JPH08325755A - Stripping method of hardened film and recoating member obtained by method thereof - Google Patents

Stripping method of hardened film and recoating member obtained by method thereof

Info

Publication number
JPH08325755A
JPH08325755A JP30486095A JP30486095A JPH08325755A JP H08325755 A JPH08325755 A JP H08325755A JP 30486095 A JP30486095 A JP 30486095A JP 30486095 A JP30486095 A JP 30486095A JP H08325755 A JPH08325755 A JP H08325755A
Authority
JP
Japan
Prior art keywords
hard film
peeling
base material
film
recoating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30486095A
Other languages
Japanese (ja)
Other versions
JP3320965B2 (en
Inventor
Haruo Tomari
治夫 泊里
Yasuaki Sugizaki
康昭 杉崎
Toshiki Sato
俊樹 佐藤
Tatsuya Yasunaga
龍哉 安永
Masanori Sai
政憲 蔡
Kazuhisa Kawada
和久 河田
Yasuyuki Yamada
保之 山田
Yusuke Tanaka
裕介 田中
Yasunori Wada
恭典 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30486095A priority Critical patent/JP3320965B2/en
Publication of JPH08325755A publication Critical patent/JPH08325755A/en
Application granted granted Critical
Publication of JP3320965B2 publication Critical patent/JP3320965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE: To provide a method for rapidly removing a hardened film on the surface of a base material while suppressing chemical erosion to the base material so as to enable to give the same wear resistance property and corrosion resistance as that of a new member to a recoating member and the inexpensive recoating member obtained by the method. CONSTITUTION: In the method for stripping the hardened film from the wear resistant member, on the surface of which is covered with the hardened film, the hardened film is stripped by dipping the member in an aq. solution containing a permanganate ion and/or a bichromate ion and having >=pH10 or electrolyzing with the member dipped in an alkaline solution having >=pH8 and used as an anode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高速度切削工具
鋼、SNCMやSCM等のFe系金属基材、あるいは超
硬合金基材等の表面に、耐摩耗性・寿命向上の目的で設
けられる硬質膜を除去するための方法に関するものであ
り、詳細には、基材を劣化させることなく表面の硬質膜
のみを化学的に除去し、再被覆を行うことによって基材
の繰り返し使用を可能にする硬質膜除去法および該方法
の利用によって得られる再被覆部材に関するものであ
る。なお、本発明の「超硬合金」とは、WCを主成分と
し結合相形成成分としてFe系金属のうちの1種以上を
含有するWC基超硬合金に代表される超硬合金を意味す
る。
TECHNICAL FIELD The present invention is provided on the surface of high speed cutting tool steel, Fe type metal base material such as SNCM and SCM, or cemented carbide base material for the purpose of improving wear resistance and life. The present invention relates to a method for removing a hard film. Specifically, it is possible to chemically remove only the hard film on the surface without degrading the base material and re-coat the base material to enable repeated use of the base material. The present invention relates to a method for removing a hard film, and a recoated member obtained by using the method. The "cemented carbide" of the present invention means a cemented carbide represented by a WC-based cemented carbide containing WC as a main component and one or more of Fe-based metals as a binder phase forming component. .

【0002】[0002]

【従来の技術】切削工具、金型、軸受け等の耐摩耗性が
要求される部材には、TiやAl、Crの窒化物、炭化
物、炭窒化物からなる硬質皮膜が被覆されることが多
い。この硬質皮膜は耐摩耗性、耐食性に優れているの
で、上記部材の寿命延長に効果的である。
2. Description of the Related Art Hardening films made of nitrides, carbides, and carbonitrides of Ti, Al, and Cr are often coated on members such as cutting tools, molds, and bearings that require wear resistance. . Since this hard coating has excellent wear resistance and corrosion resistance, it is effective in extending the life of the above-mentioned members.

【0003】これらの硬質膜は、一般的にはCVD法や
PVD法等によってコーティングされているが、コーテ
ィング時の条件によっては、皮膜中に欠陥が生じたり、
部分的に剥離が起こったりするため、期待される耐摩耗
性や耐食性が得られないことがある。また硬質膜を被覆
した部材は、未被覆の部材に比べ寿命が長くなるが、や
はり長時間の使用によって硬質膜が摩耗損傷を受け、結
局使用不能に陥ってしまう。
These hard films are generally coated by a CVD method, a PVD method or the like. However, defects may occur in the coating depending on the coating conditions.
Since peeling may occur partially, the expected wear resistance and corrosion resistance may not be obtained. Further, a member coated with a hard film has a longer life than an uncoated member, but the hard film is also worn and damaged due to long-term use and eventually becomes unusable.

【0004】この様な欠陥を含む硬質膜や、あるいは寿
命に達した硬質膜を、基材から除去する試みがなされて
いる。すなわち、不要な硬質膜を基材から除去した後、
新しい硬質膜を被覆してやれば部材の繰り返し使用が可
能になり、資源の効率的使用およびコスト削減に役立つ
からである。
Attempts have been made to remove a hard film containing such defects or a hard film that has reached the end of its life from the substrate. That is, after removing the unnecessary hard film from the substrate,
This is because if a new hard film is coated, the member can be repeatedly used, which helps efficient use of resources and cost reduction.

【0005】硬質膜の除去法には、研削等の物理的除
去法、過酸化水素水溶液による化学的除去法の2つの
方法が知られている。しかし、の物理的除去法では、
基材にダメージを与えることなく非常に薄い硬質膜のみ
を研削することは不可能であり、またこの様な精密な研
削が可能であるとしてもコストが高くなって、「コスト
削減」の目的に反することになる。
There are two known methods for removing the hard film: a physical removal method such as grinding and a chemical removal method using an aqueous hydrogen peroxide solution. However, the physical removal method of
It is impossible to grind only a very thin hard film without damaging the base material, and even if such precise grinding is possible, the cost will be high, and for the purpose of "cost reduction" It will be against.

【0006】一方、の化学的除去法では、過酸化水素
水系の溶液が使用可能であることが知られている。例え
ば米国特許4554049号には、過酸化水素水含有溶
液の使用が開示されているが、硬質膜の種類によっては
全く除去ができないか、あるいは除去に長時間かかる
上、基材の種類によっては基材自体が侵食を受けてしま
うという問題があった。また特開平5−503320号
には、過酸化水素水、酸、ヒドロキシルイオンのアルカ
リ源を含む水溶液を剥離液として用いて、硬質膜を除去
する方法が示されている。しかしこの方法の場合、基材
がスーパーアロイ、ステンレス鋼あるいは合金鋼といっ
た耐食性に優れた鋼材であるために適用可能なのであ
り、他の一般的なFe系金属部材や超硬合金材料では、
やはり侵食を受けてしまう。また、除去しきれなかった
硬質膜が基材上に残存したり、基材表面が剥離液によっ
て汚染されるため、せっかく再被覆を行っても再被覆膜
との密着性が損なわれていて結局新品の時の様な優れた
耐摩耗特性は得られないという問題もあった。
On the other hand, it is known that a hydrogen peroxide solution can be used in the chemical removal method. For example, U.S. Pat. No. 4,554,049 discloses the use of a hydrogen peroxide-containing solution, but it cannot be removed at all depending on the type of hard film, or it takes a long time to remove, and depending on the type of substrate, There was a problem that the material itself was eroded. Further, JP-A-5-503320 discloses a method for removing a hard film by using an aqueous solution containing hydrogen peroxide solution, an acid and an alkali source of hydroxyl ion as a stripping solution. However, in the case of this method, it is applicable because the base material is a steel material having excellent corrosion resistance such as super alloy, stainless steel or alloy steel, and in other general Fe-based metal members and cemented carbide materials,
After all it will be eroded. Further, the hard film that could not be completely removed remains on the base material or the base material surface is contaminated by the stripping solution, so that the adhesion with the re-coated film is impaired even if the re-coating is carried out. After all, there was also a problem that excellent wear resistance characteristics like those of a new product cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の事情に
着目してなされたものであって、再被覆後の部材が新品
部材と同等の耐摩耗特性・耐食性を有することができる
様に、基材に対する化学的侵食を抑えつつ、該基材表面
の硬質膜を迅速に除去する方法、および該方法を利用し
て安価な再被覆部材を提供することを課題とするもので
ある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, so that a member after recoating can have the same wear resistance and corrosion resistance as a new member, An object of the present invention is to provide a method for rapidly removing a hard film on the surface of a base material while suppressing chemical erosion on the base material, and to provide an inexpensive recoating member by using the method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の第1の方法は、基材表面に硬質膜が被
覆された耐摩耗性部材から該硬質膜を剥離する方法であ
って、過マンガン酸イオンおよび/または重クロム酸イ
オンを含むpH10以上の水溶液中に該部材を浸漬する
ところに要旨を有する硬質膜の剥離方法である。過マン
ガン酸イオンの濃度が0.05mol/l 以上であること、
重クロム酸イオンの濃度が0.03mol/l 以上であるこ
と、前記水溶液の温度を40〜90℃に保つものである
ことは、第1の方法における好ましい実施態様である。
The first method of the present invention which has been able to solve the above problems is a method of peeling a hard film from a wear-resistant member having a hard film coated on the surface of a base material. The method for peeling a hard film is characterized in that the member is immersed in an aqueous solution containing permanganate ions and / or dichromate ions and having a pH of 10 or more. The concentration of permanganate ion is 0.05 mol / l or more,
It is a preferred embodiment of the first method that the concentration of dichromate ion is 0.03 mol / l or more and that the temperature of the aqueous solution is kept at 40 to 90 ° C.

