JPH08327194A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08327194A
JPH08327194A JP7134183A JP13418395A JPH08327194A JP H08327194 A JPH08327194 A JP H08327194A JP 7134183 A JP7134183 A JP 7134183A JP 13418395 A JP13418395 A JP 13418395A JP H08327194 A JPH08327194 A JP H08327194A
Authority
JP
Japan
Prior art keywords
defrosting
compressor
temperature
refrigerant
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7134183A
Other languages
Japanese (ja)
Other versions
JP3416897B2 (en
Inventor
Yasuji Ogoshi
靖二 大越
Akihiko Sugiyama
明彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13418395A priority Critical patent/JP3416897B2/en
Publication of JPH08327194A publication Critical patent/JPH08327194A/en
Application granted granted Critical
Publication of JP3416897B2 publication Critical patent/JP3416897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To shorten a defrosting time and improve a comfortable feeling by a method wherein a mechatronics defrosting, a quick defrosting and a reverse defrosting operation are selected in response to a refrigerant discharging temper ature of a compressor. CONSTITUTION: There is provided a freezing cycle in which an indoor heat exchanger 5 having at least a compressor 2, a four-way valve 3 and an indoor fan 4, and an outdoor heat exchanger 8 having an expansion valve 6 and an outdoor fan 7 are connected in sequence by a refrigerant pipe. There are also provided a discharging temperature sensor 11 for use in detecting a refrigerant discharging temperature of a refrigerant discharged from the compressor 2 and a control means for performing either the mechatronics defrosting operation or the quick defrosting operation and for transferring one defrosting operation to the reverse defrosting operation in response to the discharging temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ式空気調和
機に係り、特に、除霜運転方法を改良した空気調和機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly to an air conditioner having an improved defrosting operation method.

【0002】[0002]

【従来の技術】従来、この種の空気調和機の除霜方式と
してはリバース除霜方式、メカトロ除霜方式およびクイ
ック除霜方式等があり、従来の空気調和機はこれら各除
霜方式を室外熱交換器の着霜量の多少に拘らず、それぞ
れ単独で運転している。上記リバース除霜方式は、暖房
運転時にオンの四方弁をOFFに逆転して、冷媒の循環
方向を暖房時と逆転させ、流量調節弁(メカトロ弁)で
ある膨張弁の開度が所定開度で一定に保持されるように
制御し、室内,外ファンの運転を停止させる方法であ
る。
2. Description of the Related Art Conventionally, there are a reverse defrosting method, a mechatronic defrosting method, a quick defrosting method, etc. as a defrosting method for this type of air conditioner. Regardless of the amount of frost formed on the heat exchanger, each is operating independently. In the above reverse defrosting method, the four-way valve that is on during the heating operation is reversed to be turned off so that the refrigerant circulation direction is reversed from that during heating, and the opening degree of the expansion valve, which is the flow rate control valve (mechatronic valve), is the predetermined opening degree. This is a method of controlling so that the temperature is kept constant by, and stopping the operation of the indoor and outdoor fans.

【0003】つまり、圧縮機から吐出された高温高圧の
ガス状冷媒を室外熱交換器内に導入し、ここで放熱して
液化させ、その放熱により、室外熱交換器の外面の着霜
を加熱融霜して除霜するものである。また、室外熱交換
器で液化した液冷媒は膨張弁を経て室内熱交換器内へ流
入し、ここで蒸発して気化し、ガス冷媒となって再び圧
縮機に戻される。したがって、液冷媒として圧縮機に戻
る液バック量が少ない。
That is, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor is introduced into the outdoor heat exchanger, where it is radiated and liquefied, and the radiated heat heats the frost on the outer surface of the outdoor heat exchanger. It defrosts by melting frost. Further, the liquid refrigerant liquefied in the outdoor heat exchanger flows into the indoor heat exchanger through the expansion valve, is evaporated and vaporized there, becomes a gas refrigerant, and is returned to the compressor again. Therefore, the amount of liquid bag returning to the compressor as the liquid refrigerant is small.

【0004】一方、メカトロ除霜方式は、暖房運転時の
四方弁をOFFせずにON状態を継続しながら膨脹弁を
開く一方、単に室内,外ファンの運転を停止させるもの
であり、圧縮機の蓄熱とその入力(電力)とにより室外
熱交換器の着霜を加熱融霜して除霜するものである。
On the other hand, the mechatronic defrosting method is to open the expansion valve while keeping the four-way valve in the on state without turning it off during the heating operation, while simply stopping the operation of the indoor and outdoor fans. Is used to heat and frost the frost on the outdoor heat exchanger to defrost it.

【0005】したがって、圧縮機から吐出された高温高
圧の冷媒が四方弁,室内熱交換器,膨脹弁を順次経て室
外熱交換器へ流入し、この室外熱交換器で冷媒の一部が
放熱して着霜を融霜することにより除霜し、反面、その
除霜により液化した液冷媒は再び圧縮機に戻され、ここ
で吸熱し、再び圧縮されて吐出される。このために、圧
縮機はその内部に吸い込まれた液冷媒により冷却され、
温度が徐々に低下する。
Therefore, the high-temperature and high-pressure refrigerant discharged from the compressor flows into the outdoor heat exchanger through the four-way valve, the indoor heat exchanger, and the expansion valve in order, and a part of the refrigerant radiates heat in the outdoor heat exchanger. By defrosting the frost, the liquid refrigerant liquefied by the defrost is returned to the compressor, where it absorbs heat, is compressed again, and is discharged. For this reason, the compressor is cooled by the liquid refrigerant sucked inside,
The temperature gradually decreases.

【0006】また、クイック除霜方式は、圧縮機の吐出
側を、室外熱交換器の暖房時冷媒入口側に連通させてい
るバイパス路の二方弁を開弁することにより、圧縮機か
ら吐出された高温高圧のガス状冷媒の一部をバイパス路
を通して室外熱交換器内に導入することにより、その室
外熱交換器の外面に付着した着霜を加熱溶融して除霜す
る方式である。
Further, in the quick defrosting method, the discharge side of the compressor is discharged by opening a two-way valve in a bypass passage that communicates with the refrigerant inlet side of the outdoor heat exchanger during heating. By introducing a part of the high-temperature and high-pressure gaseous refrigerant into the outdoor heat exchanger through the bypass passage, the frost adhering to the outer surface of the outdoor heat exchanger is heated and melted to defrost.

【0007】[0007]

【発明が解決しようとする課題】しかし、このようなリ
バース除霜方式では、室内熱交換器内に流入した液化冷
媒が蒸発して吸熱するので、室内熱交換器を冷却してし
まう。このために、リバース除霜運転終了後、室内熱交
換器を加温して暖房運転に立上げるまでには、なお数分
がかかる。つまり、暖房運転の立上りが遅くなるという
課題がある。また、リバース除霜時の室外熱交換器の冷
媒温度は霜の溶融によって、ガスライン側(除霜流入
側)から液ライン側(除霜流出側)へ徐々に低下するの
で、着霜量が大きい場合には液ライン側の端部に着霜が
残る場合がある。
However, in such a reverse defrosting method, since the liquefied refrigerant flowing into the indoor heat exchanger evaporates and absorbs heat, the indoor heat exchanger is cooled. For this reason, after the reverse defrosting operation is completed, it takes several minutes to warm the indoor heat exchanger and start the heating operation. That is, there is a problem that the start-up of heating operation is delayed. Also, the refrigerant temperature of the outdoor heat exchanger during reverse defrosting gradually decreases from the gas line side (defrosting inflow side) to the liquid line side (defrosting outflow side) due to the melting of frost, so the amount of frost formation is If it is large, frost may remain on the end on the liquid line side.

【0008】さらに、リバース除霜運転開始とほぼ同時
に四方弁がOFFになるので、室内熱交換器内に溜って
いる高温高圧の冷媒の熱が冷媒配管やサクションカップ
で放熱してしまい、除霜に利用されないという課題があ
る。
Further, since the four-way valve is turned off almost at the same time as the reverse defrosting operation is started, the heat of the high temperature and high pressure refrigerant accumulated in the indoor heat exchanger is dissipated in the refrigerant pipe and the suction cup, and the defrosting is performed. There is a problem that it is not used for.

