行った。得られた炭化物被覆超硬合金につ
いてNb炭化物被膜の厚みを調べ、Fe−C系合金結合材中
のC量との関係で図1に示す。図1から明らかなよう
に、Fe−C系合金中のC量が0.25wt%以上の場合に、均
一な被膜が安定して得られる。工具等、耐摩耗を要求さ
れる場合には、膜厚が5μm 程度以上が必要となる。
The amount of C in this Fe-C alloy is 2.5 wt% or more. The reason is based on the following experiments. Particle size 1
Fe powder and C powder having a particle diameter of 5 μm or less were added to 1.5 μm WC powder in an amount of 10 wt% in total. that time,
0 to 2% in the amount converted to Fe-C alloy by changing the amount of C
The amount was set to various values. After mixing these powders,
Press molding at room temperature with a pressure of 2 t / cm 2 and then in vacuum 14
Sintering was performed at 00 ° C. In addition, during this sintering, Fe powder and C
Interdiffuses with the powder to form a Fe-C alloy. This sintered body
Immerse in a borax bath containing Fe-Nb at 1000 ° C for 10 hours
-TD treatment was performed. With respect to the obtained carbide-coated cemented carbide, the thickness of the Nb carbide coating was examined, and the relationship with the amount of C in the Fe—C based alloy binder is shown in FIG. As is clear from FIG. 1, when the amount of C in the Fe—C alloy is 0.25 wt% or more, a uniform film can be stably obtained. When abrasion resistance is required for tools and the like, the film thickness must be about 5 μm or more.

【0013】このようなFe−C系合金結合材の超硬合金
中における割合は2.5 〜50wt%に限定する。Fe−C系合
金結合材が2.5 wt%に満たないと良好な炭化物被膜が得
られず、一方、50wt%を超えるともはや超硬合金として
初期の強度を示さなくなるからである。
The proportion of such Fe--C alloy binder in the cemented carbide is limited to 2.5 to 50 wt%. This is because if the Fe-C based alloy binder is less than 2.5 wt%, a good carbide coating cannot be obtained, while if it exceeds 50 wt%, the initial strength as a cemented carbide is no longer exhibited.

【0014】Fe−C系合金結合材は、C量が0.25wt%以
上含有していれば、その他の要件について特に限定する
ものではない。前述のようにFe粉末とC粉末とを用い、
焼結拡散してもよい。但し、Fe−C系合金粉末を使用す
ることがより望ましい。ここにFe−C系合金粉末として
は、構造用鋼、ばね鋼、軸受け鋼、ダイス鋼をはじめ、
ステンレス鋼、ハイス鋼などC含有量を満たすいずれの
粉末でもよい。
The Fe-C based alloy binder is not particularly limited with respect to other requirements as long as the C content is 0.25 wt% or more. As described above, using Fe powder and C powder,
It may be sintered and diffused. However, it is more preferable to use Fe-C alloy powder. Examples of the Fe-C alloy powder include structural steel, spring steel, bearing steel, die steel,
Any powder satisfying the C content, such as stainless steel or high-speed steel, may be used.

【0015】超硬合金の原料である炭化物については、
WC単独の場合の他、WCに加えてIVa 族、Va 族及び
VIa 族元素の炭化物(例えば、TiC, NbC,TaC,Zr
C,HfC,VC, Cr32, Mo2C)の1種又は2種以上
を添加した場合でもよい。
Regarding carbide as a raw material of cemented carbide,
In addition to WC alone, in addition to WC, IVa group, Va group and
Carbides of VIa group elements (eg TiC, NbC, TaC, Zr
C, HfC, VC, Cr 3 C 2 , Mo 2 C) may be added alone or in combination.

【0016】また、Fe−C系合金粉末や、WC等の炭化
物粉末の粒度は、適用する焼結方法で変化するが一般的
には100 メッシュ以下の粉末が使用に供される。
The particle size of the Fe-C alloy powder and the carbide powder such as WC varies depending on the sintering method used, but a powder of 100 mesh or less is generally used.

【0017】さらに、焼結方法は、通常の金型成形、C
IP成形−真空焼結法、ホットプレス焼結法、各種放電
焼結法など、いずれでもよい。焼結後にさらにHIP処
理を行えば、より信頼性の高い合金が得られる。
Further, the sintering method is as follows:
Any of IP molding-vacuum sintering method, hot press sintering method, various discharge sintering methods, and the like may be used. If the HIP treatment is further performed after the sintering, a more reliable alloy can be obtained.

