WO2018229826A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2018229826A1
WO2018229826A1 PCT/JP2017/021631 JP2017021631W WO2018229826A1 WO 2018229826 A1 WO2018229826 A1 WO 2018229826A1 JP 2017021631 W JP2017021631 W JP 2017021631W WO 2018229826 A1 WO2018229826 A1 WO 2018229826A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
valve
defrost
refrigeration cycle
Prior art date
Application number
PCT/JP2017/021631
Other languages
French (fr)
Japanese (ja)
Inventor
寛也 石原
純 三重野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780091251.7A priority Critical patent/CN110709649B/en
Priority to PCT/JP2017/021631 priority patent/WO2018229826A1/en
Priority to JP2019524563A priority patent/JP6707195B2/en
Publication of WO2018229826A1 publication Critical patent/WO2018229826A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • the present invention relates to defrost (defrosting) in an apparatus using a non-azeotropic refrigerant as the refrigerant.
  • a refrigeration cycle apparatus there is a method in which defrosting is performed by performing a defrost operation in which a gas (gas) -like refrigerant (hot gas) discharged from a compressor is passed through an evaporator having frost.
  • a gas (gas) -like refrigerant (hot gas) discharged from a compressor is passed through an evaporator having frost.
  • a refrigeration cycle apparatus in which a hot gas bypass pipe is installed between a compressor and an evaporator has been proposed (see, for example, Patent Document 1).
  • the hot gas discharged from a compressor is directly flowed in into an evaporator via hot gas bypass piping.
  • control based on the discharge superheat degree of the discharged refrigerant and the discharge pressure is performed.
  • a non-azeotropic refrigerant in which a plurality of refrigerants are mixed may be used for the refrigerant circuit. Since non-azeotropic refrigerants have different boiling points, it is difficult to obtain a high discharge temperature. Therefore, when performing defrosting with hot gas, there is a problem that it is difficult to secure a large amount of heat (defrosting heat amount) related to defrosting, and it takes time.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can shorten the time of defrosting operation using hot gas.
  • a refrigeration cycle apparatus is a refrigeration cycle apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion valve, an evaporator, and an accumulator are connected in series with a pipe, and a non-azeotropic refrigerant is circulated.
  • An oil return pipe that has an oil return pipe that returns the refrigeration oil in the liquid refrigerant accumulated in the compressor to the compressor, and an on-off valve that is installed on the oil return pipe and controls the amount of refrigeration oil flowing from the accumulator to the compressor
  • the defrost control unit waits after starting the defrost operation. Since the oil return adjuster is closed for the set time and the control to open the oil return adjuster is performed when the standby set time elapses, the liquid refrigerant can be positively stored in the accumulator 8. .
  • a refrigerant having a low discharge temperature is left as a liquid refrigerant in the accumulator, and a large amount of refrigerant having a high discharge temperature is discharged from the compressor, so that a large amount of defrost heat can be secured.
  • Time can be shortened.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the apparatus structure etc. of the refrigerating-cycle apparatus 100 are demonstrated.
  • the refrigeration cycle apparatus 100 performs cooling of a target space, cooling of an object, and the like using a refrigeration cycle (heat pump cycle) that circulates refrigerant.
  • the compressor 1, the condensers 4a and 4b, the expansion valve 6 and the evaporator 7 are connected by piping to form a refrigerant circuit.
  • the refrigerant circuit is not limited to the configuration shown in FIG.
  • the evaporator 7 is built in a cooler casing (not shown).
  • a non-azeotropic refrigerant is used as the refrigerant.
  • the non-azeotropic refrigerant is a refrigerant in which a plurality of refrigerants having different boiling points are mixed.
  • the plurality of refrigerants have different pressures in the refrigerant circuit.
  • a low-pressure refrigerant with a low pressure has a lower specific heat ratio, and therefore has a lower discharge temperature than a high-pressure refrigerant with a high pressure. For this reason, the discharge temperature of the non-azeotropic refrigerant containing the low-pressure refrigerant is lower than that of the single high-pressure refrigerant.
  • the non-azeotropic refrigerant may or may not have flammability.
  • the non-azeotropic refrigerant mixture is, for example, R407C or R448A.
  • the ratio XR32 (wt%) of R32 is 33 ⁇ XR32 ⁇ 39
  • the ratio XR125 (wt%) of R125 is 27 ⁇ XR125 ⁇ 33
  • the ratio XR134a (wt%) of R134a is The condition of 11 ⁇ XR134a ⁇ 17
  • the ratio of R1234yf XR1234yf (wt%) is the condition of 11 ⁇ XR1234yf ⁇ 17
  • the ratio of CO 2 XCO 2 (wt%) is 3 ⁇ XCO 2 ⁇ 9.
  • the compressor 1 sucks the refrigerant, compresses the sucked refrigerant, and discharges it in a high temperature and high pressure state.
  • it has an inverter circuit and has a configuration in which the capacity is controlled by controlling the number of revolutions of a motor included in the compressor 1.
  • the discharge temperature by the adiabatic compression of the sucked gas refrigerant becomes higher as the refrigerant has a larger specific heat ratio.
  • the oil separator 2 has a function of separating the refrigerating machine oil discharged together with the gaseous refrigerant (gas refrigerant) discharged from the compressor 1 from the gas refrigerant.
  • the refrigerating machine oil separated in the oil separator 2 is returned to the compressor 1 from a capillary tube (not shown) connected to the compressor 1.
  • the condenser 4a and the condenser 4b perform heat exchange between the air supplied from the condenser fan 5a and the condenser fan 5b and the refrigerant, and condense and liquefy the refrigerant.
  • the condenser 4 a and the condenser 4 b are connected to the discharge side of the oil separator 2 via the check valve 3.
  • FIG. 1 illustrates the case where two condensers 4a and 4b are connected in parallel, any one having at least one condenser may be used.
  • the expansion valve 6 serves as a throttle device (flow control device) that expands the refrigerant by decompressing it.
  • the evaporator 7 exchanges heat between the air and the refrigerant to evaporate the refrigerant.
  • the blower fan 7 a sends air to the evaporator 7 and promotes heat exchange in the evaporator 7.
  • the accumulator 8 stores liquid refrigerant that is liquid refrigerant that has flowed out of the evaporator 7.
  • the accumulator 8 is connected by piping between the evaporator 7 and the suction side of the compressor 1. Therefore, the gaseous gaseous refrigerant that has passed through the accumulator 8 is sucked into the compressor 1 and compressed.
  • An oil return pipe 9 is connected to the bottom side of the accumulator 8.
  • the oil return pipe 9 is a pipe that returns the refrigeration oil in the liquid refrigerant accumulated in the accumulator 8 to the compressor 1. At this time, not only refrigerator oil but also a small amount of liquid refrigerant is included.
  • an oil return adjuster 10 is disposed on the oil return pipe 9.
  • the oil return regulator 10 has an open / close valve, and opens or shuts off the oil return pipe 9 based on an instruction from the defrost control means 30, for example. When the oil return regulator 10 is opened, the refrigerating machine oil and a small amount of liquid refrigerant stored in the accumulator 8 are returned to the compressor 1 via the oil return pipe 9.
  • the refrigeration cycle apparatus 100 includes a hot gas bypass pipe 11, a flow rate regulator 12, and a defrost control unit 30.
  • the hot gas bypass pipe 11 is connected between the compressor 1 and the evaporator 7 and serves as a hot gas bypass flow path.
  • the hot gas bypass pipe 11 allows the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to flow directly into the evaporator 7 without passing through the condenser 4a and the condenser 4b during the defrost operation.
  • the flow rate adjuster 12 adjusts the flow rate of the refrigerant flowing through the hot gas bypass pipe 11.
  • the flow rate regulator 12 includes, for example, a first on-off valve 12a and a second on-off valve 12b connected in parallel.
  • coolant which flows into the hot gas bypass piping 11 is adjusted with the combination of opening and closing of the 1st on-off valve 12a and the 2nd on-off valve 12b.
  • the flow rate of the refrigerant when the first on-off valve 12a is opened is larger than the flow rate that flows when the second on-off valve 12b is opened.
  • FIG. 1 illustrates the case where the flow rate regulator 12 includes the first on-off valve 12a and the second on-off valve 12b.
  • the flow rate regulator 12 may be composed of three or more on-off valves that can adjust the refrigerant flow rate in multiple stages.
  • you may comprise with one or more motor-driven valves which can adjust an opening degree continuously.
  • a needle valve 13 serving as a flow rate adjusting valve is connected in series with the first on-off valve 12a.
  • the needle valve 13 is disposed on the evaporator 7 side with respect to the first on-off valve 12a.
  • the needle valve 13 is adjusted in opening degree so that the refrigerant liquid does not return to the compressor 1.
  • the opening degree is set manually so that a predetermined flow rate of refrigerant flows during defrost control.
  • an opening degree can be adjusted so that it may become a refrigerant
  • the needle valve 13 may be provided at the rear stage of the first on-off valve 12a. Further, the needle valve 13 may be provided only at the subsequent stage of the second on-off valve 12b.
  • the defrost control means 30 controls the operation of the flow rate regulator 12.
  • the defrost control means 30 includes, for example, a control device 31, a storage device 32, and a timing device 33.
  • the control device 31 is a device that performs processing such as calculation and determination based on input data such as temperature, and controls equipment of the refrigeration cycle apparatus 100 such as the compressor 1 and the oil return regulator 10.
  • the storage device 32 is a device that stores data necessary for the control device 31 to perform processing.
  • the time measuring device 33 is a device such as a timer that performs time measurement necessary for the determination of the control device 31.
  • control device 31 is composed of, for example, a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit).
  • storage device 32 has the data which made the process procedure which the control apparatus 31 performs a program.
  • the control arithmetic processing unit executes control based on the program data to realize control.
  • the present invention is not limited to this, and each device may be configured by a dedicated device (hardware).
  • the defrost control means 30 closes both the first on-off valve 12a and the second on-off valve 12b so that the refrigerant does not flow into the hot gas bypass pipe 11, for example, during the normal cooling operation.
  • the first on-off valve 12a and the second on-off valve 12b are controlled based on the flow rate of the refrigerant passed through the hot gas bypass pipe 11. For example, the first on-off valve 12a is opened to close the second on-off valve 12b, or both the first on-off valve 12a and the second on-off valve 12b are opened.
  • the defrost control means 30 adjusts the flow rate regulator 12 according to the discharge superheat degree SH of the compressor 1 and the suction pressure Pin of the compressor 1 detected by the refrigerant state detection means 20 during the hot gas defrost control. Then, control for adjusting the flow rate of the refrigerant flowing through the hot gas bypass pipe 11 is performed. Further, in the first embodiment, the oil return adjuster 10 is controlled to be closed when the defrost operation is started and to be opened after the standby set time.
  • the refrigerant state detection means 20 detects the discharge superheat degree SH of the refrigerant discharged from the compressor 1 and the suction pressure Pin of the compressor 1.
  • the refrigerant state detection means 20 includes a discharge temperature sensor 20a, a suction pressure sensor 20b, and a high pressure temperature sensor 20c.
  • the discharge temperature sensor 20a detects the discharge refrigerant temperature of the refrigerant discharged from the compressor 1.
  • the suction pressure sensor 20b detects the suction pressure Pin of the refrigerant sucked by the compressor 1.
  • the high-pressure temperature sensor 20 c detects the refrigerant temperature that has flowed out of the oil separator 2.
  • the defrost control means 30 also functions as part of the refrigerant state detection means.
  • the defrost control means 30 calculates the difference between the discharge refrigerant temperature detected by the discharge temperature sensor 20a and the high-pressure side temperature detected by the high-pressure temperature sensor 20c, and detects it as the discharge superheat degree SH.
  • the defrost control means 30 closes the oil return adjuster 10 until the standby set time from the start of the defrost.
  • the flow of the refrigerant in the refrigeration cycle apparatus 100 during the defrost operation will be described with reference to FIG.
  • the refrigerant discharged from the compressor 1 is separated into refrigerant and oil in the oil separator 2.
  • the gas refrigerant that has flowed out of the oil separator 2 branches via the check valve 3 into a refrigerant that flows to the condenser 4a and condenser 4b side and a refrigerant that flows to the hot gas bypass pipe 11 side.
  • the flow rate regulator 12 is closed during the normal cooling operation, so that the refrigerant does not pass through the hot gas bypass pipe 11.
  • the flow rate regulator 12 is opened.
  • at least one of the first on-off valve 12a and the second on-off valve 12b is opened. Details of the control will be described later.
  • the refrigerant that has flowed through the flow rate regulator 12 passes through the inside of the evaporator 7.
  • the frost is melted by heat exchange between the refrigerant and the frost adhered to the evaporator 7. Since the refrigerant in which the frost is melted in the evaporator 7 is partially condensed, it is gas-liquid separated by the accumulator 8. The gas refrigerant exiting the accumulator 8 is sucked into the compressor 1. On the other hand, the liquid refrigerant accumulated in the accumulator 8 is gradually returned to the compressor 1 by opening the oil return regulator 10.
  • the refrigerant that is more likely to evaporate first evaporates.
  • the high-pressure refrigerant evaporates earlier than the low-pressure refrigerant because the evaporation temperature is lower in the high-pressure refrigerant.
  • the composition of the refrigerant circulating in the refrigerant circuit becomes high-pressure refrigerant rich in which the high-pressure refrigerant is increased.
  • the discharge temperature of the refrigerant discharged from the compressor 1 is likely to rise.
  • the temperature difference between the frosted evaporator 7 and the refrigerant widens, and the amount of heat exchange between the refrigerant and frost in the evaporator 7 that becomes the amount of heat for defrosting increases.
  • FIG. 2 is a diagram illustrating a processing procedure related to control in the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the defrost control means 30 performs hot gas defrost control processing during the defrost operation.
  • the hot gas defrost control performed by the defrost control means 30 of the refrigeration cycle apparatus 100 will be described with reference to FIGS. 1 and 2.
  • step ST1 when it is determined that the defrost operation is necessary, or when the defrost operation is performed periodically, the normal cooling operation is terminated (step ST1). Then, by the pump-down operation, the refrigerant recovery for enclosing the refrigerant remaining in the refrigerant circuit in a condenser or the like is performed for a predetermined time (step ST2). After the refrigerant recovery is completed, the pump down operation is stopped (step ST3). At this time, the defrost control means 30 closes the valve of the oil return regulator 10 and keeps it closed. Thereafter, the defrost operation is started (step ST10).
  • the defrost control means 30 opens the first on-off valve 12a of the flow rate regulator 12 (step ST11). A refrigerant having a first refrigerant flow rate flows through the hot gas bypass pipe 11.
  • the defrost control means 30 starts time measurement related to the oil return adjuster 10 in a process different from the following steps when the defrost operation is started (step ST11A). Then, it is determined whether or not a predetermined standby setting time has elapsed (step ST12A). If it is determined that the standby set time has elapsed, the valve of the oil return regulator 10 is opened (step ST13A).
  • the valve of the oil return regulator 10 is closed, and the liquid refrigerant having a high proportion of the low-pressure refrigerant is not returned to the compressor 1 but is stored in the accumulator 8, so that the compressor 1 In the refrigerant discharged from the refrigerant, the ratio of the high-pressure refrigerant can be increased, and the discharge temperature can be raised above the discharge temperature of the non-azeotropic refrigerant during normal operation.
  • the refrigerant state detection means 20 detects the discharge superheat degree SH and the suction pressure Pin of the compressor 1 (step ST12).
  • the discharge superheat degree SH is detected by the defrost control means 30 calculating the difference between the discharge refrigerant temperature detected by the discharge temperature sensor 20a and the high pressure side temperature detected by the high pressure temperature sensor 20c.
  • the suction pressure Pin 20 is detected by the suction pressure sensor 20b.
  • the defrost control means 30 determines whether or not the period during which the discharge superheat degree SH is larger than the set superheat degree SHref and the suction pressure Pin is smaller than the set pressure Pref is continued for a predetermined period t1 (step). ST13).
  • the set superheat degree SHref and the set pressure Pref are stored in advance in the storage device 32 of the defrost control means 30.