【0009】また、メカトロ除霜とクイック除霜方式で
は、圧縮機の蓄熱量とその入力(電力)の熱量により室
外熱交換器の着霜を加熱融霜して除霜する方式であるの
で、その除霜中、圧縮機の蓄熱量が殆どなくなって圧縮
機が冷えると、圧縮機除霜のために供給できる熱源が入
力(電力)のみになるので、除霜時間が長くなるうえ
に、圧縮機内に液冷媒が溜まり、最終的には液冷媒と圧
縮機内の潤滑油が吐出されるという液吐出現象が発生
し、圧縮機が故障する場合がある。
Further, in the mechatronic defrosting and quick defrosting methods, since the frost of the outdoor heat exchanger is heated and melted by the amount of heat stored in the compressor and the amount of heat of its input (electric power) to defrost, During defrosting, when the amount of heat stored in the compressor almost disappears and the compressor cools down, the only heat source that can be supplied for defrosting the compressor is the input (electric power). A liquid discharge phenomenon may occur in which the liquid refrigerant accumulates in the machine and finally the liquid refrigerant and the lubricating oil in the compressor are discharged, and the compressor may fail.

【0010】そこで本発明の目的は、圧縮機の冷媒吐出
温度に応じてメカトロ除霜,クイック除霜,リバース除
霜運転とを選択して実行することにより、除霜運転時間
を短縮して快適性を向上することができる空気調和機を
提供することにある。
Therefore, an object of the present invention is to select and execute mechatronic defrosting, quick defrosting, or reverse defrosting operation in accordance with the refrigerant discharge temperature of the compressor, thereby shortening the defrosting operation time and making it comfortable. It is to provide an air conditioner that can improve the performance.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
少なくとも圧縮機,四方弁,室内ファンを具備した室内
熱交換器,膨張弁,室外ファンを具備した室外熱交換器
を冷媒配管により順次接続してなる冷凍サイクルを有す
る空気調和機において、上記圧縮機から吐出される冷媒
の吐出温度を検出する吐出温度温度センサーと、上記冷
凍サイクルを循環する冷媒の循環方向が暖房運転時と同
じであって前記膨脹弁を開くと共に、上記室内,室外フ
ァンの運転を停止せしめるメカトロ除霜、または暖房運
転時上記圧縮機から吐出される冷媒の一部を上記室外熱
交換器内へ導入せしめるクイック除霜のどちらか一方の
除霜を運転すると共に、上記吐出温度センサーにより検
出された吐出温度に応じて、その一方の除霜運転から上
記冷凍サイクルを循環する冷媒の循環方向が暖房運転時
と逆であって上記室内,外ファンの運転を停止せしめる
リバース除霜運転へ移行せしめる制御手段と、を有す
る。
According to the first aspect of the present invention,
An air conditioner having a refrigeration cycle in which an indoor heat exchanger having at least a compressor, a four-way valve, an indoor fan, an expansion valve, and an outdoor heat exchanger having an outdoor fan are sequentially connected by a refrigerant pipe, A discharge temperature temperature sensor for detecting the discharge temperature of the refrigerant discharged from the air conditioner, and the expansion valve is opened while the circulation direction of the refrigerant circulating in the refrigeration cycle is the same as in the heating operation, and the indoor and outdoor fans are operated. Defrosting to stop mechatronics, or to operate either defrosting of quick defrosting to introduce a part of the refrigerant discharged from the compressor into the outdoor heat exchanger during heating operation, and the discharge temperature. Depending on the discharge temperature detected by the sensor, the circulation direction of the refrigerant circulating in the refrigeration cycle from one defrosting operation is opposite to that in the heating operation and Among comprises control means allowed to shift to the reverse defrosting operation allowed to stop the operation of the outer fan, a.

【0012】請求項2記載の発明は、請求項1記載の空
気調和機において、制御手段は、吐出温度の検出値が所
定値よりも高い場合には、メカトロ除霜またはクイック
除霜運転からリバース除霜運転へ移行せしめる構成であ
る。
According to a second aspect of the invention, in the air conditioner according to the first aspect, the control means reverses from the mechatronic defrosting operation or the quick defrosting operation when the detected value of the discharge temperature is higher than a predetermined value. This is a configuration for shifting to the defrosting operation.

【0013】請求項3記載の発明は、請求項2記載の空
気調和機において、制御手段は、除霜運転時に検出され
た吐出温度が第1の所定値以下に低下したときに暖房運
転に復帰させる構成である。
According to a third aspect of the invention, in the air conditioner according to the second aspect, the control means returns to the heating operation when the discharge temperature detected during the defrosting operation falls below a first predetermined value. It is a configuration that allows it.

【0014】請求項4記載の発明は、請求項2または3
記載の空気調和機において、制御手段は、除霜運転時に
検出された吐出温度が記憶された除霜運転中の最低吐出
温度よりも所定値上昇したときに暖房運転に復帰する構
成である。
The invention according to claim 4 is the invention according to claim 2 or 3.
In the air conditioner described above, the control means is configured to return to the heating operation when the discharge temperature detected during the defrosting operation rises by a predetermined value above the stored minimum discharge temperature during the defrosting operation.

【0015】請求項5記載の発明は、請求項1〜4のい
ずれか1項に記載の空気調和機において、制御手段は、
吐出温度に代えて、圧縮機のケース温度であるコンプケ
ース温度,希釈度,上記コンプケース温度と冷媒の高圧
基準の飽和温度との差,のいずれかを判断基準として使
用する構成である。
The invention according to claim 5 is the air conditioner according to any one of claims 1 to 4, wherein the control means is:
Instead of the discharge temperature, any one of the compressor case temperature, which is the compressor case temperature, the degree of dilution, and the difference between the compressor case temperature and the saturation temperature of the high-pressure reference of the refrigerant is used as a criterion.

【0016】[0016]

【作用】請求項1〜5の各発明においては、吐出温度セ
ンサーにより検出された吐出温度や圧縮機ケース温度,
希釈度,Δt等が高いときは圧縮機の蓄熱量が多く、圧
縮機が高温であるので、制御手段により、その圧縮機の
蓄熱量に基づいて除霜するメカトロ除霜、またはクイッ
ク除霜が運転される。これにより、圧縮機の蓄熱を吸熱
した高温高圧のガス状冷媒を室内熱交換器を通してから
室外熱交換器に導入して、その着霜を除霜することがで
きる。しかも、室内熱交換器の温度が高い状態のままで
除霜されるので、暖房運転再開時の立上げを早めること
ができ、快適性を高めることができる。
According to the first to fifth aspects of the invention, the discharge temperature detected by the discharge temperature sensor, the compressor case temperature,
When the degree of dilution, Δt, etc. is high, the heat storage amount of the compressor is large and the compressor is at a high temperature. Therefore, the control means performs defrosting based on the heat storage amount of the compressor, or mechatronic defrosting or quick defrosting. Be driven. Thus, the high-temperature and high-pressure gaseous refrigerant that has absorbed the heat accumulated in the compressor can be introduced into the outdoor heat exchanger through the indoor heat exchanger to defrost the frost. Moreover, since defrosting is performed while the temperature of the indoor heat exchanger remains high, startup can be accelerated when heating operation is restarted, and comfort can be improved.

【0017】そして、このメカトロ除霜、またはクイッ
ク除霜の運転により圧縮機が徐々に冷却され、蓄熱量が
徐々に減少して圧縮機の冷媒吐出温度が低下すると、制
御手段により四方弁がオフに反転されてリバース除霜運
転に切り換えられる。これにより、圧縮機からの高温高
圧のガス状冷媒の全てが直接室外熱交換器に導入されて
放熱し除霜される。室外熱交換器で放熱して液化した液
冷媒は室内熱交換器で蒸発して吸熱してガス状態で圧縮
機に戻される。したがって、室内熱交換器で冷媒が吸熱
するので、除霜のための供給熱源の不足を生じないうえ
に、冷媒がガス状態で圧縮機に戻されるので、液バック
量が少ない。このために、圧縮機の支障が生ずることが
少なく、その信頼性を向上させることができる。
When the compressor is gradually cooled by the operation of the mechatronic defrosting or the quick defrosting, and the heat storage amount is gradually reduced to lower the refrigerant discharge temperature of the compressor, the four-way valve is turned off by the control means. Is reversed to switch to reverse defrosting operation. As a result, all of the high-temperature and high-pressure gaseous refrigerant from the compressor is directly introduced into the outdoor heat exchanger to radiate heat and defrost. The liquid refrigerant that radiates heat and liquefies in the outdoor heat exchanger evaporates and absorbs heat in the indoor heat exchanger and is returned to the compressor in a gas state. Therefore, since the refrigerant absorbs heat in the indoor heat exchanger, the supply heat source for defrosting is not insufficient, and the refrigerant is returned to the compressor in a gas state, so that the amount of liquid back is small. Therefore, the compressor is less likely to be hindered and its reliability can be improved.