【0018】次に、焼結をして得たFe−C系結合材超硬
合金にはK−TD処理を施す。このK−TD処理は前述
したように、Va 族及びVIa 族元素(例えばV、Nb、C
r)の1種又は2種以上を溶解させたほう砂又はほう酸
塩の溶融浴中へ超硬合金を浸漬することにより、超硬合
金のマトリックス中のCと溶融塩中のVa 族及びVIa 族
元素との反応から炭化物を超硬合金の最表面に形成する
ものである。処理温度は800 ℃以上、溶融温度以下とす
る。この発明では、結合材としてCを含有するFe合金を
用いているためにマトリックスからのCが順調に供給推
移して均一で密着性の良好な炭化物被膜が比較的短時間
で形成される。その結果、η相のない超硬質被覆工具な
どが容易に得られるのである。
Next, the Fe-C type binder cemented carbide obtained by sintering is subjected to K-TD treatment. As described above, this K-TD treatment is performed using the Va group and VIa group elements (for example, V, Nb, C).
By immersing the cemented carbide in a molten bath of borax or borate in which one or more of r) are dissolved, C in the matrix of the cemented carbide and Va group and VIa group in the molten salt A carbide is formed on the outermost surface of the cemented carbide from the reaction with the element. The processing temperature should be above 800 ℃ and below the melting temperature. In the present invention, since the Fe alloy containing C is used as the binder, C is smoothly supplied from the matrix and a uniform carbide coating having good adhesion is formed in a relatively short time. As a result, it is possible to easily obtain an ultra-hard coated tool having no η phase.

【0019】[0019]

【実施例】【Example】

(実施例1)粒径1〜1.5 μm のWC粉末に、結合材と
して粒径5μm 以下のSUJ 2 の粉末を5〜30wt%の範囲
で種々に変化させて添加し、ボールミルで60分間混合粉
砕し、C型を使用し10-4torr以下の高真空中、1200℃で
加圧力500kg/cm2 の放電焼結を行い、9×5×25mmの超
硬チップ(組織観察用)を得た。いずれの超硬合金も良
好な焼結品であった。これらの超硬合金を、フェロバナ
ジウムを溶解させた1000℃のほう砂溶融浴中に16時間浸
漬してK−TD処理を行った。また、比較のため結合材
としてCoを用い、このCo量を種々に変化させたWC−Co
超硬合金も同一条件で製造し同一条件でK−TD処理を
行った。
(Example 1) To WC powder having a particle size of 1 to 1.5 μm, SUJ 2 powder having a particle size of 5 μm or less was variously added as a binder in a range of 5 to 30 wt%, and mixed and pulverized with a ball mill for 60 minutes. Then, using a C type, discharge sintering at a pressure of 500 kg / cm 2 was performed at 1200 ° C. in a high vacuum of 10 −4 torr or less to obtain a 9 × 5 × 25 mm carbide tip (for microstructure observation). . All the cemented carbides were good sintered products. These cemented carbides were subjected to K-TD treatment by immersing them in a borax melting bath at 1000 ° C. in which ferrovanadium was dissolved for 16 hours. Also, for comparison, Co was used as a binder, and the WC-Co with various amounts of Co was changed.
Cemented carbide was also manufactured under the same conditions and subjected to K-TD treatment under the same conditions.

【0020】得られた超硬質被膜の厚さを結合材の添加
量との関係で図2に示す。図2から明らかなようにこの
発明に従いFe−C系合金結合材を用いた超硬合金ではい
ずれも5μm 以上のVC相を有する。これに対してCo結
合材を用いた超硬合金では、いずれもVC被膜は薄い。
The thickness of the obtained superhard coating is shown in FIG. 2 in relation to the amount of binder added. As is clear from FIG. 2, all the cemented carbides using the Fe—C alloy binder according to the present invention have a VC phase of 5 μm or more. On the other hand, in the cemented carbide using the Co binder, the VC coating is thin in all cases.

