JPH08332508A - Controller for rolling mill - Google Patents

Controller for rolling mill

Info

Publication number
JPH08332508A
JPH08332508A JP7142025A JP14202595A JPH08332508A JP H08332508 A JPH08332508 A JP H08332508A JP 7142025 A JP7142025 A JP 7142025A JP 14202595 A JP14202595 A JP 14202595A JP H08332508 A JPH08332508 A JP H08332508A
Authority
JP
Japan
Prior art keywords
rolling
mill
change
changing
rolling position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7142025A
Other languages
Japanese (ja)
Other versions
JP2997634B2 (en
Inventor
Takayuki Kachi
地 孝 行 加
Sadayuki Mitsuyoshi
吉 貞 行 三
Yoshimitsu Fukui
井 義 光 福
Kunio Sekiguchi
口 邦 男 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Toshiba Corp
Original Assignee
Toshiba Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15305623&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08332508(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp, Kawasaki Steel Corp filed Critical Toshiba Corp
Priority to JP7142025A priority Critical patent/JP2997634B2/en
Publication of JPH08332508A publication Critical patent/JPH08332508A/en
Application granted granted Critical
Publication of JP2997634B2 publication Critical patent/JP2997634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: To effectively utilize thickness control effect by variable control of mill constant even during flying change and to execute flying change stably and with high accuracy by determining the changing amount of screw-down location reference from the set value of screw-down location, tracking flying changing point and changing the screw-down location of a rolling mill at the timing when the flying changing point reaches a stand. CONSTITUTION: The set values SXA, SXB of screw-down locations befor and after flying change are calculated from the data such as the target values hA, hB of thickness on the outlet side before and after flying change, calculated values PA, PB of rolling loads and tuning rate α which is set in a variable controller 10 of mill constant and added to the screw-down location controlling part 25 with the set value calculating part 24 of a screw-down device. The changing amount ΔSREF of screw-down location reference is calculated, also the flying changing point is tracked and the changing amount ΔSREF of screw-down location reference is added to a screw-down location controller 23 at the timing when the flying changing point reaches a pertinent rolling mill with the screw-down location controlling part 25. In this way, the changing amount of the screw-down location is exactly determined by taking screw-down location operation into consideration by the variable control of the mill constant and the flying change is executed with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼板等を圧延する圧延機
において、同一母材から異なる板厚あるいは板幅の製品
を製造したり、異なる母材を接合して連続的に圧延する
などの走間変更を行う場合の圧延機制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling mill for rolling steel sheets and the like, which is used to manufacture products having different thicknesses or widths from the same base material, or to join different base materials and continuously roll them. The present invention relates to a rolling mill control device when changing running distances.

【0002】[0002]

【従来の技術】プロセスの連続化と生産性の向上を目的
として走間変更技術の開発は各方面で進められ、冷間圧
延機では既に多くのプラントで実施されている。また近
年熱間圧延機においても走間変更が適用されつつある。
走間変更を実行するケースとしては次の4つがある。 (1) 同一母材から板厚の異なる製品を製造する。 (2) 同一母材から板幅の異なる製品を製造する。 (3) 同一母材から板幅および板厚の異なる製品を製造す
る。 (4) 異なる母材を接合し連続的に圧延する。これには、
接合される母材の寸法、材種が同一の場合、異なる場
合、接合点の前後で製品寸法が同一の場合、異なる場合
がある。
2. Description of the Related Art The development of technology for changing running distance has been promoted in various fields for the purpose of continuous process and improvement of productivity, and cold rolling mills have already been implemented in many plants. Further, in recent years, the change of running distance has been applied to hot rolling mills.
There are the following four cases for executing the change of running distance. (1) Products with different plate thickness are manufactured from the same base material. (2) Products with different board widths are manufactured from the same base material. (3) Products with different width and thickness are manufactured from the same base material. (4) Join different base materials and roll continuously. This includes
There are cases where the sizes and types of the base materials to be joined are the same, different, the product dimensions before and after the joining point are the same, and different.

【0003】このような走間変更を安定且つ高精度に行
うためには、圧延機の圧下位置の設定値とロール速度の
設定値の変更を適切に行うことが重要となる。走間変更
における圧下位置の設定値とロール速度の設定値の変更
方法に関する従来技術として、例えば特公昭48−17
145号公報に開示されたものがある。これは複数のス
タンドで構成された圧延機における制御方法であり、走
間変更点が各スタンドに到達する毎にそのスタンドの圧
下位置を後行材の設定値に変更すると共に、そのスタン
ドを含んで上流または下流の全スタンドのロール速度を
マスフローバランスを保つように変更するものである。
In order to perform such a change in running distance stably and with high accuracy, it is important to appropriately change the set value of the rolling position and the set value of the roll speed of the rolling mill. As a conventional technique relating to a method for changing the set value of the rolling position and the set value of the roll speed in changing the running distance, for example, Japanese Patent Publication No. 48-17.
There is one disclosed in Japanese Patent No. 145. This is a control method for a rolling mill composed of a plurality of stands, and the rolling position of the stand is changed to the set value of the trailing material each time the travel change point reaches each stand, and the stand is included. Is to change the roll speed of all stands upstream or downstream so as to maintain the mass flow balance.

【0004】図4は、隣り合う2スタンドを例にして、
従来方法による圧下位置の設定値とロール速度の設定値
の変更を示した図である。図4においてhは出側板厚、
Sは圧下位置、Pは圧延荷重、VR はロール速度、iは
スタンド番号、添字Aは走間変更前の先行材、添字Bは
走間変更後の後行材を示す。複数のスタンドで構成され
た圧延機において先行材の目標板厚から後行材の目標板
厚に変更する場合、図4に示すように全スタンドの出側
板厚を順次先行材から後行材の出側板厚に変更する。
FIG. 4 shows two adjacent stands as an example.
It is a figure showing change of a set value of a rolling position and a set value of roll speed by a conventional method. In FIG. 4, h is the outlet plate thickness,
S is the rolling position, P is the rolling load, V R is the roll speed, i is the stand number, subscript A is the preceding material before changing the running distance, and subscript B is the following material after changing the running distance. When changing from the target plate thickness of the preceding material to the target plate thickness of the following material in a rolling mill composed of a plurality of stands, as shown in FIG. 4, the outgoing side plate thickness of all stands is sequentially changed from the preceding material to the following material. Change to the outlet plate thickness.

【0005】すなわち、走間変更点がiスタンドに到達
したタイミングでiスタンドの圧下位置Si は、先行材
の設定値SAiから後行材の設定値SBiに変更され、これ
により出側板厚は先行材の板厚hAiから後行材の板厚h
Biに変更される。またこの時点で発生している圧延荷重
はPAiからPBiに変化する。同様に走間変更点が(i+
1)スタンドに到達したタイミングで(i+1)スタン
ドの圧下位置Si+1 は、先行材の設定値SAi+1から後行
材の設定値SBi+1に変更され、これにより出側板厚は先
行材の板厚hAi+1から後行材の板厚hBi+1に変更され
る。またこの時点で発生している圧延荷重はPAi+1から
Bi+1に変化する。ロール速度VRi、VRi +1は走間変更
中においてもマスフローバランスを保つように変更され
る。ここで出側板厚を精度良く後行材の板厚に変更でき
るか否かは、圧下位置の設定値の変更精度に依存してい
る。本発明はこの圧下位置の設定値の変更に関するもの
であり、以下、圧下位置の変更に絞って説明する。
That is, the rolling position S i of the i stand is changed from the set value S Ai of the preceding material to the set value S Bi of the following material at the timing when the running distance change point reaches the i stand. Thickness is from the thickness h Ai of the preceding material to the thickness h of the following material
Changed to Bi . Further, the rolling load generated at this point changes from P Ai to P Bi . Similarly, the changes between running distances are (i +
1) At the timing of reaching the stand, (i + 1) the rolling position S i + 1 of the stand is changed from the set value S Ai + 1 of the preceding material to the set value S Bi + 1 of the following material, whereby the delivery side plate thickness Is changed from the thickness h Ai + 1 of the preceding material to the thickness h Bi + 1 of the following material. The rolling load generated at this point changes from P Ai + 1 to P Bi + 1 . The roll velocities V Ri and V Ri +1 are changed so as to maintain the mass flow balance even during the change of the running distance. Whether or not the delivery side plate thickness can be accurately changed to the plate thickness of the following material depends on the change precision of the set value of the rolling position. The present invention relates to the change of the set value of the reduction position, and hereinafter, the description will be focused on the change of the reduction position.