  • the predetermined period t1 is set to 10 seconds, for example.
  • the defrost control means 30 opens the first on-off valve 12a side of the flow regulator 12 and keeps the second on-off valve 12b closed until the condition in step ST13 is satisfied. To control.
  • step ST13 When the condition in step ST13 is satisfied, that is, in the case of YES in step ST13 in FIG. 2, the defrost control means 30 opens the second on-off valve 12b (step ST14). Then, the flow rate of the refrigerant flowing through the hot gas bypass pipe 11 becomes larger than when only the first on-off valve 12a is open. For this reason, the defrost time can be shortened.
  • step ST14 the discharge superheat degree SH and the suction pressure Pin of the compressor 1 are detected (step ST15). Then, the defrost control means 30 determines whether or not the period during which the discharge superheat degree SH is equal to or lower than the set superheat degree SHref or the period during which the suction pressure Pin is equal to or higher than the set pressure Pref continues for a predetermined period t2 ( Step ST16).
  • the predetermined period t2 is set to 3 seconds, for example.
  • the defrosting operation is performed in a state where both the first on-off valve 12a and the second on-off valve 12b of the flow rate regulator 12 are opened. That is, the flow is repeated along the route in the case of NO in step ST16.
  • step ST16 if the condition of step ST16 is satisfied, that is, if YES in step ST16, it is determined that there is a possibility of liquid return to the compressor 1, and the second opening / closing valve 12b is determined by the defrost control means 30. Is closed (step ST17). That is, a large amount of refrigerant used for defrost flows into the accumulator 8, and the liquid refrigerant may return to the compressor 1 beyond the allowable amount that allows the gas-liquid separation of the accumulator 8, so the second on-off valve 12b is closed. Reduce the amount of refrigerant used for defrosting. Thereafter, the defrosting operation is performed in a state where the first on-off valve 12a and the second on-off valve 12b are closed (steps ST12 and ST13).
  • the defrost operation is controlled by the flow from ST11 to ST17 by the defrost control means 30, and the flow is repeated until the defrost operation stop condition is reached.
  • the defrost operation stop condition is that the temperature at a predetermined location rises above a predetermined temperature. In the first embodiment, for example, when the outlet temperature of the evaporator 7 becomes 25 ° C. or higher, the defrost operation is stopped.
  • the defrost operation stop condition can be appropriately set according to the specifications of the refrigeration cycle apparatus 100.
  • the liquid return to the compressor 1 can be performed while shortening the period of the defrost operation. It can be surely prevented. That is, the amount of defrost heat increases as the amount of refrigerant flowing into the evaporator 7 increases and the refrigerant temperature increases. For this reason, the time which melts the frost adhering to the inside of the evaporator 7 also becomes short.
  • the pressure on the discharge side of the compressor 1 is detected rather than the pressure on the suction side of the compressor 1 as in the suction pressure sensor 20b shown in FIG.
  • the defrost control means 30 controls the opening and closing of the first on-off valve 12a and the second on-off valve 12b, and controls the amount of hot gas flowing into the evaporator 7.
  • the suction pressure Pin of the compressor 1 rises and the discharge pressure Pout of the compressor 1 does not increase
  • the first on-off valve 12a and the second on-off valve 12b are both opened from the first open / close state. Since only the valve 12a is not switched to an open state, the amount of liquid returned to the compressor 1 during defrosting increases.
  • the second on-off valve 12b is closed when a predetermined period has elapsed when the suction pressure Pin is equal to or higher than the set pressure Pref and the discharge superheat degree SH is equal to or lower than the set superheat degree SHref.
  • the predetermined period is set to 3 seconds, for example.
  • the reason why the amount of liquid return to the compressor 1 can be reduced by making the suction pressure Pin of the compressor 1 lower than the set pressure Pref is as follows.
  • the following three types of heat sources are used for condensing the hot gas refrigerant during the defrost operation. i) Sensible heat of the cooler housing (including local piping) ii) Sensible heat of frost iii) Latent heat of frost formation
  • i) to iii) can be further subdivided.
  • Sensible heat of -1 cooler housing (-40 ° C to 0 ° C) i) -2 Sensible heat of the cooler casing (0 ° C to + 20 ° C) ii) -1 Sensible heat of frost formation (-40 ° C to 0 ° C) ii) -2 Sensible heat of frost formation (0 ° C to + 20 ° C) iii) Latent heat of frosting
  • the temperature described above is an example in which defrosting is started from ⁇ 40 ° C. inside the cabinet, and defrosting is completed when the housing temperature is + 20 ° C.
  • the amount of heat used for condensing hot gas is only i) -1 and ii) -1, and the other amount of heat is not used for condensing hot gas. It is possible to reduce the amount of condensation.
  • the defrost control means. 30 starts the defrost operation, the oil return adjuster 10 is closed for the standby setting time, and the liquid refrigerant is positively accumulated in the accumulator 8, and when the standby setting time elapses, the oil return adjustment is performed.
  • FIG. FIG. 3 is a diagram showing the configuration of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
  • devices having the same reference numerals as those in FIG. 1 perform the same operation as described in the first embodiment.
  • ⁇ System shutoff valve 40> In the refrigeration cycle apparatus 100 of FIG. 3, a system shutoff valve 40 is disposed on the inflow side of the condenser 4b. By opening and closing the system shut-off valve 40, it is possible to select the circulation or shut-off of the refrigerant to the condenser b.
  • FIG. 1 the case where the system shut-off valve 40 is provided only on the side of a part of the condenser 4b is illustrated, but the present invention is not limited to this.
  • System shutoff valves 40 may be provided in all the condensers 4a and 4b, and the defrost control means 30 may select the system shutoff valves 40 to be closed.
  • the defrost control means 30 opens the system shutoff valve 40 and allows the refrigerant to pass through the plurality of condensers 4a and 4b to perform the cooling operation. Further, during the defrost operation, the defrost control means 30 closes the system shutoff valve 40 in step ST11 of FIG. 2 described above to shut off the flow of the refrigerant to the condenser 4b.
  • the refrigeration cycle apparatus 100 according to the second embodiment is configured so that the hot gas bypass pipe is used during the defrost operation by arranging the system shutoff valve 40 on the inflow side of the condenser 4.
  • the defrost time can be shortened by causing the refrigerant to flow to 11 and blocking the refrigerant to flow to the condenser 4b to increase the condensation temperature as compared with the normal cooling operation.
  • Embodiment 3 FIG.
  • the defrost control means 30 stops all the condenser fans 5. Also good. By stopping the condenser fan 5 in the defrost operation, the amount of refrigerant flowing to the condenser 4 side can be reduced by reducing the amount of heat exchange in the condenser 4.
  • FIG. 4 is a diagram illustrating a processing procedure related to control in the refrigeration cycle apparatus 100 according to Embodiment 4 of the present invention.
  • the configuration of the equipment and the like of the refrigeration cycle apparatus 100 of the fourth embodiment is the same as that of FIG. 1 described in the first embodiment.
  • the defrost control means 30 can control the operating frequency of the compressor 1 during the defrost operation compared to the refrigeration cycle apparatus 100 according to the first to third embodiments. It is what I did. In the following, the description will be focused on differences from the first embodiment.
  • the defrost control means 30 can perform control to increase or decrease the operation frequency f of the compressor 1 during the defrost operation.
  • the defrost control means 30 opens only the first on-off valve 12a and operates the compressor 1 at a preset initial operation frequency f0. Then, the defrost control means 30 increases or decreases the operating frequency f based on the discharge superheat degree SH and the suction pressure Pin while keeping the refrigerant flow rate in the hot gas bypass pipe 11 constant.
  • the defrost control means 30 determines in the defrost control means 30 whether the discharge superheat degree SH is equal to or less than the set superheat degree SHref or the period during which the suction pressure Pin is equal to or less than the set pressure Pref continues for a predetermined period t3. (Step ST23).
  • the set superheat degree SHref and the set pressure Pref are stored in the defrost control means 30 in advance.
  • the compressor operating frequency is decreased (step ST24).
  • the predetermined period t3 is set to 3 seconds, for example.
  • the defrost control means 30 continues the defrost operation with the first on-off valve 12a side of the flow regulator 12 open and the second on-off valve 12b closed until the condition of step ST23 is satisfied. To control.
  • the defrost control means 30 determines whether or not the period during which the discharge superheat degree SH is greater than the set superheat degree SHref and the suction pressure Pin is greater than the set pressure Pref is continued for a predetermined period t4 (step ST25).
  • the predetermined period t4 is set to 10 seconds, for example. If the condition of step ST25 is not satisfied, that is, if NO in step ST25, the process is repeated from step ST21 again. If the condition of step ST25 is satisfied, that is, if YES in step ST25, the defrost control means 30 compares the operating frequency f of the compressor 1 with the maximum operating frequency fmax of the compressor 1 (step ST26).
  • step ST27 If the operating frequency f of the compressor 1 can be increased, that is, if YES in step ST26, the compressor 1 is controlled to increase by a predetermined frequency (step ST27). Then, the flow is repeated again from step ST21.
  • the operating frequency f of the compressor 1 is increased, the suction pressure Pin of the compressor 1 is decreased, and the discharge superheat degree SH is also decreased.
  • the operating frequency f of the compressor 1 is the maximum operating frequency fmax (NO in step ST26)
  • the speed is not increased and the second on-off valve 12b is opened (step ST28).
  • step ST30 the discharge superheat degree SH and the suction pressure Pin of the compressor 1 are detected (step ST29). Then, it is determined whether or not a period during which the discharge superheat degree SH is greater than the set superheat degree SHref and the suction pressure Pin is greater than the set pressure Pref continues for a predetermined period t5 (step ST30). In the fourth embodiment, t5 is set to 10 seconds, for example. If the above condition is satisfied, that is, if YES in step ST30, the operating frequency f of the compressor 1 is increased by a predetermined amount (step ST31). When the operating frequency f of the compressor 1 is increased, the suction pressure Pin of the compressor 1 is decreased, and the discharge superheat degree SH is also decreased. After the speed of the compressor 1 is increased, the flow from step ST28 is repeated. If the maximum operating frequency fmax has already been reached, the operation at the maximum operating frequency fmax is continued, and the flow from step ST28 is repeated.
  • step ST30 When the condition of step ST30 is not satisfied, that is, when NO in step ST30, the defrost control means 30 has a predetermined period during which the discharge superheat degree SH is equal to or lower than the set superheat degree SHref or the suction pressure Pin is equal to or lower than the set pressure Pref. It is determined whether or not t6 has been continued (step ST32). In the fourth embodiment, the predetermined period t6 is set to 3 seconds, for example. If NO in step ST32, it is determined that liquid return to the compressor 1 has not yet occurred, and the flow from ST28 is repeated again. If YES in step ST32, it is determined whether or not the operating frequency f of the compressor 1 is minimum (step ST33).
  • step ST34 When the operating frequency f of the compressor 1 does not reach the minimum operating frequency fmin, the compressor operating frequency is decreased (step ST34). The flow from step ST28 is repeated until the operating frequency f of the compressor 1 reaches the minimum operating frequency fmin. On the other hand, when the operating frequency f has reached the minimum operating frequency fmin, the second on-off valve 12b is closed (step ST35).
  • the refrigerant circulation amount is controlled by increasing or decreasing the operating frequency f of the compressor 1 in a state where both the first on-off valve 12a and the second on-off valve 12b are open (steps ST29 to ST35). And when the possibility of liquid return to the compressor 1 occurs, the hot gas defrost control is performed with the second on-off valve 12b closed and only the first on-off valve 12a opened again (step). ST21 to ST35).
  • the defrost operation is controlled by the flow from step ST21 to step ST35 by the defrost control means 30, and the flow is repeated until the defrost operation stop condition is reached.
  • the defrost operation stop condition is that the temperature at a predetermined location rises above a predetermined temperature.
  • the defrost operation stop condition can be appropriately set according to the specifications of the refrigeration cycle apparatus 100.
  • the compressor 1 is controlled by controlling both the flow rate of the refrigerant flowing through the hot gas bypass pipe 11 by the flow rate regulator 12 and the control of the refrigerant suction amount sucked into the compressor 1. Since the hot gas defrost can be performed with the maximum capacity within the range where the liquid return state does not occur, the liquid return to the compressor 1 can be reliably prevented while further shortening the defrost time.
  • the defrosting heat amount is lower than that of the refrigeration cycle apparatus 100 of the first embodiment or the like.
  • the defrost time can be further shortened.
  • FIG. 5 is a diagram showing a configuration of the refrigeration cycle apparatus 100 according to Embodiment 5 of the present invention.
  • the liquid level detection sensor 21 is a liquid level detection device that detects the position of the liquid refrigerant in the accumulator 8 in the height direction of the liquid level.
  • the defrost control means 30 controls the oil return adjuster 10 based on the position of the liquid level of the accumulator 8 detected by the liquid level detection sensor 21 during the defrost operation. It is.
  • the basic operation in the defrost operation is performed in the same procedure as the procedure shown in FIG. 2 described in the first embodiment.
  • the operation of the oil return adjuster 10 during the defrost operation is different.
  • the refrigeration cycle apparatus 100 of the fifth embodiment does not execute the processes of steps ST11A to ST13A described in the first embodiment, and performs the following processes.
  • FIG. 6 is a diagram illustrating a processing procedure related to the control of the oil return regulator 10 during the defrost operation according to the fifth embodiment of the present invention.
  • the process in FIG. 6 is performed by the defrost control means 30.
  • the valve of the oil return regulator 10 is closed.
  • hot gas defrost control in the defrost operation is started (step ST10), the position of the liquid level of the accumulator 8 is determined based on the detection of the liquid level detection sensor 21 (step ST41).
  • the detected liquid level position which is the position of the liquid level of the accumulator 8 related to the detection, is compared with a preset set liquid level position, and it is determined whether or not the set liquid level position ⁇ the detected liquid level position (step ST42). . If it is determined that the set liquid level position ⁇ the detected liquid level position, it is determined whether the preset liquid level position ⁇ the detected liquid level position has passed a preset valve opening set time (step ST43). Here, in the fifth embodiment, 10 seconds is set as the valve opening setting time. When the set liquid level position ⁇ the detected liquid level position continues for the valve opening set time, the valve of the oil return adjuster 10 is opened (step ST44). And during defrost operation, it returns to step ST41 and continues processing.
  • step ST42 determines whether or not the set liquid level position is less than the detected liquid level position. If it is determined that the detected liquid level position ⁇ the set liquid level position, it is determined whether or not the state of the detected liquid level ⁇ the set liquid level position has passed a preset valve closing set time (step ST46).
  • a preset valve closing set time 3 seconds is set as the valve closing setting time.
  • the defrost control means 30 judges the position of the liquid level in the liquid refrigerant accumulated in the accumulator 8, and controls the opening and closing of the valve of the oil return regulator 10 based on the detected liquid level position.
  • a low-pressure rich liquid refrigerant can be stored in 8. And since a refrigerant
  • coolant can be raised.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

This refrigeration cycle device comprises a refrigerant circuit which circulates a non-azeotropic refrigerant and in which a compressor, a condenser, an expansion valve, an evaporator, and an accumulator are connected in series with piping, wherein the refrigeration cycle device comprises: an oil return pipe that returns, to the compressor, refrigeration oil in a liquid refrigerant that has accumulated in the accumulator; an oil return regulator that has an on-off valve, that is disposed on the oil return pipe, and that controls the volume of refrigeration oil flowing from the accumulator to the compressor; and a defrost controlling means that performs control so that the oil return regulator is placed in a closed state when a defrost operation to defrost the evaporator is started by refrigerant being circulated in the refrigerant circuit and so that the oil return regulator is opened when a preset wait time has elapsed after the start of the defrost operation.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に係るものである。特に、冷媒として、非共沸冷媒を用いた装置におけるデフロスト(除霜)に関するものである。 The present invention relates to a refrigeration cycle apparatus. In particular, the present invention relates to defrost (defrosting) in an apparatus using a non-azeotropic refrigerant as the refrigerant.