【0021】図3及び図4に、超硬質被覆超硬合金の表
面近傍の金属組織写真を示す。図3は上述したFe−C系
合金結合材の場合、図4はCo結合材を用いた場合であ
る。図3、図4の対比から、Fe−C系合金結合材を用い
た超硬合金では、被膜が厚く均一に密着性良く被覆して
いるのがわかる。一方Co結合材の場合では、被膜は薄
く、被膜直下に黒く腐食されて現されたη相が認められ
る。また、Co結合材を用いた被覆超硬合金では、組織観
察のための研磨中に被膜のはく離も認められた。
3 and 4 show photographs of the metallographic structure near the surface of the superhard coated cemented carbide. FIG. 3 shows the case of the Fe—C based alloy binder described above, and FIG. 4 shows the case of using the Co binder. From the comparison between FIG. 3 and FIG. 4, it can be seen that in the cemented carbide using the Fe—C alloy binder, the coating is thick and uniformly coated with good adhesion. On the other hand, in the case of the Co binder, the coating is thin, and the η phase, which is revealed by black corrosion under the coating, is observed. In the coated cemented carbide using Co binder, peeling of the coating was also observed during polishing for observing the structure.

【0022】(実施例2)粒径1〜1.5 μm のWC粉末
に、結合材として200 メッシュアンダーのSKD 11の粉末
を30wt%混合し、ボールミルで60分混合粉砕したのち、
0.2 %のパラフィンを加え金属型に装入して加圧力2t/
cm2 で加圧成形し、次いで1400℃で1時間真空焼結を行
って30mmφ×30mmの焼結ブロックを作製した。焼結品に
は割れ等はなく良好であった。かかる焼結品から6.42mm
φの引抜ダイスを作製した後1000℃で5〜10時間のK
−TD処理を行ってVC被覆及びVC−NbC複合被覆を
行った。
(Example 2) 30 wt% of SKD 11 powder having 200 mesh under as a binder was mixed with WC powder having a particle size of 1 to 1.5 μm and mixed and pulverized with a ball mill for 60 minutes.
Add 0.2% paraffin and load into a metal mold to apply a pressure of 2 t /
It was pressure-formed at cm 2 and then vacuum-sintered at 1400 ° C. for 1 hour to produce a 30 mmφ × 30 mm sintered block. The sintered product was good with no cracks. 6.42 mm from such a sintered product
After making φ drawing die, K at 1000 ℃ for 5-10 hours
-TD treatment was applied to give a VC coating and a VC-NbC composite coating.

【0023】かくして得られた超硬質被覆ダイスでSKH
35材の冷間引抜き加工を、減面率16%、引抜速度50m/mi
n で行った。比較のために、被覆処理を行わなかった引
抜ダイス及びPVD、CVD法によりTiNの表面被膜を
形成したJIS D−2組成を有する引抜ダイスとの寿命比
較を行った。その結果を表1に示す。
With the thus obtained super hard coating die, SKH
Cold drawing of 35 materials, surface reduction rate 16%, drawing speed 50m / mi
I went with n. For comparison, a life comparison was performed between a drawing die that was not subjected to a coating treatment and a drawing die having a JIS D-2 composition in which a TiN surface coating was formed by PVD or CVD. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、Coを結合材とし
て用い、表面被覆を施したダイスはいずれも短寿命であ
り、CVD、PVD処理ダイスには被膜のはく離が認め
られた。これに対してこの発明に従うダイスは、いずれ
も被覆処理をしなかったダイスの5〜10倍の高寿命を示
し、また被膜のはく離は全く認められなかった。
As is clear from Table 1, all the dies coated with Co as a binder and having a surface coating had a short life, and peeling of the coating was observed in the CVD and PVD treated dies. On the other hand, all the dies according to the present invention exhibited a life of 5 to 10 times as long as those of the dies not subjected to the coating treatment, and no peeling of the coating was observed.

【0026】(実施例3)粒径1〜1.5 μm のWCに粒
径1〜3μmのVC を0.5 %添加し、この混合粉末に結
合材として粒径10μm 以下のSKD 11の粉末を10wt%添加
し手混合後、0.2%のパラフィンを潤滑材として加えて
から金属型で加圧力1t/cm2 で加圧成形し、1400℃で1
時間真空焼結を行って30mmφ×30mmのブロックを得た。
この焼結ブロックからφ8mmの冷間後方押し出し用ダイ
を作製したのち、1000℃で5時間のK−TD処理を行っ
てVC被覆を施した。
Example 3 0.5% of VC having a particle size of 1 to 3 μm was added to WC having a particle size of 1 to 1.5 μm, and 10 wt% of SKD 11 powder having a particle size of 10 μm or less was added as a binder to the mixed powder. After mixing by hand, 0.2% paraffin is added as a lubricant, and then pressure-molded with a metal mold at a pressing force of 1 t / cm 2
Vacuum sintering was performed for an hour to obtain a block of 30 mmφ × 30 mm.
A φ8 mm cold rear extrusion die was produced from this sintered block, and then subjected to K-TD treatment at 1000 ° C. for 5 hours to perform VC coating.