【0018】請求項3の発明においては、メカトロまた
はクイック除霜運転により、圧縮機の蓄熱量が液バック
により減少して圧縮機の温度が徐々に低下し、吐出温度
センサーにより検出された圧縮機の冷媒吐出温度が第1
の所定値以下に低下したときは、その除霜運転を強制的
に終了させて暖房運転に復帰させる。
According to the third aspect of the present invention, by the mechatronics or quick defrosting operation, the heat storage amount of the compressor is reduced by the liquid back and the temperature of the compressor is gradually lowered, and the compressor detected by the discharge temperature sensor. The first refrigerant discharge temperature is
When the temperature falls below a predetermined value of, the defrosting operation is forcibly terminated and the heating operation is restored.

【0019】これにより、圧縮機の温度を第1の所定値
以上に常時保持できるので、圧縮機ケース温度と高圧基
準の飽和温度との差であるΔTを除霜中常時確保するこ
とができる。このために、かかるΔTの低下による圧縮
機内の潤滑油の潤滑性能低下と、その潤滑油を混入させ
た気液二相冷媒が吐出されるという液吐出を共に有効に
防止することができるので、信頼性を向上させることが
できる。
As a result, the temperature of the compressor can be maintained above the first predetermined value at all times, so that ΔT, which is the difference between the compressor case temperature and the saturation temperature based on the high pressure, can always be secured during defrosting. Therefore, it is possible to effectively prevent the deterioration of the lubricating performance of the lubricating oil in the compressor due to the decrease of ΔT and the liquid discharge of discharging the gas-liquid two-phase refrigerant mixed with the lubricating oil. The reliability can be improved.

【0020】請求項4の発明においては、メカトロまた
はクイック除霜運転により、圧縮機の蓄熱量が液バック
により徐々に減少して圧縮機の温度が徐々に低下し、例
えば除霜中の吐出温度が記憶された最低吐出温度より2
deg等の所定値上昇した場合は制御手段によりかかる
除霜運転を強制的に終了させて暖房運転に復帰される。
したがって、この発明においても、上記請求項3の発明
と同様に、圧縮機の温度を常に一定に保持することがで
きるので、上記ΔTの低下による各不都合を有効に防止
して信頼性を向上させることができる。
According to the fourth aspect of the present invention, the amount of heat stored in the compressor is gradually reduced by the liquid back due to the mechatronics or quick defrosting operation, and the temperature of the compressor is gradually lowered. 2 from the stored minimum discharge temperature
When the predetermined value such as deg rises, the defrosting operation is forcibly ended by the control means and the heating operation is restored.
Therefore, also in the present invention, since the temperature of the compressor can be always kept constant as in the case of the third aspect of the invention, each inconvenience caused by the decrease in ΔT is effectively prevented and the reliability is improved. be able to.

【0021】[0021]

【実施例】以下、本発明の実施例を図1〜図9に基づい
て説明する。図1〜図9中、同一または相当部分には同
一符号を付している。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 9, the same or corresponding parts are designated by the same reference numerals.

【0022】図1は本発明に係る空気調和機の一実施例
の冷凍サイクル図であり、この図において、空気調和機
1は、図示しないインバータにより回転数制御自在に駆
動される圧縮機2,四方弁3,室内ファン4を有する室
内熱交換器5,流量制御弁(メカトロ弁)である膨張弁
6,室外ファン7を有する室外熱交換器8を冷媒配管9
により、この順に順次、かつ環状に接続して冷媒を可逆
的に循環させる冷凍サイクルを構成している。この冷凍
サイクルは、室内,外ファン4,7の運転時に、四方弁
3の切換操作により、冷媒を、図中実線矢印方向に循環
させることにより暖房運転され、図中破線矢印方向に循
環させることにより冷房運転される。また、少なくとも
室内,外ファン4,7の運転停止時に、冷媒を、図中実
線矢印方向に循環させることによりメカトロ除霜運転さ
れ、また図中破線矢印方向に循環させることによりリバ
ース除霜運転される。
FIG. 1 is a refrigeration cycle diagram of an embodiment of an air conditioner according to the present invention. In this figure, an air conditioner 1 is a compressor 2, which is driven by an inverter (not shown) so that the rotation speed can be controlled freely. An indoor heat exchanger having a four-way valve 3, an indoor fan 4, an expansion valve 6, which is a flow control valve (mechatronic valve) 6, an outdoor heat exchanger 8 having an outdoor fan 7, and a refrigerant pipe 9
Thus, the refrigerating cycle in which the refrigerant is reversibly circulated is sequentially connected in this order and in a ring shape. In this refrigeration cycle, when the indoor and outdoor fans 4 and 7 are operating, the refrigerant is circulated in the direction of the solid line arrow in the figure by the switching operation of the four-way valve 3, and is circulated in the direction of the broken line arrow in the figure. The cooling operation is performed by. Further, at least when the indoor and outdoor fans 4 and 7 are stopped, the refrigerant is circulated in the direction of the solid line arrow to perform the mechatronics defrosting operation, and by being circulated in the direction of the broken line arrow to perform the reverse defrosting operation. It

【0023】そして、室外熱交換器8に、室外熱交換器
8内で蒸発する冷媒の蒸発温度TEを検知する蒸発温度
センサー10を設ける一方、圧縮機2の吐出側には冷媒
の吐出温度を検出する吐出温度センサー11を設けてお
り、これら両センサー10,11を信号線により制御手
段である室外制御器12に電気的に接続している。
The outdoor heat exchanger 8 is provided with an evaporation temperature sensor 10 for detecting the evaporation temperature TE of the refrigerant evaporated in the outdoor heat exchanger 8, while the discharge temperature of the refrigerant is set on the discharge side of the compressor 2. A discharge temperature sensor 11 for detecting is provided, and these two sensors 10, 11 are electrically connected to an outdoor controller 12 which is a control means by a signal line.

【0024】室外制御器12は例えばマイクロプロセッ
サー等からなり、暖房運転時に、図2で示す第1の制御
プログラムに従って、吐出温度センサー11から読み込
んだ冷媒の吐出温度Tdと、蒸発温度センサー10から
読み込んだ冷媒蒸発温度TEとに基づいて除霜の必要性
の有無を判断しメカトロ除霜を行なうと共に、さらに、
そのメカトロ除霜運転からリバース除霜運転へ移行させ
るものである。
The outdoor controller 12 is composed of, for example, a microprocessor and the like, and during the heating operation, according to the first control program shown in FIG. 2, the discharge temperature Td of the refrigerant read from the discharge temperature sensor 11 and the evaporation temperature sensor 10 are read. The necessity of defrosting is judged based on the refrigerant refrigerant evaporation temperature TE to perform the mechatronic defrosting, and further,
The mechatronics defrosting operation is switched to the reverse defrosting operation.

【0025】次に、室外制御器12の第1の制御プログ
ラムを図2のフローチャートに基づいて説明する。な
お、図2中、S1〜S7はフローチャートの各ステップ
を示す。
Next, the first control program of the outdoor controller 12 will be described with reference to the flowchart of FIG. Note that S1 to S7 in FIG. 2 indicate steps of the flowchart.