 冷凍サイクル装置において、圧縮機から吐出されるガス(気体)状の冷媒(ホットガス)を、霜が付いた蒸発器に通過させるデフロスト運転を行って、デフロストを行う方法がある。たとえば、圧縮機と蒸発器との間に、ホットガスバイパス配管が設置された冷凍サイクル装置が提案されている(たとえば、特許文献1参照)。そして、デフロスト運転時に、圧縮機から吐出するホットガスを、ホットガスバイパス配管を介して蒸発器に直接流入させる。このとき、吐出される冷媒の吐出過熱度と吐出圧力とに基づく制御を行う。 In a refrigeration cycle apparatus, there is a method in which defrosting is performed by performing a defrost operation in which a gas (gas) -like refrigerant (hot gas) discharged from a compressor is passed through an evaporator having frost. For example, a refrigeration cycle apparatus in which a hot gas bypass pipe is installed between a compressor and an evaporator has been proposed (see, for example, Patent Document 1). And at the time of a defrost operation, the hot gas discharged from a compressor is directly flowed in into an evaporator via hot gas bypass piping. At this time, control based on the discharge superheat degree of the discharged refrigerant and the discharge pressure is performed.
特開2014-119122号公報JP 2014-119122 A
 ここで、冷凍サイクル装置において、たとえば、複数の冷媒が混合している非共沸冷媒を冷媒回路に用いている場合がある。非共沸冷媒は、各冷媒の沸点が異なるため、高い吐出温度を得にくい。したがって、ホットガスによるデフロストを行う際に、デフロストに係る熱量(除霜熱量)を多く確保することが難しく、時間がかかるという課題があった。 Here, in the refrigeration cycle apparatus, for example, a non-azeotropic refrigerant in which a plurality of refrigerants are mixed may be used for the refrigerant circuit. Since non-azeotropic refrigerants have different boiling points, it is difficult to obtain a high discharge temperature. Therefore, when performing defrosting with hot gas, there is a problem that it is difficult to secure a large amount of heat (defrosting heat amount) related to defrosting, and it takes time.
 本発明は、上記のような課題を解決するためになされたもので、ホットガスによるデフロスト運転の時間短縮を実現する冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can shorten the time of defrosting operation using hot gas.
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張弁、蒸発器およびアキュムレータが配管で直列に接続され、非共沸冷媒を循環させる冷媒回路を備えた冷凍サイクル装置であって、アキュムレータに溜まった液状の冷媒中の冷凍機油を圧縮機へ戻す油戻し配管と、開閉弁を有し、油戻し配管上に設置され、アキュムレータから圧縮機に流れる冷凍機油の量を制御する油戻し調整器と、冷媒回路に冷媒を循環させて蒸発器の除霜を行うデフロスト運転開始時に、油戻り調整器を閉止状態にし、デフロスト運転を開始してから、あらかじめ設定した待機設定時間後に油戻り調整器を開放させる制御を行うデフロスト制御手段とを備えるものである。 A refrigeration cycle apparatus according to the present invention is a refrigeration cycle apparatus having a refrigerant circuit in which a compressor, a condenser, an expansion valve, an evaporator, and an accumulator are connected in series with a pipe, and a non-azeotropic refrigerant is circulated. An oil return pipe that has an oil return pipe that returns the refrigeration oil in the liquid refrigerant accumulated in the compressor to the compressor, and an on-off valve that is installed on the oil return pipe and controls the amount of refrigeration oil flowing from the accumulator to the compressor When the defrost operation is started, the refrigerant is circulated through the refrigerant circuit and the refrigerant circuit to defrost the oil, the oil return regulator is closed and the defrost operation is started. And defrost control means for performing control to open the vessel.
 本発明の冷凍サイクル装置によれば、沸点が異なる複数の冷媒を混合した非共沸冷媒を用いた冷媒回路において、デフロスト運転を行う際、デフロスト制御手段が、デフロスト運転を開始してから、待機設定時間の間、油戻し調整器を閉止しておき、待機設定時間が経過すると、油戻し調整器を開放する制御を行うようにしたので、積極的にアキュムレータ8に液冷媒を溜めることができる。このとき、非共沸冷媒のうち、吐出温度が低い冷媒を液冷媒としてアキュムレータに多く残し、吐出温度が高い冷媒を多く圧縮機から吐出させ、除霜熱量を多く確保することができるため、デフロスト時間を短縮することができる。 According to the refrigeration cycle apparatus of the present invention, when a defrost operation is performed in a refrigerant circuit using a non-azeotropic refrigerant in which a plurality of refrigerants having different boiling points are mixed, the defrost control unit waits after starting the defrost operation. Since the oil return adjuster is closed for the set time and the control to open the oil return adjuster is performed when the standby set time elapses, the liquid refrigerant can be positively stored in the accumulator 8. . At this time, among the non-azeotropic refrigerants, a refrigerant having a low discharge temperature is left as a liquid refrigerant in the accumulator, and a large amount of refrigerant having a high discharge temperature is discharged from the compressor, so that a large amount of defrost heat can be secured. Time can be shortened.
本発明の実施の形態1に係る冷凍サイクル装置100の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置100における制御に係る処理の手順を説明する図である。It is a figure explaining the procedure of the process which concerns on the control in the refrigerating-cycle apparatus 100 of Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置100の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態4の冷凍サイクル装置100における制御に係る処理の手順を説明する図である。It is a figure explaining the procedure of the process which concerns on the control in the refrigerating-cycle apparatus 100 of Embodiment 4 of this invention. 本発明の実施の形態5に係る冷凍サイクル装置100の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus 100 which concerns on Embodiment 5 of this invention. 本発明の実施の形態5におけるデフロスト運転時の油戻し調整器10の制御に係る処理の手順を説明する図である。It is a figure explaining the procedure of the process which concerns on control of the oil return regulator 10 at the time of the defrost driving | operation in Embodiment 5 of this invention.
 以下、本発明の実施の形態について、図面を参照しつつ説明する。ここで、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適宜、適用することができる。そして、温度、圧力などの高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, in the following drawings, what attached | subjected the same code | symbol is the same or it corresponds, and shall be common in the whole sentence of embodiment described below. Moreover, the form of the component shown by the whole specification is an illustration to the last, and is not limited to these description. In particular, the combination of the constituent elements is not limited to the combination in each embodiment, and the constituent elements described in the other embodiments can be applied to other embodiments as appropriate. The level of temperature, pressure, and the like is not particularly determined in relation to absolute values, but is relatively determined in terms of the state and operation of the system and apparatus. In addition, when there is no need to distinguish or identify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置100の構成を示す図である。図1に基づいて、冷凍サイクル装置100の機器構成などについて説明する。冷凍サイクル装置100は、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して、対象空間の冷房、対象物の冷却などを行う。冷凍サイクル装置100において、圧縮機1、凝縮器4a、4b、膨張弁6および蒸発器7が配管で接続され、冷媒回路が構成される。ここで、冷媒回路については、図1の構成に限定されるものではない。また、蒸発器7は、クーラ筐体(図示せず)に内蔵されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the apparatus structure etc. of the refrigerating-cycle apparatus 100 are demonstrated. The refrigeration cycle apparatus 100 performs cooling of a target space, cooling of an object, and the like using a refrigeration cycle (heat pump cycle) that circulates refrigerant. In the refrigeration cycle apparatus 100, the compressor 1, the condensers 4a and 4b, the expansion valve 6 and the evaporator 7 are connected by piping to form a refrigerant circuit. Here, the refrigerant circuit is not limited to the configuration shown in FIG. The evaporator 7 is built in a cooler casing (not shown).
 ここでは、冷媒として、非共沸冷媒を用いるものとする。非共沸冷媒は、沸点が異なる複数の冷媒を混合した冷媒である。複数の冷媒は冷媒回路内での圧力が異なる。圧力が低い低圧冷媒は、比熱比が小さいことから、圧力が高い高圧冷媒よりも吐出温度が低い。このため、低圧冷媒が含まれる非共沸冷媒は、単一の高圧冷媒よりも吐出温度が低くなる。ここで、非共沸冷媒は、燃性を有していても、有していなくてもよい。非共沸混合冷媒は、たとえば、R407CまたはR448Aである。非共沸混合冷媒は、R32と、R125と、R134aと、R1234yfと、COの混合冷媒である。R32の割合XR32(wt%)が、33<XR32<39である条件と、R125の割合XR125(wt%)が、27<XR125<33である条件と、R134aの割合XR134a(wt%)が、11<XR134a<17である条件と、R1234yfの割合XR1234yf(wt%)が、11<XR1234yf<17である条件と、COの割合XCO(wt%)が、3<XCO<9である条件と、XR32とXR125とXR134aとXR1234yfとXCOの総和が、100である条件と、をすべて満たす冷媒であってもよい。 Here, a non-azeotropic refrigerant is used as the refrigerant. The non-azeotropic refrigerant is a refrigerant in which a plurality of refrigerants having different boiling points are mixed. The plurality of refrigerants have different pressures in the refrigerant circuit. A low-pressure refrigerant with a low pressure has a lower specific heat ratio, and therefore has a lower discharge temperature than a high-pressure refrigerant with a high pressure. For this reason, the discharge temperature of the non-azeotropic refrigerant containing the low-pressure refrigerant is lower than that of the single high-pressure refrigerant. Here, the non-azeotropic refrigerant may or may not have flammability. The non-azeotropic refrigerant mixture is, for example, R407C or R448A. Non-azeotropic mixed refrigerant, the R32, and R125, and R134a, and R1234yf, a mixed refrigerant of CO 2. The ratio XR32 (wt%) of R32 is 33 <XR32 <39, the ratio XR125 (wt%) of R125 is 27 <XR125 <33, and the ratio XR134a (wt%) of R134a is The condition of 11 <XR134a <17, the ratio of R1234yf XR1234yf (wt%) is the condition of 11 <XR1234yf <17, and the ratio of CO 2 XCO 2 (wt%) is 3 <XCO 2 <9. conditions and, XR32 and XR125 and XR134a and XR1234yf of the XCO 2 sum, the conditions at, it may be a refrigerant that satisfy all.
 <圧縮機1および油分離器2>
 圧縮機1は、冷媒を吸入し、吸入した冷媒を圧縮して、高温および高圧の状態にして吐出する。たとえば、インバータ回路を有し、圧縮機1が有するモータの回転数が制御されることにより、容量制御される構成を有している。ここで、圧縮機1において、吸入するガス冷媒の断熱圧縮による吐出温度は、比熱比の大きな冷媒ほど高くなる。油分離器2は、圧縮機1から吐出される気体状の冷媒(ガス冷媒)とともに吐出される冷凍機油を、ガス冷媒から分離する機能を有している。そして、油分離器2において分離された冷凍機油は、圧縮機1に接続された毛細管(図示せず)から圧縮機1に戻される。
<Compressor 1 and oil separator 2>
The compressor 1 sucks the refrigerant, compresses the sucked refrigerant, and discharges it in a high temperature and high pressure state. For example, it has an inverter circuit and has a configuration in which the capacity is controlled by controlling the number of revolutions of a motor included in the compressor 1. Here, in the compressor 1, the discharge temperature by the adiabatic compression of the sucked gas refrigerant becomes higher as the refrigerant has a larger specific heat ratio. The oil separator 2 has a function of separating the refrigerating machine oil discharged together with the gaseous refrigerant (gas refrigerant) discharged from the compressor 1 from the gas refrigerant. The refrigerating machine oil separated in the oil separator 2 is returned to the compressor 1 from a capillary tube (not shown) connected to the compressor 1.
 <凝縮器4a、4bおよび蒸発器7>
 凝縮器4aおよび凝縮器4bは、たとえば、凝縮器ファン5aおよび凝縮器ファン5bなどから供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化する。凝縮器4aおよび凝縮器4bは、逆止弁3を介して油分離器2の吐出側と接続されている。ここで、図1においては、2台の凝縮器4aおよび凝縮器4bが並列に接続されて設けられている場合について例示しているが、凝縮器を1台以上有するものであればよい。膨張弁6は、冷媒を減圧して膨張させる絞り装置(流量制御装置)となる。また、蒸発器7は、空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化する。送風ファン7aは、蒸発器7に空気を送り、蒸発器7における熱交換を促進させる。
< Condenser 4a, 4b and evaporator 7>
For example, the condenser 4a and the condenser 4b perform heat exchange between the air supplied from the condenser fan 5a and the condenser fan 5b and the refrigerant, and condense and liquefy the refrigerant. The condenser 4 a and the condenser 4 b are connected to the discharge side of the oil separator 2 via the check valve 3. Here, although FIG. 1 illustrates the case where two condensers 4a and 4b are connected in parallel, any one having at least one condenser may be used. The expansion valve 6 serves as a throttle device (flow control device) that expands the refrigerant by decompressing it. The evaporator 7 exchanges heat between the air and the refrigerant to evaporate the refrigerant. The blower fan 7 a sends air to the evaporator 7 and promotes heat exchange in the evaporator 7.
 <アキュムレータ8>
 アキュムレータ8は、蒸発器7から流出した液状の冷媒である液冷媒を溜める。アキュムレータ8は、蒸発器7と圧縮機1の吸込側との間で配管接続されている。したがって、アキュムレータ8を通過した気体状のガス冷媒が、圧縮機1に吸引され、圧縮される。また、アキュムレータ8の底部側には、油戻し配管9が接続されている。油戻し配管9は、アキュムレータ8に溜まった液冷媒中の冷凍機油を圧縮機1に戻す配管である。このとき、冷凍機油だけでなく、少量の液冷媒も含まれる。油戻し配管9上には、油戻し調整器10が配置されている。油戻し調整器10は、開閉弁を有し、たとえば、デフロスト制御手段30の指示に基づいて、油戻し配管9の開通または遮断を行う。油戻し調整器10が開通すると、アキュムレータ8に貯留された冷凍機油と少量の液冷媒とが、油戻し配管9を介して、圧縮機1へ戻される。
<Accumulator 8>
The accumulator 8 stores liquid refrigerant that is liquid refrigerant that has flowed out of the evaporator 7. The accumulator 8 is connected by piping between the evaporator 7 and the suction side of the compressor 1. Therefore, the gaseous gaseous refrigerant that has passed through the accumulator 8 is sucked into the compressor 1 and compressed. An oil return pipe 9 is connected to the bottom side of the accumulator 8. The oil return pipe 9 is a pipe that returns the refrigeration oil in the liquid refrigerant accumulated in the accumulator 8 to the compressor 1. At this time, not only refrigerator oil but also a small amount of liquid refrigerant is included. On the oil return pipe 9, an oil return adjuster 10 is disposed. The oil return regulator 10 has an open / close valve, and opens or shuts off the oil return pipe 9 based on an instruction from the defrost control means 30, for example. When the oil return regulator 10 is opened, the refrigerating machine oil and a small amount of liquid refrigerant stored in the accumulator 8 are returned to the compressor 1 via the oil return pipe 9.
 <ホットガスバイパス回路>
 さらに、冷凍サイクル装置100は、ホットガスバイパス配管11、流量調整器12およびデフロスト制御手段30を備えている。ホットガスバイパス配管11は、圧縮機1と蒸発器7との間に接続され、ホットガスバイパス流路となる配管である。ホットガスバイパス配管11は、デフロスト運転時に、圧縮機1から吐出された高温高圧のガス冷媒を凝縮器4aおよび凝縮器4bを介さずに、直接蒸発器7へ流入させる。
<Hot gas bypass circuit>
Furthermore, the refrigeration cycle apparatus 100 includes a hot gas bypass pipe 11, a flow rate regulator 12, and a defrost control unit 30. The hot gas bypass pipe 11 is connected between the compressor 1 and the evaporator 7 and serves as a hot gas bypass flow path. The hot gas bypass pipe 11 allows the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to flow directly into the evaporator 7 without passing through the condenser 4a and the condenser 4b during the defrost operation.
 <流量調整器12>
 流量調整器12は、ホットガスバイパス配管11に流れる冷媒の流量を調整する。流量調整器12は、たとえば、並列に接続された第1開閉弁12aおよび第2開閉弁12bを有している。そして、第1開閉弁12aおよび第2開閉弁12bの開閉の組み合わせにより、ホットガスバイパス配管11に流れる冷媒の流量が調整されるようになっている。具体的には、第1開閉弁12aを開放したときの冷媒の流量は、第2開閉弁12bを開放したときに流れる流量よりも大きい。このため、第1開閉弁12aが開放され、第2開閉弁12bが閉止されている場合には、第1の冷媒流量がホットガスバイパス配管11に流れる。一方、第1開閉弁12aおよび第2開閉弁12bの双方が開放した際には、第1の冷媒流量よりも多い第2の冷媒流量がホットガスバイパス配管11に流れるようになっている。
<Flow controller 12>
The flow rate adjuster 12 adjusts the flow rate of the refrigerant flowing through the hot gas bypass pipe 11. The flow rate regulator 12 includes, for example, a first on-off valve 12a and a second on-off valve 12b connected in parallel. And the flow volume of the refrigerant | coolant which flows into the hot gas bypass piping 11 is adjusted with the combination of opening and closing of the 1st on-off valve 12a and the 2nd on-off valve 12b. Specifically, the flow rate of the refrigerant when the first on-off valve 12a is opened is larger than the flow rate that flows when the second on-off valve 12b is opened. For this reason, when the 1st on-off valve 12a is opened and the 2nd on-off valve 12b is closed, the 1st refrigerant | coolant flow volume flows into the hot gas bypass piping 11. FIG. On the other hand, when both the first on-off valve 12a and the second on-off valve 12b are opened, a second refrigerant flow rate larger than the first refrigerant flow rate flows through the hot gas bypass pipe 11.
 ここで、図1においては、流量調整器12が、第1開閉弁12aおよび第2開閉弁12bからなる場合について例示するが、ホットガスバイパス配管11を流れる冷媒流量を調整できるものであればその構成を問わない。たとえば、流量調整器12が、多段的に冷媒流量を調整できる3つ以上の開閉弁で構成してもよい。また、開度を連続的に調整することができる1つ以上の電動弁で構成してもよい。 Here, FIG. 1 illustrates the case where the flow rate regulator 12 includes the first on-off valve 12a and the second on-off valve 12b. However, if the flow rate of refrigerant flowing through the hot gas bypass pipe 11 can be adjusted, Regardless of configuration. For example, the flow rate regulator 12 may be composed of three or more on-off valves that can adjust the refrigerant flow rate in multiple stages. Moreover, you may comprise with one or more motor-driven valves which can adjust an opening degree continuously.
 また、第1開閉弁12aと直列に、流量調整弁となるニードル弁13が接続されている。ニードル弁13は、第1開閉弁12aに対して、蒸発器7側に配置されている。ニードル弁13は、圧縮機1への冷媒液戻りが発生しないように、開度の調節が行われるものである。たとえば、設置場所などに応じて、手動により、デフロスト制御時に所定の流量の冷媒が流れるように所定の開度に設定される。これにより、設置場所による配管の長さなどに基づいて、現地状況に合わせた冷媒流量となるように、開度を調整可能することができる。このため、デフロスト運転の時間を短縮することができる。ここで、図1において、ニードル弁13が第1開閉弁12aの後段のみに設けられた場合について例示しているが、第2開閉弁12bの後段にもニードル弁13を設けてもよい。また、第2開閉弁12bの後段にのみ、ニードル弁13を設けてもよい。 Further, a needle valve 13 serving as a flow rate adjusting valve is connected in series with the first on-off valve 12a. The needle valve 13 is disposed on the evaporator 7 side with respect to the first on-off valve 12a. The needle valve 13 is adjusted in opening degree so that the refrigerant liquid does not return to the compressor 1. For example, depending on the installation location, the opening degree is set manually so that a predetermined flow rate of refrigerant flows during defrost control. Thereby, based on the length of piping by an installation place, etc., an opening degree can be adjusted so that it may become a refrigerant | coolant flow volume according to the local condition. For this reason, the time of a defrost driving | operation can be shortened. Here, in FIG. 1, the case where the needle valve 13 is provided only at the rear stage of the first on-off valve 12a is illustrated, but the needle valve 13 may be provided at the rear stage of the second on-off valve 12b. Further, the needle valve 13 may be provided only at the subsequent stage of the second on-off valve 12b.
 <デフロスト制御手段30>
 デフロスト制御手段30は、流量調整器12の動作を制御する。デフロスト制御手段30は、たとえば、制御装置31、記憶装置32および計時装置33を有している。制御装置31は、入力される温度などのデータに基づいて、演算、判断などの処理を行い、圧縮機1、油戻し調整器10などの冷凍サイクル装置100の機器を制御する装置である。また、記憶装置32は、制御装置31が処理を行うために必要となるデータを記憶する装置である。そして、計時装置33は、制御装置31の判断に必要な計時を行う、タイマなどの装置である。
<Defrost control means 30>
The defrost control means 30 controls the operation of the flow rate regulator 12. The defrost control means 30 includes, for example, a control device 31, a storage device 32, and a timing device 33. The control device 31 is a device that performs processing such as calculation and determination based on input data such as temperature, and controls equipment of the refrigeration cycle apparatus 100 such as the compressor 1 and the oil return regulator 10. The storage device 32 is a device that stores data necessary for the control device 31 to perform processing. The time measuring device 33 is a device such as a timer that performs time measurement necessary for the determination of the control device 31.
 ここで、制御装置31については、たとえば、CPU(Central Processing Unit)などの制御演算処理装置を有するマイクロコンピュータなどで構成されているものとする。そして、記憶装置32は、制御装置31が行う処理手順をプログラムとしたデータを有している。制御演算処理装置が、プログラムのデータに基づいて処理を実行して制御を実現する。ただ、これに限定するものではなく、各装置を専用機器(ハードウェア)で構成してもよい。 Here, it is assumed that the control device 31 is composed of, for example, a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit). And the memory | storage device 32 has the data which made the process procedure which the control apparatus 31 performs a program. The control arithmetic processing unit executes control based on the program data to realize control. However, the present invention is not limited to this, and each device may be configured by a dedicated device (hardware).
 デフロスト制御手段30は、たとえば、通常冷却運転時には、ホットガスバイパス配管11に冷媒が流れないように、第1開閉弁12aおよび第2開閉弁12bの双方を閉止させる。一方、デフロスト運転においてデフロスト制御手段30が行うホットガスデフロスト制御時には、ホットガスバイパス配管11に通過させる冷媒の流量に基づいて、第1開閉弁12aおよび第2開閉弁12bを制御する。たとえば、第1開閉弁12aを開放させて第2開閉弁12bを閉止させる、または、第1開閉弁12aおよび第2開閉弁12bの双方を開放させる。 The defrost control means 30 closes both the first on-off valve 12a and the second on-off valve 12b so that the refrigerant does not flow into the hot gas bypass pipe 11, for example, during the normal cooling operation. On the other hand, at the time of hot gas defrost control performed by the defrost control means 30 in the defrost operation, the first on-off valve 12a and the second on-off valve 12b are controlled based on the flow rate of the refrigerant passed through the hot gas bypass pipe 11. For example, the first on-off valve 12a is opened to close the second on-off valve 12b, or both the first on-off valve 12a and the second on-off valve 12b are opened.
 ここで、デフロスト制御手段30は、ホットガスデフロスト制御時に、冷媒状態検出手段20が検出した圧縮機1の吐出過熱度SHおよび圧縮機1の吸込圧力Pinに応じて、流量調整器12を調整し、ホットガスバイパス配管11に流れる冷媒流量を調整する制御を行う。また、実施の形態1では、油戻し調整器10について、デフロスト運転を開始するときには閉止させた状態にしておき、待機設定時間後に開放させる制御を行う。 Here, the defrost control means 30 adjusts the flow rate regulator 12 according to the discharge superheat degree SH of the compressor 1 and the suction pressure Pin of the compressor 1 detected by the refrigerant state detection means 20 during the hot gas defrost control. Then, control for adjusting the flow rate of the refrigerant flowing through the hot gas bypass pipe 11 is performed. Further, in the first embodiment, the oil return adjuster 10 is controlled to be closed when the defrost operation is started and to be opened after the standby set time.
 <冷媒状態検出手段20>
 冷媒状態検出手段20は、圧縮機1から吐出される冷媒の吐出過熱度SHおよび圧縮機1の吸込圧力Pinを検出する。冷媒状態検出手段20は、吐出温度センサ20a、吸込圧力センサ20bおよび高圧温度センサ20cを備えている。吐出温度センサ20aは、圧縮機1が吐出した冷媒の吐出冷媒温度を検出する。また、吸込圧力センサ20bは、圧縮機1が吸入する冷媒の吸込圧力Pinを検出する。そして、高圧温度センサ20cは、油分離器2から流出した冷媒温度を検出する。また、デフロスト制御手段30は、冷媒状態検出手段の一部としても機能する。デフロスト制御手段30は、吐出温度センサ20aが検出した吐出冷媒温度と高圧温度センサ20cが検出した高圧側温度との差分を演算し、吐出過熱度SHとして検出する。
<Refrigerant state detection means 20>
The refrigerant state detection means 20 detects the discharge superheat degree SH of the refrigerant discharged from the compressor 1 and the suction pressure Pin of the compressor 1. The refrigerant state detection means 20 includes a discharge temperature sensor 20a, a suction pressure sensor 20b, and a high pressure temperature sensor 20c. The discharge temperature sensor 20a detects the discharge refrigerant temperature of the refrigerant discharged from the compressor 1. The suction pressure sensor 20b detects the suction pressure Pin of the refrigerant sucked by the compressor 1. The high-pressure temperature sensor 20 c detects the refrigerant temperature that has flowed out of the oil separator 2. The defrost control means 30 also functions as part of the refrigerant state detection means. The defrost control means 30 calculates the difference between the discharge refrigerant temperature detected by the discharge temperature sensor 20a and the high-pressure side temperature detected by the high-pressure temperature sensor 20c, and detects it as the discharge superheat degree SH.
 <アキュムレータ液滞留量手段>
 アキュムレータ8へ液冷媒を滞留させる手段として、デフロスト制御手段30が、デフロスト開始から待機設定時間になるまでの間、油戻し調整器10を閉止させる。
<Accumulator liquid retention means>
As a means for causing the liquid refrigerant to stay in the accumulator 8, the defrost control means 30 closes the oil return adjuster 10 until the standby set time from the start of the defrost.
 <デフロスト運転時の動作>
 ここで、図1を参照して、デフロスト運転時における冷凍サイクル装置100における冷媒の流れについて説明する。まず、圧縮機1から出た冷媒が油分離器2において冷媒と油とに分離される。油分離器2から流出したガス冷媒は、逆止弁3を介して凝縮器4aおよび凝縮器4b側に流れる冷媒と、ホットガスバイパス配管11側に流れる冷媒とに分岐する。ここで、通常冷却運転時には流量調整器12は閉止しており、冷媒がホットガスバイパス配管11を通過しないようになっている。デフロスト運転時には、流量調整器12は開放される。制御に応じ、第1開閉弁12aおよび第2開閉弁12bの少なくとも一方を開放する。制御の詳細については後述する。
<Operation during defrost operation>
Here, the flow of the refrigerant in the refrigeration cycle apparatus 100 during the defrost operation will be described with reference to FIG. First, the refrigerant discharged from the compressor 1 is separated into refrigerant and oil in the oil separator 2. The gas refrigerant that has flowed out of the oil separator 2 branches via the check valve 3 into a refrigerant that flows to the condenser 4a and condenser 4b side and a refrigerant that flows to the hot gas bypass pipe 11 side. Here, the flow rate regulator 12 is closed during the normal cooling operation, so that the refrigerant does not pass through the hot gas bypass pipe 11. During the defrost operation, the flow rate regulator 12 is opened. According to the control, at least one of the first on-off valve 12a and the second on-off valve 12b is opened. Details of the control will be described later.
 その後、流量調整器12を流れた冷媒は、蒸発器7内部を通過する。その際、冷媒と蒸発器7に付着した霜との熱交換により霜を溶かす。蒸発器7内で霜を溶かした冷媒は、一部凝縮しているため、アキュムレータ8で気液分離される。アキュムレータ8を出たガス冷媒は圧縮機1へ吸い込まれる。一方、アキュムレータ8に溜まった液冷媒は、油戻し調整器10を開くことにより、少しずつ圧縮機1へ戻される。 Thereafter, the refrigerant that has flowed through the flow rate regulator 12 passes through the inside of the evaporator 7. At that time, the frost is melted by heat exchange between the refrigerant and the frost adhered to the evaporator 7. Since the refrigerant in which the frost is melted in the evaporator 7 is partially condensed, it is gas-liquid separated by the accumulator 8. The gas refrigerant exiting the accumulator 8 is sucked into the compressor 1. On the other hand, the liquid refrigerant accumulated in the accumulator 8 is gradually returned to the compressor 1 by opening the oil return regulator 10.
 蒸発器7に流れる冷媒量が多いほど、デフロストするために供給される熱量が多くなる。このため、蒸発器7に付着した霜を溶かす時間が短くなる。しかし、蒸発器7に流れる冷媒が多すぎると、蒸発器7内でガス冷媒から液冷媒に凝縮した冷媒が大量にアキュムレータ8内に流入する。アキュムレータ8内に貯留できる液冷媒の許容量を超えると、液冷媒が圧縮機1に流入し、圧縮機1が故障する原因となる。 As the amount of refrigerant flowing to the evaporator 7 increases, the amount of heat supplied for defrosting increases. For this reason, the time which melts the frost adhering to the evaporator 7 becomes short. However, if too much refrigerant flows into the evaporator 7, a large amount of refrigerant condensed from gas refrigerant to liquid refrigerant flows into the accumulator 8 in the evaporator 7. If the allowable amount of liquid refrigerant that can be stored in the accumulator 8 is exceeded, the liquid refrigerant flows into the compressor 1 and causes the compressor 1 to break down.
 ここで、非共沸冷媒などの混合冷媒の場合、アキュムレータ8内に溜まった液冷媒において、蒸発し易い冷媒の方が先に蒸発していく。たとえば、同じ圧力条件で液冷媒が存在した場合、高圧冷媒の方が蒸発温度が低いため、高圧冷媒の方が低圧冷媒よりも先に蒸発する。このため、冷媒回路内を循環する冷媒の組成が、高圧冷媒の方が多くなる高圧冷媒リッチとなる。沸点が高い高圧冷媒の方が多くなるので、圧縮機1が吐出する冷媒の吐出温度が上がりやすくなる。霜の付いた蒸発器7と冷媒との温度差が広がり、除霜熱量となる蒸発器7における冷媒と霜との熱交換量が増える。 Here, in the case of a mixed refrigerant such as a non-azeotropic refrigerant, among the liquid refrigerant accumulated in the accumulator 8, the refrigerant that is more likely to evaporate first evaporates. For example, when liquid refrigerant is present under the same pressure conditions, the high-pressure refrigerant evaporates earlier than the low-pressure refrigerant because the evaporation temperature is lower in the high-pressure refrigerant. For this reason, the composition of the refrigerant circulating in the refrigerant circuit becomes high-pressure refrigerant rich in which the high-pressure refrigerant is increased. Since the high-pressure refrigerant having a higher boiling point increases, the discharge temperature of the refrigerant discharged from the compressor 1 is likely to rise. The temperature difference between the frosted evaporator 7 and the refrigerant widens, and the amount of heat exchange between the refrigerant and frost in the evaporator 7 that becomes the amount of heat for defrosting increases.
 <デフロスト運転時のホットガスデフロスト制御>
 図2は、本発明の実施の形態1の冷凍サイクル装置100における制御に係る処理の手順を説明する図である。デフロスト運転時におけるホットガスデフロスト制御の処理については、デフロスト制御手段30が行う。図1および図2に基づいて、冷凍サイクル装置100のデフロスト制御手段30が行うホットガスデフロスト制御について説明する。
<Hot gas defrost control during defrost operation>
FIG. 2 is a diagram illustrating a processing procedure related to control in the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. The defrost control means 30 performs hot gas defrost control processing during the defrost operation. The hot gas defrost control performed by the defrost control means 30 of the refrigeration cycle apparatus 100 will be described with reference to FIGS. 1 and 2.