【0027】かくして得られた超硬質被覆ダイでSUS 43
0 相当のフェライト系ステンレス鋼を押し出し加工率約
55%で冷鍛加工を行った。市販の後方押し出しダイ(W
C−Co無被覆超硬合金)は約200 回で焼きつきが発生
し、再研摩が必要になったのに対して、この発明に従う
K−TD処理ダイは、約20000 〜30000 回の寿命を示し
た。
With the ultra-hard coated die thus obtained, SUS 43
Extrusion rate of 0 ferritic stainless steel equivalent to 0
Cold forging processing was performed at 55%. Commercially available rear extrusion die (W
(C-Co uncoated cemented carbide) caused seizure after about 200 times and required re-polishing, whereas the K-TD treated die according to the present invention had a life of about 20,000 to 30,000 times. Indicated.

【0028】[0028]

【発明の効果】この発明の超硬質被覆超硬合金は、結合
材としてFe−C系合金を用いるものであり、しかも被覆
処理はほう砂又はほう酸塩浴中への浸漬処理であること
から、従来の超硬合金においては表面被膜直下に脆いη
相が生じるために被膜のはく離等を招き長寿命が得られ
なかったのに対して、超硬質被膜を短時間に均一に被覆
でき、非常に優れた耐摩耗性を有する超硬合金及び組成
加工用工具が得られた。
EFFECTS OF THE INVENTION The superhard coated cemented carbide of the present invention uses an Fe--C type alloy as a binder, and the coating treatment is a dipping treatment in a borax or borate bath. In conventional cemented carbide, brittleness
Since long-life could not be obtained due to the exfoliation of the coating due to the formation of phases, the cemented carbide and the composition processing which can coat the super-hard coating uniformly in a short time and have extremely excellent wear resistance. The tool for use was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭化物被覆超硬合金におけるNb炭化物被膜の厚
みを、Fe−C系合金結合材中のC量との関係で示すグラ
フである。
FIG. 1 is a graph showing the thickness of a Nb carbide coating in a carbide-coated cemented carbide in relation to the amount of C in a Fe—C based alloy binder.

【図2】超硬質被膜の厚さを結合材の添加量との関係で
示すグラフである。
FIG. 2 is a graph showing the relationship between the thickness of a superhard coating and the amount of binder added.

【図3】Fe−C系合金結合材を用いた場合の超硬質被覆
超硬合金の表面近傍の金属組織写真である。
FIG. 3 is a photograph of a metallographic structure in the vicinity of the surface of the cemented carbide with a superhard coating when the Fe—C based alloy binder is used.

【図4】Co結合材を用いた場合の超硬質被覆超硬合金の
表面近傍の金属組織写真である。
FIG. 4 is a photograph of a metallographic structure in the vicinity of the surface of a cemented carbide with a cemented carbide when a Co binder is used.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超硬質層を表面に被成してなる超硬合金
であって、 上記超硬合金がWCと2.5 〜50wt%の範囲で含有するFe
−C系合金との焼結体でかつこのFe−C系合金中のC量
が0.25wt%以上であること並びに上記超硬質層がVa 族
及びVIa 族元素の1種又は2種以上を溶解させたほう砂
又はほう酸塩の溶融浴中への浸漬処理により形成した炭
化物被膜であることの要素結合を特徴とする、超硬質被
膜をそなえる超硬合金。
1. A cemented carbide obtained by coating a cemented carbide layer on the surface, wherein the cemented carbide contains Fe and WC in the range of 2.5 to 50 wt%.
A sintered body with a -C alloy, and the amount of C in this Fe-C alloy is 0.25 wt% or more, and the superhard layer dissolves one or more of the Va group and VIa group elements. A cemented carbide having a superhard coating, characterized in that it is a carbide coating formed by dipping borax or borate in a molten bath.
【請求項2】 超硬質層を表面に被成してなる超硬合金
であって、 上記超硬合金がWCに加えてIVa 族、Va 族及びVIa 族
元素の炭化物の1種又は2種以上と2.5 〜50wt%の範囲
で含有するFe−C系合金との焼結体でかつこのFe−C系
合金中のC量が0.25wt%以上であること並びに上記超硬
質層がVa 族及びVIa 族元素の1種又は2種以上を溶解
させたほう砂又はほう酸塩の溶融浴中への浸漬処理によ
り形成した炭化物被膜であることの要素結合を特徴とす
る、超硬質被膜をそなえる超硬合金。
2. A cemented carbide formed by coating a cemented carbide layer on the surface, the cemented carbide being one or more of carbides of IVa group, Va group and VIa group elements in addition to WC. And a Fe-C-based alloy containing 2.5 to 50 wt% of C and the Fe-C-based alloy has a C content of 0.25 wt% or more, and the superhard layer is a Va group or VIa group. A cemented carbide having a superhard coating, characterized by the elemental bond of being a carbide coating formed by immersion treatment of borax or borate in which one or more group elements are dissolved in a molten bath. .
【請求項3】 炭化物被膜がV炭化物、Nb炭化物及びCr
炭化物の1種又は2種以上である請求項1又は2記載の
超硬質被膜をそなえる超硬合金。
3. The carbide coating comprises V carbide, Nb carbide and Cr.
A cemented carbide having a superhard coating according to claim 1 or 2 which is one or more kinds of carbides.
【請求項4】 請求項1、2又は3に記載の超硬質被膜
をそなえる超硬合金を用いることを特徴とする塑性加工
用工具。
4. A plastic working tool characterized by using a cemented carbide having the cemented hard coating according to claim 1, 2 or 3.
JP18902794A 1994-07-20 1994-07-20 Sintered hard alloy having super hard film and tool for plastic working Pending JPH0835031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18902794A JPH0835031A (en) 1994-07-20 1994-07-20 Sintered hard alloy having super hard film and tool for plastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18902794A JPH0835031A (en) 1994-07-20 1994-07-20 Sintered hard alloy having super hard film and tool for plastic working

Publications (1)

Publication Number Publication Date
JPH0835031A true JPH0835031A (en) 1996-02-06

Family

ID=16234076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18902794A Pending JPH0835031A (en) 1994-07-20 1994-07-20 Sintered hard alloy having super hard film and tool for plastic working

Country Status (1)

Country Link
JP (1) JPH0835031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122787A (en) * 2005-05-27 2006-11-30 산드빅 인터렉츄얼 프로퍼티 에이비 Tool for coldforming operations with improved performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122787A (en) * 2005-05-27 2006-11-30 산드빅 인터렉츄얼 프로퍼티 에이비 Tool for coldforming operations with improved performance

Similar Documents

Publication Publication Date Title
KR101561683B1 (en) Cemented carbide with ultra-low thermal conductivity
Yan et al. Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance
JP2005177981A (en) Cemented carbide tool and manufacturing method thereof
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
JP4656473B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
US5905937A (en) Method of making sintered ductile intermetallic-bonded ceramic composites
Yehia et al. Microstructure, hardness, wear, and magnetic properties of (tantalum, niobium) carbide-nickel–sintered composites fabricated from blended and coated particles
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
JP2000234136A (en) Cemented carbide, coated cemented carbide and production thereof
KR20130072155A (en) Cemented carbide body and applications thereof
JPH0835031A (en) Sintered hard alloy having super hard film and tool for plastic working
JP3089262B1 (en) AlTi-based alloy sputtering target, wear-resistant AlTi-based alloy hard coating, and method of forming the same
US20130260166A1 (en) Coated Titanium Alloy Surfaces
WO2013151865A1 (en) Coated titanium alloy surfaces
JPH10310840A (en) Superhard composite member and its production
Wolfe et al. Cold spray particle deposition for improved wear resistance
Mekgwe et al. Effect of graphite addition on the tribological properties of pure titanium carbonitride prepared by spark plasma sintering
JP2000336451A (en) Modified sintered alloy, coated sintered alloy, and their production
JP2819648B2 (en) Coated cemented carbide for wear-resistant tools
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture
JP2000144298A (en) Diamond-containing hard member and its production
JP3604717B2 (en) Hard coating tool for plastic working
JPH0215622B2 (en)
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705