【0006】図5は走間変更前後のミルカーブと塑性カ
ーブの関係を示す図である。図5において、は走間変
更開始前の先行材の塑性カーブ、は走間変更後の後行
材の塑性カーブ、は先行材のミルカーブ、は後行材
のミルカーブである。また図5のx軸は板厚もしくは圧
下位置、y軸は圧延荷重である。塑性カーブとx軸との
交点は入側板厚であり、HA は先行材の入側板厚、HB
は後行材の入側板厚である。またミルカーブとx軸との
交点は圧下位置、ミルカーブと塑性カーブとの交点のx
軸の値は出側板厚、y軸の値はその圧延状態における圧
延荷重となる。
FIG. 5 is a view showing the relationship between the mill curve and the plasticity curve before and after the change in running distance. In FIG. 5, is the plastic curve of the preceding material before the start of changing the running distance, is the plastic curve of the following material after changing the running distance, is the mill curve of the preceding material, and is the mill curve of the following material. Further, in FIG. 5, the x-axis is the plate thickness or the rolling position, and the y-axis is the rolling load. The intersection of the plasticity curve and the x-axis is the inlet plate thickness, H A is the inlet plate thickness of the preceding material, H B
Is the entry side plate thickness of the trailing material. The intersection of the mill curve and the x axis is the rolling position, and the intersection of the intersection of the mill curve and the plastic curve is x.
The value on the axis is the exit side plate thickness, and the value on the y-axis is the rolling load in that rolling state.

【0007】図5から明らかなように圧下位置の設定値
は(1) ,(2) 式で得られる。 SA =hA −SmA (1) SB =hB −SmB (2) ここで、SmA,SmBは、先行材および後行材の圧延にお
けるミルの弾性変形すなわちミルの伸びで、圧延荷重や
板幅などの関数として表される。このため従来では、走
間変更開始前に圧延荷重PA およびPB を予測し、ミル
の伸びSmA,SmBを求め、(1) ,(2) 式から走間変更前
後の圧下位置の設定値を計算する方法が用いられてい
た。
As is apparent from FIG. 5, the set value of the rolling position is obtained by the equations (1) and (2). S A = h A −S mA (1) S B = h B −S mB (2) Here, S mA and S mB are elastic deformations of the mill in rolling of the preceding material and the following material, that is, elongation of the mill. , As a function of rolling load and strip width. For this reason, conventionally, the rolling loads P A and P B are predicted before the start of changing the running distance, the elongations S mA and S mB of the mill are calculated, and the rolling positions of the rolling positions before and after the changing of the running distance are calculated from the equations (1) and (2). The method of calculating the set value was used.

【0008】次に圧下位置を操作する板厚制御機能の1
つであるミル定数可変制御について説明する。ミル定数
可変制御系のブロック図を図6に示す。1は圧延材で、
一対のワークロール2とバックアップロール3とで構成
された圧延機で圧延される。4は圧下シリンダーであ
り、油圧によりシリンダーを上下させ、上下ワークロー
ル間の間隙を操作する。5は圧下位置検出器で、上下ワ
ークロール間の間隙を連続的に検出する。6は荷重検出
器で、圧延材1に発生する圧延荷重を連続的に検出す
る。7は圧下位置制御装置で、圧下位置基準SREF から
ミル定数可変制御装置10の出力である圧下位置操作量
ΔSMMC を減算して得られた値と、圧下位置検出器5で
検出した圧下位置の現在値との差に応じて圧下シリンダ
ー4の操作量を演算し圧下シリンダー圧力を操作する。
Next, one of the plate thickness control functions for operating the reduction position
Variable mill constant control, which is one of the above, will be described. A block diagram of the mill constant variable control system is shown in FIG. 1 is rolled material,
It is rolled by a rolling mill composed of a pair of work rolls 2 and a backup roll 3. Reference numeral 4 denotes a reduction cylinder, which moves the cylinder up and down by hydraulic pressure to operate the gap between the upper and lower work rolls. A roll-down position detector 5 continuously detects the gap between the upper and lower work rolls. A load detector 6 continuously detects the rolling load generated on the rolled material 1. Reference numeral 7 denotes a reduction position control device, which is a value obtained by subtracting the reduction position operation amount ΔS MMC output from the mill constant variable control device 10 from the reduction position reference S REF and the reduction position detected by the reduction position detector 5. The operation amount of the pressure reduction cylinder 4 is calculated according to the difference from the current value of, and the pressure reduction cylinder pressure is operated.

【0009】これにより上下ワークロールの間隙は(S
REF −ΔSMMC )に制御される。ミル定数可変制御装置
10は荷重ロックオン部8とゲイン設定部9とで構成さ
れる。荷重ロックオン部8は、荷重検出器6で検出され
た圧延荷重Pをあるタイミングで記憶するもので、圧延
荷重Pと荷重ロックオン部8に記憶された荷重値PL
の差がゲイン設定部9に送られる。ゲイン設定部9には
ミル定数Mとチューニング率αとの比が設定され、圧延
荷重差ΔPとの積を演算して圧下位置操作量ΔSMMC
して出力する。いま、何らかの理由により圧延荷重Pが
ロックオン荷重PL より大きくなった場合、ΔSMMC
圧延機の上下ワークロールの間隙を小さくする方向の出
力となり、圧延材1の出側板厚を薄くする。図7はこの
ミル定数可変制御の動作を説明するための図である。す
なわち入側板厚H1 、圧延荷重P1 、出側板厚h1 の状
態で圧延している時、入側板厚がH2 に厚くなる方向に
変動したとすると、圧下位置が変化しなければ圧延荷重
はP2 に変化し、出側板厚はh2 へと厚い方向に変動し
てしまう。すなわちミル定数可変制御が「切」の場合
は、ミルカーブ上に圧延の動作点が移動する。図中Mは
ミル定数であり、圧延動作近辺のミルカーブの傾斜であ
る。
As a result, the gap between the upper and lower work rolls is (S
REF- ΔS MMC ). The variable mill constant controller 10 includes a load lock-on unit 8 and a gain setting unit 9. The load lock-on unit 8 stores the rolling load P detected by the load detector 6 at a certain timing, and the difference between the rolling load P and the load value P L stored in the load lock-on unit 8 is a gain setting. Sent to department 9. A ratio between the mill constant M and the tuning rate α is set in the gain setting unit 9, and the product of the rolling load difference ΔP is calculated and output as the rolling position manipulated variable ΔS MMC . Now, if the rolling load P becomes larger than the lock-on load P L for some reason, ΔS MMC becomes an output in the direction of reducing the gap between the upper and lower work rolls of the rolling mill, and the outgoing plate thickness of the rolled material 1 is reduced. FIG. 7 is a diagram for explaining the operation of this mill constant variable control. That is, when rolling in the state of the inlet side plate thickness H 1 , the rolling load P 1 , and the outlet side plate thickness h 1 , if the inlet side plate thickness fluctuates in the direction of increasing to H 2 , the rolling position does not change unless the rolling position changes. The load changes to P 2 , and the delivery side plate thickness fluctuates in the thicker direction to h 2 . That is, when the variable mill constant control is "OFF", the operating point of rolling moves on the mill curve. In the figure, M is a mill constant, which is the slope of the mill curve near the rolling operation.

【0010】次にミル定数可変制御を「入」にした場合
は、圧延荷重P1 が図6のロックオン荷重PL に等しい
と仮定するとP2 とP1 の荷重差に比例した圧下位置操
作量ΔSMMC だけ圧下位置がロール間隙の閉方向に操作
される。これにより圧延荷重はP3 となり、出側板厚は
3 に変化する。図7から明らかなように、h3 はミル
定数可変制御が行われない場合の出側板厚h2 より薄
く、入側板厚が変化する前の出側板厚h1 との差は小さ
い。これがミル定数可変制御による板厚制御効果であ
る。またミル定数可変制御を「入」にしている場合は、
圧延動作点が(h1,P1 )から(h3 ,P3 )に移動
したことになり、この2点を結んだ傾斜を等価ミル定数
eqと称している。
Next, when the variable mill constant is set to "ON", assuming that the rolling load P 1 is equal to the lock-on load P L in FIG. 6, the rolling position operation proportional to the load difference between P 2 and P 1 is performed. The rolling position is operated in the closing direction of the roll gap by the amount ΔS MMC . As a result, the rolling load becomes P 3 , and the delivery side plate thickness changes to h 3 . As is apparent from FIG. 7, h 3 is smaller than the outlet plate thickness h 2 when the mill constant variable control is not performed, and the difference from the outlet plate thickness h 1 before the inlet plate thickness changes is small. This is the effect of plate thickness control by variable control of the mill constant. Also, when the variable mill constant control is set to "ON",
The rolling operating point has moved from (h 1 , P 1 ) to (h 3 , P 3 ), and the slope connecting these two points is called the equivalent mill constant M eq .

【0011】等価ミル定数はチューニング率αの関数で
あり、(3) 式で表される。
The equivalent Mill constant is a function of the tuning rate α and is represented by the equation (3).

【0012】[0012]

【数5】 このチューニング率αは「1.0」に近い値が望まし
く、現状では「0.95」程度のものが実用になってい
る。
(Equation 5) It is desirable that the tuning rate α be close to “1.0”, and at present, the tuning rate α of about “0.95” is in practical use.

【0013】[0013]

【発明が解決しようとする課題】図5に示したような走
間変更において、走間変更中にミル定数可変制御が
「入」にされた場合を考える。ミル定数可変制御は前述
のように圧延荷重の変化によって圧下位置を操作するか
ら、走間変更によって圧延荷重が変化した場合も圧下位
置を操作してしまう。例えば図5ではPA からPB に圧
延荷重が増加しているから、ミル定数可変制御は圧下位
置を更にロール間隙が閉する方向に制御する。ミル定数
可変制御が「切」の場合は、図6の圧下位置基準をSA
からSB に変更することで問題ないが、ミル定数可変制
御が「入」の場合には、圧下位置基準をSA からSB
変更したのではミル定数可変制御による圧下位置操作量
だけ圧下位置に誤差を生じることになり、出側板厚は目
標値に変更されない。このため従来では、走間変更中は
ミル定数可変制御を「切」にしていた。
Consider a case where the variable mill constant control is turned "ON" during the change of the running distance in the changing of the running distance as shown in FIG. In the variable mill constant control, the rolling position is operated by changing the rolling load as described above. Therefore, even if the rolling load is changed by changing the running distance, the rolling position is operated. For example, in FIG. 5, since the rolling load increases from P A to P B , the mill constant variable control controls the rolling position so that the roll gap is further closed. If the mill constant variable control is "OFF", the pressing position reference of Figure 6 S A
There is no problem by changing from S B to S B , but when the variable mill constant control is “ON”, the rolling position reference is changed from S A to S B. An error will occur in the position, and the outgoing plate thickness will not be changed to the target value. For this reason, in the past, the variable mill constant control was set to "off" while changing the running distance.

【0014】本発明は走間変更中においてもミル定数可
変制御の板厚制御効果を有効に利用するため、ミル定数
可変制御を「入」にした状態でも出側板厚を高精度に変
更することのできる圧延機制御装置を提供することを目
的とする。
Since the present invention effectively utilizes the plate thickness control effect of the variable mill constant control even during the change of the running distance, it is possible to change the outgoing plate thickness with high accuracy even when the variable mill constant control is "ON". An object of the present invention is to provide a rolling mill control device capable of performing the above.

【0015】[0015]

【課題を解決するための手段】請求項1に記載の圧延機
制御装置は、圧延荷重の変動分に比例した圧下位置操作
量を求め、この圧下位置操作量によって圧延ロールの圧
下位置基準を補正するミル定数可変制御装置を備え、走
間で板厚を変更する等の走間変更を行うに当たり、ミル
定数可変制御装置による圧下位置操作量を考慮し走間変
更前後の圧下位置の設定値を求める圧下位置設定値計算
部と、圧下位置設定値計算部で計算された圧下位置の設
定値から圧下位置基準変更量を求め、走間変更点を追跡
し当該スタンドに走間変更点が到達したタイミングで圧
延機の圧下位置を変更する圧下位置制御部とを備えたこ
とを特徴としている。
A rolling mill control apparatus according to a first aspect of the present invention obtains a rolling position operation amount that is proportional to a fluctuation amount of a rolling load, and corrects a rolling position reference of a rolling roll based on the rolling position operation amount. In order to change the running distance such as changing the plate thickness between runnings, the mill constant variable control device is installed, and the set value of the rolling position before and after the running distance change is taken into consideration in consideration of the rolling position operation amount by the variable mill constant control device. The reduction position reference change amount is calculated from the required reduction position set value calculation unit and the setting value of the reduction position calculated by the reduction position setting value calculation unit, the running distance change point is tracked, and the running distance change point reaches the stand. It is characterized by comprising a rolling position control unit for changing the rolling position of the rolling mill at a timing.

【0016】請求項2に記載の圧延機制御装置は、圧延
荷重の変動分に比例した圧下位置操作量を求め、この圧
下位置操作量によって圧延ロールの圧下位置基準を補正
するミル定数可変制御装置を備え、走間で板厚を変更す
る等の走間変更を行うに当たり、圧延機の走間変更前後
の出側板厚hA ,hB および圧延荷重予測値PA ,PB
を用いて圧下位置変更量ΔSを求める圧下位置変更量計
算部と、圧延機の走間変更前後の出側板厚hA ,hB
よび圧延荷重予測値PA ,PB から等価塑性係数Qeq
計算する等価塑性係数演算部と、等価塑性係数演算部で
計算された等価塑性係数Qeq、ミル定数M、および走間
変更中のミル定数可変制御のチューニング率αを用いて
補正係数C1 ,C2 ,C3 を演算する補正係数演算部
と、圧下位置変更量計算部で計算された圧下位置変更量
ΔS、走間板厚変更前後の板厚変更量Δh(=hB −h
A )、補正係数演算部で求めた補正係数C1 ,C2 ,C
3 を用い、所定のルールに従って補正後の圧下位置基準
変更量ΔSREF を演算し、当該スタンドの走間変更点が
到達したタイミングで圧延機の圧下位置制御装置の圧下
位置基準変更指令としてΔSREF を与えて圧下位置を変
更する圧下位置制御部とを備えたことを特徴としてい
る。
A rolling mill controller according to a second aspect of the present invention obtains a reduction position operation amount proportional to a variation of a rolling load and corrects a reduction position reference of a rolling roll by this reduction position operation amount. When changing the running distance such as changing the running thickness between running times, the outgoing side plate thicknesses h A and h B and rolling load predicted values P A and P B before and after changing the running distance of the rolling mill are provided.
Is used to calculate the rolling reduction amount ΔS and the equivalent plasticity coefficient Q eq is calculated from the rolling reduction amount calculation unit and the outgoing side plate thicknesses h A and h B and rolling load predicted values P A and P B before and after changing the rolling distance of the rolling mill. The correction coefficient C 1 is calculated by using the equivalent plasticity coefficient calculation unit for calculating the value, the equivalent plasticity coefficient Q eq calculated by the equivalent plasticity coefficient calculation unit, the mill constant M, and the tuning rate α of the mill constant variable control during the running change. , C 2 , C 3 for calculating the correction coefficient calculation unit, and the reduction position change amount calculation unit calculates the reduction position change amount ΔS, the plate thickness change amount before and after the running plate thickness change Δh (= h B −h
A ), the correction coefficients C 1 , C 2 , C obtained by the correction coefficient calculation unit
3 was used, calculates the pressing position reference change amount [Delta] S REF corrected according to a predetermined rule, [Delta] S REF as pressing position reference change instruction of the rolling mill of the rolling position control device at a timing-fly changes of the stand has reached And a pressure reduction position control unit for changing the pressure reduction position.

【0017】請求項3に記載の圧延機制御装置は、圧延
荷重の変動分に比例した圧下位置操作量を求め、この圧
下位置操作量によって圧延ロールの圧下位置基準を補正
するミル定数可変制御装置を備え、走間で板厚を変更す
る等の走間変更を行うに当たり、圧延機の走間変更前後
の出側板厚hA ,hB および圧延荷重予測値PA ,PB
を用いて圧下位置変更量ΔSを求める圧下位置変更量計
算部と、走間変更前後の出側板厚hA ,hB および圧延
荷重予測値PA ,PB から等価塑性係数Qeqを計算する
等価塑性係数演算部と、等価塑性係数演算部で計算され
た等価塑性係数Qeq、ミル定数M、および走間変更中の
ミル定数可変制御のチューニング率αを用い補正係数C
1 ,C2 を演算する補正係数演算部と、圧下位置変更量
計算部で計算された圧下位置変更量ΔS、走間板厚変更
前後の板厚変更量Δh(=hB −hA )、補正係数演算
部で求めた補正係数C4 ,C2 を用い所定のルールに従
って補正後の圧下位置基準変更量ΔSREF を演算し、当
該スタンドの走間変更点が到達したタイミングで圧延機
の圧下位置制御装置の圧下位置変更基準指令としてΔS
REF を与えて圧下位置を変更する圧下位置制御部とを備
えたことを特徴としている。
A rolling mill controller according to a third aspect of the present invention obtains a reduction position operation amount that is proportional to a fluctuation amount of a rolling load and corrects a reduction position reference of a rolling roll by this reduction position operation amount. When changing the running distance such as changing the running thickness between running times, the outgoing side plate thicknesses h A and h B and rolling load predicted values P A and P B before and after changing the running distance of the rolling mill are provided.
Is used to calculate the rolling position change amount ΔS, and the equivalent plasticity coefficient Q eq is calculated from the rolling-down position change amount calculation unit and the outgoing-side plate thicknesses h A and h B and rolling load predicted values P A and P B before and after the running change. The correction coefficient C is calculated using the equivalent plasticity coefficient calculation unit, the equivalent plasticity coefficient Q eq calculated by the equivalent plasticity coefficient calculation unit, the mill constant M, and the tuning rate α of the mill constant variable control during the change in running time.
1 , a correction coefficient calculation unit for calculating C 2 , a reduction position change amount ΔS calculated by the reduction position change amount calculation unit, a plate thickness change amount before and after the running plate thickness change Δh (= h B −h A ), By using the correction factors C 4 and C 2 obtained by the correction factor calculation unit, the corrected rolling position reference change amount ΔS REF is calculated according to a predetermined rule, and the rolling reduction of the rolling mill is performed at the timing when the running change point of the stand reaches. ΔS as the rolling position change reference command of the position control device
It is characterized in that it is provided with a rolling-down position control unit for giving a REF to change the rolling-down position.

【0018】[0018]

【作用】以下、本発明の原理と併せてその作用を説明す
る。先ず、請求項1に記載の圧延機制御装置について説
明する。前述のように従来方法によれば走間変更前後の
圧下位置の設定値は(1) ,(2)式で算出する。ここでミ
ルの伸び量SmA,SmBはミルカーブを直線と仮定すると
(4) ,(5) 式で表される。
The operation will be described below together with the principle of the present invention. First, a rolling mill control device according to claim 1 will be described. As described above, according to the conventional method, the set value of the rolling position before and after the change in running distance is calculated using Eqs. (1) and (2). Here, assuming that the mill curve is a straight line, the elongations S mA and S mB of the mill are
It is expressed by Eqs. (4) and (5).

【0019】[0019]

【数6】 ここでMA ,MB は走間変更前後のミル定数である。(Equation 6) Here, M A and M B are mill constants before and after the change in running distance.

【0020】ミル定数可変制御を「入」にした場合は、
ミル定数が(3) 式で示す等価ミル定数に見かけ上なって
いると考えられる。そこで(4) ,(5) 式のMA ,MB
代わりに等価ミル定数を用いればミル定数可変制御が
「入」である時のミルの伸びが演算できる。すなわちミ
ル定数可変制御が「入」である時のミルの伸びを
mXA,SmXB とすると
When the mill constant variable control is set to "ON",
It is considered that the Mill constant is apparently equivalent to the equivalent Mill constant shown in Eq. (3). Therefore, if equivalent mill constants are used instead of M A and M B in Eqs. (4) and (5), the elongation of the mill can be calculated when the variable mill constant control is “ON”. That is, assuming the elongation of the mill when the mill constant variable control is "ON", SmXA and SmXB

【0021】[0021]

【数7】 となり、チューニング率αとミルの伸びから演算でき
る。
(Equation 7) And can be calculated from the tuning rate α and the elongation of the mill.

【0022】ここで、(4) ,(5) 式ではミルカーブを直
線と仮定してミルの伸びを表したが、実際のミルカーブ
は曲線部も存在するため、例えば2次曲線等でミルカー
ブを表したミルの伸びを算出する方法が一般に用いられ
ている。
In the equations (4) and (5), the mill curve is assumed to be a straight line to represent the elongation of the mill. However, since the actual mill curve also has a curved portion, the mill curve is represented by, for example, a quadratic curve. The method of calculating the elongation of the mill is generally used.

【0023】請求項1に記載の圧延機制御装置は、(6)
,(7) 式のように走間変更中にミル定数可変制御が行
われた場合、ミル定数可変制御のチューニング率αを用
いてミル定数可変制御が「入」である時のミルの伸びを
求め、これを用いて走間変更による圧下位置基準変更量
ΔSREF を(8) 式で予め決定する。 ΔSREF =SXB−SXA (8) SXA =hA −SmXA (8A) SXB =hB −SmXB (8B) 走間変更点が当該スタンドに到達したタイミングで、図
6の圧下位置基準SRE F に(8) 式で求めた圧下位置基準
変更量を加算する。この圧下位置の設定値変更量とミル
定数可変制御による圧下位置操作量ΔSMMC の和が圧下
制御装置に対する基準値となり、実際の圧下位置は走間
変更に必要な圧下位置だけ変更される。
The rolling mill controller according to claim 1 is (6)
When the mill constant variable control is performed during the change of running time as shown in Equation (7), the elongation of the mill when the mill constant variable control is “ON” is used by using the tuning rate α of the mill constant variable control. Obtained, and using this, the rolling position reference change amount ΔS REF due to the change in running distance is determined in advance by the equation (8). ΔS REF = S XB -S XA (8) S XA = h A -S mXA (8A) S XB = h B -S mXB (8B) When the change point during running reaches the stand, the reduction in Fig. 6 is performed. position reference S RE F (8) adding the pressing position reference change amount calculated by the equation. The sum of the set value change amount of the reduction position and the operation amount ΔS MMC of the reduction position by the variable mill constant control serves as a reference value for the reduction control device, and the actual reduction position is changed only by the reduction position necessary for changing the running distance.

【0024】次に、請求項2に記載の圧延機制御装置に
ついて説明する。図8に入側板厚H、出側板厚h、圧延
荷重Pの圧延状態のミルカーブと塑性カーブを示す。こ
の圧延状態において、圧下位置SをΔSだけ変更したと
すると、出側板厚と圧延荷重は図8に示すようにΔhお
よびΔPだけ変化する。このΔhおよびΔPとΔSの関
係は(9) ,(10)式で表される。
Next, a rolling mill control device according to a second aspect will be described. FIG. 8 shows a mill curve and a plastic curve in the rolled state of the inlet side plate thickness H, the outlet side plate thickness h, and the rolling load P. If the rolling position S is changed by ΔS in this rolling state, the delivery side plate thickness and the rolling load change by Δh and ΔP as shown in FIG. The relationship between Δh and ΔP and ΔS is expressed by equations (9) and (10).

【0025】[0025]

【数8】 ここでQは圧延動作点近傍の塑性カーブの傾斜で、一般
に塑性係数と称す。(9) ,(10)式の関係を図6に適用す
ると、図6の制御系は図9で表される。図9において、
20は圧下位置制御系の伝達関数であり、GHPC のゲイ
ン1.0である。21は出側板厚/圧下位置の伝達関
数、22は圧延荷重/圧下位置の伝達関数である。これ
から定常ゲインだけを考えると圧下位置ΔSと圧下位置
基準ΔSRE F の関係、および出側板厚Δhと圧下位置基
準ΔSREF の関係は(11),(12)式となる。
(Equation 8) Here, Q is the inclination of the plastic curve in the vicinity of the rolling operation point, and is generally called the plasticity coefficient. Applying the relationship of equations (9) and (10) to FIG. 6, the control system of FIG. 6 is represented in FIG. In FIG.
20 is a transfer function of the rolling position control system, which is a gain of G HPC of 1.0. Reference numeral 21 is a transfer function at the delivery side plate thickness / reduction position, and 22 is a transfer function at the rolling load / reduction position. It is only considered when the relationship between pressing position [Delta] S and the pressing position reference [Delta] S RE F, and exits relationship side thickness Δh and pressing position reference [Delta] S REF steady gain from now (11) and (12).

【0026】[0026]

【数9】 すなわちミル定数可変制御が「入」の場合、圧下位置基
準の変更量に対してミル定数可変制御のチューニング
率、ミル定数、および塑性係数から成るゲインが掛かっ
た値だけ実際の圧下位置および出側板厚が変化すること
が分かる。従って実際の圧下位置あるいは出側板厚をΔ
* あるいはΔh* だけ変更したい場合には、圧下位置
基準を(13),(14)式で与えればよい。
[Equation 9] That is, when the variable mill constant control is “ON”, the actual rolling position and the outlet plate are increased by the value obtained by applying the gain consisting of the tuning constant of the variable mill constant control, the mill constant, and the plasticity coefficient to the change amount of the rolling position reference. It can be seen that the thickness changes. Therefore, the actual rolling position or outlet plate thickness is
When it is desired to change only S * or Δh * , the rolling position reference may be given by the equations (13) and (14).

【0027】[0027]

【数10】 この(13),(14)式の関係を適用できるのは図8に示すよ
うな同一の塑性カーブ上のみであり、図5のように異な
る塑性カーブ上の圧延状態にはこのままでは適用できな
い。そこで、請求項2に記載の圧延機制御装置では(15)
式で得られる等価塑性係数Qeqを定義し、これを(13),
(14)式の塑性係数Qの代わりに用い、上記の課題を解決
する。等価塑性係数Qeqは図5の直線の傾斜であり(1
5)式で得られる。
[Equation 10] The relationship of the equations (13) and (14) can be applied only to the same plastic curve as shown in FIG. 8, and cannot be applied as it is to the rolling state on different plastic curves as shown in FIG. Therefore, in the rolling mill control device according to claim 2, (15)
The equivalent plasticity coefficient Q eq obtained by the formula is defined, and this is defined by (13),
The above problem is solved by using it instead of the plasticity coefficient Q of the equation (14). The equivalent plasticity coefficient Q eq is the slope of the straight line in Fig. 5 (1
It is obtained by the equation (5).

【0028】[0028]

【数11】 等価塑性係数Qeqを用いることで図5の直線に示すよ
うに、見かけ上塑性カーブが1本となり、(16),(17)式
の関係が成立する。
[Equation 11] By using the equivalent plasticity coefficient Q eq , there is apparently one plasticity curve, as shown by the straight line in FIG. 5, and the relationships of equations (16) and (17) are established.

【0029】請求項2に記載の圧延機制御装置は、上記
(16)式を用いて走間変更時の圧下位置基準変更量を決定
することを基本とする。すなわち走間変更前後の圧下位
置の設定値を(1) ,(2) ,(4) ,(5) 式で求め、(16)式
のΔS* を(18)式で与える。 ΔS* =SB −SA (18) 但し、下記の2つのケースでは(16)式が適用できないた
め(16),(17)式を変形した(19),(20)式を用いる。 ケース1:hB =hA の場合 Qeq=∞ である。故に ΔSREF =C2 ・ΔS* (19) C2 =1−α (19A) ケース2:(M+Qeq)=0の場合 ΔSREF =C3 ・Δh* (20) C3 =α (20A) ここでΔh* は走間変更前後の出側板厚変更量であり(2
1)式で求める。 Δh* =hB −hA (21) 次に請求項3に記載の圧延機制御装置について説明す
る。この圧延機制御装置は、上記(17)式を用いて走間変
更時の圧下位置基準変更量を決定することを基本として
いる。すなわち(21)式で求めた走間変更前後の出側板厚
変更量を(17)式に代入して圧下位置基準変更量を決定す
る。但し、hB =hA の場合は(17)式を適用せず(19)式
を用いる。
The rolling mill controller according to claim 2 is the above
Basically, the amount of change in the rolling position reference when changing the running distance is determined using equation (16). That is, the set values of the rolling position before and after the change in running distance are obtained by the equations (1), (2), (4), and (5), and ΔS * of the equation (16) is given by the equation (18). ΔS * = S B −S A (18) However, since Equation (16) cannot be applied in the following two cases, Equations (16) and (17) are modified and Equations (19) and (20) are used. Case 1: When h B = h A Q eq = ∞. Therefore, ΔS REF = C 2 · ΔS * (19) C 2 = 1-α (19A) Case 2: (M + Q eq ) = 0 ΔS REF = C 3 · Δh * (20) C 3 = α (20A) Here, Δh * is the amount of change in the outlet plate thickness before and after the change of running distance (2
It is calculated by equation (1). Δh * = h B −h A (21) Next, a rolling mill control device according to claim 3 will be described. This rolling mill control device is basically based on the above formula (17) to determine the rolling position reference change amount at the time of changing the running distance. That is, the amount of change in the outlet plate thickness before and after the change in running distance obtained by the equation (21) is substituted into the equation (17) to determine the amount of change in the rolling position reference. However, when h B = h A , equation (17) is not applied and equation (19) is used.

【0030】[0030]

【実施例】以下、本発明を図面に示す実施例によって詳
細に説明する。図1は本発明に係る圧延機制御装置の第
1実施例の構成を示すブロック図である。この図1にお
いて1は圧延材、2,3はそれぞれ一対のワークロール
とバックアップロールである。6は荷重検出器で、ここ
で検出した圧延荷重をミル定数可変制御装置10に加え
る。ミル定数可変制御装置10は、入力された圧延荷重
とチューニング率αから圧下位置操作量ΔSMMC を演算
し圧下位置制御装置23に加える。圧下位置制御装置2
3は圧下位置基準とΔSMMC に従い上下ワークロール間
の間隙を制御する。24は圧下位置の設定値計算部で、
走間変更前後の出側板厚目標値hA ,hB、圧延荷重計
算値PA ,PB 、およびミル定数可変制御装置10に設
定されているチューニング率αなどのデータから、例え
ば上記(6) ,(7) ,(8A),(8B)式から走間変更前後の圧
下位置の設定値SXA,SXBを計算して圧下位置制御部2
5に加える。圧下位置制御部25は上記(8) 式で圧下位
置基準変更量ΔSREF を演算すると共に、走間変更点を
追跡し走間変更点が当該圧延機に到達したタイミングで
圧下位置基準変更量ΔSREF を圧下位置制御装置23に
加える。この時の圧下位置基準変更量は図4のSi ある
いはSi+1 のように予め設定された変更時間でほぼ一定
の変化率で変更する方法が通常用いられる。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. 1 is a block diagram showing the configuration of a first embodiment of a rolling mill control apparatus according to the present invention. In FIG. 1, 1 is a rolled material, and 2 and 3 are a pair of work rolls and backup rolls, respectively. A load detector 6 applies the rolling load detected here to the mill constant variable control device 10. The variable mill constant controller 10 calculates the rolling position manipulated variable ΔS MMC from the input rolling load and the tuning rate α, and applies it to the rolling position controller 23. Reduction position control device 2
3 controls the gap between the upper and lower work rolls according to the rolling position reference and ΔS MMC . 24 is a set value calculation unit for the rolling position,
-Fly changes before and after the delivery side thickness target value h A, h B, rolling load calculated value P A, P B, and the data such as the tuning factor α which is set in the mill constant variable control device 10, for example, the (6 ), (7), (8A), and (8B) equations are used to calculate the set values S XA and S XB of the rolling reduction positions before and after the change in running distance, and the rolling reduction position control unit 2
Add to 5. The rolling position control unit 25 calculates the rolling position reference change amount ΔS REF by the above formula (8), tracks the running distance change point, and at the timing when the running distance change point reaches the rolling mill, the rolling position reference modification amount ΔS REF. REF is added to the rolling position controller 23. At this time, the reduction position reference change amount is usually changed by a method such as S i or S i + 1 in FIG. 4 at a substantially constant change rate in a preset change time.

【0031】かくして、本実施例によれば、ミル定数可
変制御による圧下位置操作を考慮した圧下位置変更量を
正確に決定でき、ミル定数可変制御を実施した状態にお
いても走間変更を高精度で行うことができる。
Thus, according to this embodiment, it is possible to accurately determine the reduction position change amount in consideration of the reduction position operation by the variable mill constant control, and to change the running distance with high accuracy even when the variable mill constant control is performed. It can be carried out.

【0032】図2は本発明に係る圧延機制御装置の第2
実施例の構成を示すブロック図である。図中、図1と同
一の要素には同一の符号を付してその説明を省略する。
等価塑性係数演算部26は走間変更前後の出側板厚目標
値hA ,hB および圧延荷重計算値PA ,PB を用い、
上記(15)式により等価塑性係数Qeqを演算し補正係数演
算部28に加える。圧下位置変更量計算部27は、走間
変更前後の圧下位置変更量ΔS* と出側板厚変更量Δh
* とを演算し、これらを圧下位置制御部29に加える。
すなわち、走間変更前後の出側板厚目標値hA ,hB
圧延荷重計算値PA ,PB などのデータを用い、まず走
間変更前後のミルの伸びSmA,SmBを(4) ,(5) 式で求
める。次に(1) ,(2) 式で走間変更前後の圧下位置の設
定値を求め、これを(18)式に代入し圧下位置変更量ΔS
* を決定する。また出側板厚変更量Δh* は(21)式で演
算する。補正係数演算部28は当該圧延機のミル定数
M、等価塑性係数演算部26の出力である等価塑性係数
eq、ミル定数可変制御装置10に設定されているチュ
ーニング率αを用い、(16A) ,(19A) ,(20A)式で補正
係数C1 ,C2 ,C3 を演算し圧下位置制御部29へ出
力する。
FIG. 2 shows a second embodiment of the rolling mill control device according to the present invention.
It is a block diagram which shows the structure of an Example. In the figure, the same elements as those of FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
The equivalent plasticity coefficient calculation unit 26 uses the output side plate thickness target values h A and h B and the rolling load calculated values P A and P B before and after the change in running distance,
The equivalent plasticity coefficient Q eq is calculated by the above equation (15) and added to the correction coefficient calculation unit 28. The reduction position change amount calculation unit 27 determines the reduction position change amount ΔS * and the delivery side plate thickness change amount Δh before and after the change in running distance.
* And are calculated, and these are added to the rolling position control unit 29.
That is, the side plate out of the front and rear-fly changes thickness target value h A, h B,
Using the rolling load calculation values P A , P B, and other data, first, the elongations S mA and S mB of the mill before and after the change in running distance are determined by the equations (4) and (5). Next, find the set value of the rolling reduction position before and after changing the running distance using equations (1) and (2), and substitute this into equation (18) to reduce the rolling reduction amount ΔS.
* Decide. Further, the outgoing side plate thickness change amount Δh * is calculated by the equation (21). The correction coefficient calculation unit 28 uses the mill constant M of the rolling mill, the equivalent plasticity coefficient M eq output from the equivalent plasticity coefficient calculation unit 26, and the tuning rate α set in the variable mill constant control device 10 (16A). , (19A), (20A), the correction coefficients C 1 , C 2 , C 3 are calculated and output to the rolling position controller 29.

【0033】圧下位置制御部29は入力されたデータを
用い(16)式あるいは(19)式あるいは(20)式で圧下位置基
準変更量を走間変更開始前に演算する。すなわち、|Δ
* |<X1 の場合 (19)式でΔSREF を演算、|M
+Qeq|<X2 の場合 (20)式でΔSREF を演算、その
他の場合 (16)式でΔSREF を演算する。
The reduction position control unit 29 uses the input data to calculate the reduction position reference change amount by the formula (16), (19) or (20) before starting the travel change. That is, | Δ
When h * | <X 1 Calculate ΔS REF by equation (19), | M
When + Q eq | <X 2 , ΔS REF is calculated by formula (20), otherwise ΔS REF is calculated by formula (16).

【0034】ここでX1 ,X2 は予め設定した閾値であ
る。さらに、圧下位置制御部29は、走間変更点を追跡
し走間変更点が当該圧延機に到達したタイミングで圧下
位置基準変更量を圧下位置制御装置23へ出力する。こ
の時圧下位置基準変更量は図4のSi あるいはSi+1
ように予め設定された変更時間でほぼ一定の変化率で変
更する方法が通常用いられる。
Here, X 1 and X 2 are preset threshold values. Further, the reduction position control unit 29 tracks the running distance change point and outputs the rolling position reference change amount to the rolling position control device 23 at the timing when the running distance change point reaches the rolling mill. At this time, the method of changing the rolling position reference change amount at S i or S i + 1 in FIG. 4 at a substantially constant change rate in a preset change time is usually used.

【0035】かくして、本実施例によれば、等価塑性係
数を導入することによって走間変更時においても圧延状
態を線形な関係式で表すことが可能となり、ミル定数可
変制御による圧下位置操作を考慮した圧下位置変更量を
容易に与えることができ、ミル定数可変制御を実施した
状態においても走間変更を高精度で行うことができる。
Thus, according to the present embodiment, by introducing the equivalent plasticity coefficient, the rolling state can be expressed by a linear relational expression even when the running time is changed, and the rolling position operation by the mill constant variable control is considered. The amount of change in the rolling position can be easily given, and the running distance can be changed with high accuracy even when the mill constant variable control is performed.

【0036】図3は本発明に係る圧延機制御装置の第3
実施例の構成を示すブロック図である。図中、図2と同
一の要素には同一の符号を付してその説明を省略する。
この装置は、図2と同様に、等価塑性係数演算部26は
走間変更時の等価塑性係数Qeqを演算し補正係数演算部
30に加える。また圧下位置変更量計算部27は走間変
更前後の圧下位置変更量ΔS* と出側板厚変更量Δh*
とを演算し、これらを圧下位置制御部31に加える。補
正係数演算部30は当該圧延機のミル定数M、等価塑性
係数演算部26の出力である等価塑性係数Meq、ミル定
数可変制御装置10に設定されているチューニング率α
を用い、(19A) ,(17A) 式で補正係数C2 ,C4 を演算
し圧下位置制御部31に加える。圧下位置制御部31は
入力されたデータを用い(19)式あるいは(17)式で圧下位
置基準変更量を走間変更開始前に演算する。すなわち、
|Δh* |<X1 の場合 (19)式でΔSREF を演算し、
その他の場合 (17)式でΔSREF を演算す
る。ここで、X1 は予め設定した閾値である。さらに、
圧下位置制御部31は、走間変更点を追跡し走間変更点
が当該圧延機に到達したタイミングで圧下位置基準変更
量を圧下位置制御装置23へ出力する。この時圧下位置
基準変更量は図4のSi あるいはSi+1 のように予め設
定された変更時間でほぼ一定の変化率で変更する方法が
通常用いられる。
FIG. 3 shows a third embodiment of the rolling mill control device according to the present invention.
It is a block diagram which shows the structure of an Example. In the figure, the same elements as those of FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
In this device, as in FIG. 2, the equivalent plasticity coefficient calculation unit 26 calculates the equivalent plasticity coefficient Q eq at the time of changing the running time and adds it to the correction coefficient calculation unit 30. Further, the reduction position change amount calculation unit 27 determines the reduction position change amount ΔS * and the delivery side plate thickness change amount Δh * before and after the change in running distance .
And are added to the rolling position control unit 31. The correction coefficient calculation unit 30 calculates the mill constant M of the rolling mill, the equivalent plasticity coefficient M eq output from the equivalent plasticity coefficient calculation unit 26, and the tuning rate α set in the mill constant variable control device 10.
Is used to calculate the correction coefficients C 2 and C 4 by the equations (19A) and (17A) and add them to the rolling position control unit 31. The reduction position control unit 31 uses the input data to calculate the reduction position reference change amount by the equation (19) or the equation (17) before starting the travel change. That is,
When │Δh * │ <X1, calculate ΔS REF by the equation (19),
In other cases, ΔS REF is calculated using equation (17). Here, X 1 is a preset threshold value. further,
The rolling position control unit 31 tracks the running distance change point and outputs the rolling position reference change amount to the rolling position control device 23 at the timing when the running distance change point reaches the rolling mill. At this time, the method of changing the rolling position reference change amount at S i or S i + 1 in FIG. 4 at a substantially constant change rate in a preset change time is usually used.

【0037】かくして、本実施例によれば、等価塑性係
数を導入することによって走間変更時においても圧延状
態を線形な関係式で表すことが可能となり、ミル定数可
変制御による圧下位置操作を考慮した圧下位置変更量を
容易に与えることができ、ミル定数可変制御を実施した
状態においても走間変更を高精度で行うことができる。
Thus, according to the present embodiment, by introducing the equivalent plasticity coefficient, the rolling state can be expressed by a linear relational expression even when the running time is changed, and the rolling position operation by the mill constant variable control is considered. The amount of change in the rolling position can be easily given, and the running distance can be changed with high accuracy even when the mill constant variable control is performed.

【0038】[0038]

【発明の効果】以上の説明によって明らかなように、本
発明によれば、走間変更中にミル定数可変制御を「入」
にしている状態でも所定の出側板厚変更を実現する圧下
位置変更量を与えることができるため、走間変更中もミ
ル定数可変制御の板厚制御効果を有効に活用することが
でき、安定且つ高精度な走間変更が行える。これによ
り、生産性および歩留まりの向上が達成できる。
As is apparent from the above description, according to the present invention, the variable mill constant control is turned "on" during the change of running distance.
Since it is possible to give the amount of reduction position change that realizes the predetermined change of the outlet plate thickness even in the state of being set, it is possible to effectively utilize the plate thickness control effect of the mill constant variable control even during the change of running distance, and it is stable and stable. You can change the running distance with high accuracy. Thereby, improvement in productivity and yield can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る圧延機制御装置の第1実施例の構
成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a first embodiment of a rolling mill control device according to the present invention.

【図2】本発明に係る圧延機制御装置の第2実施例の構
成を示すブロック図。
FIG. 2 is a block diagram showing the configuration of a second embodiment of the rolling mill control device according to the present invention.

【図3】本発明に係る圧延機制御装置の第3実施例の構
成を示すブロック図。
FIG. 3 is a block diagram showing the configuration of a third embodiment of the rolling mill control device according to the present invention.

【図4】走間変更方法を説明するための説明図。FIG. 4 is an explanatory diagram for explaining a method for changing running distances.

【図5】走間変更時のミルカーブと塑性カーブの関係を
示す線図。
FIG. 5 is a diagram showing a relationship between a mill curve and a plasticity curve when changing the running distance.

【図6】ミル定数可変制御機能を備えた圧下位置制御系
の構成を示すブロック図。
FIG. 6 is a block diagram showing the configuration of a rolling position control system having a variable mill constant control function.

【図7】ミル定数可変制御を実施した時のミルカーブと
塑性カーブの関係を示す線図。
FIG. 7 is a diagram showing a relationship between a mill curve and a plastic curve when the mill constant variable control is performed.

【図8】圧下位置を変更した時のミルカーブと塑性カー
ブとの関係を示す線図。
FIG. 8 is a diagram showing the relationship between the mill curve and the plastic curve when the rolling position is changed.

【図9】ミル定数可変制御機能を備えた圧下位置制御系
のブロック図。
FIG. 9 is a block diagram of a rolling position control system having a variable mill constant control function.

【符号の説明】[Explanation of symbols]

2 ワークロール 3 バックアップロール 6 荷重検出器 10 ミル定数可変制御装置 23 圧下位置制御装置 24 圧下位置設定値計算部 25 圧下位置制御部 26 等価塑性係数演算部 27 圧下位置変更量計算部 28 補正係数演算部 29,31 圧下位置制御部 30 補正係数演算部 2 Work roll 3 Backup roll 6 Load detector 10 Mill constant variable control device 23 Rolling position control device 24 Rolling position setting value calculation unit 25 Rolling position control unit 26 Equivalent plastic coefficient calculation unit 27 Rolling position change amount calculation unit 28 Correction coefficient calculation Parts 29, 31 Rolling position control unit 30 Correction coefficient calculation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三 吉 貞 行 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 福 井 義 光 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 関 口 邦 男 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadayuki Miyoshi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Works (72) Yoshimitsu Fukui Kawasaki, Chuo-ku, Chiba-shi, Chiba Town No. 1 Kawasaki Steel Co., Ltd. Chiba Works (72) Inventor Kunio Sekiguchi No. 1 Toshiba Town, Fuchu, Tokyo Tokyo Toshiba Fuchu Plant Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧延荷重の変動分に比例した圧下位置操作
量を求め、この圧下位置操作量によって圧延ロールの圧
下位置基準を補正するミル定数可変制御装置を備えた圧
延機制御装置において、走間で板厚を変更する等の走間
変更を行うに当たり、前記ミル定数可変制御装置による
圧下位置操作量を考慮し走間変更前後の圧下位置の設定
値を求める圧下位置設定値計算部と、前記圧下位置設定
値計算部で計算された圧下位置の設定値から圧下位置基
準変更量を求め、走間変更点を追跡し当該スタンドに走
間変更点が到達したタイミングで前記圧延機の圧下位置
を変更する圧下位置制御部とを備えたことを特徴とする
圧延機制御装置。
1. A rolling mill controller provided with a mill constant variable controller for determining a rolling position operation amount proportional to a variation of a rolling load and correcting the rolling position reference of a rolling roll by the rolling position operation amount. In performing the running distance change such as changing the plate thickness between the rolling mills, a rolling position setting value calculation unit for obtaining the setting value of the rolling position before and after the running distance change in consideration of the rolling position operation amount by the mill constant variable control device, The rolling position reference change amount is calculated from the set value of the rolling position calculated by the rolling position set value calculation unit, the rolling position change point is tracked, and the rolling position of the rolling mill is reached at the timing when the rolling position change point reaches the stand. And a rolling position control unit for changing the rolling mill.
【請求項2】圧延荷重の変動分に比例した圧下位置操作
量を求め、この圧下位置操作量によって圧延ロールの圧
下位置基準を補正するミル定数可変制御装置を備えた圧
延機制御装置において、走間で板厚を変更する等の走間
変更を行うに当たり、圧延機の走間変更前後の出側板厚
A ,hB および圧延荷重予測値PA ,PB を用いて圧
下位置変更量ΔSを求める圧下位置変更量計算部と、前
記圧延機の走間変更前後の出側板厚hA ,hB および圧
延荷重予測値PA ,PB から等価塑性係数Qeqを次式に
より計算する等価塑性係数演算部と、 【数1】 前記等価塑性係数演算部で計算された等価塑性係数
eq、ミル定数M、および走間変更中のミル定数可変制
御のチューニング率αを用いて補正係数C1 ,C2,C
3 を次式で演算する補正係数演算部と、 【数2】 2 =1−α C3 =α 前記圧下位置変更量計算部で計算された圧下位置変更量
ΔS、走間板厚変更前後の板厚変更量Δh(=hB −h
A )、前記補正係数演算部で求めた補正係数C1
2 ,C3 を用い、予め決めた定数をX1 ,X2 として
以下のルールに従って補正後の圧下位置基準変更量ΔS
REF を演算し、 |Δh|<X1 の場合 ΔSREF =C2 ・ΔS |M+Qep|<X2 の場合 ΔSREF =C3 ・Δh その他 の場合 ΔSREF =C1 ・ΔS 当該スタンドの走間変更点が到達したタイミングで前記
圧延機の圧下位置制御装置の圧下位置基準変更指令とし
てΔSREF を与えて圧下位置を変更する圧下位置制御部
とを備えたことを特徴とする圧延機制御装置。
2. A rolling mill controller provided with a mill constant variable controller for determining a rolling position operation amount proportional to a variation of rolling load and correcting the rolling position reference of a rolling roll by the rolling position operation amount. When changing the running distance such as changing the running thickness between the rolling mills, the rolling position change amount ΔS is used by using the outgoing side thicknesses h A and h B and the rolling load predicted values P A and P B before and after the running distance change of the rolling mill. Equivalent plasticity factor Q eq is calculated by the following equation from the reduction position change amount calculation unit that obtains the output plate thickness h A and h B before and after the rolling change of the rolling mill and rolling load predicted values P A and P B. Plasticity coefficient calculation part, and Correction coefficients C 1 , C 2 , C using the equivalent plasticity coefficient Q eq calculated by the equivalent plasticity coefficient calculation unit, the mill constant M, and the tuning rate α of the mill constant variable control during changing the running time.
A correction coefficient calculation unit that calculates 3 by the following equation, and C 2 = 1-α C 3 = α The reduction position change amount ΔS calculated by the reduction position change amount calculation unit, the plate thickness change amount before and after the running plate thickness change Δh (= h B −h
A ), the correction coefficient C 1 obtained by the correction coefficient calculation unit,
C 2 and C 3 are used, and the predetermined constants are set to X 1 and X 2 , and the corrected rolling position reference change amount ΔS after correction according to the following rules.
REF is calculated and when | Δh | <X 1 ΔS REF = C 2 · ΔS | M + Q ep | <X 2 ΔS REF = C 3 · Δh Other cases ΔS REF = C 1 · ΔS Running of the stand A rolling mill control device comprising: a rolling position control unit for changing the rolling position by giving ΔS REF as a rolling position reference change command of the rolling position control device of the rolling mill at the timing when the interval change point arrives. .
【請求項3】圧延荷重の変動分に比例した圧下位置操作
量を求め、この圧下位置操作量によって圧延ロールの圧
下位置基準を補正するミル定数可変制御装置を備えた圧
延機制御装置において、走間で板厚を変更する等の走間
変更を行うに当たり、圧延機の走間変更前後の出側板厚
A ,hB および圧延荷重予測値PA ,PB を用いて圧
下位置変更量ΔSを求める圧下位置変更量計算部と、前
記走間変更前後の出側板厚hA ,hB および圧延荷重予
測値PA ,PB から等価塑性係数Qeqを次式により計算
する等価塑性係数演算部と、 【数3】 前記等価塑性係数演算部で計算された等価塑性係数
eq、ミル定数M、および走間変更中のミル定数可変制
御のチューニング率αを用い補正係数C2 ,C4 を次式
で演算する補正係数演算部と、 【数4】 2 =1−α 前記圧下位置変更量計算部で計算された圧下位置変更量
ΔS、走間板厚変更前後の板厚変更量Δh(=hB −h
A )、前記補正係数演算部で求めた補正係数C4 ,C2
を用い、予め決めた定数をX1 として以下のルールに従
って補正後の圧下位置基準変更量ΔSREF を演算し、 |Δh|<X1 の場合 ΔSREF =C2 ・ΔS その他 の場合 ΔSREF =C4 ・Δh 当該スタンドの走間変更点が到達したタイミングで前記
圧延機の圧下位置制御装置の圧下位置変更基準指令とし
てΔSREF を与えて圧下位置を変更する圧下位置制御部
とを備えたことを特徴とする圧延機制御装置。
3. A rolling mill control device equipped with a mill constant variable control device for obtaining a rolling position operation amount proportional to a variation of rolling load and correcting the rolling position reference of a rolling roll by the rolling position operation amount. When changing the running distance such as changing the running thickness between the rolling mills, the rolling position change amount ΔS is used by using the outgoing side thicknesses h A and h B and the rolling load predicted values P A and P B before and after the running distance change of the rolling mill. A reduction position change amount calculating unit for obtaining the above, and an equivalent plasticity coefficient calculation for calculating an equivalent plasticity coefficient Q eq by the following equation from the outgoing side plate thicknesses h A and h B and rolling load predicted values P A and P B before and after the change in running distance. Part, and Correction using the equivalent plasticity coefficient Q eq calculated by the equivalent plasticity coefficient calculation unit, the mill constant M, and the tuning rate α of variable mill constant variable control during travel change, to calculate the correction coefficients C 2 and C 4 by the following equation A coefficient calculation unit, and C 2 = 1−α The reduction position change amount ΔS calculated by the reduction position change amount calculation unit, the plate thickness change amount before and after the running plate thickness change Δh (= h B −h
A ), the correction coefficients C 4 and C 2 obtained by the correction coefficient calculation unit
By using the predetermined constant as X 1 , the corrected rolling position reference change amount ΔS REF is calculated according to the following rule, and when | Δh | <X 1 , ΔS REF = C 2 · ΔS otherwise ΔS REF = C 4 · Δh A rolling position control unit that changes the rolling position by giving ΔS REF as a rolling position change reference command of the rolling position control device of the rolling mill at the timing when the running change point of the stand reaches. A rolling mill control device characterized by:
JP7142025A 1995-06-08 1995-06-08 Rolling mill control device Expired - Lifetime JP2997634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7142025A JP2997634B2 (en) 1995-06-08 1995-06-08 Rolling mill control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7142025A JP2997634B2 (en) 1995-06-08 1995-06-08 Rolling mill control device

Publications (2)

Publication Number Publication Date
JPH08332508A true JPH08332508A (en) 1996-12-17
JP2997634B2 JP2997634B2 (en) 2000-01-11

Family

ID=15305623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7142025A Expired - Lifetime JP2997634B2 (en) 1995-06-08 1995-06-08 Rolling mill control device

Country Status (1)

Country Link
JP (1) JP2997634B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024183A1 (en) * 1997-11-07 1999-05-20 Siemens Aktiengesellschaft Process and device for rolling a rolled strip with a variable thickness
DE102004022334A1 (en) * 2004-05-06 2005-12-01 Siemens Ag Process for rolling a rolling stock with transition area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024183A1 (en) * 1997-11-07 1999-05-20 Siemens Aktiengesellschaft Process and device for rolling a rolled strip with a variable thickness
DE102004022334A1 (en) * 2004-05-06 2005-12-01 Siemens Ag Process for rolling a rolling stock with transition area

Also Published As

Publication number Publication date
JP2997634B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP3947116B2 (en) Strip thickness change device for continuous rolling mill
JPH10192929A (en) Method and device for control of rolling mill
KR100241167B1 (en) Hot-rolling method of steel piece joint during continuous hot-rolling
KR101176322B1 (en) Device and method for controlling rolling mill and rolling mill feed-forward plate-thickness control method
JP4323273B2 (en) Load distribution control device for continuous rolling mill
JPH08332508A (en) Controller for rolling mill
JP3302930B2 (en) How to change the setting of the running distance of the rolling mill
JP2803573B2 (en) Manufacturing method of tapered steel plate
JPH07100519A (en) Device and method for rolling mill control
JPH0581326B2 (en)
JPS6124082B2 (en)
JPH0615318A (en) Method for learning flying gage change setup of gold rolling mill
JP3348540B2 (en) Control method of tandem mill
JP3451919B2 (en) Control method of tension between stands in continuous hot rolling mill
JPH0531517A (en) Method for controlling plate thickness in tandem rolling mill
JP3908702B2 (en) Sheet width control method for continuous rolling mill
JP2697573B2 (en) Control method of continuous rolling mill
JPH08150406A (en) Thickness controller for cold tandem mill
JPH06190412A (en) Method for changing traveling setting of rolling mill
JP3348538B2 (en) Control method of tandem mill
JP3481780B2 (en) Thickness control device for continuous rolling mill
JP2023177918A (en) Leveling control method in hot rolling, leveling control device, hot rolling facility, and method for manufacturing hot-rolled steel strip
JP3011858B2 (en) Rolling control method and apparatus
JPH0985323A (en) Prevention of earing of rolling steel sheet in hot continuous rolling
JPH07284832A (en) Controlling method and device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term