【0009】一方第2の方法は、基材表面に硬質膜が被
覆された耐摩耗性部材から該硬質膜を剥離する方法であ
って、pH8以上のアルカリ溶液中に該部材を浸漬しな
がら該部材を陽極として電解処理を行うものであるとこ
ろに要旨を有する。アルカリ溶液の温度を40〜90℃
に保つことは第2の方法においても好ましい実施態様で
ある。
On the other hand, the second method is a method of peeling the hard film from a wear resistant member having a hard film coated on the surface of a base material, which is prepared by immersing the member in an alkaline solution having a pH of 8 or more. The gist is that the electrolytic treatment is performed using the member as an anode. The temperature of the alkaline solution is 40 to 90 ° C.
Keeping at is also a preferred embodiment in the second method.

【0010】本発明の第1および第2の方法において
は、前記硬質膜がIVa 、Va 、VIa 族元素およびAlか
ら選択される1種以上の元素の窒化物、炭化物、炭窒化
物のいずれかである時に適用することが好ましい。
In the first and second methods of the present invention, the hard film is any one of a nitride, a carbide and a carbonitride of one or more elements selected from IVa, Va, VIa group elements and Al. Is preferably applied when

【0011】第1の方法あるいは第2の方法のいずれか
の剥離方法によって硬質膜を剥離した後、新たに任意の
硬質膜が被覆されたものである再被覆部材も本発明に包
含される。本発明の剥離方法は、Fe系金属基材かまた
は超硬合金基材であるときに好ましく利用でき、再被覆
部材の基材は、Fe系金属かまたは超硬合金基材である
ことが好ましい。さらに、基材にVおよび/またはWが
含まれていると、硬質膜剥離時にVおよび/またはWに
由来する化合物が溶出して、再被覆膜との密着性向上に
有効な微細な孔が基材表面に無数に発生することが知見
された。従って、基材表面のVおよび/またはWの組成
が基材内部のVおよび/またはWの組成の0.1〜0.
9倍であること、また、硬質膜剥離後の基材表面に直径
0.2〜8μmの孔が多数存在しているものであるこ
と、の2条件のいずれか一方または両方を満足すると、
再被覆膜の密着性が極めて良好となり、新品同様の再被
覆部材が得られるので、上記2条件は本発明の再被覆部
材における最も好ましい実施態様である。
The present invention also includes a recoating member obtained by peeling the hard film by the peeling method of either the first method or the second method, and then newly coating any hard film. The peeling method of the present invention can be preferably used when it is an Fe-based metal base material or a cemented carbide base material, and the base material of the recoating member is preferably an Fe-based metal base material or a cemented carbide base material. . Further, when V and / or W is contained in the substrate, the compound derived from V and / or W is eluted at the time of peeling the hard film, and fine pores effective for improving the adhesiveness with the recoating film. It has been found that innumerable numbers are generated on the substrate surface. Therefore, the composition of V and / or W on the surface of the substrate is 0.1 to 0.
9 times, and that there are a large number of pores having a diameter of 0.2 to 8 μm on the surface of the substrate after the hard film is peeled off, if either one or both of the two conditions are satisfied,
The above two conditions are the most preferred embodiments of the recoating member of the present invention, because the recoating film has extremely good adhesion and a recoating member similar to a new product can be obtained.

【0012】[0012]

【発明の実施の形態】部材の耐摩耗性・耐食性向上の目
的で設けられる硬質被覆膜は、IVa 、Va 、VIa 族元素
あるいはAlから選択される1種以上の元素の単独もし
くは複合窒化物、炭化物、炭窒化物である。これらの化
合物は、酸性溶液、特に非酸化性溶液中で優れた耐食性
を示すが、酸化性の環境下では分解を起こす。この作用
を利用したのが前述の特開平5−503320号の酸化
性剥離液であるが、本発明者等が検討した結果、酸化分
解の結果生じる金属イオンは雰囲気が酸化性環境なので
酸化物として硬質膜表面に析出し、この酸化物が膜表面
全体を覆ってしまうため、硬質膜の分解・剥離はそれ以
上進行しにくくなり、剥離にかなりの時間を要すること
がわかった。さらに、剥離液によって分解を受けた皮膜
には多数の割れが入るため、この割れ部分から剥離液が
基材自体を侵食してしまうことも明らかとなった。
BEST MODE FOR CARRYING OUT THE INVENTION A hard coating film provided for the purpose of improving wear resistance and corrosion resistance of a member is a single or composite nitride of one or more elements selected from IVa, Va, VIa group elements or Al. , Carbides and carbonitrides. These compounds show excellent corrosion resistance in acidic solutions, especially in non-oxidizing solutions, but they decompose in oxidizing environments. It is the oxidizing stripping solution of the above-mentioned JP-A-5-503320 that utilizes this action, but as a result of studies by the present inventors, the metal ions resulting from oxidative decomposition are oxides because the atmosphere is an oxidizing environment. It was found that since the oxide is deposited on the surface of the hard film and the oxide film covers the entire surface of the film, the decomposition / peeling of the hard film does not proceed any further, and it takes a considerable time for the peeling. Further, it was also clarified that since the coating film decomposed by the stripping solution has many cracks, the stripping solution corrodes the substrate itself from the cracked portions.

【0013】そこで本発明者等は、金属酸化物皮膜を形
成させずに硬質膜の分解を起こし得る酸化環境を作るこ
とについて検討し、有用な2つの剥離方法を見出した。
以下詳細に説明する。
Therefore, the present inventors have studied to create an oxidizing environment that can cause decomposition of the hard film without forming a metal oxide film, and have found two useful peeling methods.
This will be described in detail below.

【0014】まず、本発明の第1の方法は、過マンガン
酸イオンおよび/または重クロム酸イオンを含むpH1
0以上の水溶液中に硬質膜被覆部材を浸漬するところに
特徴を有するものである。過マンガン酸イオンおよび/
または重クロム酸イオンを含む水溶液は酸化力が強く、
酸化還元反応時に酸素をほとんど発生しないため、金属
酸化物の皮膜形成を抑制する効果がある。従って従来の
剥離溶液に比べ、硬質膜を短時間で除去することが可能
である。しかし剥離用水溶液のpHが10以上でなけれ
ば、これらのイオンが存在しても金属酸化物皮膜が形成
されてしまい、硬質膜の溶解・剥離反応の進行を妨害す
る。
First, the first method of the present invention is to prepare a pH 1 solution containing permanganate ions and / or dichromate ions.
It is characterized in that the hard film-coated member is immersed in an aqueous solution of 0 or more. Permanganate and /
Or the aqueous solution containing dichromate ion has strong oxidizing power,
Since oxygen is hardly generated during the redox reaction, it has an effect of suppressing the formation of a metal oxide film. Therefore, the hard film can be removed in a shorter time as compared with the conventional stripping solution. However, if the pH of the stripping aqueous solution is not 10 or more, a metal oxide film will be formed even if these ions are present, which hinders the dissolution / peeling reaction of the hard film.