【0026】まず、S1で室外制御器12は、空気調和
機1の暖房運転を開始させると、S2で蒸発温度センサ
ー10から読み出した、室外熱交換器8内で蒸発した冷
媒の蒸発温度TEが例えば−2℃よりも低い(TE<−
2)状態が30分間継続しているか否か繰り返し判断
し、Yesの場合は室外熱交換器8の除霜が必要である
と判断して、S3で吐出温度センサー11から読み込ん
だ冷媒吐出温度Tdが例えば50℃以上(Td≦50)
であるか否か判断し、Yesの場合は圧縮機2の蓄熱量
が多いと判断してS4でメカトロ除霜運転を選択して実
行し、Noの場合は圧縮機2の蓄熱量が少ないと判断し
てS5でリバース除霜運転を選択実行する。
First, when the outdoor controller 12 starts the heating operation of the air conditioner 1 in S1, the evaporation temperature TE of the refrigerant evaporated in the outdoor heat exchanger 8 read from the evaporation temperature sensor 10 in S2. For example, lower than -2 ° C (TE <-
2) It is repeatedly judged whether or not the state continues for 30 minutes, and if Yes, it is judged that defrosting of the outdoor heat exchanger 8 is necessary, and the refrigerant discharge temperature Td read from the discharge temperature sensor 11 in S3. Is, for example, 50 ° C or higher (Td ≦ 50)
If Yes, it is determined that the heat storage amount of the compressor 2 is large, and the mechatronics defrosting operation is selected and executed in S4. If No, the heat storage amount of the compressor 2 is small. The reverse defrosting operation is selected and executed in S5.

【0027】S4のメカトロ除霜は、図3のシーケンス
に示すようにその除霜運転を開始しても、四方弁3をオ
ンからオフに反転させずに引き続きオン状態を保持する
一方、膨脹弁6の開度を全開またはそれに近い開度に制
御する点でリバース除霜運転とは相違する。
In the mechatronic defrosting of S4, even if the defrosting operation is started as shown in the sequence of FIG. 3, the four-way valve 3 is not turned from ON to OFF but is kept in the ON state, while the expansion valve is opened. This is different from the reverse defrosting operation in that the opening of No. 6 is controlled to be fully opened or close to it.

【0028】したがって、冷媒の循環方向は図1中実線
矢印方向に示すように暖房運転時と同じである。このた
めに、圧縮機2からの高温高圧のガス状冷媒がオン中の
四方弁3に案内されて、室内熱交換器5,膨張弁6を順
次経て、室外熱交換器8内に流入する。この時、室内フ
ァン4の運転は停止しているので室内熱交換器5では冷
媒の放熱・液化は殆ど行なわれず、室外熱交換器8にお
いて冷媒は放熱して液化し、その放熱により室外熱交換
器8を加熱して、その除霜を加熱溶融し除霜する。室外
熱交換器8で液化した液冷媒は再び圧縮機2内へ、その
吸込口から吸い込まれ、ここで冷媒は圧縮機2の保有熱
を吸熱し、かつ圧縮されて再び四方弁3へ吐出される。
圧縮機2は液冷媒の吸熱により徐々に冷却される。以
下、これの繰返しにより室外熱交換器8の着霜が除霜さ
れる。次に、S6で冷媒蒸発温度TEが、第1の所定値
である例えば5℃を超えたか(TE>5)否か判断し、
Yesの場合は除霜完了と判断して再びS1へ戻って暖
房運転に復帰させる。
Therefore, the circulation direction of the refrigerant is the same as that during the heating operation as shown by the solid arrow in FIG. For this reason, the high-temperature and high-pressure gaseous refrigerant from the compressor 2 is guided by the four-way valve 3 which is on, sequentially flows through the indoor heat exchanger 5 and the expansion valve 6, and then flows into the outdoor heat exchanger 8. At this time, since the operation of the indoor fan 4 is stopped, the heat dissipation and liquefaction of the refrigerant are hardly performed in the indoor heat exchanger 5, and the refrigerant radiates and liquefies in the outdoor heat exchanger 8, and the heat dissipation causes the outdoor heat exchange. The vessel 8 is heated to heat and melt the defrost to defrost it. The liquid refrigerant liquefied in the outdoor heat exchanger 8 is again sucked into the compressor 2 through its suction port, where the refrigerant absorbs the heat of the compressor 2 and is compressed and discharged again to the four-way valve 3. It
The compressor 2 is gradually cooled by the heat absorption of the liquid refrigerant. Hereinafter, by repeating this, the frost on the outdoor heat exchanger 8 is defrosted. Next, in S6, it is determined whether the refrigerant evaporation temperature TE exceeds a first predetermined value, for example, 5 ° C. (TE> 5),
In the case of Yes, it is determined that the defrosting is completed, and the process returns to S1 again to return to the heating operation.

【0029】しかし、S6でNoの場合、つまり冷媒蒸
発温度TEが5℃以下のときは、まだ除霜が必要である
と判断してS3へ戻り、再び冷媒吐出温度Tdが50℃
以上であるか否か(Td≧50)を判断し、Td≧50
が成立するときは圧縮機2の蓄熱量がまだ十分であると
判断してS4でさらに、メカトロ除霜を続行するが、N
o、つまり、Td≧50が不成立のときは圧縮機2の蓄
熱量が少なく冷えていると判断して、図3に示すように
S5のリバース除霜へ進む。
However, in the case of No in S6, that is, when the refrigerant evaporation temperature TE is 5 ° C. or lower, it is judged that defrosting is still necessary, and the process returns to S3, and the refrigerant discharge temperature Td is 50 ° C.
It is determined whether or not (Td ≧ 50), and Td ≧ 50
When the above condition is satisfied, it is determined that the heat storage amount of the compressor 2 is still sufficient, and the mechatronic defrosting is continued in S4, but N
o, that is, when Td ≧ 50 is not established, it is determined that the heat storage amount of the compressor 2 is small and is cold, and the process proceeds to reverse defrosting in S5 as shown in FIG.

【0030】リバース除霜運転は図3で示すシーケンス
に従って運転されるものであり、四方弁3をONからO
FFに反転させて、その冷媒の循環方向を図1中破線矢
印方向に逆転させる。また、圧縮機2の運転周波数を例
えば62Hzに低減し、室内,外ファン4,7の運転を
停止させる。膨張弁6の開度は暖房運転時のスーパーヒ
ート一定制御の開度とほぼ同じ開度で一定に保持され
る。
The reverse defrosting operation is carried out in accordance with the sequence shown in FIG. 3, and the four-way valve 3 is switched from ON to O.
It is reversed to FF, and the circulation direction of the refrigerant is reversed in the direction of the broken line arrow in FIG. Moreover, the operating frequency of the compressor 2 is reduced to, for example, 62 Hz, and the operation of the indoor and outdoor fans 4 and 7 is stopped. The opening degree of the expansion valve 6 is kept constant at substantially the same opening degree as that of the constant superheat control during the heating operation.

【0031】これにより、圧縮機2からの高温高圧のガ
ス状冷媒は、暖房運転時とは反転した四方弁3により案
内されて、まず室外熱交換器8内に流入し、ここで放熱
する一方で液化し、その放熱により室外熱交換器8を加
熱し、その外面の着霜を加熱溶融して除霜することがで
きる。
As a result, the high-temperature and high-pressure gaseous refrigerant from the compressor 2 is guided by the four-way valve 3 which is reversed from that during the heating operation, first flows into the outdoor heat exchanger 8 and radiates heat there. The outdoor heat exchanger 8 is liquefied by heating and the outdoor heat exchanger 8 is heated, and the frost on the outer surface of the outdoor heat exchanger 8 is heated and melted for defrosting.