 まず、デフロスト運転が必要であると判断される、または、定期的にデフロスト運転を行う際、通常冷却運転を終了させる(ステップST1)。そして、ポンプダウン運転により、冷媒回路内に残留している冷媒を凝縮器などに封じこめる冷媒回収が所定時間行われる(ステップST2)。冷媒回収が完了した後に、ポンプダウン運転を停止させる(ステップST3)。このとき、デフロスト制御手段30は、油戻し調整器10の弁を閉止させ、閉止状態にしておく。その後、デフロスト運転を開始させる(ステップST10)。 First, when it is determined that the defrost operation is necessary, or when the defrost operation is performed periodically, the normal cooling operation is terminated (step ST1). Then, by the pump-down operation, the refrigerant recovery for enclosing the refrigerant remaining in the refrigerant circuit in a condenser or the like is performed for a predetermined time (step ST2). After the refrigerant recovery is completed, the pump down operation is stopped (step ST3). At this time, the defrost control means 30 closes the valve of the oil return regulator 10 and keeps it closed. Thereafter, the defrost operation is started (step ST10).
 デフロスト運転が開始されると、デフロスト制御手段30は、流量調整器12の第1開閉弁12aを開放させる(ステップST11)。ホットガスバイパス配管11に第1冷媒流量の冷媒が流れる。 When the defrost operation is started, the defrost control means 30 opens the first on-off valve 12a of the flow rate regulator 12 (step ST11). A refrigerant having a first refrigerant flow rate flows through the hot gas bypass pipe 11.
 また、デフロスト制御手段30は、デフロスト運転の開始とともに、以下のステップとは別の工程で、油戻し調整器10に係る計時を開始する(ステップST11A)。そして、あらかじめ定められた待機設定時間を経過したかどうかを判断する(ステップST12A)。待機設定時間を経過したものと判断すると、油戻し調整器10の弁を開放する(ステップST13A)。待機設定時間が経過するまで、油戻し調整器10の弁を閉止しておき、低圧冷媒の割合が多い液冷媒を圧縮機1に戻さないようにしつつ、アキュムレータ8に溜めることで、圧縮機1から吐出される冷媒において、高圧冷媒の割合を多くし、通常運転時の非共沸冷媒の吐出温度よりも、吐出温度を上げることができる。 Also, the defrost control means 30 starts time measurement related to the oil return adjuster 10 in a process different from the following steps when the defrost operation is started (step ST11A). Then, it is determined whether or not a predetermined standby setting time has elapsed (step ST12A). If it is determined that the standby set time has elapsed, the valve of the oil return regulator 10 is opened (step ST13A). Until the standby set time elapses, the valve of the oil return regulator 10 is closed, and the liquid refrigerant having a high proportion of the low-pressure refrigerant is not returned to the compressor 1 but is stored in the accumulator 8, so that the compressor 1 In the refrigerant discharged from the refrigerant, the ratio of the high-pressure refrigerant can be increased, and the discharge temperature can be raised above the discharge temperature of the non-azeotropic refrigerant during normal operation.
 また、冷媒状態検出手段20が、圧縮機1の吐出過熱度SHおよび吸込圧力Pinを検出する(ステップST12)。吐出過熱度SHは、吐出温度センサ20aが検出した吐出冷媒温度と、高圧温度センサ20cが検出した高圧側温度との差分をデフロスト制御手段30が演算することにより、検出する。また、吸込圧力Pinは、吸込圧力センサ20bが検出する。 Further, the refrigerant state detection means 20 detects the discharge superheat degree SH and the suction pressure Pin of the compressor 1 (step ST12). The discharge superheat degree SH is detected by the defrost control means 30 calculating the difference between the discharge refrigerant temperature detected by the discharge temperature sensor 20a and the high pressure side temperature detected by the high pressure temperature sensor 20c. The suction pressure Pin 20 is detected by the suction pressure sensor 20b.
 そして、デフロスト制御手段30は、吐出過熱度SHが設定過熱度SHrefより大きく、かつ吸込圧力Pinが設定圧力Prefよりも小さい期間が、所定期間t1の間、継続したか否かを判断する(ステップST13)。ここで、設定過熱度SHrefおよび設定圧力Prefは、あらかじめデフロスト制御手段30の記憶装置32に記憶されている。また、実施の形態1において、所定期間t1は、たとえば、10秒に設定される。デフロスト制御手段30は、ステップST13における条件を満たすようになるまで、流量調整器12の第1開閉弁12a側を開放し、第2開閉弁12bを閉止した状態でのデフロスト運転が継続されるように制御する。 Then, the defrost control means 30 determines whether or not the period during which the discharge superheat degree SH is larger than the set superheat degree SHref and the suction pressure Pin is smaller than the set pressure Pref is continued for a predetermined period t1 (step). ST13). Here, the set superheat degree SHref and the set pressure Pref are stored in advance in the storage device 32 of the defrost control means 30. In the first embodiment, the predetermined period t1 is set to 10 seconds, for example. The defrost control means 30 opens the first on-off valve 12a side of the flow regulator 12 and keeps the second on-off valve 12b closed until the condition in step ST13 is satisfied. To control.
 ステップST13における条件を満たす場合、つまり、図2においてステップST13のYESの場合、デフロスト制御手段30は、第2開閉弁12bを開放させる(ステップST14)。すると、ホットガスバイパス配管11に流れる冷媒の流量は、第1開閉弁12aのみが開いていた場合に比べて多くなる。このため、デフロスト時間の短縮化をはかることができる。 When the condition in step ST13 is satisfied, that is, in the case of YES in step ST13 in FIG. 2, the defrost control means 30 opens the second on-off valve 12b (step ST14). Then, the flow rate of the refrigerant flowing through the hot gas bypass pipe 11 becomes larger than when only the first on-off valve 12a is open. For this reason, the defrost time can be shortened.
 ステップST14の状態で、圧縮機1の吐出過熱度SHおよび吸込圧力Pinが検出される(ステップST15)。そして、デフロスト制御手段30において、吐出過熱度SHが設定過熱度SHref以下である期間、または吸込圧力Pinが設定圧力Pref以上である期間が所定期間t2の間継続したか否かが判断される(ステップST16)。実施の形態1において、所定期間t2は、たとえば3秒に設定される。ステップST16の条件を満たすまで、流量調整器12の第1開閉弁12aおよび第2開閉弁12bの双方を開放した状態でのデフロスト運転が行われる。つまり、ステップST16のNOの場合の経路でフローが繰り返されることになる。 In the state of step ST14, the discharge superheat degree SH and the suction pressure Pin of the compressor 1 are detected (step ST15). Then, the defrost control means 30 determines whether or not the period during which the discharge superheat degree SH is equal to or lower than the set superheat degree SHref or the period during which the suction pressure Pin is equal to or higher than the set pressure Pref continues for a predetermined period t2 ( Step ST16). In the first embodiment, the predetermined period t2 is set to 3 seconds, for example. Until the condition of step ST16 is satisfied, the defrosting operation is performed in a state where both the first on-off valve 12a and the second on-off valve 12b of the flow rate regulator 12 are opened. That is, the flow is repeated along the route in the case of NO in step ST16.
 一方、ステップST16の条件を満たした場合、つまり、ステップST16のYESの場合は、圧縮機1への液戻りの可能性が生じる状態であると判断し、デフロスト制御手段30により第2開閉弁12bが閉止される(ステップST17)。つまり、デフロストに使われる冷媒が大量にアキュムレータ8内へ流入し、アキュムレータ8の気液分離できる許容量を超えて圧縮機1へ液冷媒が戻るおそれがあるため、第2開閉弁12bを閉止し、除霜に使用する冷媒の量を少なくする。その後、上述した第1開閉弁12aが開放され第2開閉弁12bが閉止された状態でのデフロスト運転が行われる(ステップST12、ST13)。 On the other hand, if the condition of step ST16 is satisfied, that is, if YES in step ST16, it is determined that there is a possibility of liquid return to the compressor 1, and the second opening / closing valve 12b is determined by the defrost control means 30. Is closed (step ST17). That is, a large amount of refrigerant used for defrost flows into the accumulator 8, and the liquid refrigerant may return to the compressor 1 beyond the allowable amount that allows the gas-liquid separation of the accumulator 8, so the second on-off valve 12b is closed. Reduce the amount of refrigerant used for defrosting. Thereafter, the defrosting operation is performed in a state where the first on-off valve 12a and the second on-off valve 12b are closed (steps ST12 and ST13).
 デフロスト運転は、デフロスト制御手段30により上記のST11からST17までのフローで制御され、そのフローがデフロスト運転停止条件に至るまで繰り返される。デフロスト運転停止条件は、所定の箇所の温度が所定の温度以上に上昇することである。実施の形態1においては、たとえば、蒸発器7の出口温度が25℃以上になった場合にデフロスト運転が停止される。ここで、デフロスト運転停止条件は、冷凍サイクル装置100の仕様に応じて、適宜設定することができる。 The defrost operation is controlled by the flow from ST11 to ST17 by the defrost control means 30, and the flow is repeated until the defrost operation stop condition is reached. The defrost operation stop condition is that the temperature at a predetermined location rises above a predetermined temperature. In the first embodiment, for example, when the outlet temperature of the evaporator 7 becomes 25 ° C. or higher, the defrost operation is stopped. Here, the defrost operation stop condition can be appropriately set according to the specifications of the refrigeration cycle apparatus 100.
 このように、吐出過熱度SHおよび吸込圧力Pinに応じて、ホットガスバイパス配管11に流れる冷媒流量を調整することにより、デフロスト運転の期間の短縮化をはかりながら、圧縮機1への液戻りを確実に防止することができる。すなわち、蒸発器7内に流れる冷媒量が多くて冷媒温度が高いほど、除霜熱量も多くなる。このため、蒸発器7内部に付着した霜を溶かす時間も短くなる。しかし、蒸発器7へ流れる冷媒が多すぎると、蒸発器7内でガスから液に凝縮した液冷媒が大量にアキュムレータ8に入り、アキュムレータ8で気液分離できる許容量を超えてしまい、圧縮機1へ大量の液冷媒が戻って圧縮機1の故障の原因となる。流量調整器12が開放され、ホットガスバイパス配管11に冷媒が流れた場合、冷媒回路に流れる冷媒循環量は増加するため、蒸発器7へ流れる冷媒流量も多くなってしまう。 In this way, by adjusting the flow rate of the refrigerant flowing in the hot gas bypass pipe 11 according to the discharge superheat degree SH and the suction pressure Pin, the liquid return to the compressor 1 can be performed while shortening the period of the defrost operation. It can be surely prevented. That is, the amount of defrost heat increases as the amount of refrigerant flowing into the evaporator 7 increases and the refrigerant temperature increases. For this reason, the time which melts the frost adhering to the inside of the evaporator 7 also becomes short. However, if too much refrigerant flows to the evaporator 7, a large amount of liquid refrigerant condensed from gas into liquid in the evaporator 7 enters the accumulator 8 and exceeds the allowable amount that can be separated into gas and liquid by the accumulator 8. A large amount of liquid refrigerant returns to 1 and causes a failure of the compressor 1. When the flow rate regulator 12 is opened and the refrigerant flows into the hot gas bypass pipe 11, the amount of refrigerant circulating in the refrigerant circuit increases, so that the refrigerant flow rate flowing into the evaporator 7 also increases.
 従来の冷凍サイクル装置の場合、図1に示される吸込圧力センサ20bのように圧縮機1の吸入側の圧力を検知するのではなく、圧縮機1の吐出側の圧力を検出している。そして、デフロスト制御手段30は、第1開閉弁12aおよび第2開閉弁12bの開閉を制御し、蒸発器7へ流入するホットガスの量を制御するものである。この場合、圧縮機1の吸込圧力Pinが上昇しても、圧縮機1の吐出圧力Poutが上がらなければ、第1開閉弁12aおよび第2開閉弁12bの両方が開いている状態から第1開閉弁12aのみが開いている状態に切り替えることがないため、デフロスト時の圧縮機1への液戻り量が増えてしまう。 In the case of the conventional refrigeration cycle apparatus, the pressure on the discharge side of the compressor 1 is detected rather than the pressure on the suction side of the compressor 1 as in the suction pressure sensor 20b shown in FIG. The defrost control means 30 controls the opening and closing of the first on-off valve 12a and the second on-off valve 12b, and controls the amount of hot gas flowing into the evaporator 7. In this case, if the suction pressure Pin of the compressor 1 rises and the discharge pressure Pout of the compressor 1 does not increase, the first on-off valve 12a and the second on-off valve 12b are both opened from the first open / close state. Since only the valve 12a is not switched to an open state, the amount of liquid returned to the compressor 1 during defrosting increases.
 ここで、実施の形態1に係る冷凍サイクル装置100においては、圧縮機1への液戻りが多い場合、圧縮機1の吸込圧力Pinが増加し、吐出過熱度SHは減少していく。そこで吸込圧力Pinが設定圧力Pref以上かつ吐出過熱度SHが設定過熱度SHref以下になった期間が所定期間経過した場合に、第2開閉弁12bを閉じる。第2開閉弁12bが閉じられることにより、ホットガスバイパス配管11の冷媒流量が減少し、圧縮機1への液戻り量が減少する。これにより、圧縮機1に液戻りすることによる故障などを防止することができる。ここで、所定期間は、たとえば、3秒に設定される。 Here, in the refrigeration cycle apparatus 100 according to the first embodiment, when the liquid return to the compressor 1 is large, the suction pressure Pin of the compressor 1 increases and the discharge superheat degree SH decreases. Therefore, the second on-off valve 12b is closed when a predetermined period has elapsed when the suction pressure Pin is equal to or higher than the set pressure Pref and the discharge superheat degree SH is equal to or lower than the set superheat degree SHref. By closing the second on-off valve 12b, the refrigerant flow rate in the hot gas bypass pipe 11 is reduced, and the liquid return amount to the compressor 1 is reduced. As a result, it is possible to prevent a failure caused by returning the liquid to the compressor 1. Here, the predetermined period is set to 3 seconds, for example.
 また、デフロスト時の圧縮機1への液戻り量が少ない場合、圧縮機1の吸込圧力Pinが減少し、吐出過熱度SHが増加する。そして、吸込圧力Pinが設定圧力Prefより低くかつ吐出過熱度SHが設定過熱度SHrefより高くなった期間が所定期間経過した場合に、冷媒循環量を増加させたとしても圧縮機1への液戻りが発生しない状態であるとして、第2開閉弁12bが開放される。すると、冷媒回路における冷媒循環量が増加するため、蒸発器7へ流れる冷媒量が増加してデフロストを短時間で行うことができる。 In addition, when the amount of liquid returned to the compressor 1 at the time of defrost is small, the suction pressure Pin of the compressor 1 decreases and the discharge superheat degree SH increases. And when the period when the suction pressure Pin is lower than the set pressure Preref and the discharge superheat degree SH is higher than the set superheat degree SHref has passed for a predetermined period, the liquid return to the compressor 1 is increased. As a result, the second on-off valve 12b is opened. Then, since the refrigerant circulation amount in the refrigerant circuit increases, the refrigerant amount flowing to the evaporator 7 increases and defrosting can be performed in a short time.
 また、圧縮機1の吸込圧力Pinを設定圧力Prefよりも低くすることにより、圧縮機1への液戻し量を減らすことができる理由は、以下のとおりである。デフロスト運転時にホットガス冷媒の凝縮に使用される熱源としては、下記3種類である。
 i)クーラ筐体(現地配管含む)の顕熱
 ii)着霜の顕熱
 iii)着霜の潜熱
 設定圧力Prefを設定し、圧縮機1の吸込圧力飽和温度を0℃以下に保つことによって、0℃未満の物質との熱交換量のみがホットガス冷媒の凝縮に使用される。よって、上記i)~iii)についてさらに細分化可能となり、
 i)-1クーラ筐体の顕熱(-40℃~0℃)
 i)-2クーラ筐体の顕熱(0℃~+20℃)
 ii)-1着霜の顕熱(-40℃~0℃)
 ii)-2着霜の顕熱(0℃~+20℃)
 iii)着霜の潜熱
 ただし、上記に記載の温度については、庫内-40℃からデフロスト開始し、筐体温度が+20℃でデフロスト完了とした場合の例である。上記の中でホットガスの凝縮に使用される熱量は、i)-1とii)-1のみであり、その他の熱量についてはホットガスの凝縮に使用されないため、従来と比較してホットガスの凝縮量を減らすことが可能となる。
The reason why the amount of liquid return to the compressor 1 can be reduced by making the suction pressure Pin of the compressor 1 lower than the set pressure Pref is as follows. The following three types of heat sources are used for condensing the hot gas refrigerant during the defrost operation.
i) Sensible heat of the cooler housing (including local piping) ii) Sensible heat of frost iii) Latent heat of frost formation By setting the set pressure Pref and keeping the suction pressure saturation temperature of the compressor 1 below 0 ° C, Only the amount of heat exchange with the material below 0 ° C. is used for the condensation of the hot gas refrigerant. Therefore, the above i) to iii) can be further subdivided.
i) Sensible heat of -1 cooler housing (-40 ° C to 0 ° C)
i) -2 Sensible heat of the cooler casing (0 ° C to + 20 ° C)
ii) -1 Sensible heat of frost formation (-40 ° C to 0 ° C)
ii) -2 Sensible heat of frost formation (0 ° C to + 20 ° C)
iii) Latent heat of frosting However, the temperature described above is an example in which defrosting is started from −40 ° C. inside the cabinet, and defrosting is completed when the housing temperature is + 20 ° C. Among the above, the amount of heat used for condensing hot gas is only i) -1 and ii) -1, and the other amount of heat is not used for condensing hot gas. It is possible to reduce the amount of condensation.
 以上のように、実施の形態1の冷凍サイクル装置100によれば、低圧冷媒と高圧冷媒とを混合した非共沸冷媒を用いた冷媒回路において、蒸発器7のデフロストを行う際、デフロスト制御手段30が、デフロスト運転を開始してから、待機設定時間の間、油戻し調整器10を閉止しておいて、積極的にアキュムレータ8に液冷媒を溜め、待機設定時間が経過すると、油戻し調整器10を開放する制御を行うようにしたので、非共沸冷媒のうち、低圧冷媒を液冷媒としてアキュムレータ8に多く残し、吐出温度が高い高圧冷媒を多く圧縮機1から吐出させることができる。このため、デフロスト時間を短縮することができる。 As described above, according to the refrigeration cycle apparatus 100 of the first embodiment, when the evaporator 7 is defrosted in the refrigerant circuit using the non-azeotropic refrigerant obtained by mixing the low-pressure refrigerant and the high-pressure refrigerant, the defrost control means. 30 starts the defrost operation, the oil return adjuster 10 is closed for the standby setting time, and the liquid refrigerant is positively accumulated in the accumulator 8, and when the standby setting time elapses, the oil return adjustment is performed. Since the control for opening the vessel 10 is performed, among the non-azeotropic refrigerant, a large amount of the low-pressure refrigerant is left as the liquid refrigerant in the accumulator 8, and a large amount of the high-pressure refrigerant having a high discharge temperature can be discharged from the compressor 1. For this reason, defrost time can be shortened.
 実施の形態2.
 図3は、本発明の実施の形態2に係る冷凍サイクル装置100の構成を示す図である。図3において、図1と同じ符号を付している機器などについては、実施の形態1において説明したことと同様の動作を行う。
 <系統遮断弁40>
 図3の冷凍サイクル装置100において、凝縮器4bの流入側には、系統遮断弁40が配置されている。系統遮断弁40の開閉により、凝縮器bに冷媒を流通または遮断を選択できるようになっている。ここで、図1において、一部の凝縮器4b側にのみ系統遮断弁40が設けられている場合について例示しているが、これに限定するものではない。すべての凝縮器4aおよび凝縮器4bに系統遮断弁40を設け、デフロスト制御手段30が、閉止する系統遮断弁40を選択するようにしてもよい。
Embodiment 2. FIG.
FIG. 3 is a diagram showing the configuration of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention. In FIG. 3, devices having the same reference numerals as those in FIG. 1 perform the same operation as described in the first embodiment.
<System shutoff valve 40>
In the refrigeration cycle apparatus 100 of FIG. 3, a system shutoff valve 40 is disposed on the inflow side of the condenser 4b. By opening and closing the system shut-off valve 40, it is possible to select the circulation or shut-off of the refrigerant to the condenser b. Here, in FIG. 1, the case where the system shut-off valve 40 is provided only on the side of a part of the condenser 4b is illustrated, but the present invention is not limited to this. System shutoff valves 40 may be provided in all the condensers 4a and 4b, and the defrost control means 30 may select the system shutoff valves 40 to be closed.
 デフロスト制御手段30は、通常冷却運転時においては、系統遮断弁40を開放し、複数の凝縮器4aおよび凝縮器4bに冷媒を通過させて冷却運転が行われる。また、デフロスト運転時においては、デフロスト制御手段30は、前述した図2のステップST11において、系統遮断弁40を閉止させて、凝縮器4bへの冷媒の流通を遮断する。 In the normal cooling operation, the defrost control means 30 opens the system shutoff valve 40 and allows the refrigerant to pass through the plurality of condensers 4a and 4b to perform the cooling operation. Further, during the defrost operation, the defrost control means 30 closes the system shutoff valve 40 in step ST11 of FIG. 2 described above to shut off the flow of the refrigerant to the condenser 4b.
 実施の形態2の冷凍サイクル装置100のように、凝縮器4の流入側に系統遮断弁40を配置することで、実施の形態2の冷凍サイクル装置100は、デフロスト運転時において、ホットガスバイパス配管11へ冷媒を流通させるとともに、凝縮器4bへの冷媒の流通を遮断して、通常冷却運転時よりも凝縮温度を高くすることにより、デフロスト時間を短縮することができる。 Like the refrigeration cycle apparatus 100 according to the second embodiment, the refrigeration cycle apparatus 100 according to the second embodiment is configured so that the hot gas bypass pipe is used during the defrost operation by arranging the system shutoff valve 40 on the inflow side of the condenser 4. The defrost time can be shortened by causing the refrigerant to flow to 11 and blocking the refrigerant to flow to the condenser 4b to increase the condensation temperature as compared with the normal cooling operation.
 実施の形態3.
 前述の実施の形態1および実施の形態2では、特に触れなかったが、たとえば、ステップST10において、デフロスト運転を開始する際、デフロスト制御手段30は、すべての凝縮器ファン5を停止するようにしてもよい。デフロスト運転において凝縮器ファン5を停止することで、凝縮器4における熱交換量を少なくすることで、凝縮器4側に流れる冷媒の量を少なくすることができる。
Embodiment 3 FIG.
Although not particularly mentioned in the first embodiment and the second embodiment described above, for example, when starting the defrost operation in step ST10, the defrost control means 30 stops all the condenser fans 5. Also good. By stopping the condenser fan 5 in the defrost operation, the amount of refrigerant flowing to the condenser 4 side can be reduced by reducing the amount of heat exchange in the condenser 4.
 実施の形態4.
 図4は、本発明の実施の形態4の冷凍サイクル装置100における制御に係る処理の手順を説明する図である。実施の形態4の冷凍サイクル装置100の機器などの構成は、実施の形態1において説明した図1と同じである。
Embodiment 4 FIG.
FIG. 4 is a diagram illustrating a processing procedure related to control in the refrigeration cycle apparatus 100 according to Embodiment 4 of the present invention. The configuration of the equipment and the like of the refrigeration cycle apparatus 100 of the fourth embodiment is the same as that of FIG. 1 described in the first embodiment.
 実施の形態4の冷凍サイクル装置100は、実施の形態1~実施の形態3の冷凍サイクル装置100に対し、デフロスト制御手段30が、デフロスト運転時に、圧縮機1の運転周波数を制御することができるようにしたものである。以下、実施の形態1などとは異なる点を中心に説明する。 In the refrigeration cycle apparatus 100 according to the fourth embodiment, the defrost control means 30 can control the operating frequency of the compressor 1 during the defrost operation compared to the refrigeration cycle apparatus 100 according to the first to third embodiments. It is what I did. In the following, the description will be focused on differences from the first embodiment.
 実施の形態4においてデフロスト制御手段30は、デフロスト運転時に、圧縮機1の運転周波数fを増減させる制御を行うことができる。デフロスト制御手段30は、デフロスト運転開始時において、第1開閉弁12aのみを開放するとともに、あらかじめ設定された初期運転周波数f0にて圧縮機1を動作させる。そして、デフロスト制御手段30は、ホットガスバイパス配管11における冷媒流量を一定にした状態で、吐出過熱度SHおよび吸込圧力Pinに基づいて運転周波数fを増減させる。 In the fourth embodiment, the defrost control means 30 can perform control to increase or decrease the operation frequency f of the compressor 1 during the defrost operation. At the start of the defrost operation, the defrost control means 30 opens only the first on-off valve 12a and operates the compressor 1 at a preset initial operation frequency f0. Then, the defrost control means 30 increases or decreases the operating frequency f based on the discharge superheat degree SH and the suction pressure Pin while keeping the refrigerant flow rate in the hot gas bypass pipe 11 constant.
 <デフロスト運転時のホットガスデフロスト制御>
 次に、図1と図4とを参照して、実施の形態4の冷凍サイクル装置100における動作例について説明する。ここで、図4のステップST20におけるホットガスデフロスト開始までの工程は、図2のホットガスデフロスト開始までの工程(ステップST1~ST3)と同一の工程である。ホットガスデフロスト制御が開始された際、流量調整器12の第1開閉弁12aが開き(ステップST21)、ホットガスバイパス配管11に冷媒が流れる。このとき、冷媒状態検出手段20において圧縮機1の吐出過熱度SHおよび吸込圧力Pinが検出される(ステップST22)。
<Hot gas defrost control during defrost operation>
Next, with reference to FIG. 1 and FIG. 4, the operation example in the refrigerating-cycle apparatus 100 of Embodiment 4 is demonstrated. Here, the process up to the start of hot gas defrost in step ST20 in FIG. 4 is the same as the process up to the start of hot gas defrost in FIG. 2 (steps ST1 to ST3). When hot gas defrost control is started, the first on-off valve 12a of the flow rate regulator 12 is opened (step ST21), and the refrigerant flows into the hot gas bypass pipe 11. At this time, the refrigerant state detection means 20 detects the discharge superheat degree SH and the suction pressure Pin of the compressor 1 (step ST22).
 デフロスト制御手段30は、デフロスト制御手段30において、吐出過熱度SHが設定過熱度SHref以下、または吸込圧力Pinが設定圧力Pref以下である期間が所定期間t3の間継続したか否かが判断される(ステップST23)。設定過熱度SHrefおよび設定圧力Prefは、あらかじめデフロスト制御手段30に記憶されている。ステップST23の条件が所定期間t3の間継続した場合(ステップST23のYESの場合)は、圧縮機運転周波数を減少させる(ステップST24)。実施の形態4においては、所定期間t3はたとえば3秒に設定される。そして、デフロスト制御手段30は、ステップST23の条件を満たすようになるまで、流量調整器12の第1開閉弁12a側を開放し、第2開閉弁12bを閉止した状態でのデフロスト運転が継続されるように制御する。 The defrost control means 30 determines in the defrost control means 30 whether the discharge superheat degree SH is equal to or less than the set superheat degree SHref or the period during which the suction pressure Pin is equal to or less than the set pressure Pref continues for a predetermined period t3. (Step ST23). The set superheat degree SHref and the set pressure Pref are stored in the defrost control means 30 in advance. When the condition of step ST23 continues for a predetermined period t3 (in the case of YES at step ST23), the compressor operating frequency is decreased (step ST24). In the fourth embodiment, the predetermined period t3 is set to 3 seconds, for example. The defrost control means 30 continues the defrost operation with the first on-off valve 12a side of the flow regulator 12 open and the second on-off valve 12b closed until the condition of step ST23 is satisfied. To control.
 そして、デフロスト制御手段30において、吐出過熱度SHが設定過熱度SHrefより大きくかつ吸込圧力Pinが設定圧力Prefより大きい期間が所定期間t4の間継続したかどうかが判定される(ステップST25)。実施の形態4においては、所定期間t4は、たとえば10秒に設定される。ステップST25の条件を満たさない場合、すなわちステップST25においてNOの場合は、再度ステップST21から繰り返される。ステップST25の条件を満たす場合、すなわち、ステップST25において、YESの場合には、デフロスト制御手段30は、圧縮機1の運転周波数fと圧縮機1の最大運転周波数fmaxとの比較を行い(ステップST26)、圧縮機1の運転周波数fが増速可能、すなわちステップST26においてYESの場合に、所定周波数分だけ増速するように制御される(ステップST27)。そして再度ステップST21からフローを繰り返す。圧縮機1の運転周波数fを増加させると、圧縮機1の吸込圧力Pinは減少し、吐出過熱度SHも減少する。ここで、圧縮機1の運転周波数fが最大運転周波数fmaxである場合(ステップST26のNOの場合)には増速は行わず、第2開閉弁12bが開放される(ステップST28)。 Then, the defrost control means 30 determines whether or not the period during which the discharge superheat degree SH is greater than the set superheat degree SHref and the suction pressure Pin is greater than the set pressure Pref is continued for a predetermined period t4 (step ST25). In the fourth embodiment, the predetermined period t4 is set to 10 seconds, for example. If the condition of step ST25 is not satisfied, that is, if NO in step ST25, the process is repeated from step ST21 again. If the condition of step ST25 is satisfied, that is, if YES in step ST25, the defrost control means 30 compares the operating frequency f of the compressor 1 with the maximum operating frequency fmax of the compressor 1 (step ST26). ) If the operating frequency f of the compressor 1 can be increased, that is, if YES in step ST26, the compressor 1 is controlled to increase by a predetermined frequency (step ST27). Then, the flow is repeated again from step ST21. When the operating frequency f of the compressor 1 is increased, the suction pressure Pin of the compressor 1 is decreased, and the discharge superheat degree SH is also decreased. Here, when the operating frequency f of the compressor 1 is the maximum operating frequency fmax (NO in step ST26), the speed is not increased and the second on-off valve 12b is opened (step ST28).
 この状態で、圧縮機1の吐出過熱度SHおよび吸込圧力Pinが検出される(ステップST29)。そして、吐出過熱度SHが設定過熱度SHrefより大きく、かつ吸込圧力Pinが設定圧力Prefより大きい期間が所定期間t5継続したか否かが判断される(ステップST30)。実施の形態4において、t5は、たとえば10秒に設定される。上記条件を満たす場合、すなわちステップST30においてYESの場合は、圧縮機1の運転周波数fが所定量だけ増速される(ステップST31)。圧縮機1の運転周波数fを増加させると、圧縮機1の吸込圧力Pinは減少し、吐出過熱度SHも減少する。圧縮機1が増速された後、ステップST28からのフローが繰り返される。ここで、既に最大運転周波数fmaxに達している場合には、最大運転周波数fmaxでの運転を継続し、ステップST28からのフローが繰り返される。 In this state, the discharge superheat degree SH and the suction pressure Pin of the compressor 1 are detected (step ST29). Then, it is determined whether or not a period during which the discharge superheat degree SH is greater than the set superheat degree SHref and the suction pressure Pin is greater than the set pressure Pref continues for a predetermined period t5 (step ST30). In the fourth embodiment, t5 is set to 10 seconds, for example. If the above condition is satisfied, that is, if YES in step ST30, the operating frequency f of the compressor 1 is increased by a predetermined amount (step ST31). When the operating frequency f of the compressor 1 is increased, the suction pressure Pin of the compressor 1 is decreased, and the discharge superheat degree SH is also decreased. After the speed of the compressor 1 is increased, the flow from step ST28 is repeated. If the maximum operating frequency fmax has already been reached, the operation at the maximum operating frequency fmax is continued, and the flow from step ST28 is repeated.
 ステップST30の条件を満たさない場合、すなわちステップST30においてNOの場合は、デフロスト制御手段30は、吐出過熱度SHが設定過熱度SHref以下、または吸込圧力Pinが設定圧力Pref以下である期間が所定期間t6継続したか否かが判断される(ステップST32)。実施の形態4においては、所定期間t6は、たとえば3秒に設定される。ステップST32においてNOの場合は、まだ圧縮機1への液戻りが発生しないと判断し、再度ST28からのフローが繰り返される。ステップST32においてYESの場合は、圧縮機1の運転周波数fが最小かどうかが判定される(ステップST33)。圧縮機1の運転周波数fが最小運転周波数fminに達していない場合は、圧縮機運転周波数は減少される(ステップST34)。そして、圧縮機1の運転周波数fが最小運転周波数fminに至るまで、ステップST28からのフローが繰り返される。一方、運転周波数fが最小運転周波数fminに達している場合、第2開閉弁12bが閉止される(ステップST35)。 When the condition of step ST30 is not satisfied, that is, when NO in step ST30, the defrost control means 30 has a predetermined period during which the discharge superheat degree SH is equal to or lower than the set superheat degree SHref or the suction pressure Pin is equal to or lower than the set pressure Pref. It is determined whether or not t6 has been continued (step ST32). In the fourth embodiment, the predetermined period t6 is set to 3 seconds, for example. If NO in step ST32, it is determined that liquid return to the compressor 1 has not yet occurred, and the flow from ST28 is repeated again. If YES in step ST32, it is determined whether or not the operating frequency f of the compressor 1 is minimum (step ST33). When the operating frequency f of the compressor 1 does not reach the minimum operating frequency fmin, the compressor operating frequency is decreased (step ST34). The flow from step ST28 is repeated until the operating frequency f of the compressor 1 reaches the minimum operating frequency fmin. On the other hand, when the operating frequency f has reached the minimum operating frequency fmin, the second on-off valve 12b is closed (step ST35).
 つまり、第1開閉弁12aおよび第2開閉弁12bの双方が開放した状態で、圧縮機1の運転周波数fの増減による冷媒循環量の制御が行われる(ステップST29~ST35)。そして、圧縮機1への液戻りの可能性が生じた際には、第2開閉弁12bを閉止し、再び第1開閉弁12aのみが開放した状態で、ホットガスデフロスト制御が行われる(ステップST21~ST35)。 That is, the refrigerant circulation amount is controlled by increasing or decreasing the operating frequency f of the compressor 1 in a state where both the first on-off valve 12a and the second on-off valve 12b are open (steps ST29 to ST35). And when the possibility of liquid return to the compressor 1 occurs, the hot gas defrost control is performed with the second on-off valve 12b closed and only the first on-off valve 12a opened again (step). ST21 to ST35).
 デフロスト運転は、デフロスト制御手段30により上記のステップST21からステップST35までのフローで制御され、そのフローがデフロスト運転停止条件に至るまで繰り返される。デフロスト運転停止条件は、所定の箇所の温度が所定の温度以上に上昇することである。実施の形態4においても実施の形態1と同様に、たとえば、蒸発器7の出口温度が25℃以上になった場合にデフロスト運転が停止される。ここで、デフロスト運転停止条件は、冷凍サイクル装置100の仕様に応じて、適宜設定することができる。 The defrost operation is controlled by the flow from step ST21 to step ST35 by the defrost control means 30, and the flow is repeated until the defrost operation stop condition is reached. The defrost operation stop condition is that the temperature at a predetermined location rises above a predetermined temperature. In the fourth embodiment, similarly to the first embodiment, for example, when the outlet temperature of the evaporator 7 becomes 25 ° C. or higher, the defrost operation is stopped. Here, the defrost operation stop condition can be appropriately set according to the specifications of the refrigeration cycle apparatus 100.
 このように、デフロスト運転時において、流量調整器12によるホットガスバイパス配管11に流れる冷媒流量の制御と、圧縮機1に吸入される冷媒吸込量の制御との双方を行うことにより、圧縮機1への液戻り状態が発生しない範囲内において最大限の能力でホットガスデフロストを行うことができるため、デフロスト時間をさらに短縮しながら、圧縮機1への液戻りを確実に防止することができる。 As described above, during the defrost operation, the compressor 1 is controlled by controlling both the flow rate of the refrigerant flowing through the hot gas bypass pipe 11 by the flow rate regulator 12 and the control of the refrigerant suction amount sucked into the compressor 1. Since the hot gas defrost can be performed with the maximum capacity within the range where the liquid return state does not occur, the liquid return to the compressor 1 can be reliably prevented while further shortening the defrost time.
 以上のように、実施の形態4の冷凍サイクル装置100によれば、デフロスト運転時に圧縮機1の周波数を増減できるようにしたので、実施の形態1などの冷凍サイクル装置100よりも除霜熱量を増やすことができ、デフロスト時間をさらに短縮することができる。 As described above, according to the refrigeration cycle apparatus 100 of the fourth embodiment, since the frequency of the compressor 1 can be increased or decreased during the defrost operation, the defrosting heat amount is lower than that of the refrigeration cycle apparatus 100 of the first embodiment or the like. The defrost time can be further shortened.
実施の形態5.
 図5は、本発明の実施の形態5に係る冷凍サイクル装置100の構成を示す図である。図5において、図1と同じ符号を付している機器などについては、実施の形態1などで説明したことと同様の動作などを行う。液面検知センサ21は、アキュムレータ8内に溜まっている液冷媒の液面の高さ方向における位置を検知する液面検知装置である。
Embodiment 5 FIG.
FIG. 5 is a diagram showing a configuration of the refrigeration cycle apparatus 100 according to Embodiment 5 of the present invention. In FIG. 5, for the devices having the same reference numerals as those in FIG. 1, operations similar to those described in Embodiment 1 are performed. The liquid level detection sensor 21 is a liquid level detection device that detects the position of the liquid refrigerant in the accumulator 8 in the height direction of the liquid level.
 実施の形態5の冷凍サイクル装置100は、デフロスト制御手段30は、デフロスト運転時に、液面検知センサ21が検知したアキュムレータ8の液面の位置に基づいて、油戻し調整器10の制御を行うものである。 In the refrigeration cycle apparatus 100 according to the fifth embodiment, the defrost control means 30 controls the oil return adjuster 10 based on the position of the liquid level of the accumulator 8 detected by the liquid level detection sensor 21 during the defrost operation. It is.
 <ホットガスデフロスト時の制御>
 デフロスト運転の際の基本的な動作は、実施の形態1において説明した図2に示す手順と同様の手順で行われる。実施の形態5の冷凍サイクル装置100においては、デフロスト運転時における油戻し調整器10の動作が異なる。実施の形態5の冷凍サイクル装置100は、実施の形態1において説明したステップST11A~ステップST13Aの処理は実行せず、以下の処理を行う。
<Control during hot gas defrosting>
The basic operation in the defrost operation is performed in the same procedure as the procedure shown in FIG. 2 described in the first embodiment. In the refrigeration cycle apparatus 100 of the fifth embodiment, the operation of the oil return adjuster 10 during the defrost operation is different. The refrigeration cycle apparatus 100 of the fifth embodiment does not execute the processes of steps ST11A to ST13A described in the first embodiment, and performs the following processes.
 図6は、本発明の実施の形態5におけるデフロスト運転時の油戻し調整器10の制御に係る処理の手順を説明する図である。図6における処理は、デフロスト制御手段30が行う。初期状態においては、油戻し調整器10の弁は閉止している。デフロスト運転におけるホットガスデフロスト制御を開始すると(ステップST10)、液面検知センサ21の検知に基づいて、アキュムレータ8の液面の位置を判断する(ステップST41)。 FIG. 6 is a diagram illustrating a processing procedure related to the control of the oil return regulator 10 during the defrost operation according to the fifth embodiment of the present invention. The process in FIG. 6 is performed by the defrost control means 30. In the initial state, the valve of the oil return regulator 10 is closed. When hot gas defrost control in the defrost operation is started (step ST10), the position of the liquid level of the accumulator 8 is determined based on the detection of the liquid level detection sensor 21 (step ST41).
 検知に係るアキュムレータ8の液面の位置となる検知液面位置とあらかじめ設定した設定液面位置とを比較し、設定液面位置<検知液面位置であるか否かを判断する(ステップST42)。設定液面位置<検知液面位置であると判断すると、設定液面位置<検知液面位置の状態が、あらかじめ設定された弁開放設定時間経過したかどうかを判断する(ステップST43)。ここで、実施の形態5においては、弁開放設定時間として10秒を設定する。設定液面位置<検知液面位置の状態が弁開放設定時間継続すると、油戻し調整器10の弁を開放させる(ステップST44)。そして、デフロスト運転の間、ステップST41に戻って処理を続ける。 The detected liquid level position, which is the position of the liquid level of the accumulator 8 related to the detection, is compared with a preset set liquid level position, and it is determined whether or not the set liquid level position <the detected liquid level position (step ST42). . If it is determined that the set liquid level position <the detected liquid level position, it is determined whether the preset liquid level position <the detected liquid level position has passed a preset valve opening set time (step ST43). Here, in the fifth embodiment, 10 seconds is set as the valve opening setting time. When the set liquid level position <the detected liquid level position continues for the valve opening set time, the valve of the oil return adjuster 10 is opened (step ST44). And during defrost operation, it returns to step ST41 and continues processing.
 一方、ステップST42において、設定液面位置<検知液面位置でないと判断すると、検知液面位置<設定液面位置であるか否かを判断する(ステップST45)。検知液面位置<設定液面位置であると判断すると、検知液面位置<設定液面位置の状態が、あらかじめ設定された弁閉止設定時間経過したかどうかを判断する(ステップST46)。ここで、実施の形態5においては、弁閉止設定時間として3秒を設定する。検知液面位置<設定液面位置の状態が弁閉止設定時間継続すると、油戻し調整器10の弁を閉止させる(ステップST47)。油戻し調整器10の弁が閉止している場合は、閉止させたままにする。そして、デフロスト運転の間、ステップST41に戻って処理を続ける。ここで、ステップST45において、検知液面位置<設定液面位置でない(設定液面位置=検知液面位置である)と判断すると、油戻し調整器10の弁の切換を行わずに、ステップST41に戻って処理を続ける。 On the other hand, if it is determined in step ST42 that the set liquid level position is not less than the detected liquid level position, it is determined whether or not the detected liquid level position is less than the set liquid level position (step ST45). If it is determined that the detected liquid level position <the set liquid level position, it is determined whether or not the state of the detected liquid level <the set liquid level position has passed a preset valve closing set time (step ST46). Here, in the fifth embodiment, 3 seconds is set as the valve closing setting time. When the detected liquid level position <the set liquid level position continues for the valve closing set time, the valve of the oil return regulator 10 is closed (step ST47). If the valve of the oil return regulator 10 is closed, keep it closed. And during defrost operation, it returns to step ST41 and continues processing. Here, in step ST45, if it is determined that the detected liquid level position is less than the set liquid level position (set liquid level position = detected liquid level position), the valve of the oil return adjuster 10 is not switched and step ST41 is performed. Return to and continue processing.
 以上のように、実施の形態5の冷凍サイクル装置100においては、液面検知センサ21が設置されているので、精密にアキュムレータ8内の液面の位置を把握することができる。また、デフロスト制御手段30は、アキュムレータ8に溜まった液冷媒における液面の位置を判断し、検知液面位置に基づいて、油戻し調整器10の弁の開閉制御を行うようにしたので、アキュムレータ8内へ低圧リッチの液冷媒を溜めることができる。そして、より高圧リッチな冷媒を吐出することができるので、冷媒の吐出温度を高めることができる。 As described above, in the refrigeration cycle apparatus 100 according to the fifth embodiment, since the liquid level detection sensor 21 is installed, the position of the liquid level in the accumulator 8 can be accurately grasped. Further, the defrost control means 30 judges the position of the liquid level in the liquid refrigerant accumulated in the accumulator 8, and controls the opening and closing of the valve of the oil return regulator 10 based on the detected liquid level position. A low-pressure rich liquid refrigerant can be stored in 8. And since a refrigerant | coolant richer in high pressure can be discharged, the discharge temperature of a refrigerant | coolant can be raised.
 1 圧縮機、2 油分離器、3 逆止弁、4,4a,4b 凝縮器、5,5a,5b 凝縮器ファン、6 膨張弁、7 蒸発器、7a 送風ファン、8 アキュムレータ、9 油戻し配管、10 油戻し調整器、11 ホットガスバイパス配管、12 流量調整器、12a 第1開閉弁、12b 第2開閉弁、13 ニードル弁、20 冷媒状態検出手段、20a 吐出温度センサ、20b 吸込圧力センサ、20c 高圧温度センサ、21 液面検知センサ、30 デフロスト制御手段、31 制御装置、32 記憶装置、33 計時装置、40 系統遮断弁、100 冷凍サイクル装置。 1 compressor, 2 oil separator, 3 check valve, 4, 4a, 4b condenser, 5, 5a, 5b condenser fan, 6 expansion valve, 7 evaporator, 7a blower fan, 8 accumulator, 9 oil return pipe 10, oil return regulator, 11 hot gas bypass piping, 12 flow regulator, 12a first on-off valve, 12b second on-off valve, 13 needle valve, 20 refrigerant state detection means, 20a discharge temperature sensor, 20b suction pressure sensor, 20c high pressure temperature sensor, 21 liquid level detection sensor, 30 defrost control means, 31 control device, 32 storage device, 33 timing device, 40 system shutoff valve, 100 refrigeration cycle device.

Claims (14)

  1.  圧縮機、凝縮器、膨張弁、蒸発器およびアキュムレータが配管で直列に接続され、非共沸の冷媒を循環させる冷媒回路を備えた冷凍サイクル装置であって、
     前記アキュムレータに溜まった液状の前記冷媒中の冷凍機油を前記圧縮機へ戻す油戻し配管と、
     開閉弁を有し、前記油戻し配管上に設置され、前記アキュムレータから前記圧縮機に流れる前記冷凍機油の量を制御する油戻し調整器と、
     前記冷媒回路に前記冷媒を循環させて前記蒸発器の除霜を行うデフロスト運転開始時に、前記油戻し調整器を閉止状態にし、デフロスト運転を開始してから、あらかじめ設定した待機設定時間後に前記油戻し調整器を開放させる制御を行うデフロスト制御手段と
    を備える冷凍サイクル装置。
    A compressor, a condenser, an expansion valve, an evaporator, and an accumulator are connected in series by piping, and a refrigeration cycle apparatus including a refrigerant circuit for circulating a non-azeotropic refrigerant,
    An oil return pipe for returning refrigeration oil in the liquid refrigerant accumulated in the accumulator to the compressor;
    An oil return regulator that has an on-off valve, is installed on the oil return pipe, and controls the amount of the refrigerating machine oil flowing from the accumulator to the compressor;
    At the start of defrost operation in which the refrigerant is circulated through the refrigerant circuit to defrost the evaporator, the oil return regulator is closed, and after the defrost operation is started, the oil is returned after a preset standby set time. A refrigeration cycle apparatus comprising defrost control means for performing control to open the return regulator.
  2.  圧縮機、凝縮器、膨張弁、蒸発器およびアキュムレータが配管で直列に接続され、非共沸の冷媒を循環させる冷媒回路を備えた冷凍サイクル装置であって、
     前記アキュムレータに溜まった液状の前記冷媒中の冷凍機油を前記圧縮機へ戻す油戻し配管と、
     開閉弁を有し、前記油戻し配管上に設置され、前記アキュムレータから前記圧縮機に流れる前記冷凍機油の量を制御する油戻し調整器と、
     前記アキュムレータに溜まった液冷媒の液面の高さ方向に係る位置を検知する液面検知装置と、
     前記冷媒回路に前記冷媒を循環させて前記蒸発器の除霜を行うデフロスト運転中に、前記液面検知装置の検知に係る検知液面位置が、あらかじめ設定された設定液面位置となるように、前記油戻し調整器の動作を制御するデフロスト制御手段と
    を備える冷凍サイクル装置。
    A compressor, a condenser, an expansion valve, an evaporator, and an accumulator are connected in series by piping, and a refrigeration cycle apparatus including a refrigerant circuit for circulating a non-azeotropic refrigerant,
    An oil return pipe for returning refrigeration oil in the liquid refrigerant accumulated in the accumulator to the compressor;
    An oil return regulator that has an on-off valve, is installed on the oil return pipe, and controls the amount of the refrigerating machine oil flowing from the accumulator to the compressor;
    A liquid level detection device for detecting a position in the height direction of the liquid level of the liquid refrigerant accumulated in the accumulator;
    During the defrost operation in which the refrigerant is circulated through the refrigerant circuit to defrost the evaporator, the detected liquid level position related to detection by the liquid level detection device is set to a preset set liquid level position. And a defrost control means for controlling the operation of the oil return regulator.
  3.  前記デフロスト制御手段は、前記検知液面位置が、あらかじめ設定した弁開放設定時間継続して、設定液面位置よりも高い位置にあると判断すると、前記油戻し調整器を開放させ、前記検知液面位置が、あらかじめ設定した弁閉止設定時間継続して、前記設定液面位置よりも低い位置にあると判断すると、前記油戻し調整器を閉止させる請求項2に記載の冷凍サイクル装置。 When the defrost control means determines that the detected liquid level position is higher than the set liquid level position for a preset valve opening set time, the oil return adjuster is opened, and the detected liquid level is determined. 3. The refrigeration cycle apparatus according to claim 2, wherein the oil return regulator is closed when it is determined that the surface position is lower than the set liquid level position for a preset valve closing set time.
  4.  前記圧縮機の吐出側から前記蒸発器までを直接接続するホットガスバイパス配管と、
     前記ホットガスバイパス配管に接続された、前記ホットガスバイパス配管に流れる前記冷媒の流量を調整する流量調整器と、
     前記圧縮機から吐出される前記冷媒の吐出過熱度および前記圧縮機の吸込圧力を検出する冷媒状態検出手段と
    をさらに備え、
     前記デフロスト制御手段は、
     通常冷却運転時に前記流量調整器を閉止させ、前記デフロスト運転時において、前記デフロスト運転開始時において、第1冷媒流量の前記冷媒が前記ホットガスバイパス配管に流れるように前記流量調整器を制御し、
     前記吐出過熱度が設定過熱度よりも大きく、かつ前記吸込圧力が設定圧力よりも低い場合に、前記ホットガスバイパス配管に流れる冷媒量を前記第1冷媒流量よりも増加させるように前記流量調整器を制御する請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
    Hot gas bypass piping directly connecting the discharge side of the compressor to the evaporator;
    A flow controller connected to the hot gas bypass pipe, for adjusting a flow rate of the refrigerant flowing through the hot gas bypass pipe;
    A refrigerant state detecting means for detecting a discharge superheat degree of the refrigerant discharged from the compressor and a suction pressure of the compressor;
    The defrost control means includes
    The flow regulator is closed during normal cooling operation, and the flow regulator is controlled so that the refrigerant at the first refrigerant flow flows into the hot gas bypass pipe at the start of the defrost operation during the defrost operation.
    When the discharge superheat degree is larger than the set superheat degree and the suction pressure is lower than the set pressure, the flow rate regulator is configured to increase the amount of refrigerant flowing through the hot gas bypass pipe from the first refrigerant flow rate. The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is controlled.
  5.  前記デフロスト制御手段は、
     前記デフロスト運転中において、前記吐出過熱度が前記設定過熱度以下か、または前記吸込圧力が前記設定圧力以上である場合に、前記ホットガスバイパス配管に流れる冷媒量を前記第1冷媒流量に減少させるように前記流量調整器を制御する、請求項4に記載の冷凍サイクル装置。
    The defrost control means includes
    During the defrost operation, when the discharge superheat is equal to or lower than the set superheat, or the suction pressure is equal to or higher than the set pressure, the amount of refrigerant flowing through the hot gas bypass pipe is decreased to the first refrigerant flow rate. The refrigeration cycle apparatus according to claim 4, wherein the flow regulator is controlled as follows.
  6.  前記圧縮機の吐出側から前記蒸発器までを直接接続するホットガスバイパス配管と、
     前記ホットガスバイパス配管に接続された、前記ホットガスバイパス配管に流れる前記冷媒の流量を調整する流量調整器と、
     前記圧縮機から吐出される前記冷媒の吐出過熱度および前記圧縮機の吸込圧力を検出する冷媒状態検出手段と
    をさらに備え、
     前記デフロスト制御手段は、
     デフロスト運転開始時において、第1冷媒流量の前記冷媒が前記ホットガスバイパス配管に流れるように前記流量調整器を制御し、
     前記デフロスト運転中において、前記吐出過熱度が設定過熱度以下か、または前記吸込圧力が設定圧力以下である場合に前記圧縮機の運転周波数を減少させる制御を行う請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
    Hot gas bypass piping directly connecting the discharge side of the compressor to the evaporator;
    A flow controller connected to the hot gas bypass pipe, for adjusting a flow rate of the refrigerant flowing through the hot gas bypass pipe;
    A refrigerant state detecting means for detecting a discharge superheat degree of the refrigerant discharged from the compressor and a suction pressure of the compressor;
    The defrost control means includes
    At the start of defrost operation, the flow rate controller is controlled so that the refrigerant at the first refrigerant flow rate flows into the hot gas bypass pipe;
    The control according to any one of claims 1 to 3, wherein during the defrost operation, control is performed to reduce an operating frequency of the compressor when the discharge superheat is equal to or less than a set superheat, or the suction pressure is equal to or less than a set pressure. The refrigeration cycle apparatus according to claim 1.
  7.  前記デフロスト制御手段は、
     前記デフロスト運転中において、前記吐出過熱度が設定過熱度よりも大きく、かつ前記吸込圧力が設定圧力よりも大きい場合に前記圧縮機の運転周波数を増加させ、
     前記圧縮機の運転周波数が最大運転周波数になっている場合に前記ホットガスバイパス配管に流れる冷媒量を前記第1冷媒流量よりも増加させるように前記流量調整器を制御する、請求項6に記載の冷凍サイクル装置。
    The defrost control means includes
    During the defrost operation, when the discharge superheat is greater than the set superheat and the suction pressure is greater than the set pressure, the operating frequency of the compressor is increased,
    The flow rate regulator is controlled to increase the amount of refrigerant flowing through the hot gas bypass pipe more than the first refrigerant flow rate when the operating frequency of the compressor is the maximum operating frequency. Refrigeration cycle equipment.
  8.  前記デフロスト制御手段は、
     前記デフロスト運転中に前記ホットガスバイパス配管に流れる冷媒量を前記第1冷媒流量よりも増加させた後において、前記吐出過熱度が設定過熱度以下か、または前記吸込圧力が設定圧力以下である場合に、前記圧縮機の運転周波数を減少させ、前記圧縮機の運転周波数が最小運転周波数になった場合に前記ホットガスバイパス配管に流れる冷媒量を前記第1冷媒流量に減少させるように前記流量調整器を制御する、請求項7に記載の冷凍サイクル装置。
    The defrost control means includes
    When the amount of refrigerant flowing through the hot gas bypass pipe during the defrost operation is increased from the first refrigerant flow rate, and the discharge superheat is less than the set superheat or the suction pressure is less than the set pressure And adjusting the flow rate so as to reduce the amount of refrigerant flowing through the hot gas bypass pipe to the first refrigerant flow rate when the operating frequency of the compressor is decreased and the operating frequency of the compressor becomes the minimum operating frequency. The refrigeration cycle apparatus according to claim 7, wherein the refrigeration cycle apparatus is controlled.
  9.  前記流量調整器は、
     互いに並列に接続された複数の開閉弁からなるものであり、
     前記デフロスト制御手段は、開放する前記開閉弁の数により前記ホットガスバイパス配管に流れる前記冷媒の流量を制御するものである、請求項4~請求項8のいずれか一項に記載の冷凍サイクル装置。
    The flow regulator is
    It consists of a plurality of on-off valves connected in parallel to each other,
    The refrigeration cycle apparatus according to any one of claims 4 to 8, wherein the defrost control means controls the flow rate of the refrigerant flowing through the hot gas bypass pipe according to the number of the on-off valves to be opened. .
  10.  前記流量調整器は、
     開放されることにより前記第1冷媒流量を前記ホットガスバイパス配管に流す第1開閉弁と、
     前記第1開閉弁と並列に接続されている第2開閉弁と、を備え、
     前記デフロスト制御手段は、
     前記第1開閉弁を開放し、前記第2開閉弁を閉止することにより前記ホットガスバイパス配管に前記第1冷媒流量を流し、
     前記第1開閉弁および前記第2開閉弁を開放することにより、前記ホットガスバイパス配管に流れる冷媒量を前記第1冷媒流量よりも増加させる請求項4~請求項9のいずれか一項に記載の冷凍サイクル装置。
    The flow regulator is
    A first on-off valve that causes the first refrigerant flow rate to flow through the hot gas bypass pipe by being opened;
    A second on-off valve connected in parallel with the first on-off valve,
    The defrost control means includes
    Opening the first on-off valve and closing the second on-off valve to flow the first refrigerant flow rate through the hot gas bypass pipe;
    The refrigerant amount flowing in the hot gas bypass pipe is increased more than the first refrigerant flow rate by opening the first on-off valve and the second on-off valve. Refrigeration cycle equipment.
  11.  前記凝縮器に流れる前記冷媒を遮断する系統遮断弁をさらに備え、
     前記凝縮器は、
     前記冷媒回路に複数台が並列に設置され、
     前記デフロスト制御手段は、
     前記デフロスト運転中において、前記系統遮断弁を閉止させる制御を行う請求項1~請求項10のいずれか一項に記載の冷凍サイクル装置。
    A system shut-off valve for shutting off the refrigerant flowing through the condenser;
    The condenser is
    A plurality of units are installed in parallel in the refrigerant circuit,
    The defrost control means includes
    The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein control for closing the system shutoff valve is performed during the defrost operation.
  12.  前記凝縮器に送風する凝縮器ファンをさらに備え、
     前記デフロスト制御手段は、
     前記デフロスト運転開始時において、前記凝縮器ファンを停止させる制御を行う請求項1~請求項11のいずれか一項に記載の冷凍サイクル装置。
    A condenser fan for blowing air to the condenser;
    The defrost control means includes
    The refrigeration cycle apparatus according to any one of claims 1 to 11, wherein control is performed to stop the condenser fan at the start of the defrost operation.
  13.  前記流量調整器は、
     前記第1開閉弁または前記第2開閉弁に直列に接続された流量調整弁を備える請求項10に記載の冷凍サイクル装置。
    The flow regulator is
    The refrigeration cycle apparatus according to claim 10, further comprising a flow rate adjustment valve connected in series to the first on-off valve or the second on-off valve.
  14.  前記流量調整器は、
     連続的に開度の調整可能な電動弁により構成される、請求項4~請求項8のいずれか一項に記載の冷凍サイクル装置。
    The flow regulator is
    The refrigeration cycle apparatus according to any one of claims 4 to 8, wherein the refrigeration cycle apparatus is configured by an electrically operated valve whose opening degree can be adjusted continuously.
PCT/JP2017/021631 2017-06-12 2017-06-12 Refrigeration cycle device WO2018229826A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780091251.7A CN110709649B (en) 2017-06-12 2017-06-12 Refrigeration cycle device
PCT/JP2017/021631 WO2018229826A1 (en) 2017-06-12 2017-06-12 Refrigeration cycle device
JP2019524563A JP6707195B2 (en) 2017-06-12 2017-06-12 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021631 WO2018229826A1 (en) 2017-06-12 2017-06-12 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018229826A1 true WO2018229826A1 (en) 2018-12-20

Family

ID=64659691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021631 WO2018229826A1 (en) 2017-06-12 2017-06-12 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6707195B2 (en)
CN (1) CN110709649B (en)
WO (1) WO2018229826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121352A (en) * 2020-01-16 2020-05-08 天津商业大学 Continuous defrosting refrigeration control system capable of reducing heat leakage
CN113074474A (en) * 2021-04-12 2021-07-06 长虹美菱股份有限公司 Intermediate liquid collection energy storage evaporator and efficient refrigerating system thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353360B (en) * 2022-01-06 2024-02-23 青岛海尔空调电子有限公司 Dual compressor refrigerant cycle system and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136068A (en) * 1994-11-01 1996-05-31 Matsushita Refrig Co Ltd Air conditioner
JPH08145489A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Refrigerator and operating method therefor
JP2010002074A (en) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
JP2015034657A (en) * 2013-08-08 2015-02-19 株式会社富士通ゼネラル Air conditioner
WO2017098669A1 (en) * 2015-12-11 2017-06-15 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174123A (en) * 1991-08-23 1992-12-29 Thermo King Corporation Methods and apparatus for operating a refrigeration system
CN1205073A (en) * 1996-08-14 1999-01-13 大金工业株式会社 Air conditioner
CN201014833Y (en) * 2007-01-24 2008-01-30 劳特斯空调(江苏)有限公司 Air source heat pump low temperature heat-production bypass system
CN101526288B (en) * 2009-04-20 2012-05-30 广东志高空调有限公司 Air-conditioner defroster

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136068A (en) * 1994-11-01 1996-05-31 Matsushita Refrig Co Ltd Air conditioner
JPH08145489A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Refrigerator and operating method therefor
JP2010002074A (en) * 2008-06-18 2010-01-07 Mitsubishi Electric Corp Mixed refrigerant and refrigerating cycle device using the same
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
JP2015034657A (en) * 2013-08-08 2015-02-19 株式会社富士通ゼネラル Air conditioner
WO2017098669A1 (en) * 2015-12-11 2017-06-15 三菱電機株式会社 Refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121352A (en) * 2020-01-16 2020-05-08 天津商业大学 Continuous defrosting refrigeration control system capable of reducing heat leakage
CN113074474A (en) * 2021-04-12 2021-07-06 长虹美菱股份有限公司 Intermediate liquid collection energy storage evaporator and efficient refrigerating system thereof
CN113074474B (en) * 2021-04-12 2022-06-07 长虹美菱股份有限公司 Intermediate liquid collection energy storage evaporator and efficient refrigerating system thereof

Also Published As

Publication number Publication date
JP6707195B2 (en) 2020-06-10
CN110709649A (en) 2020-01-17
JPWO2018229826A1 (en) 2019-12-26
CN110709649B (en) 2021-08-10

Similar Documents

Publication Publication Date Title
US9897349B2 (en) Refrigeration cycle device
EP3205954B1 (en) Refrigeration cycle device
US11885518B2 (en) Air-conditioning apparatus
CN108369046B (en) Refrigeration cycle device
JP5641875B2 (en) Refrigeration equipment
JP4905018B2 (en) Refrigeration equipment
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
US20120167604A1 (en) Refrigeration cycle apparatus
EP3546850B1 (en) Refrigeration device
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
WO2018229826A1 (en) Refrigeration cycle device
US10739050B2 (en) Air-conditioning apparatus
CN108954501B (en) Air conditioner
JP3467837B2 (en) Air conditioner
KR20170095616A (en) Air conditioner and a method for controlling the same
JP4274250B2 (en) Refrigeration equipment
US20220186993A1 (en) Air-conditioning apparatus
JP6588645B2 (en) Refrigeration cycle equipment
JP2019207104A (en) Refrigeration cycle device
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant
EP4276384A1 (en) Refrigeration cycle apparatus
JP7387057B2 (en) Refrigeration cycle equipment
KR100339543B1 (en) The operation method for improving starting property of a inverter air conditioner
JPH08128763A (en) Operation controller for air conditioner
JP2023100176A (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524563

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913802

Country of ref document: EP

Kind code of ref document: A1