【0015】従って、本発明の第1方法では、pH10
以上を必須要件と定めた。水溶液のpHは高い方が硬質
膜の溶解反応を促進するので、好ましいpHは12以上
であり、さらに好ましくはpH14以上である。剥離用
水溶液のpHを調整するためには、水に溶けてアルカリ
性を示す化合物が特に限定されずに使用できるが、入手
し易く安価な水酸化ナトリウムや水酸化カリウム等が好
ましく採用される。
Therefore, in the first method of the present invention, pH of 10
The above is defined as an essential requirement. A higher pH of the aqueous solution promotes the dissolution reaction of the hard film, so that the pH is preferably 12 or more, more preferably 14 or more. In order to adjust the pH of the stripping aqueous solution, a compound that dissolves in water and exhibits alkalinity can be used without particular limitation, but sodium hydroxide, potassium hydroxide and the like, which are easily available and inexpensive, are preferably adopted.

【0016】一方、過マンガン酸イオンの濃度は0.0
5mol/l 以上が適切である。0.05mol/l より低い
と、硬質膜の溶解速度が遅く、実用的ではない。好まし
くは0.1mol/l 以上、より好ましい濃度は0.3mol/
l 以上であり、また上限はコストの点から飽和濃度以下
にすることが推奨される。重クロム酸イオンの濃度は、
0.03mol/l 以上が適している。好ましくは0.1mo
l/l 以上、さらに好ましい濃度は0.2mol/l 以上であ
る。また上限は過マンガン酸イオンの場合と同様に飽和
濃度以下にすることが推奨される。これらのイオンは、
1種のみを単独で剥離用水溶液中に存在させてもよい
が、より短時間に硬質膜の除去を行うためには、両イオ
ンを上記濃度で存在させることが好ましい。これらのイ
オンを剥離用水溶液中に存在させるためには、水中で解
離してこれらのイオンを出す塩化合物を使用すればよ
く、例えば過マンガン酸カリウムや重クロム酸ナトリウ
ム等が挙げられる。
On the other hand, the concentration of permanganate ion is 0.0
5 mol / l or more is suitable. If it is lower than 0.05 mol / l, the dissolution rate of the hard film is slow, which is not practical. It is preferably 0.1 mol / l or more, more preferably 0.3 mol / l.
It is more than l, and the upper limit is recommended to be below the saturation concentration from the viewpoint of cost. The concentration of dichromate ion is
0.03 mol / l or more is suitable. Preferably 0.1 mo
l / l or more, more preferably 0.2 mol / l or more. Further, it is recommended that the upper limit be equal to or lower than the saturation concentration as in the case of permanganate ion. These ions are
Only one kind may be present alone in the stripping aqueous solution, but in order to remove the hard film in a shorter time, it is preferable that both ions be present in the above concentration. In order to make these ions exist in the stripping aqueous solution, a salt compound which dissociates in water to produce these ions may be used, and examples thereof include potassium permanganate and sodium dichromate.

【0017】硬質膜をより迅速に溶解剥離するには、剥
離用水溶液を加温することが好ましい。特に40℃以上
にすると溶解反応が顕著に進行する。しかし90℃以上
に保つと基材の腐食の恐れがあるため、40〜90℃が
好ましい温度範囲である。より好ましくは45〜80
℃、さらに好ましくは50〜75℃である。
In order to dissolve and peel the hard film more quickly, it is preferable to heat the peeling aqueous solution. Especially when the temperature is 40 ° C. or higher, the dissolution reaction remarkably progresses. However, if the temperature is maintained at 90 ° C or higher, the substrate may be corroded, so 40 to 90 ° C is a preferable temperature range. More preferably 45-80
C., more preferably 50 to 75.degree.

【0018】本発明の第2の剥離方法は、pH8以上の
アルカリ溶液中に硬質膜被覆部材を浸漬しながら、この
部材を陽極として電解処理を行うところに特徴を有す
る。アルカリ溶液を電解液とすることによって、硬質膜
の分解によって生成する金属イオンは酸化物を形成しな
い。また酸化物が形成されても溶解されてしまい、硬質
膜の分解進行を阻害しない。従って、この方法において
も従来の剥離方法に比べ、迅速・確実な硬質膜の除去が
可能である。この第2の方法の場合は、pHが8以上で
あれば金属酸化物の生成を妨げられる。好ましいpHは
10以上、より好ましくはpH12以上とする。第2の
剥離方法においても、アルカリ溶液は水酸化ナトリウム
や水酸化カリウムを用いて調製することが好ましい。電
解時の温度も、第1の方法の時と同様に反応進行促進の
ため、40〜90℃の範囲とすることが推奨される。電
解処理における電圧は特に限定されないが、反応進行促
進のために、陽極である被覆部材の電位を800mV
vs.Ag/AgCl(銀/塩化銀参照電極基準)以上
とすることが好ましい。
The second peeling method of the present invention is characterized in that the hard film-coated member is immersed in an alkaline solution having a pH of 8 or more and the electrolytic treatment is performed using this member as an anode. By using the alkaline solution as the electrolytic solution, the metal ions generated by the decomposition of the hard film do not form an oxide. Further, even if an oxide is formed, it is dissolved and does not hinder the progress of decomposition of the hard film. Therefore, also in this method, the hard film can be removed more quickly and more reliably than the conventional peeling method. In the case of this second method, if the pH is 8 or higher, the production of metal oxides is hindered. The pH is preferably 10 or higher, more preferably pH 12 or higher. Also in the second peeling method, it is preferable to prepare the alkaline solution using sodium hydroxide or potassium hydroxide. The temperature during electrolysis is also recommended to be in the range of 40 to 90 ° C. in order to accelerate the reaction progress as in the case of the first method. The voltage in the electrolytic treatment is not particularly limited, but in order to accelerate the reaction progress, the potential of the coating member as the anode is set to 800 mV.
vs. It is preferably Ag / AgCl (silver / silver chloride reference electrode standard) or more.

【0019】本発明の第1の剥離用水溶液による剥離方
法では、硬質膜の溶解・剥離度合いは、剥離用水溶液中
の過マンガン酸イオンと重クロム酸イオンの濃度、p
H、溶液温度および浸漬時間によって決定され、第2の
電解による剥離方法では、電解液のpHと設定電位、溶
液温度および浸漬電解時間によって決定される。それぞ
れの方法において基材の侵食を可及的に抑えつつ所望の
溶解・剥離状態を得るには、剥離除去すべき硬質膜と該
硬質膜が被覆されている基材の種類に応じて、これらの
条件を適宜設定するとよい。
In the first stripping method using the stripping aqueous solution of the present invention, the degree of dissolution and stripping of the hard film is determined by determining the concentration of permanganate ion and dichromate ion in the stripping aqueous solution, p
It is determined by H, the solution temperature and the immersion time. In the second electrolytic stripping method, it is determined by the pH and set potential of the electrolytic solution, the solution temperature and the immersion electrolysis time. In each method, in order to obtain the desired dissolution / peeling state while suppressing the erosion of the substrate as much as possible, depending on the type of the hard film to be peeled and removed and the substrate coated with the hard film, these It is advisable to appropriately set the condition of.