【0032】そして、室外熱交換器8で液化した液冷媒
は所定開度の膨張弁6を通って、室内ファン4の運転が
停止されている室内熱交換器5内へ流入し、ここで自然
対流により吸熱して蒸発してから四方弁3により案内さ
れて再び圧縮機2内へ吸込口から戻される。したがっ
て、液冷媒が圧縮機2へ戻される液バック量を減少させ
ることができるので、圧縮機2の信頼性を高めることが
できる。以上これの繰返しにより室外熱交換器8が加熱
され、その着霜が除霜されるので、次のS7で、蒸発温
度TEが5℃よりも高い(TE>5)か否か繰り返し判
断し、TE>5が成立したときには除霜が完了したもの
と判断して、再びS1へ戻って、暖房運転に復帰し、以
下のステップを再び繰り返す。
Then, the liquid refrigerant liquefied in the outdoor heat exchanger 8 passes through the expansion valve 6 having a predetermined opening degree and flows into the indoor heat exchanger 5 in which the operation of the indoor fan 4 is stopped. After absorbing heat by convection and evaporating, it is guided by the four-way valve 3 and returned to the compressor 2 from the suction port again. Therefore, it is possible to reduce the amount of liquid back that the liquid refrigerant is returned to the compressor 2, so that the reliability of the compressor 2 can be improved. Since the outdoor heat exchanger 8 is heated and the frost is defrosted by repeating the above, in the next S7, it is repeatedly determined whether the evaporation temperature TE is higher than 5 ° C. (TE> 5), When TE> 5 is satisfied, it is determined that the defrosting is completed, the process returns to S1, the heating operation is resumed, and the following steps are repeated.

【0033】したがって本実施例によれば、吐出温度セ
ンサー11により検出された冷媒吐出温度の検出値Td
に基づいて圧縮機2の温度、つまり蓄熱量を検出し、そ
の蓄熱量が十分にあるときには、この圧縮機2の蓄熱に
より除霜するメカトロ除霜運転を行なうので、室内熱交
換器5を冷却させずに高温状態に保持したままで除霜す
ることができる。このために、暖房運転復帰時に室内熱
交換器5で加熱される温風の温度の立上げを早めること
ができる。つまり、暖房復帰の立上げを早めることがで
き、快適性を高めることができる。
Therefore, according to this embodiment, the refrigerant discharge temperature detection value Td detected by the discharge temperature sensor 11 is obtained.
The temperature of the compressor 2, that is, the heat storage amount is detected based on the above, and when the heat storage amount is sufficient, the mechatronics defrosting operation of defrosting by the heat storage of the compressor 2 is performed, so that the indoor heat exchanger 5 is cooled. It is possible to defrost while keeping it in a high temperature state without performing it. Therefore, the temperature of the warm air heated by the indoor heat exchanger 5 can be speeded up when the heating operation is returned. In other words, it is possible to speed up the start-up of heating restoration and improve comfort.

【0034】また、メカトロ除霜により圧縮機2の蓄熱
量が徐々に減少し、吐出温度が例えば50℃以下に低下
したときには除霜の供給熱源が尽きたと判断してリバー
ス除霜運転に移行させるが、このリバース除霜は、冷媒
が室内熱交換器5で吸熱するので、除霜のための熱源が
尽きることがない。また、圧縮機2への液バック量が少
ないので、液バックによる圧縮機2のトラブル等を未然
に防止することができ、信頼性を高めることができる。
Further, when the heat storage amount of the compressor 2 is gradually reduced by the mechatronic defrosting and the discharge temperature is reduced to, for example, 50 ° C. or less, it is judged that the supply heat source for the defrosting is exhausted, and the reverse defrosting operation is started. However, in this reverse defrosting, the refrigerant absorbs heat in the indoor heat exchanger 5, so the heat source for defrosting is not exhausted. Further, since the amount of liquid back to the compressor 2 is small, troubles and the like of the compressor 2 due to liquid back can be prevented and reliability can be improved.

【0035】図4は本発明の第2実施例の冷凍サイクル
図であり、この空気調和機21は上記空気調和機1の冷
凍サイクルに対して、その圧縮機2の吐出口側を、室外
熱交換器8と膨張弁6とを結ぶ冷媒流路の途中に連通せ
しめるバイパス路22と、このバイパス路22の途中に
それぞれ介在されたキャピラリチューブ23および二方
弁24とを設けてクイック除霜可能に構成した点と、室
外制御器12Aにより吐出温度に基づいて暖房運転中に
クイック除霜またはリバース除霜を切換え自在に運転す
るように構成した点に特徴がある。
FIG. 4 is a refrigerating cycle diagram of the second embodiment of the present invention. This air conditioner 21 has a compressor 2 with respect to the refrigerating cycle of the air conditioner 1 as an outdoor heat exchanger. Quick defrosting is possible by providing a bypass passage 22 communicating with the refrigerant passage connecting the exchanger 8 and the expansion valve 6 and a capillary tube 23 and a two-way valve 24 interposed in the bypass passage 22 respectively. And the point that the outdoor controller 12A is configured to freely switch between quick defrosting and reverse defrosting during heating operation based on the discharge temperature.

【0036】つまり、室外制御器12Aは例えば図5で
示す第2の制御プログラムに従って暖房運転中に、吐出
温度Tdにと基づいてクイック除霜を運転し、またはこ
のクイック除霜からリバース除霜へ移行する制御を行な
うものである。
That is, the outdoor controller 12A operates the quick defrosting based on the discharge temperature Td during the heating operation according to the second control program shown in FIG. 5, for example, or from the quick defrosting to the reverse defrosting. The control for shifting is performed.

【0037】つまり、この第2実施例は図2で示す第1
の制御プログラム中のS4メカトロ除霜を、図5で示す
第2の制御プログラム中のS14のクイック除霜に置換
すると共に、図3で示すシーケンス中のメカトロ除霜を
図6で示すシーケンス中のクイック除霜に置換した点に
特徴がある クイック除霜は暖房運転中、図4で示す二方弁24を開
弁することにより、圧縮機2から吐出される高温高圧の
ガス状冷媒の一部をバイパス路22を通して室外熱交換
器8内へ導入することにより放熱させて液化し、その放
熱により室外熱交換器8の着霜を加熱溶融して除霜する
ものである。そして、室外熱交換器8で液化した液冷媒
はオン中の四方弁3により案内されて圧縮機2内へ吸い
込まれ、ここで圧縮機2の蓄熱を吸熱して再び圧縮され
て吐出される。
That is, the second embodiment is the first embodiment shown in FIG.
The S4 mechatronic defrost in the control program of FIG. 6 is replaced with the quick defrost of S14 in the second control program shown in FIG. 5, and the mechatronic defrost in the sequence shown in FIG. It is characterized in that it is replaced with quick defrost Quick defrost is a part of the high-temperature high-pressure gaseous refrigerant discharged from the compressor 2 by opening the two-way valve 24 shown in FIG. 4 during the heating operation. Is introduced into the outdoor heat exchanger 8 through the bypass passage 22 to radiate heat and liquefy, and the radiated heat heats and melts the frost on the outdoor heat exchanger 8 to defrost it. Then, the liquid refrigerant liquefied in the outdoor heat exchanger 8 is guided by the four-way valve 3 which is on and sucked into the compressor 2, where it absorbs the heat stored in the compressor 2 and is compressed again and discharged.

【0038】したがって、クイック除霜は圧縮機2の蓄
熱を除霜の熱源とし、室内熱交換器5を冷却せずに高温
状態に保持できる点でメカトロ除霜と共通し、効果もほ
ぼ同様の効果を得ることができる。、つまり、圧縮機2
の吐出温度Tdが例えば50℃以上(Td≧50)のと
きに、圧縮機2の蓄熱が除霜に必要な熱量を十分に有す
ると判断してクイック除霜し、または吐出温度Tdが5
0℃以下の場合にはリバース除霜に移行するので、上記
第2実施例と同様の効果を有する。
Therefore, the quick defrost is similar to the mechatronic defrost in that the heat of the compressor 2 is used as a heat source for the defrost, and the indoor heat exchanger 5 can be kept at a high temperature without being cooled, and the effect is almost the same. The effect can be obtained. , That is, compressor 2
When the discharge temperature Td of is equal to or higher than 50 ° C. (Td ≧ 50), it is determined that the heat storage of the compressor 2 has a sufficient amount of heat necessary for defrosting, and quick defrosting is performed, or the discharge temperature Td is 5
When the temperature is 0 ° C. or lower, reverse defrosting is performed, so that the same effect as the second embodiment is obtained.

【0039】なお、上記各実施例では吐出温度センサー
11を設け、圧縮機2の蓄熱量を冷媒吐出温度Tdに応
じて除霜運転を制御する場合について説明したが、本発
明はこの吐出温度Tdに代えて、圧縮機2のケース温度
や希釈度、圧縮機2のケース温度と高圧基準の飽和温度
との差であるΔTを使用してもよい。
In each of the above embodiments, the discharge temperature sensor 11 is provided and the defrosting operation is controlled according to the heat storage amount of the compressor 2 in accordance with the refrigerant discharge temperature Td. However, the present invention has this discharge temperature Td. Instead of this, the case temperature or the degree of dilution of the compressor 2 or ΔT, which is the difference between the case temperature of the compressor 2 and the saturation temperature of the high-pressure reference, may be used.

【0040】図7は本発明の第3実施例の制御プログラ
ムのフローチャートであり、これは室外制御器12また
は12Aにより例えば図8のシーケンス図で示すメカト
ロ除霜のように圧縮機2の蓄熱に基づいて除霜する場合
に、圧縮機2のケース温度(以下コンプケース温度とい
う)、またはコンプケース温度の変化に応じて除霜運転
を終了させることにより、潤滑油を内蔵する圧縮機2の
温度を常に所定値以上に保持した状態で暖房運転に復帰
させる点に特徴がある。
FIG. 7 is a flow chart of a control program according to the third embodiment of the present invention. This is performed by the outdoor controller 12 or 12A for storing heat in the compressor 2 as in the case of mechatronic defrosting shown in the sequence diagram of FIG. In the case of defrosting based on the temperature of the compressor 2 that contains lubricating oil, the defrosting operation is terminated in accordance with the case temperature of the compressor 2 (hereinafter referred to as the comp case temperature) or the change of the comp case temperature. Is characterized in that it is returned to the heating operation in a state in which is always kept above a predetermined value.

【0041】ここでは、コンプケース温度を例にとって
説明するが、コンプケース温度は吐出温度に比例するも
のであり、コンプケース温度の代りに吐出温度を検出し
て以下の制御を行なってもよい。さらには、冷媒の希釈
度やΔTを使用してもよく、これらによっても同様の効
果を得ることができる。
Here, the Compcase temperature will be described as an example, but the Compcase temperature is proportional to the discharge temperature, and the discharge temperature may be detected instead of the Compcase temperature and the following control may be performed. Further, the degree of dilution of the refrigerant or ΔT may be used, and the same effect can be obtained by these.

【0042】次に、この室外制御器12、または12A
の制御プログラムを図7のフローチャートに基づいて説
明する。図7中、S21〜S28はフローチャートの各
ステップを示す。
Next, the outdoor controller 12 or 12A
The control program will be described with reference to the flowchart of FIG. In FIG. 7, S21 to S28 indicate steps of the flowchart.

【0043】まず、S21で暖房運転を開始すると、次
のS22で室外熱交換器8の冷媒蒸発温度TEが例えば
−2℃以下の状態が30分継続しているか否か繰り返し
判断し、Yesのときは除霜が必要であると診断してS
23で除霜運転を開始する。この除霜運転としては例え
ば図8で示すメカトロ除霜等圧縮機2の蓄熱により除霜
する場合であるので、除霜の進行に伴ってコンプケース
温度Tkも徐々に低下する。
First, when the heating operation is started in S21, it is repeatedly judged in the next S22 whether or not the state in which the refrigerant evaporation temperature TE of the outdoor heat exchanger 8 is, for example, −2 ° C. or lower has continued for 30 minutes, and Yes. When it is determined that defrosting is necessary, S
The defrosting operation is started at 23. This defrosting operation is, for example, the case of defrosting by storing heat of the compressor 2 such as mechatronic defrosting shown in FIG. 8, so that the comp case temperature Tk gradually decreases as defrosting progresses.

【0044】コンプケース温度Tkが低下して、コンプ
ケース温度Tkと冷媒の高圧基準の飽和温度との差であ
るΔT(図9参照)がゼロ近くになると、圧縮機2内で
液冷媒が凝縮して潤滑油の粘性の低下を招く。また、さ
らに多量の液冷媒が凝縮すると、凝縮した液冷媒と潤滑
油が圧縮機2から吐出されるという液吐出現象が発生
し、圧縮機2の信頼性が低下する。
When the Compcase temperature Tk decreases and the difference ΔT (see FIG. 9) between the Compcase temperature Tk and the high temperature standard saturation temperature of the refrigerant approaches zero, the liquid refrigerant condenses in the compressor 2. As a result, the viscosity of the lubricating oil is reduced. Further, when a larger amount of liquid refrigerant is condensed, a liquid discharge phenomenon occurs in which the condensed liquid refrigerant and lubricating oil are discharged from the compressor 2, and the reliability of the compressor 2 is reduced.

【0045】そこで、次のS24ではコンプケース温度
Tkが第1の所定値である、例えば50℃以下(Tk<
50)であるか否か判断し、YesのときはS25でか
かる除霜を終了させて暖房運転に復帰させる。これによ
り、コンプケース温度Tkが50℃以下に低下して上記
液吐出現象が発生するのを未然に防止して信頼性を向上
させることができる。
Therefore, in the next step S24, the Compcase temperature Tk is a first predetermined value, for example, 50 ° C. or lower (Tk <
50), and if Yes, the defrosting is ended in S25 and the heating operation is resumed. As a result, it is possible to prevent the Comp case temperature Tk from lowering to 50 ° C. or less and the liquid ejection phenomenon to occur, thereby improving the reliability.

【0046】この暖房運転復帰後はS26で再び冷媒蒸
発温度TEが−2℃よりも低い(TE<−2)状態が2
0分継続しているか否か判断し、Yesのときは再び除
霜の必要があると判断して再びS23の除霜に入る。除
霜に移行する時期を早めているで、残霜はなくなる。
After the heating operation is returned, the state in which the refrigerant evaporation temperature TE is lower than -2 ° C. (TE <-2) is again 2 in S26.
It is determined whether or not 0 minute has continued, and if Yes, it is determined that defrosting is necessary again, and the defrosting of S23 is started again. There is no residual frost because the period of defrosting is accelerated.

【0047】一方、S24でNoのとき、つまり、コン
プケース温度Tkが第2の所定値の50℃よりも低いと
きには、S27でコンプケース温度Tkが、その最低コ
ンプケース温度(Tkmin)に例えば2degを加えた
第2の所定値である変化量Tkmin+2よりも高い(T
k>Tkmin+2)か否か判断し、YesのときはS2
5で除霜を終了させて再び暖房運転に復帰させる。これ
により、液吐出を未然に防止することができる。すなわ
ち、液圧縮が続くと吐出圧力が上昇し、これに伴って吐
出温度およびコンプケース温度が上昇するので、コンプ
ケース温度が低下から上昇に転じた場合には、液吐出が
発生し始めたことになる。したがって、コンプケース温
度が上昇を始めたら除霜を終了することで液吐出を防止
できる。
On the other hand, when S24 is No, that is, when the Compcase temperature Tk is lower than the second predetermined value of 50 ° C., the Compcase temperature Tk is set to the minimum Compcase temperature (Tkmin) of, for example, 2 deg in S27. Is higher than the second predetermined value Tkmin + 2 which is the second predetermined value (T
k> Tkmin + 2), and if Yes, S2
At 5 the defrosting is terminated and the heating operation is resumed. As a result, liquid ejection can be prevented in advance. That is, if liquid compression continues, the discharge pressure rises, and the discharge temperature and the Compcase temperature rise accordingly. Therefore, when the Compcase temperature changes from a decrease to an increase, liquid discharge has begun to occur. become. Therefore, the liquid discharge can be prevented by ending the defrosting when the Compcase temperature starts to rise.

【0048】しかし、S27でNoのとき、つまり、コ
ンプケース温度上昇しないときはS28で冷媒蒸発温度
TEが5℃以上であるか否かと判断し、Noのときは再
びS23に戻って除霜を続行し、S28でYesのとき
は除霜完了と判断してS21へ戻って再び暖房運転に復
帰する。
However, in the case of No in S27, that is, in the case where the Compcase temperature does not rise, it is judged in S28 whether or not the refrigerant evaporation temperature TE is 5 ° C. or higher. If it is Yes in S28, it is determined that the defrosting is completed, and the process returns to S21 to return to the heating operation again.

【0049】したがって本実施例によれば、除霜中、常
時コンプケース温度Tkを所定値以上に保持できるの
で、図9に示すようにΔTを除霜運転中常時確保するこ
とができる。これにより、ΔT低下による潤滑油の潤滑
性能の低下と液吐出とを未然に防止することができるの
で、圧縮機2の信頼性を高めることができる。
Therefore, according to the present embodiment, since the Compcase temperature Tk can be maintained at a predetermined value or more during defrosting, ΔT can be always secured during the defrosting operation as shown in FIG. As a result, it is possible to prevent deterioration of the lubricating performance of the lubricating oil and discharge of the liquid due to the decrease of ΔT, so that the reliability of the compressor 2 can be improved.

【0050】なお、上記コンプケース温度に代えて、冷
媒の吐出温度や希釈度、ΔTを使用してもよく、これら
によっても同様の効果を得ることができる。
Instead of the Compcase temperature, the discharge temperature of the refrigerant, the degree of dilution, or ΔT may be used, and the same effect can be obtained.

【0051】[0051]

【発明の効果】以上説明したように請求項1〜5の発明
においては、吐出温度センサーにより検出された吐出温
度や圧縮機ケース温度,希釈度,Δt等が高いときは圧
縮機の蓄熱量が多く、圧縮機が高温であるので、制御手
段により、その圧縮機の蓄熱量に基づいて除霜するメカ
トロ除霜、またはクイック除霜が運転される。これによ
り、圧縮機の蓄熱を吸熱した高温高圧のガス状冷媒を室
内熱交換器を通してから室外熱交換器に導入して、その
着霜を除霜することができる。しかも、室内熱交換器の
温度が高い状態のままで除霜されるので、暖房運転再開
時の立上げを早めることができ、快適性を高めることが
できる。
As described above, in the inventions of claims 1 to 5, when the discharge temperature detected by the discharge temperature sensor, the compressor case temperature, the dilution degree, Δt, etc. are high, the heat storage amount of the compressor is high. Since the compressor is at a high temperature in many cases, the control unit operates the mechatronics defrosting for defrosting or the quick defrosting for defrosting based on the heat storage amount of the compressor. Thus, the high-temperature and high-pressure gaseous refrigerant that has absorbed the heat accumulated in the compressor can be introduced into the outdoor heat exchanger through the indoor heat exchanger to defrost the frost. Moreover, since defrosting is performed while the temperature of the indoor heat exchanger remains high, startup can be accelerated when heating operation is restarted, and comfort can be improved.

【0052】そして、このメカトロ除霜、またはクイッ
ク除霜の運転により圧縮機が徐々に冷却され、蓄熱量が
徐々に減少して圧縮機の冷媒吐出温度が低下すると、制
御手段により四方弁がオフに反転されてリバース除霜運
転に切り換えられる。これにより、圧縮機からの高温高
圧のガス状冷媒が室外熱交換器に導入されて放熱し除霜
される。室外熱交換器で放熱して液化した液冷媒は室内
熱交換器で蒸発して吸熱してガス状態で圧縮機に戻され
る。したがって、室内熱交換器で冷媒が吸熱するので、
除霜のための供給熱源の不足を生じないうえに、冷媒が
ガス状態で圧縮機に戻されるので、液バック量が少な
い。このために、圧縮機の支障が生ずることが少なく、
その信頼性を向上させることができる。
When the compressor is gradually cooled by the operation of the mechatronic defrosting or the quick defrosting, and the heat storage amount is gradually reduced to lower the refrigerant discharge temperature of the compressor, the four-way valve is turned off by the control means. Is reversed to switch to reverse defrosting operation. As a result, the high-temperature and high-pressure gaseous refrigerant from the compressor is introduced into the outdoor heat exchanger to radiate heat and defrost. The liquid refrigerant that radiates heat and liquefies in the outdoor heat exchanger evaporates and absorbs heat in the indoor heat exchanger and is returned to the compressor in a gas state. Therefore, since the refrigerant absorbs heat in the indoor heat exchanger,
A shortage of the supply heat source for defrosting does not occur, and the refrigerant is returned to the compressor in a gas state, so the amount of liquid back is small. For this reason, there are few problems with the compressor,
The reliability can be improved.

【0053】請求項3の発明においては、メカトロまた
はクイック除霜運転により、圧縮機の蓄熱量が液バック
により減少して圧縮機の温度が徐々に低下し、吐出温度
センサーにより検出された圧縮機の冷媒吐出温度が第1
の所定値以下に低下したときは、その除霜運転を強制的
に終了させて暖房運転に復帰させる。
According to the third aspect of the invention, the amount of heat stored in the compressor is reduced by the liquid back due to the mechatronics or quick defrosting operation, the temperature of the compressor is gradually lowered, and the compressor detected by the discharge temperature sensor is used. The first refrigerant discharge temperature is
When the temperature falls below a predetermined value of, the defrosting operation is forcibly terminated and the heating operation is restored.

【0054】これにより、圧縮機の温度を第1の所定値
以上に常時保持できるので、圧縮機ケース温度と高圧基
準の飽和温度との差であるΔTを除霜中常時確保するこ
とができる。このために、かかるΔTの低下による圧縮
機内の潤滑油の潤滑性能低下と、その潤滑油を混入させ
た気液二相冷媒が吐出されるという液吐出を共に有効に
防止することができるので、信頼性を向上させることが
できる。
As a result, the temperature of the compressor can be constantly maintained at or above the first predetermined value, so that ΔT, which is the difference between the compressor case temperature and the saturation temperature of the high-pressure reference, can be always ensured during defrosting. Therefore, it is possible to effectively prevent the deterioration of the lubricating performance of the lubricating oil in the compressor due to the decrease of ΔT and the liquid discharge of discharging the gas-liquid two-phase refrigerant mixed with the lubricating oil. The reliability can be improved.

【0055】請求項4の発明においては、メカトロまた
はクイック除霜運転により、圧縮機の蓄熱量が液バック
により徐々に減少して圧縮機の温度が徐々に低下し、そ
の後、吐出温度が記憶された除霜運転中の最低吐出温度
よりも所定値上昇した場合は制御手段によりかかる除霜
運転を強制的に終了させて暖房運転に復帰される。した
がって、この発明においても、上記請求項3の発明と同
様に、圧縮機の温度を常に一定に保持することができる
ので、上記ΔTの低下による各不都合を有効に防止して
信頼性を向上させることができる。
According to the fourth aspect of the present invention, by the mechatronics or quick defrosting operation, the heat storage amount of the compressor is gradually reduced by the liquid back and the temperature of the compressor is gradually lowered, and then the discharge temperature is stored. When the predetermined temperature rises above the minimum discharge temperature during the defrosting operation, the control means forcibly terminates the defrosting operation and returns to the heating operation. Therefore, also in the present invention, since the temperature of the compressor can be always kept constant as in the case of the third aspect of the invention, each inconvenience caused by the decrease in ΔT is effectively prevented and the reliability is improved. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空気調和機の第1実施例の冷凍サ
イクル図。
FIG. 1 is a refrigeration cycle diagram of a first embodiment of an air conditioner according to the present invention.

【図2】図1で示す室外制御器の制御プログラムのフロ
ーチャート。
FIG. 2 is a flowchart of a control program of the outdoor controller shown in FIG.

【図3】図1で示す室外制御器によりメカトロ除霜から
リバース除霜へ移行させる制御のシーケンス図。
FIG. 3 is a sequence diagram of control for shifting from mechatronic defrosting to reverse defrosting by the outdoor controller shown in FIG. 1.

【図4】本発明の第2実施例の冷凍サイクル図。FIG. 4 is a refrigeration cycle diagram of a second embodiment of the present invention.

【図5】図4で示す室外制御器の制御プログラムのフロ
ーチャート。
5 is a flowchart of a control program of the outdoor controller shown in FIG.

【図6】図4で示す室外制御器によりクイック除霜から
リバース除霜へ移行させる制御のシーケンス図。
6 is a sequence diagram of control for shifting from quick defrost to reverse defrost by the outdoor controller shown in FIG.

【図7】本発明の第3実施例における制御プログラムの
フローチャート。
FIG. 7 is a flowchart of a control program according to the third embodiment of the present invention.

【図8】図7で示す除霜運転のシーケンス図。FIG. 8 is a sequence diagram of the defrosting operation shown in FIG. 7.

【図9】図7で示す除霜運転により圧縮機のΔTを除霜
中常時確保することができる点を示すグラフ。
9 is a graph showing that ΔT of the compressor can be constantly secured during defrosting by the defrosting operation shown in FIG. 7.

【符号の説明】 1,21 空気調和機 2 圧縮機 3 四方弁 4 室内ファン 5 室内熱交換器 6 膨張弁 7 室外ファン 8 室外熱交換器 9 冷媒配管 10 蒸発温度センサー 11 吐出温度センサー 12,12A 室外制御器 22 バイパス路 24 二方弁[Explanation of symbols] 1,21 Air conditioner 2 Compressor 3 Four-way valve 4 Indoor fan 5 Indoor heat exchanger 6 Expansion valve 7 Outdoor fan 8 Outdoor heat exchanger 9 Refrigerant piping 10 Evaporation temperature sensor 11 Discharge temperature sensor 12, 12A Outdoor controller 22 Bypass passage 24 Two-way valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機,四方弁,室内ファン
を具備した室内熱交換器,膨張弁,室外ファンを具備し
た室外熱交換器を冷媒配管により順次接続してなる冷凍
サイクルを有する空気調和機において、 上記圧縮機から吐出される冷媒の吐出温度を検出する吐
出温度温度センサーと、 上記冷凍サイクルを循環する冷媒の循環方向が暖房運転
時と同じであって前記膨脹弁を開くと共に、上記室内,
室外ファンの運転を停止せしめるメカトロ除霜、または
暖房運転時上記圧縮機から吐出される冷媒の一部を上記
室外熱交換器内へ導入せしめるクイック除霜のどちらか
一方の除霜を運転すると共に、上記吐出温度センサーに
より検出された吐出温度に応じて、その一方の除霜運転
から上記冷凍サイクルを循環する冷媒の循環方向が暖房
運転時と逆であって上記室内,外ファンの運転を停止せ
しめるリバース除霜運転へ移行せしめる制御手段と、 を有することを特徴とする空気調和機。
1. An air conditioner having a refrigeration cycle in which at least a compressor, a four-way valve, an indoor heat exchanger equipped with an indoor fan, an expansion valve, and an outdoor heat exchanger equipped with an outdoor fan are sequentially connected by a refrigerant pipe. In the discharge temperature temperature sensor for detecting the discharge temperature of the refrigerant discharged from the compressor, the refrigerant circulating in the refrigeration cycle has the same circulation direction as in the heating operation and the expansion valve is opened, and ,
While operating either mechatronic defrosting, which stops the operation of the outdoor fan, or quick defrosting, which introduces part of the refrigerant discharged from the compressor into the outdoor heat exchanger during heating operation. According to the discharge temperature detected by the discharge temperature sensor, the circulation direction of the refrigerant circulating in the refrigeration cycle from one defrosting operation is opposite to that in the heating operation, and the operation of the indoor and outdoor fans is stopped. An air conditioner comprising: a control unit that shifts to reverse defrosting operation.
【請求項2】 請求項1記載の空気調和機において、制
御手段は、吐出温度の検出値が所定値よりも高い場合に
は、メカトロ除霜またはクイック除霜運転からリバース
除霜運転へ移行せしめる構成であることを特徴とする空
気調和機。
2. The air conditioner according to claim 1, wherein the control means shifts from the mechatronics defrosting or quick defrosting operation to the reverse defrosting operation when the detected value of the discharge temperature is higher than a predetermined value. An air conditioner having a configuration.
【請求項3】 請求項2記載の空気調和機において、制
御手段は、除霜運転時に検出された吐出温度が第1の所
定値以下に低下したときに暖房運転に復帰させる構成で
あることを特徴とする空気調和機。
3. The air conditioner according to claim 2, wherein the control means is configured to return to the heating operation when the discharge temperature detected during the defrosting operation falls below a first predetermined value. A characteristic air conditioner.
【請求項4】 請求項2または3記載の空気調和機にお
いて、制御手段は、除霜運転時に検出された吐出温度が
記憶された除霜運転中の最低吐出温度よりも所定値上昇
したときに暖房運転に復帰させる構成であることを特徴
とする空気調和機。
4. The air conditioner according to claim 2 or 3, wherein the control means, when the discharge temperature detected during the defrosting operation rises by a predetermined value from the stored minimum discharge temperature during the defrosting operation. An air conditioner characterized by being configured to return to heating operation.
【請求項5】 請求項1〜4のいずれか1項に記載の空
気調和機において、制御手段は、吐出温度に代えて、圧
縮機のケース温度であるコンプケース温度,希釈度,上
記コンプケース温度と冷媒の高圧基準の飽和温度との
差,のいずれかを判断基準として使用する構成であるこ
とを特徴とする空気調和機。
5. The air conditioner according to any one of claims 1 to 4, wherein the control means replaces the discharge temperature with a CompCase temperature which is a case temperature of the compressor, a dilution degree, and the CompCase. An air conditioner characterized by being configured to use either of the difference between the temperature and the saturation temperature of the high pressure standard of the refrigerant as a judgment standard.
JP13418395A 1995-05-31 1995-05-31 Air conditioner Expired - Fee Related JP3416897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13418395A JP3416897B2 (en) 1995-05-31 1995-05-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13418395A JP3416897B2 (en) 1995-05-31 1995-05-31 Air conditioner

Publications (2)

Publication Number Publication Date
JPH08327194A true JPH08327194A (en) 1996-12-13
JP3416897B2 JP3416897B2 (en) 2003-06-16

Family

ID=15122386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13418395A Expired - Fee Related JP3416897B2 (en) 1995-05-31 1995-05-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP3416897B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278536A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2010002127A (en) * 2008-06-20 2010-01-07 Denso Corp Refrigerating cycle device
WO2015019612A1 (en) * 2013-08-09 2015-02-12 株式会社日本クライメイトシステムズ Vehicle air-conditioning device
CN107202420A (en) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 Teat pump boiler
JP2020165545A (en) * 2019-03-28 2020-10-08 株式会社富士通ゼネラル Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278536A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Air conditioner
JP4622921B2 (en) * 2006-04-03 2011-02-02 パナソニック株式会社 Air conditioner
JP2010002127A (en) * 2008-06-20 2010-01-07 Denso Corp Refrigerating cycle device
WO2015019612A1 (en) * 2013-08-09 2015-02-12 株式会社日本クライメイトシステムズ Vehicle air-conditioning device
JP2015033930A (en) * 2013-08-09 2015-02-19 株式会社日本クライメイトシステムズ Vehicle air conditioner
US10018401B2 (en) 2013-08-09 2018-07-10 Japan Climate Systems Corporation Vehicle heat pump with defrosting mode
CN107202420A (en) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 Teat pump boiler
JP2020165545A (en) * 2019-03-28 2020-10-08 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JP3416897B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
EP1243880B1 (en) Refrigerator with a plurality of parallel refrigerant passages
JP4812606B2 (en) Air conditioner
KR100352536B1 (en) Refrigerator
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
JP5641875B2 (en) Refrigeration equipment
JP5434460B2 (en) Heat pump equipment
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP2008096033A (en) Refrigerating device
JP2002107014A (en) Air conditioner
JP5210364B2 (en) Air conditioner
JP5939764B2 (en) Heat pump device and heat pump water heater
JP4760974B2 (en) Refrigeration equipment
JP5062039B2 (en) Refrigeration equipment
KR102367222B1 (en) Refrigerator and method for controlling the same
JP2011169475A (en) Refrigerator and refrigerating device connected with the same
WO2018229826A1 (en) Refrigeration cycle device
JP3416897B2 (en) Air conditioner
JPH08327193A (en) Air conditioner
JP2018096632A (en) Refrigerant circuit system, control device and control method
JP2745828B2 (en) Operation control device for refrigeration equipment
JP2018173195A (en) Refrigerator
JP4120471B2 (en) Refrigeration equipment
JP2009236346A (en) Refrigerating device
JP2007298188A (en) Refrigerating device
JP2007051840A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees