JPH08335407A - Anisotropic conductive material for electric connection - Google Patents

Anisotropic conductive material for electric connection

Info

Publication number
JPH08335407A
JPH08335407A JP1307696A JP1307696A JPH08335407A JP H08335407 A JPH08335407 A JP H08335407A JP 1307696 A JP1307696 A JP 1307696A JP 1307696 A JP1307696 A JP 1307696A JP H08335407 A JPH08335407 A JP H08335407A
Authority
JP
Japan
Prior art keywords
conductive
anisotropic conductive
conductive material
substrate
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1307696A
Other languages
Japanese (ja)
Other versions
JP2794009B2 (en
Inventor
Hironori Murakami
裕紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11823076&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08335407(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP8013076A priority Critical patent/JP2794009B2/en
Publication of JPH08335407A publication Critical patent/JPH08335407A/en
Application granted granted Critical
Publication of JP2794009B2 publication Critical patent/JP2794009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Combinations Of Printed Boards (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE: To provide an anisotropic material for electric connection in which high resolution can be provided by enclosing conductive fine grains with an electric insulation material to form microcapsules for preventing generation of short-circuiting between the anisotropic conductive grain. CONSTITUTION: The surface of conductive grains 11 is coated with an electrically insulating material to enclose the conductive grains 11 for forming anisotropic conductive microcapsules 10. There are then applied to a specified part of a lower electrode substrate 5 by screen printing or spraying. Next, after an upper electrode substrate 5 is positioned, these are pressurized or heated and contact bonded to reduce film thickness of the electric insulation coating material, so electrodes 4 between both substrate 5 are connected as in a figure (b). By performing electric connection using the anisoropic conductive material, the anistropic conductive material 10 of uniform grain size uniformly exists on the substrate 5, and because the conductive material is coated with the insulation material, an insulation layer is necessarily formed between the conductive grain, thereby electric short-circuiting will not be generated between the conductive grains.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性材料からな
る微粒子を電気絶縁カプセル化皮膜で被覆して該導電性
粒子を封じ込めてマイクロカプセル化し、任意の分解能
が得られるようにした電気接続用異方導電材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical connection in which fine particles made of a conductive material are covered with an electrically insulating encapsulating film to enclose the conductive particles into microcapsules to obtain an arbitrary resolution. An anisotropic conductive material.

【0002】[0002]

【従来の技術】従来の電気接続用異方導電材料として、
例えば、図4(a)に示すような、金属や低融点ハンダ
等の導電性微粒子1を絶縁性材料2からなる分散媒中に
分散させ、フィルム状に形成したものがある。同図のよ
うに、所定のパターンによる電極4が貼着された2枚の
基板5を相互に接続する場合、上述の異方導電材料を電
極4を内側にした基板5によって挟持し、この状態で全
体を加圧ならびに加熱すると、絶縁性フィルムが溶融し
て対向する電極4間から押し出され、電極4間は導電性
微粒子1で電気的に接続されるとともに基板5相互は押
し出された絶縁性フィルム2によって接続され、図4
(b)に示すように2枚の基板が異方性導電材料によっ
て接続される。
2. Description of the Related Art As a conventional anisotropic conductive material for electrical connection,
For example, as shown in FIG. 4A, there is one in which conductive fine particles 1 such as metal or low melting point solder are dispersed in a dispersion medium made of an insulating material 2 to form a film. As shown in the figure, when the two substrates 5 to which the electrodes 4 having a predetermined pattern are adhered are connected to each other, the anisotropic conductive material described above is sandwiched between the substrates 5 having the electrodes 4 inside, When the whole is pressed and heated by, the insulating film is melted and extruded from between the opposing electrodes 4, and the electrodes 4 are electrically connected by the conductive fine particles 1 and the substrates 5 are extruded together. Connected by film 2, FIG.
As shown in (b), the two substrates are connected by the anisotropic conductive material.

【0003】しかし、従来の異方導電材料にあっては、
数μmオーダー以下の粒径の均一な導電粒子をフィルム
中に均一に分散することが困難であるため、IC実装等
を目的とした高分解能(10本/mm以上)の多接点電極の
接続に用いることができなかった(因みに、従来技術に
おいては5本/mm(ラインスペース=100μm)が限
界となっている)。例えば、20本/mmの分解能を得よ
うとすれば、電極ピッチは25μmとなる。このため、
数μmオーダー以下の粒径の均一な導電粒子を均一にフ
ィルム中に分散する必要があるが、従来技術によれば、
図5の図示aの如くの擬集、図示bの如く大径粒子の混
入による隣接電極間の短絡、及び図示cの如く粒子が介
在しないことによる絶縁状態の発生等の問題を生じ、十
分な信頼性を得ることができなかった。また、従来の異
方導電フィルムは、シート状あるいはテープ状のため、
(切断)→(仮付け)→(仮接着)→(セパレータ剥
離)→(回路位置合せ)→(本接着)の如き複雑な工程
を必要とするため、接続の長時間化、歩留りの低下等を
招き、ひいてはコストアップを招く不具合がある。
However, in the conventional anisotropic conductive material,
Since it is difficult to uniformly disperse uniform conductive particles with a particle size on the order of several μm or less in the film, it is suitable for connecting high-resolution (10 / mm or more) multi-contact electrodes for the purpose of IC mounting. It could not be used (by the way, the limit is 5 lines / mm (line space = 100 μm) in the prior art). For example, to obtain a resolution of 20 lines / mm, the electrode pitch is 25 μm. For this reason,
Although it is necessary to uniformly disperse uniform conductive particles having a particle size of several μm order or less in the film, according to the conventional technique,
As shown in FIG. 5A, a pseudo-collection, short-circuit between adjacent electrodes due to mixing of large-sized particles as shown in FIG. 5B, and occurrence of an insulating state due to the absence of particles as shown in FIG. I couldn't get credibility. In addition, since the conventional anisotropic conductive film is a sheet or tape,
Since complicated processes such as (cutting) → (temporary attachment) → (temporary adhesion) → (separator peeling) → (circuit alignment) → (main adhesion) are required, the connection will take longer and the yield will decrease. However, there is a problem that this leads to an increase in cost.

【0004】さらに、異方導電材料として、原出願の出
願後に公開された特開昭62−40183号公報に示さ
れるような、導電性粒子を接着剤に不溶な樹脂で被覆し
たものが提案されている。この異方導電材料は、エポキ
シ樹脂とアミノエチルピペラジンとからなる配合系樹脂
に半田金属粒子を混合して硬化させ、その後粉砕機で粉
砕して粒子とし、接着剤中に分散させ、連結シートを構
成し、この連結シートを電極上に重ねるように乗せ、圧
着力により被覆を破壊して、電気的接続を確保してい
る。しかしながら、この技術では、電気絶縁性物質に導
電性粒子を混合して硬化した後、粉砕機によって粉砕し
ているので、粉砕によって導電性粒子が露出する恐れが
あり、対向する電極方向の導通のみならず目的としない
横方向の導通をも招来していまい横方向の短絡を大きく
するおそれがある。尚、異方導電材料に関するものとし
て、「電子技術」1984年、第26巻第7号、第11
7頁に記載の内容、「日経エレクトロニクス」1984
年7月16日号、第102頁に記載の内容等がある。
Further, as an anisotropic conductive material, there has been proposed one in which conductive particles are coated with a resin insoluble in an adhesive as disclosed in Japanese Patent Application Laid-Open No. 62-40183, which was published after the application of the original application. ing. This anisotropic conductive material is prepared by mixing solder metal particles with a compounding resin consisting of an epoxy resin and aminoethylpiperazine and curing it, then crushing it with a crusher into particles, dispersing them in an adhesive, Then, the connection sheet is placed so as to overlap the electrodes, and the coating is broken by the pressure bonding force to secure the electrical connection. However, in this technique, since the conductive particles are mixed with the electrically insulating substance and cured, and then crushed by the crusher, the conductive particles may be exposed by the crushing, and only the conduction in the facing electrode direction may occur. In addition, undesired lateral conduction may be caused and a lateral short circuit may be increased. As for the anisotropic conductive material, “Electronic Technology”, 1984, Vol. 26, No. 7, No. 11
Page 7, "Nikkei Electronics" 1984
There is contents mentioned in page 102 of July 16, issue.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、LSIチップやパッケージの電
極などを加圧あるいは加熱圧着によって接続する電気的
接続材料において高分解能を得られるようにするため、
導電性材料の微粒子を電気絶縁性高分子材料からなる殻
(容器)の中に封じ込めてマイクロカプセル化し、これ
らを対象面上に密着配設して膜化し、或いはフィルム状
に加工するようにした電気接続用異方導電材料を提供す
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and it is possible to obtain high resolution in an electrical connection material for connecting electrodes of an LSI chip or a package by pressurization or thermocompression bonding. In order to
Microparticles of conductive material were enclosed in a shell (container) made of an electrically insulating polymer material to be microencapsulated, and these were closely placed on the target surface to form a film or processed into a film. An anisotropic conductive material for electrical connection is provided.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に本発明は、電気接続用異方導電材料を構成する導電性
粒子を電気絶縁性のカプセル化皮膜で被覆してマイクロ
カプセル化した異方導電性粒子とした。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a microcapsulation method in which conductive particles constituting an anisotropically conductive material for electrical connection are coated with an electrically insulating encapsulating film. The particles were unidirectionally conductive particles.

【0007】[0007]

【発明の実施の形態】以下、本発明による電気接続用異
方導電材料を詳細に説明する。図1は、本発明の一実施
例を示し、図4と同一の部分は同一の引用数字で示した
ので、重複する説明は省略するが、本実施例は、導電性
材料の微粒子を電気絶縁性の物質によって被覆殻の中に
封じ込めてマイクロカプセル化した異方導電マイクロカ
プセル10を、電極4が設けられた基板5上へスクリー
ン印刷或いは吹き付けすることによって、異方導電マイ
クロカプセル層を形成し、対向する他の電極が設けられ
た他方の基板を整合させた後加圧又は加熱圧着して電極
相互間を接続する異方導電材料とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The anisotropic conductive material for electrical connection according to the present invention will be described in detail below. FIG. 1 shows an embodiment of the present invention, and the same parts as those in FIG. 4 are indicated by the same reference numerals, and thus duplicated description will be omitted. However, in this embodiment, fine particles of a conductive material are electrically insulated. An anisotropic conductive microcapsule layer is formed by screen-printing or spraying the anisotropic conductive microcapsule 10 which is encapsulated in a coating shell with a conductive substance to be microencapsulated onto a substrate 5 provided with an electrode 4. The other substrate provided with the other electrodes facing each other is aligned and then pressed or heated and pressure-bonded to form an anisotropic conductive material for connecting the electrodes to each other.

【0008】ここで、異方導電マイクロカプセル10
は、図2に示すように、芯物質11と、該芯物質11を
被覆する単層または多重の皮膜物質12からなり、該芯
物質を該皮膜物質で封じ込めて構成される。
Here, the anisotropic conductive microcapsule 10
As shown in FIG. 2, is composed of a core substance 11 and a single-layer or multiple-layer coating substance 12 covering the core substance 11, and is constituted by enclosing the core substance with the coating substance.

【0009】芯物質11としては、金、白金、銀、銅、
鉄、ニッケル、アルミニウム、クロム等の金属及び金属
化合物(ITO、ハンダ等)、導電性カーボン等の導電
性無機物及び無機化合物、有機金属化合物等の導電性有
機化合物等を用いることができる。また、皮膜物質12
としては、電気絶縁性の高分子材料であるフェノール樹
脂、ユリヤ樹脂、メラミン樹脂、アリル樹脂、フラン樹
脂、ポリエステル、エポキシ樹脂、シリコーン樹脂、ポ
リイミド樹脂、ポリウレタン、テフロン樹脂等の熱硬化
性高分子、ポリエチレン、ポリプロピレン、ポリブチレ
ン、ポリメタクリル酸メチル、ポリスチレン、アクリロ
ニトリル−スチレン樹脂、スチレン−ブタジェン樹脂、
アクリロニトリル−スチレン−ブタジェン樹脂、ビニル
樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボ
ネート、ポリアセタール、アイオノマー樹脂、ポリエー
テルスルホン、ポリ(フェニルオキシド)、ポリ(プェ
ニレンスファイド)、ポリスルホン、ポリウレタン、フ
ッ化樹脂(PTFE,PCTFE,ポリフッ化ビニリデ
ン)等の熱可塑性高分子、繊維素系樹脂(エチルセルロ
ース,酢酸セルロース,プロピオン酸セルロース,硝酸
セルロース等)の有機−無機化合物を用いることができ
る。
As the core substance 11, gold, platinum, silver, copper,
Metals and metal compounds (ITO, solder, etc.) such as iron, nickel, aluminum, and chromium, conductive inorganic substances and inorganic compounds such as conductive carbon, and conductive organic compounds such as organic metal compounds can be used. In addition, the film material 12
As, a thermosetting polymer such as phenol resin, urea resin, melamine resin, allyl resin, furan resin, polyester, epoxy resin, silicone resin, polyimide resin, polyurethane, Teflon resin, which are electrically insulating polymer materials, Polyethylene, polypropylene, polybutylene, polymethylmethacrylate, polystyrene, acrylonitrile-styrene resin, styrene-butadiene resin,
Acrylonitrile-styrene-butadiene resin, vinyl resin, polyamide resin, polyester resin, polycarbonate, polyacetal, ionomer resin, polyether sulfone, poly (phenyl oxide), poly (phenylene sulfide), polysulfone, polyurethane, fluorinated resin ( Thermoplastic polymers such as PTFE, PCTFE, and polyvinylidene fluoride) and organic-inorganic compounds such as fibrin-based resins (ethyl cellulose, cellulose acetate, cellulose propionate, cellulose nitrate, etc.) can be used.

【0010】このような皮膜物質12で芯物質11を封
じ込めてマイクロカプセル化するに際しては、化学的製
法(例えば、界面重合法,in situ重合法,液中硬化被
覆法など)あるいは物理的・機械的製法(例えば、スプ
レードライング法,気中懸濁被覆法,真空蒸着被覆法,
静電的合体法,融解分散冷却法,無機質カプセル化法な
ど)、あるいは物理化学的製法(例えば、コアセルベー
ション法,界面沈澱法など)によって行なわれる。尚、
マイクロカプセルに関する文献として、近藤保、小石真
純著「マイクロカプセル」三共出版、1981年3月1
日第3刷発行等、多数がある。
In encapsulating the core substance 11 with the coating substance 12 and microencapsulating it, a chemical production method (for example, an interfacial polymerization method, an in situ polymerization method, a liquid hardening coating method, etc.) or a physical / mechanical method is used. Manufacturing method (eg, spray drying method, air suspension coating method, vacuum deposition coating method,
Electrostatic coalescence method, melting dispersion cooling method, inorganic encapsulation method, etc.) or physicochemical manufacturing method (eg, coacervation method, interfacial precipitation method, etc.). still,
As a literature on microcapsules, Yasushi Kondo and Masumi Koishi "Microcapsules" Sankyo Publishing, March 1981.
There are many issues, such as the third issue of Japan.

【0011】芯物質11を封じ込めてマイクロカプセル
化する皮膜物質12は、絶縁性物質として機能するのみ
ならず、加圧あるいは加熱圧着によって芯物質11の表
面に被覆した膜厚を減じて基板5に形成されている電極
4間を接着する機能を有している。皮膜物質12は多重
にすることによって、絶縁用、接着用、すべり用(異方
導電マイクロカプセル間のすべりを適度に調整すること
により、下部基板に塗布した際に単一層が形成し易くな
る)等に機能を分割し、信頼性を向上させることができ
る。
The film substance 12 for encapsulating and encapsulating the core substance 11 not only functions as an insulating substance, but also reduces the film thickness coated on the surface of the core substance 11 by pressurizing or thermocompression bonding to form a substrate 5. It has a function of adhering the formed electrodes 4 together. Multiple layers of the coating substance 12 for insulation, adhesion, and slipping (by adjusting the slippage between anisotropic conductive microcapsules appropriately, a single layer can be easily formed when applied to the lower substrate). It is possible to improve reliability by dividing the function into, for example.

【0012】[0012]

【実施例】次に、異方導電材料の形成を基板の接続を例
にして、図1(a)、(b)により説明する。前述の製
法によって調整された図2の如き異方導電マイクロカプ
セル10を粒径5±0.2μm、膜厚0.8±0.05
μm(20本/mmの分解能の要求から割出された値)に
作成し、これをスクリーン印刷あるいはスプレー等によ
って下部電極基板5の所定部分に塗布(図1(a)に示
す)する。ついで上部電極基板5(或いはフレキシブル
コネクタ,IC電極パット等)を目合せしたのち、これ
らを加圧あるいは加熱圧着することによって電気絶縁皮
膜物質12の膜厚を減じ2枚の基板間の電極を図1
(b)のように接続する。
EXAMPLES Next, formation of an anisotropic conductive material will be described with reference to FIGS. 1 (a) and 1 (b), taking substrate connection as an example. The anisotropic conductive microcapsules 10 as shown in FIG. 2 prepared by the above-described manufacturing method were used, and the particle size was 5 ± 0.2 μm and the film thickness was 0.8 ± 0.05.
.mu.m (value calculated from the requirement of resolution of 20 lines / mm), and this is applied to a predetermined portion of the lower electrode substrate 5 by screen printing or spraying (shown in FIG. 1A). Then, after aligning the upper electrode substrate 5 (or flexible connector, IC electrode pad, etc.), these are pressed or heated and pressure-bonded to reduce the film thickness of the electric insulating film substance 12 to form an electrode between the two substrates. 1
Connect as shown in (b).

【0013】図1(b)に示すように、本発明による異
方導電材料を用いて電気接続すれば、粒径の揃った異方
導電材料10が基板5上に均質に存在するとともに、各
導電材料には、絶縁材料が被覆されているので導電微粒
子間に必ず絶縁層が形成され、導電性微粒子間に電気的
な短絡現象は生じない。したがって、図5に示した如き
従来の不具合は生じない。このため、信頼性、分解能を
共に高めることができる。尚、分解能は芯物質11の粒
子径と皮膜12の膜厚を調整することによって、任意の
値が得られる。従来より、異方導電フィルムの形成に際
しては、絶縁性フィルム材と導電粒子を直接混練したの
ち、シート状あるいは整形している。同様に本発明にお
いても、図3に示すように、導電粒子をマイクロカプセ
ル化して異方導電マイクロカプセル10を形成し、これ
をローラ15(又はヒートローラ等)によってシート状
あるいはテープ状の異方導電フィルムを製造することが
できる。
As shown in FIG. 1B, if the anisotropic conductive material according to the present invention is used for electrical connection, the anisotropic conductive material 10 having a uniform grain size is uniformly present on the substrate 5, and Since the conductive material is covered with the insulating material, the insulating layer is always formed between the conductive fine particles, and the electrical short circuit phenomenon does not occur between the conductive fine particles. Therefore, the conventional inconvenience as shown in FIG. 5 does not occur. Therefore, both reliability and resolution can be improved. The resolution can be set to an arbitrary value by adjusting the particle diameter of the core substance 11 and the film thickness of the coating film 12. Conventionally, when forming an anisotropic conductive film, the insulating film material and the conductive particles are directly kneaded and then formed into a sheet or shaped. Similarly, in the present invention, as shown in FIG. 3, conductive particles are microencapsulated to form anisotropic conductive microcapsules 10, and the anisotropic conductive microcapsules are formed into a sheet or tape by a roller 15 (or a heat roller or the like). A conductive film can be manufactured.

【0014】[0014]

【発明の効果】以上説明した通り、本発明の電気接続用
異方導電材料によれば、導電性微粒子を電気絶縁性物質
で封じ込めてマイクロカプセル化したため、導電性粒子
の側面には必ず電気絶縁性物質が存在するので、隣接す
る電極間に異方導電性粒子が凝集しても短絡が発生しな
くなり、高分解能を得ることができる。さらに、導電性
粒子を被覆する電気絶縁性物質が加圧又は加熱圧着によ
って異方導電性材料の配列方向に移動し膜厚が減じられ
るので、接続方向の導電性を確実に得ることができる。
しかも、導電粒子の材料を選ばないため、あらゆる電極
材料に合せてオーミックな接続を行うことができる。
As described above, according to the anisotropic conductive material for electrical connection of the present invention, the conductive fine particles are encapsulated by the electrically insulating substance to be microencapsulated, so that the side surface of the conductive particle is always electrically insulated. Since the conductive substance is present, short circuit does not occur even if the anisotropic conductive particles aggregate between the adjacent electrodes, and high resolution can be obtained. Furthermore, since the electrically insulating substance coating the conductive particles moves in the arrangement direction of the anisotropically conductive material by pressure or heat compression to reduce the film thickness, the conductivity in the connection direction can be reliably obtained.
Moreover, since the material of the conductive particles is not selected, ohmic connection can be performed according to any electrode material.

【0015】さらに、前記した特開昭62−40183
号公報に示される先願技術は、電気絶縁性物質に導電性
粒子を混合し硬化させ、その後粉砕機で粉砕しているの
で、導電性粒子が露出する恐れがあり、対向する電極方
向の導通のみならず目的としない横方向の導通をも招来
してしまい横方向の短絡を大きくするおそれがあるのに
対し、本発明は、導電性粒子を電気絶縁性物質で被覆し
てマイクロカプセル化したので、横方向の導通を生じる
可能性は全くなくなり、対向する電極間にのみ充分な電
気的導通を得ることができるという極めて優れた効果を
奏することができる。
Further, the above-mentioned JP-A-62-40183
In the prior application technology disclosed in Japanese Patent Publication, since electrically conductive particles are mixed with electrically conductive particles to be hardened and then pulverized by a pulverizer, the electrically conductive particles may be exposed, and conduction in opposite electrode directions may occur. Not only is there a possibility that undesired lateral conduction may be caused and lateral short circuits may be increased, whereas in the present invention, conductive particles are coated with an electrically insulating substance to form microcapsules. Therefore, there is no possibility of causing lateral conduction, and it is possible to obtain an extremely excellent effect that sufficient electrical conduction can be obtained only between the opposing electrodes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】 本発明に係るマイクロ化した導電性粒子の断
面図。
FIG. 2 is a sectional view of micronized conductive particles according to the present invention.

【図3】 本発明における異方導電フィルムの製造説明
図。
FIG. 3 is an explanatory view for manufacturing an anisotropic conductive film according to the present invention.

【図4】 従来の異方導電材料を用いた電極の接続説明
図。
FIG. 4 is an explanatory view of connection of electrodes using a conventional anisotropic conductive material.

【図5】 従来の材料による接続トラブル発生を示す説
明図。
FIG. 5 is an explanatory view showing the occurrence of a connection trouble caused by a conventional material.

【符号の説明】 4 電極、 5 基板、 10 異方導電マイクロカプ
セル、 11 芯物質、 12 皮膜物質。
[Explanation of symbols] 4 electrodes, 5 substrate, 10 anisotropic conductive microcapsules, 11 core material, 12 coating material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/36 H05K 3/36 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H05K 3/36 H05K 3/36 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子を、電気絶縁性物質で被覆し
マイクロカプセル化した異方導電性粒子を用いることを
特徴とする電気接続用異方導電材料。
1. An anisotropic conductive material for electrical connection, characterized in that the conductive particles are anisotropically conductive particles coated with an electrically insulating substance and microencapsulated.
JP8013076A 1996-01-29 1996-01-29 Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection Expired - Lifetime JP2794009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8013076A JP2794009B2 (en) 1996-01-29 1996-01-29 Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8013076A JP2794009B2 (en) 1996-01-29 1996-01-29 Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60217598A Division JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection

Publications (2)

Publication Number Publication Date
JPH08335407A true JPH08335407A (en) 1996-12-17
JP2794009B2 JP2794009B2 (en) 1998-09-03

Family

ID=11823076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8013076A Expired - Lifetime JP2794009B2 (en) 1996-01-29 1996-01-29 Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection

Country Status (1)

Country Link
JP (1) JP2794009B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293133A (en) * 1998-04-14 1999-10-26 Nippon Zeon Co Ltd Resin composition
US7169332B2 (en) 2003-05-06 2007-01-30 Hanwha Chemical Corporation Insulated conductive ball for anisotropic conductive connection, method of preparing the same, and product using the same
US7252883B2 (en) 2000-10-23 2007-08-07 Sekisui Chemical Co., Ltd. Coated particles
EP2073316A1 (en) * 2006-09-26 2009-06-24 Hitachi Chemical Company, Ltd. Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
JP2016127081A (en) * 2014-12-26 2016-07-11 株式会社タムラ製作所 Anisotropic conductive paste and printed wiring board arranged by use thereof
CN113421831A (en) * 2021-06-25 2021-09-21 山东汉旗科技有限公司 Method and system for manufacturing heat dissipation layer of driving integrated circuit substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088652A1 (en) * 2004-03-10 2005-09-22 Asahi Glass Company, Limited Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
US20100065311A1 (en) 2006-07-03 2010-03-18 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
EP2079084A4 (en) 2006-10-17 2010-09-08 Hitachi Chemical Co Ltd Coated particle and method for producing the same, anisotropic conductive adhesive composition using coated particle, and anisotropic conductive adhesive film
JP5151920B2 (en) 2008-02-05 2013-02-27 日立化成工業株式会社 Conductive particles and method for producing conductive particles
CN102474023A (en) 2009-07-01 2012-05-23 日立化成工业株式会社 Coated conductive particles and method for producing same
JP6893399B2 (en) 2016-07-07 2021-06-23 デクセリアルズ株式会社 Insulation coated particles, methods for producing insulating coated particles, particle-containing compositions, and anisotropic conductive adhesives.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107210A (en) * 1983-11-15 1985-06-12 松下電器産業株式会社 Anisotropic conductor
JPS6240183A (en) * 1985-08-15 1987-02-21 ソニー株式会社 Link sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107210A (en) * 1983-11-15 1985-06-12 松下電器産業株式会社 Anisotropic conductor
JPS6240183A (en) * 1985-08-15 1987-02-21 ソニー株式会社 Link sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293133A (en) * 1998-04-14 1999-10-26 Nippon Zeon Co Ltd Resin composition
US7252883B2 (en) 2000-10-23 2007-08-07 Sekisui Chemical Co., Ltd. Coated particles
US7169332B2 (en) 2003-05-06 2007-01-30 Hanwha Chemical Corporation Insulated conductive ball for anisotropic conductive connection, method of preparing the same, and product using the same
EP2073316A1 (en) * 2006-09-26 2009-06-24 Hitachi Chemical Company, Ltd. Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
EP2073316A4 (en) * 2006-09-26 2010-07-21 Hitachi Chemical Co Ltd Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
JP2016127081A (en) * 2014-12-26 2016-07-11 株式会社タムラ製作所 Anisotropic conductive paste and printed wiring board arranged by use thereof
CN113421831A (en) * 2021-06-25 2021-09-21 山东汉旗科技有限公司 Method and system for manufacturing heat dissipation layer of driving integrated circuit substrate

Also Published As

Publication number Publication date
JP2794009B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
EP0512546B1 (en) Anisotropically conductive material and method for connecting integrated circuits by using the same
KR100273499B1 (en) Semiconductor device having a semiconductor chip electrically connected to a wiring substrate
JP3800631B2 (en) Method for manufacturing anisotropic conductive adhesive, method for manufacturing connection structure, and method for manufacturing liquid crystal device
JPH08335407A (en) Anisotropic conductive material for electric connection
CN101681692A (en) Electrically conductive particle, anisotropic conductive connection material, and method for production of electrically conductive particle
JPH08505001A (en) Electrical connection structure and electrical connection method thereof
JPH0660712A (en) Anisotropic conductive material for electric connection
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP3436170B2 (en) Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same
JP3847693B2 (en) Manufacturing method of semiconductor device
KR100772454B1 (en) Anisotropic conductive film and method of manufacturing the same
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPH053739B2 (en)
JP2836035B2 (en) Electrical connection
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP4542842B2 (en) Interelectrode connection structure
KR940001260B1 (en) Conductive connecting structure
JP4282097B2 (en) Circuit board connection method, connection structure, and adhesive film used therefor
JP3198162B2 (en) Connection method for semiconductor integrated circuit device
JPH05235096A (en) Method of mounting electronic component on board
JP4051730B2 (en) IC chip adhesive film
KR101117768B1 (en) Anisotropic Conductive Film
JPH08148210A (en) Connection member
JP2805948B2 (en) Connection structure of IC chip
JP2995244B2 (en) Anisotropic conductive adhesive

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term