【0020】本発明の上記2つの方法における被覆部材
を浸漬する液は、共にアルカリ溶液環境である。この環
境では、Fe系金属基材は極微量腐食するが、錆などの
腐食生成物の発生は認められない。また、超硬合金基材
では腐食を起こす可能性もあるが、剥離処理の時間を精
密に制御することにより、硬質膜のみを溶解除去して基
材の侵食を防止することができる。従って、本発明の剥
離方法は、その適用対象として、従来の除去法では腐食
して再使用ができなかったFe系金属基材や超硬合金基
材を好適に選択することが可能になった。これらの基材
は本発明の剥離方法によって化学的侵食を受けず、基材
の強度がほとんど低下しないため、硬質膜剥離後の基材
に再び硬質膜を被覆することにより、高性能な耐摩耗性
部材として再使用することができる。
The liquids for immersing the covering member in the above two methods of the present invention are both in an alkaline solution environment. In this environment, the Fe-based metal base material corrodes in an extremely small amount, but no corrosion product such as rust is observed. Further, although the cemented carbide base material may corrode, by precisely controlling the time of the peeling treatment, only the hard film can be dissolved and removed to prevent the base material from being corroded. Therefore, the stripping method of the present invention can be suitably applied to Fe-based metal base materials and cemented carbide base materials that cannot be reused due to corrosion by the conventional removal method. . Since these base materials are not chemically corroded by the peeling method of the present invention and the strength of the base material is hardly reduced, by coating the base material after peeling the hard film with the hard film again, high-performance wear resistance can be obtained. It can be reused as a flexible member.

【0021】もちろん本発明法を、耐食性に優れたステ
ンレス鋼(Crが20%程度含まれている)や、用途が
広い高速度工具鋼に適用することが好ましいことは言う
までもないが、本発明の2つの剥離方法のいずれかによ
って過激に侵食する恐れのない金属基材であれば、Fe
系金属や超硬合金以外の他の金属基材にも充分適用可能
である。
It goes without saying that it is preferable to apply the method of the present invention to stainless steel having excellent corrosion resistance (containing about 20% of Cr) and high-speed tool steel having a wide range of applications, but the method of the present invention is preferable. If the metal base material is not likely to be eroded radically by either of the two peeling methods, Fe
It can be sufficiently applied to metal bases other than base metals and cemented carbides.

【0022】本発明法により剥離される硬質膜は、IVa
、Va 、VIa 族元素あるいはAlから選択される1種
以上の元素の単独もしくは複合窒化物、炭化物、炭窒化
物であることが好ましい。
The hard film peeled by the method of the present invention is IVa
, Va, VIa group elements or one or more elements selected from the group consisting of Al, single or complex nitrides, carbides and carbonitrides are preferable.

【0023】本発明の2つの剥離方法によって硬質膜を
除去された基材は、新たな硬質膜をコーティングするこ
とによって、切削工具、金型、軸受け等の種々の耐摩耗
性を要求される部材に使用することができる。従来の剥
離方法に比べ本発明の剥離方法では、未除去剥離膜の残
存や基材の化学的侵食および汚染がほとんどないため、
再被覆膜の密着性が良く、新品と同等の耐用寿命が得ら
れるためである。従って、2つの剥離方法のいずれかに
よって硬質膜を除去された基材に新たに硬質膜を被覆し
た再被覆部材も本発明に包含される。この時、除去され
る硬質膜と新たに被覆する硬質膜の種類は同一であって
も異なっていてもよい。
The base material from which the hard film has been removed by the two peeling methods of the present invention is coated with a new hard film, so that various wear resistance members such as cutting tools, molds and bearings are required. Can be used for In the peeling method of the present invention as compared to the conventional peeling method, there is almost no residual unremoved peeling film or chemical corrosion and contamination of the substrate,
This is because the recoating film has good adhesion and a service life equivalent to that of a new product can be obtained. Therefore, the present invention also includes a recoating member in which the hard film is newly coated on the substrate from which the hard film has been removed by either of the two peeling methods. At this time, the types of the hard film to be removed and the hard film to be newly coated may be the same or different.

【0024】本発明者等の研究によれば、基材中にVお
よび/またはWを合金添加元素として有する高速度工具
鋼や超硬合金部材等の硬質膜除去に本発明の剥離方法を
適用した場合、特に再被覆膜の密着性が優れていること
が見出された。図1には、電解剥離法で硬質膜を剥離除
去した後の高速度工具鋼の表面の走査型電子顕微鏡(S
EM)図面代用写真を示したが、一面に細かい孔が発生
していることがわかる。図2には、従来法(特開平5−
503320号に開示された剥離液を用いた方法)で剥
離した場合の表面の図面代用写真を示したが、図1に見
られるような細かい孔は認められない。
According to the research conducted by the present inventors, the peeling method of the present invention is applied to the removal of hard films such as high speed tool steels and cemented carbide members having V and / or W as alloying elements in the substrate. In particular, it was found that the recoating film had excellent adhesion. FIG. 1 shows a scanning electron microscope (S) of the surface of the high-speed tool steel after the hard film is peeled and removed by the electrolytic peeling method.
EM) A photograph as a substitute for a drawing is shown, and it can be seen that fine holes are generated on one surface. FIG. 2 shows a conventional method (Japanese Unexamined Patent Publication No.
A photograph as a substitute for a drawing of the surface when peeled by the method using a peeling solution disclosed in No. 503320) is shown, but fine pores as seen in FIG. 1 are not recognized.

【0025】また、剥離用水溶液を用いる本発明第1の
剥離方法においても、基材中にVおよび/またはWが含
まれている場合は、図1に示した様な細かい孔が発生す
ることが確認された。この孔の発生現象は、V、Wを含
有する高速度工具鋼や超硬合金基材の場合にのみ起こる
ため、これらの基材に比較的多く含まれているVやWの
炭化物が電解中に溶解された痕であると考えられる。
Also in the first stripping method of the present invention using the stripping aqueous solution, when V and / or W is contained in the substrate, fine holes as shown in FIG. 1 are generated. Was confirmed. Since the phenomenon of generation of the holes occurs only in the case of the high speed tool steel containing V and W or the cemented carbide base material, the V and W carbides contained in these base materials in a relatively large amount are electrolyzed. It is considered to be a trace dissolved in.

【0026】本発明者等は、この孔の直径が0.2〜8
μmのときに、再被覆膜の密着性が特に優れたものとな
ることを見出した。いわゆる「アンカー効果」によって
密着性を高めるのである。0.2μmより小さい孔では
アンカー効果が期待できず、逆に、8μmより大きい孔
が生じると被覆される硬質膜の平坦性が失われ、密着性
が低下するので、生成する孔の直径が上記範囲になる様
に、剥離条件をコントロールすることが好ましい。
The present inventors have found that the diameter of this hole is 0.2 to 8
It was found that when the thickness is μm, the adhesion of the recoating film becomes particularly excellent. The so-called "anchor effect" enhances adhesion. Anchor effect cannot be expected with pores smaller than 0.2 μm, and conversely, if pores larger than 8 μm are generated, the flatness of the coated hard film is lost and the adhesiveness deteriorates. It is preferable to control the peeling conditions so as to be within the range.

【0027】この様な孔の形成によって基材中に含まれ
るVやWが溶出することになるので、基材表面の合金組
成が変化することも考えられるため、この点について検
討した結果、剥離処理後の基材表面のVおよび/または
Wの組成が、基材内部の組成の0.1〜0.9倍であれ
ば、その後の再被覆膜の密着性向上効果が基材の強度の
低下度合いを上回ることがわかった。つまり、例えばV
を添加元素として含有する基材を用いて剥離処理を行う
と、基材表面からVC等の硬度発揮成分が溶出して基材
の硬度は若干低下するが、上述した様な孔が形成される
ため、基材と再被覆膜との密着性が大幅に向上し、結果
として優れた特性の再被覆耐摩耗性部材が得られるので
ある。V、Wは両元素とも炭化物となって優れた硬度を
発揮する成分であるため、本発明では、V、またはW、
あるいはVとWの両方について、基材表面における組成
と、基材内部の組成の変化度合いを上記の様に設定し
た。
Since V and W contained in the base material are eluted due to the formation of such holes, it is considered that the alloy composition on the surface of the base material may be changed. If the composition of V and / or W on the surface of the substrate after the treatment is 0.1 to 0.9 times the composition inside the substrate, the effect of improving the adhesiveness of the recoating film thereafter is the strength of the substrate. It was found that the degree of decrease in That is, for example, V
When a peeling treatment is carried out using a base material containing as an additive element, the hardness exerting component such as VC is eluted from the base material surface and the hardness of the base material is slightly lowered, but the above-mentioned holes are formed. Therefore, the adhesion between the base material and the recoating film is significantly improved, and as a result, a recoated wear resistant member having excellent characteristics can be obtained. In the present invention, V and W are V and W because both elements are carbides and exhibit excellent hardness.
Alternatively, for both V and W, the degree of change in the composition on the surface of the base material and the degree of change in the composition inside the base material were set as described above.

【0028】このとき、基材表面のVおよび/またはW
の組成が、基材内部のVおよび/またはWの組成の0.
1倍より少なくなる様な過度の剥離処理を行うと、基材
の表面近傍のV、Wが少なくなりすぎて、機械的強度が
劣ったものとなり、硬質膜を再被覆したところで良好な
特性は得られない。一方、硬質膜剥離後の基材表面にお
いて、基材内部の組成の0.9倍を超えてVやWが残存
しているということは、アンカー効果を発揮し得る孔が
ほとんど生成していないことを示し、密着性向上効果が
発揮されないため好ましくない。基材表面のVおよび/
またはWの組成のより好ましい範囲は、基材内部のVお
よび/またはWの組成0.15〜0.5倍、最も好まし
い範囲は0.2〜0.4倍である。
At this time, V and / or W on the surface of the base material
Of the V and / or W composition inside the substrate is 0.
If excessive peeling treatment that reduces the amount to less than 1 time is performed, V and W in the vicinity of the surface of the base material will be too small, resulting in poor mechanical strength. I can't get it. On the other hand, on the surface of the base material after peeling off the hard film, V and W remaining in excess of 0.9 times the composition inside the base material means that almost no pores capable of exerting the anchor effect are generated. This is not preferable because the effect of improving adhesion is not exhibited. V of substrate surface and /
The more preferable range of the composition of W is 0.15 to 0.5 times the composition of V and / or W inside the substrate, and the most preferable range is 0.2 to 0.4 times.

【0029】[0029]

【実施例】以下実施例によって本発明をさらに詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。
The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
All modifications and implementations that do not depart from the spirit of the description below are included in the technical scope of the present invention.

【0030】実験例1 高速度工具鋼にTiAlN硬質膜をイオンプレーティン
グ法で4μm厚さに被覆した。過マンガン酸イオンを
0.1mol/l 、重クロム酸イオンを0.1mol/l含む5
0℃の水酸化ナトリウム水溶液のpHを表1に示した様
に、8、10、12、14と変化させて、それぞれに上
記高速度工具鋼を浸漬し、硬質膜が剥離するまでの時間
を測定した。結果を表1に併記した。
Experimental Example 1 A high speed tool steel was coated with a TiAlN hard film to a thickness of 4 μm by an ion plating method. Containing 0.1 mol / l of permanganate ion and 0.1 mol / l of dichromate ion 5
As shown in Table 1, the pH of the 0 ° C. sodium hydroxide aqueous solution was changed to 8, 10, 12, and 14, and the above high-speed tool steel was immersed in each of them, and the time until the hard film was peeled off was changed. It was measured. The results are also shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかな様に、pHが8では剥離
時間が10時間と長く実用的でないこと、またpHは高
いほど剥離に要する時間が短くなることがわかる。な
お、特開平5−503320号に示されている従来法で
同じ実験を行った場合は、硬質膜の剥離に20時間もか
かった。
As is clear from Table 1, when the pH is 8, the peeling time is as long as 10 hours, which is not practical, and when the pH is higher, the peeling time becomes shorter. When the same experiment was conducted by the conventional method disclosed in JP-A-5-503320, it took 20 hours to peel the hard film.

【0033】実験例2 pHを10と一定にして、過マンガン酸イオン濃度を表
2の様に変更した以外は実験例1と同様にして剥離実験
を行った。結果を表2に示す。
Experimental Example 2 A peeling experiment was carried out in the same manner as in Experimental Example 1 except that the pH was kept constant at 10 and the permanganate ion concentration was changed as shown in Table 2. Table 2 shows the results.

【0034】[0034]

【表2】 [Table 2]

【0035】表2から明らかな様に、過マンガン酸イオ
ン濃度が高いほど剥離時間が短くなっており、0.03
mol/l 程度では非実用的であると考えられることがわか
った。
As is clear from Table 2, the higher the permanganate ion concentration, the shorter the stripping time, and 0.03
It was found that it is considered to be impractical at about mol / l.

【0036】実験例3 pHを10と一定にして、重クロム酸イオン濃度を表3
の様に変更した以外は実験例1と同様にして剥離実験を
行った。結果を表3に示す。
Experimental Example 3 With the pH kept constant at 10, the dichromate ion concentration is shown in Table 3.
A peeling experiment was performed in the same manner as in Experimental Example 1 except that the above was changed. The results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】表3から明らかな様に、重クロム酸イオン
濃度が高いほど剥離時間が短くなっており、0.02mo
l/l 程度では非実用的であると考えられることがわかっ
た。
As is clear from Table 3, the higher the dichromate ion concentration, the shorter the peeling time, and
It was found that about l / l is considered to be impractical.

【0039】実験例4 pHを10と一定にして、剥離溶液の温度を表4の様に
変更した以外は実験例1と同様にして剥離実験を行っ
た。結果を表4に示す。
Experimental Example 4 A stripping experiment was performed in the same manner as in Experimental Example 1 except that the temperature of the stripping solution was changed as shown in Table 4 while keeping the pH constant at 10. The results are shown in Table 4.

【0040】[0040]

【表4】 [Table 4]

【0041】表4から明らかな様に溶液温度が高いほど
剥離時間が短くなっており、高速度工具鋼の場合、溶液
温度を40℃以上に設定するのが実用的であると考えら
れる。なお100℃での実験では2時間で硬質膜の剥離
が完了したが、高速度工具鋼表面に侵食が認められたた
め、溶液温度を90℃以下とすることが好ましいことが
確認された。
As is clear from Table 4, the higher the solution temperature, the shorter the peeling time, and in the case of high speed tool steel, it is considered practical to set the solution temperature to 40 ° C or higher. In the experiment at 100 ° C., the hard film peeling was completed in 2 hours, but it was confirmed that the solution temperature was preferably 90 ° C. or lower because erosion was observed on the surface of the high speed tool steel.

【0042】実験例5 高速度工具鋼以外に、WCを主成分とする超硬合金材、
炭素鋼、ステンレス鋼にも硬質膜を実験例1と同様に被
覆して、実験例4と同様に溶液温度を変化させたときの
剥離実験を行った。結果を表5に示した。なお高速度工
具鋼の結果は表4の結果を再び示したものである。
Experimental Example 5 In addition to high speed tool steel, a cemented carbide material containing WC as a main component,
Carbon steel and stainless steel were coated with a hard film in the same manner as in Experimental Example 1, and a peeling experiment was performed in the same manner as in Experimental Example 4 when the solution temperature was changed. The results are shown in Table 5. The results for the high speed tool steel are the results shown in Table 4 again.

【0043】[0043]

【表5】 [Table 5]

【0044】表5から明らかな様に、炭素鋼では30℃
の低温でゆっくり剥離させる方が侵食を防げることがわ
かる。超硬合金材やステンレス鋼では高速度工具鋼と同
程度の侵食度合いであり、これらの部材の剥離条件は同
程度に設定してもよいことがわかった。
As is clear from Table 5, carbon steel has a temperature of 30 ° C.
It can be seen that erosion can be prevented by peeling slowly at low temperature. It was found that the cemented carbide materials and stainless steels have the same degree of erosion as high-speed tool steels, and the peeling conditions for these members may be set to the same degree.

【0045】実験例6 TiAlNに代えて、Si34 、ZrAlN、HfA
lNのそれぞれの硬質膜を被覆した高速度工具鋼を用い
て、pHを10に一定にした以外は実験例1と同様な剥
離実験を行った。結果を表6に示す。なおTiAlNの
結果は表1のpH10の結果を再び示したものである。
Experimental Example 6 Instead of TiAlN, Si 3 N 4 , ZrAlN, HfA
A peeling experiment similar to that of Experimental Example 1 was performed using high-speed tool steel coated with 1 N of each hard film, except that the pH was kept constant at 10. The results are shown in Table 6. The results for TiAlN are the results of pH 10 in Table 1 again.

【0046】[0046]

【表6】 [Table 6]

【0047】ZrAlN、HfAlNは、ほぼTiAl
N膜と同様の剥離時間であった。Si34 の場合は1
5時間と長時間かかることがわかった。しかし、特開平
5−503320号の方法でSi34 膜の剥離実験を
行ったときは40時間を要したので、本発明の剥離方法
が優れていることが明らかである。
ZrAlN and HfAlN are almost TiAl.
The peeling time was the same as that of the N film. 1 for Si 3 N 4
It turns out that it takes a long time of 5 hours. However, when the peeling experiment of the Si 3 N 4 film was conducted by the method of JP-A-5-503320, it took 40 hours, so it is clear that the peeling method of the present invention is excellent.

【0048】実験例7 実験例1と同じ試料を用いて、電解法による硬質膜剥離
実験を行った。電解液は50℃の水酸化ナトリウム水溶
液とし、pHを表7に示した様に変化させた。陽極は硬
質膜被覆材、陰極は白金板とし、陽極の電位を800m
V vs.Ag/AgCl(銀/塩化銀参照電極基準)
に保持して電解処理を行い、剥離に要する時間を測定し
て表7に結果を示した。
Experimental Example 7 Using the same sample as in Experimental Example 1, a hard film peeling experiment by an electrolytic method was conducted. The electrolytic solution was an aqueous sodium hydroxide solution at 50 ° C., and the pH was changed as shown in Table 7. The anode is a hard film coating material, the cathode is a platinum plate, and the anode potential is 800 m.
V vs. Ag / AgCl (silver / silver chloride reference electrode standard)
The results are shown in Table 7.

【0049】[0049]

【表7】 [Table 7]

【0050】表7から明らかな様に、pHが6では剥離
時間が12時間と長く実用的でないこと、またpHは高
いほど剥離に要する時間が短くなることがわかる。な
お、図1に示した図面代用写真は、pH:8における電
解剥離後の高速度工具鋼の表面SEM写真である。
As is clear from Table 7, when the pH is 6, the peeling time is as long as 12 hours, which is not practical, and when the pH is higher, the peeling time becomes shorter. The drawing-substitute photograph shown in FIG. 1 is a surface SEM photograph of high-speed tool steel after electrolytic stripping at pH: 8.

【0051】実験例8 実験例7におけるpH8の本発明剥離方法によって硬質
膜を除去した高速度工具鋼と、従来法(特開平5−50
3320号に示された剥離液による方法)で剥離して得
られた高速度工具鋼基材のそれぞれに、再びTiAlN
硬質膜をイオンプレーティング法で4μm厚さに被覆し
た。得られた再被覆高速度工具鋼に対して引っかき試験
を行い、皮膜が剥離するときの臨界荷重を調べ表8に示
した。またこの再被覆高速度工具鋼のドリルで切削試験
を行ったときの皮膜が剥離するまでの時間(耐用寿命)
を調べ表8に併記した。
Experimental Example 8 A high speed tool steel from which a hard film was removed by the peeling method of the present invention having a pH of 8 in Experimental Example 7 and a conventional method (JP-A-5-50).
TiAlN on each of the high-speed tool steel substrates obtained by stripping with the stripping solution method shown in No. 3320).
The hard film was coated to a thickness of 4 μm by the ion plating method. A scratch test was performed on the obtained recoated high-speed tool steel, and the critical load when the coating peeled was investigated and shown in Table 8. Also, the time until the coating peels off when the cutting test is performed with this recoated high-speed tool steel drill (useful life)
The results are shown in Table 8.

【0052】[0052]

【表8】 [Table 8]

【0053】表8から明らかな様に、本発明の再被覆部
材は剥離の臨界荷重が大きく優れた皮膜密着性を示し、
また耐用寿命も長いことがわかった。
As is clear from Table 8, the recoated member of the present invention has a large critical load for peeling and exhibits excellent film adhesion,
It was also found that the service life is long.

【0054】実験例9 実験例5で使用したTiAlN膜被覆高速度工具鋼、W
Cを主成分とする超硬合金材、炭素鋼、ステンレス鋼を
用いて実験例8の時と同様にTiAlN膜の剥離及び再
被覆を行い、臨界荷重を測定した。結果を表9に示し
た。高速度工具鋼の結果は表8の結果を再び示したもの
である。
Experimental Example 9 TiAlN film coated high speed tool steel used in Experimental Example 5, W
The TiAlN film was peeled and recoated in the same manner as in Experimental Example 8 using a cemented carbide material containing C as a main component, carbon steel, and stainless steel, and the critical load was measured. The results are shown in Table 9. The results for the high speed tool steels are the results of Table 8 again.

【0055】[0055]

【表9】 [Table 9]

【0056】表9から、超硬合金材やステンレス鋼も高
速度工具鋼と同様に、再被覆膜が優れた密着性を示すこ
とがわかる。侵食されやすい炭素鋼ではこの実験例9の
剥離条件が若干過酷であったと考えられ、臨界荷重は5
Nであったが、従来法で剥離した場合は1Nとさらに低
い値であったことから、本発明の再被覆部材の優位性が
確認できた。
It can be seen from Table 9 that the cemented carbide material and the stainless steel, like the high speed tool steel, show excellent adhesion with the recoating film. It is considered that the peeling condition of Experimental Example 9 was slightly severe for carbon steel which is easily corroded, and the critical load was 5
Although it was N, it was confirmed to be superior to the recoated member of the present invention because the value was 1 N when peeled off by the conventional method.

【0057】実験例10 実験例7においてpHを8と一定にして、陽極の被覆部
材の電位を100mV〜2V vs.Ag/AgCl
(銀/塩化銀参照電極基準)まで変化させることによっ
て、剥離後に生じる図1に示されるほぼ一様な細かい孔
の直径(最大)を0.1〜10μmまで変化させた。そ
の後TiAlN膜を再被覆して臨界荷重を測定した。結
果を表10に示した。
Experimental Example 10 In Experimental Example 7, the pH was kept constant at 8 and the potential of the anode covering member was 100 mV to 2 V vs. Ag / AgCl
By changing to (silver / silver chloride reference electrode reference), the diameter (maximum) of the substantially uniform fine holes shown in FIG. 1 generated after peeling was changed to 0.1 to 10 μm. Then, the TiAlN film was recoated and the critical load was measured. The results are shown in Table 10.

【0058】[0058]

【表10】 [Table 10]

【0059】表10から、孔の直径が0.2〜8μmの
ときに高い臨界荷重が得られ、優れた密着性を示すこと
が確認された。また電位800mV vs.Ag/Ag
Clであれば、生成する孔の直径が0.2〜8μmにな
ることもわかった。
From Table 10, it was confirmed that a high critical load was obtained when the diameter of the hole was 0.2 to 8 μm, and excellent adhesion was exhibited. In addition, the potential is 800 mV vs. Ag / Ag
It was also found that if Cl, the diameter of the generated holes would be 0.2 to 8 μm.

【0060】実験例11 実験例10において、電位の他にpHも8〜12と変化
させ、硬質膜剥離実験を行った。これは硬質膜剥離後の
高速度工具鋼の内部のV、Wの組成に対する表面近傍の
V、Wの組成を0.01〜0.95倍に変化させるため
である。剥離後の高速度工具鋼の表面硬度を荷重10g
fでビッカース硬度試験を行い測定し、結果を表11に
示した。また剥離後の高速度工具鋼に、再びTiAlN
膜を被覆した後に引っかき試験を行い、皮膜が剥離する
ときの臨界荷重を測定した。結果を表12に示した。
Experimental Example 11 In Experimental Example 10, a hard film peeling experiment was conducted by changing the pH to 8 to 12 in addition to the electric potential. This is to change the composition of V and W near the surface to 0.01 to 0.95 times the composition of V and W inside the high-speed tool steel after the hard film is peeled off. The surface hardness of the high speed tool steel after peeling is 10g
The Vickers hardness test was conducted at f and measured, and the results are shown in Table 11. In addition, after peeling, the TiAlN
After coating the film, a scratch test was performed to measure the critical load at which the film peeled off. The results are shown in Table 12.

【0061】[0061]

【表11】 [Table 11]

【0062】[0062]

【表12】 [Table 12]

【0063】表11から明らかな様に、基材表面のV組
成が内部のV組成の0.01倍ではWに関係なくビッカ
ース硬度が低く、表面のW組成が内部のW組成の0.0
1倍でも同様であった。また表12から、表面のV組成
が内部のV組成の0.95倍ではW組成に関係なく密着
性が劣り、表面のW組成が内部のW組成の0.95倍で
も同様であった。従って、VやWを含有する基材に本発
明の剥離方法を適用する場合、表面のVおよび/または
Wの組成が内部のVおよび/またはWの組成の0.1〜
0.9倍となる様に剥離条件をコントロールすると、再
被覆後の機械的強度と再被覆膜の密着性の両特性に優れ
た再被覆部材が得られることが確認できた。
As is clear from Table 11, when the V composition of the surface of the substrate is 0.01 times the V composition of the inside, the Vickers hardness is low regardless of W, and the W composition of the surface is 0.0 of the internal W composition.
The same was true at 1 time. Further, from Table 12, when the V composition of the surface is 0.95 times the internal V composition, the adhesion is poor regardless of the W composition, and the same is true when the W composition of the surface is 0.95 times the internal W composition. Therefore, when the peeling method of the present invention is applied to a substrate containing V or W, the composition of V and / or W on the surface is 0.1 to 0.1% of the composition of V and / or W inside.
It was confirmed that if the peeling conditions were controlled so as to be 0.9 times, a recoated member excellent in both mechanical strength after recoating and adhesion of the recoated film could be obtained.

【0064】実験例12 高速度工具鋼にTiAlN硬質膜をイオンプレーティン
グ法で4μm厚さに被覆し、pHを8と一定にした以外
は実験例7と同様にして定電位電解を行い硬質膜を剥離
した。その後、Si34 、TiAlN、ZrAlN、
HfAlNのそれぞれの硬質膜を再被覆して、得られた
部材の臨界荷重を測定した。結果を表13に示した。
Experimental Example 12 A hard film was prepared by performing constant potential electrolysis in the same manner as in Experimental Example 7, except that a high speed tool steel was coated with a TiAlN hard film to a thickness of 4 μm by an ion plating method and the pH was kept constant at 8. Was peeled off. After that, Si 3 N 4 , TiAlN, ZrAlN,
Each hard film of HfAlN was recoated and the critical load of the resulting member was measured. The results are shown in Table 13.

【0065】[0065]

【表13】 [Table 13]

【0066】TiAlN、ZrAlN、HfAlNを再
被覆した部材は、いずれも優れた密着性を示した。ただ
再被覆硬質膜としてSi34 を選択した場合、臨界荷
重は5Nと若干低かったが、従来法で剥離し、再被覆を
行った場合は1Nとさらに低い値であったことから、本
発明の再被覆部材の優位性が確認できた。
The members recoated with TiAlN, ZrAlN, and HfAlN all showed excellent adhesion. However, when Si 3 N 4 was selected as the recoating hard film, the critical load was slightly low, 5N, but when peeling by the conventional method and recoating, it was a lower value of 1N. The superiority of the recoated member of the invention was confirmed.

【0067】[0067]

【発明の効果】本発明は以上の様に構成されており、金
属酸化物皮膜を形成させずに硬質膜の分解を起こし得る
酸化環境を作ることに成功した。このため、硬質膜が被
覆されている基材の化学的侵食を可及的に抑えながら、
迅速に硬質膜のみを剥離することができる様になった。
また剥離後の硬質膜再被覆においても、基材の侵食や汚
染がないため密着性良好に被覆が行える。さらに、基材
がVおよび/またはWを含有するものである場合、アン
カー効果を発揮し得る孔の形成によって、一層優れた密
着性が得られることも見出された。
The present invention is constituted as described above, and succeeded in creating an oxidizing environment capable of decomposing a hard film without forming a metal oxide film. Therefore, while suppressing chemical erosion of the base material coated with the hard film as much as possible,
Only the hard film can be peeled off quickly.
Further, even in the recoating of the hard film after peeling, there is no erosion or contamination of the base material, and the coating can be performed with good adhesion. Furthermore, it was also found that when the base material contains V and / or W, the formation of pores capable of exerting an anchoring effect provides more excellent adhesion.

【0068】本発明によれば、新品に近い耐摩耗特性を
示す再被覆部材が得られることとなり、基材の有効利
用、すなわち省資源、省エネルギーに役立つと共に、コ
ストの削減も可能となった。本発明の剥離方法は、切削
工具、金型、軸受け等、硬質膜が被覆されている種々の
耐摩耗性部材に応用することができ、本発明の再被覆部
材もこれらの耐摩耗性部材として利用することができ
る。
According to the present invention, it is possible to obtain a re-coated member exhibiting a wear resistance characteristic close to that of a new product, which is effective for effective use of the base material, that is, resource saving and energy saving, and also possible cost reduction. The peeling method of the present invention can be applied to various wear resistant members such as cutting tools, molds, bearings, etc., which are coated with a hard film, and the recoated member of the present invention also serves as these wear resistant members. Can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法で硬質膜を剥離した後の高速度工具鋼
表面の図面代用SEM写真である。
FIG. 1 is a drawing-substitute SEM photograph of the surface of a high-speed tool steel after peeling a hard film by the method of the present invention.

【図2】従来法で硬質膜を剥離した後の高速度工具鋼表
面の図面代用SEM写真である。
FIG. 2 is a drawing-substitute SEM photograph of the surface of a high-speed tool steel after the hard film has been peeled off by a conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安永 龍哉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 蔡 政憲 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 河田 和久 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 山田 保之 兵庫県明石市魚住町金ケ崎西大池179番1 株式会社神戸製鋼所明石工場内 (72)発明者 田中 裕介 兵庫県明石市魚住町金ケ崎西大池179番1 株式会社神戸製鋼所明石工場内 (72)発明者 和田 恭典 兵庫県明石市魚住町金ケ崎西大池179番1 株式会社神戸製鋼所明石工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tatsuya Yasunaga Tatsuya Yasunaga 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Co., Ltd., Kobe Research Institute (72) Masanori Cai Takatsuka, Nishi-ku, Kobe-shi, Hyogo Prefecture 1-5-5 Taiwan Kobe Works, Kobe Steel Co., Ltd. (72) Inventor Kazuhisa Kawada 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Co., Ltd. (72) Inventor Yasuyuki Yamada 179-1 Kanegasaki Nishioike, Uozumi-cho, Akashi-shi, Hyogo Inside the Akashi Plant, Kobe Steel Co., Ltd. (72) Yusuke Tanaka 179-1 Kanegasaki Nishioike, Uozumi-cho, Akashi-shi, Hyogo Kobe Steel Akashi Co., Ltd. Inside the factory (72) Inventor Kyonori Wada 179-1 Kanegasaki Nishioike, Uozumi Town, Akashi City, Hyogo Prefecture Kobe Steel Works, Akashi Factory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に硬質膜が被覆された耐摩耗性
部材から該硬質膜を剥離する方法であって、過マンガン
酸イオンおよび/または重クロム酸イオンを含むpH1
0以上の水溶液中に該部材を浸漬することを特徴とする
硬質膜の剥離方法。
1. A method for peeling a hard film from a wear resistant member having a hard film coated on the surface of a substrate, which comprises a permanganate ion and / or a dichromate ion at pH 1
A method for peeling a hard film, which comprises immersing the member in an aqueous solution of 0 or more.
【請求項2】 過マンガン酸イオンの濃度が0.05mo
l/l 以上である請求項1に記載の剥離方法。
2. The concentration of permanganate ion is 0.05 mo.
The peeling method according to claim 1, which is 1 / l or more.
【請求項3】 重クロム酸イオンの濃度が0.03mol/
l 以上である請求項1に記載の剥離方法。
3. The concentration of dichromate ion is 0.03 mol /
The peeling method according to claim 1, which is 1 or more.
【請求項4】 前記水溶液の温度を40〜90℃に保つ
ものである請求項1〜3のいずれかに記載の剥離方法。
4. The peeling method according to claim 1, wherein the temperature of the aqueous solution is maintained at 40 to 90 ° C.
【請求項5】 基材表面に硬質膜が被覆された耐摩耗性
部材から該硬質膜を剥離する方法であって、pH8以上
のアルカリ溶液中に該部材を浸漬しながら、該部材を陽
極として電解処理を行うことを特徴とする硬質膜の剥離
方法。
5. A method for peeling a hard film from a wear-resistant member having a base material surface coated with a hard film, wherein the member is used as an anode while the member is immersed in an alkaline solution having a pH of 8 or more. A method for peeling a hard film, characterized by performing an electrolytic treatment.
【請求項6】 前記アルカリ溶液の温度を40〜90℃
に保つものである請求項5に記載の剥離方法。
6. The temperature of the alkaline solution is 40 to 90 ° C.
The peeling method according to claim 5, wherein
【請求項7】 前記硬質膜がIVa 、Va 、VIa 族元素お
よびAlから選択される1種以上の元素の窒化物、炭化
物、炭窒化物のいずれかである請求項1〜6のいずれか
に記載の剥離方法。
7. The method according to claim 1, wherein the hard film is any one of a nitride, a carbide and a carbonitride of one or more elements selected from IVa, Va, VIa group elements and Al. The peeling method described.
【請求項8】 請求項1〜7のいずれかに記載された剥
離方法によって硬質膜を剥離した後、新たに任意の硬質
膜が被覆されたものであることを特徴とする再被覆部
材。
8. A recoating member, which is obtained by peeling a hard film by the peeling method according to any one of claims 1 to 7 and is then newly coated with an arbitrary hard film.
【請求項9】 基材がFe系金属である請求項8に記載
の再被覆部材。
9. The recoated member according to claim 8, wherein the base material is an Fe-based metal.
【請求項10】 基材が超硬合金である請求項8に記載
の再被覆部材。
10. The recoated member according to claim 8, wherein the base material is a cemented carbide.
【請求項11】 基材に、Vおよび/またはWが含まれ
ており、硬質膜剥離後の基材表面のVおよび/またはW
の組成が、基材内部のVおよび/またはW組成の0.1
〜0.9倍である請求項8〜10のいずれかに記載の再
被覆部材。
11. The substrate contains V and / or W, and V and / or W on the surface of the substrate after the hard film is peeled off.
Has a V and / or W composition of 0.1 inside the substrate.
The re-covering member according to any one of claims 8 to 10, wherein the re-covering member has a ratio of ~ 0.9 times.
【請求項12】 硬質膜剥離後の基材表面に直径0.2
〜8μmの孔が多数存在しているものである請求項8〜
11のいずれかに記載の再被覆部材。
12. A diameter of 0.2 on the surface of the substrate after peeling off the hard film.
9. A large number of pores having a diameter of .about.8 .mu.m are present.
11. The recoating member according to any one of 11.
JP30486095A 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method Expired - Fee Related JP3320965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30486095A JP3320965B2 (en) 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-72041 1995-03-29
JP7204195 1995-03-29
JP30486095A JP3320965B2 (en) 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method

Publications (2)

Publication Number Publication Date
JPH08325755A true JPH08325755A (en) 1996-12-10
JP3320965B2 JP3320965B2 (en) 2002-09-03

Family

ID=26413169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30486095A Expired - Fee Related JP3320965B2 (en) 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method

Country Status (1)

Country Link
JP (1) JP3320965B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073433A1 (en) * 2004-01-29 2005-08-11 Unaxis Balzers Ag Method for removing a coating and single-chamber device for carrying out said method
US7077918B2 (en) 2004-01-29 2006-07-18 Unaxis Balzers Ltd. Stripping apparatus and method for removal of coatings on metal surfaces
JP2009167534A (en) * 1997-11-10 2009-07-30 Oerlikon Trading Ag Truebbach Method for separating layer from article, and solution therefor
US7972653B2 (en) 2006-09-20 2011-07-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for removing amorphous carbon coatings with oxidizing molten salts and coated member regeneration method
CH705281B1 (en) * 2004-01-29 2013-01-31 Oerlikon Trading Ag Process for removing a layer system from a workpiece comprises applying a chromium- and aluminum-containing layer directly on the workpiece, and removing the coating on the workpiece using an alkaline solution
JP2013527317A (en) * 2010-04-15 2013-06-27 コーニング インコーポレイテッド Method for stripping nitride coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167534A (en) * 1997-11-10 2009-07-30 Oerlikon Trading Ag Truebbach Method for separating layer from article, and solution therefor
WO2005073433A1 (en) * 2004-01-29 2005-08-11 Unaxis Balzers Ag Method for removing a coating and single-chamber device for carrying out said method
US7077918B2 (en) 2004-01-29 2006-07-18 Unaxis Balzers Ltd. Stripping apparatus and method for removal of coatings on metal surfaces
JP2007519825A (en) * 2004-01-29 2007-07-19 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト Single chamber apparatus for performing film removal method and film removal method
JP4675908B2 (en) * 2004-01-29 2011-04-27 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Single chamber apparatus for performing film removal method and film removal method
CH705281B1 (en) * 2004-01-29 2013-01-31 Oerlikon Trading Ag Process for removing a layer system from a workpiece comprises applying a chromium- and aluminum-containing layer directly on the workpiece, and removing the coating on the workpiece using an alkaline solution
US7972653B2 (en) 2006-09-20 2011-07-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for removing amorphous carbon coatings with oxidizing molten salts and coated member regeneration method
JP2013527317A (en) * 2010-04-15 2013-06-27 コーニング インコーポレイテッド Method for stripping nitride coating
US9903040B2 (en) 2010-04-15 2018-02-27 Corning Incorporated Method for stripping nitride coatings

Also Published As

Publication number Publication date
JP3320965B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
EP0584168B1 (en) Etching process
US20090223829A1 (en) Micro-Arc Assisted Electroless Plating Methods
US3951759A (en) Chromium electroplating baths and method of electrodepositing chromium
EP0252479B1 (en) Method for surface treatment and treating material therefor
JP2015518925A (en) Method for making a metal coating
Khaled et al. Electrochemical study of laser nitrided and PVD TiN coated Ti–6Al–4V alloy: the observation of selective dissolution
JP2011157610A (en) Member coated with dlc film and method for manufacturing the same
JP3320965B2 (en) Hard film peeling method and recoated member obtained by the method
JPH0347999A (en) Support metal having improved surface mor- phology
JP4245026B2 (en) Coating film removal method and coating member regeneration method
JP4332319B2 (en) Method of coating a workpiece with bearing metal and workpiece processed by this method
JP2006347827A (en) MEMBER COATED WITH AMORPHOUS SiO2 FILM AND ITS FORMING METHOD
JP5217712B2 (en) Coated cemented carbide member
JPH0941199A (en) Method for peeling of surface coating film
JP4022605B2 (en) Manufacturing method of sliding members with excellent seizure resistance
EP2366809B1 (en) Titanium material and method for producing titanium material
JP4126346B2 (en) Sliding member with excellent seizure resistance and method for producing the same
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JP6071154B2 (en) Method for manufacturing metal carbide coating member
KR960004629B1 (en) Method for treating a surface of a base metal for coated cutting tool
JP2002285319A (en) Member for high temperature use having excellent oxidation resistance and wear resistance, and production method therefor
RU2774682C1 (en) Electrochemical method of deposition of copper protective coatings from halide melts on the surface of steel 12x18h10t
US20210324524A1 (en) STRIPPING OF COATINGS Al-CONTAINING COATINGS
JPH1112751A (en) Method for electroless plating with nickel and/or cobalt
JPH06346300A (en) Pretreatment for plating of titanium material and method for plating titanium material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees