JPH08322191A - Motor - Google Patents

Motor

Info

Publication number
JPH08322191A
JPH08322191A JP7126130A JP12613095A JPH08322191A JP H08322191 A JPH08322191 A JP H08322191A JP 7126130 A JP7126130 A JP 7126130A JP 12613095 A JP12613095 A JP 12613095A JP H08322191 A JPH08322191 A JP H08322191A
Authority
JP
Japan
Prior art keywords
oil
dynamic pressure
sleeve
pressure generating
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7126130A
Other languages
Japanese (ja)
Other versions
JP3637632B2 (en
Inventor
Akitomo Yamashita
彰友 山下
Toshio Mitsuyasu
利夫 光安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12613095A priority Critical patent/JP3637632B2/en
Publication of JPH08322191A publication Critical patent/JPH08322191A/en
Application granted granted Critical
Publication of JP3637632B2 publication Critical patent/JP3637632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE: To obtain a highly reliable motor having long service life in which smooth operation is realized by preventing the oil from flowing out to cause deficiency in a dynamic pressure generation groove. CONSTITUTION: The motor has a rotary shaft 9 born by radial bearings 17, 18 comprising a sleeve 7, dynamic pressure generation grooves 14, 15, and oil 16, wherein sintered metals 22, 23 are fixed to the opposite ends of the sleeve. The sintered metals 22, 23 are impregnated with the same oil 16 as injected into the dynamic pressure generation grooves 14, 15. The oil oozes out to the inner circumferential surface due to rotational eccentricity of the rotary shaft 9 and sucked by the pumping force of dynamic pressure generation grooves 14, 15 and the capillary at a small gap formed between the rotary shaft 9 and the dynamic pressure generation grooves 14, 15. The oil 16 is then fed from the sintered metals 22, 23 to the dynamic pressure generation grooves 14, 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電動機に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor.

【0002】[0002]

【従来の技術】従来の動圧型流体軸受を用いた電動機の
一例の構成を図8、図9、図10に示す。図8は電動機
の正面図、図9は電動機の断面図、図10はラジアル軸
受部の断面図である。図8、図9において、ステータ1
にはコイル2、隈取コイル3a,3b、フレーム4,5
が取り付けられ、さらにフレーム5には樹脂等で作られ
たスラスター6が固定され、フレーム4にはスリーブ7
が固定され、ステータユニット8を構成している。ま
た、回転軸9にはロータ10が固定され、スリーブ7を
はさんでオイルもれ防止リング11,12が配置され、
回転軸先端には負荷が接続されており、ロータユニット
13を構成し、軸受を介して回転自在に取り付けられて
いる。
2. Description of the Related Art FIG. 8, FIG. 9 and FIG. 10 show the structure of an example of a conventional electric motor using a hydrodynamic bearing. 8 is a front view of the electric motor, FIG. 9 is a sectional view of the electric motor, and FIG. 10 is a sectional view of the radial bearing portion. 8 and 9, the stator 1
The coil 2, the kumadori coils 3a, 3b, the frames 4, 5
, A thruster 6 made of resin or the like is fixed to the frame 5, and a sleeve 7 is attached to the frame 4.
Are fixed and constitute the stator unit 8. Further, the rotor 10 is fixed to the rotary shaft 9, and the oil leakage prevention rings 11 and 12 are arranged with the sleeve 7 interposed therebetween.
A load is connected to the tip of the rotating shaft, constitutes a rotor unit 13, and is rotatably attached via a bearing.

【0003】次に、軸受について図10を用いて説明す
ると、スリーブ内周面の負荷側及びロータ側の2箇所に
はボール転造等により、動圧発生溝14,15が形成さ
れている。この動圧発生溝14,15には潤滑油として
オイル16が注油され、ラジアル軸受17,18を構成
している。また、図9において回転軸9の反負荷側端面
は球面に仕上げられておりスラスター6と接触しスラス
ト軸受19を構成する。
Next, the bearing will be described with reference to FIG. 10. Dynamic pressure generating grooves 14 and 15 are formed at two positions on the inner peripheral surface of the sleeve on the load side and the rotor side by ball rolling or the like. The dynamic pressure generating grooves 14 and 15 are filled with oil 16 as lubricating oil to form radial bearings 17 and 18. Further, in FIG. 9, the end face of the rotary shaft 9 on the side opposite to the load side is finished into a spherical surface and comes into contact with the thruster 6 to form a thrust bearing 19.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこのよう
な従来の電動機の構成では、オイル16の蒸発や、回転
によるオイル16の飛散や、2箇所の動圧発生溝14,
15のポンピング力の差等によるオイル16の流れ出し
等が起こり、最終的には動圧発生溝14,15のオイル
不足が発生することで回転数の低下や電流値の増加、異
音が発生し、さらには、ロータユニット13のロックが
発生し、信頼性を確保することが困難であった。
However, in the structure of such a conventional electric motor, the oil 16 evaporates, the oil 16 scatters due to rotation, and the dynamic pressure generating grooves 14,
The oil 16 flows out due to the difference in the pumping force of 15, etc., and finally the oil shortage in the dynamic pressure generating grooves 14, 15 occurs, so that the rotation speed decreases, the current value increases, and abnormal noise occurs. Furthermore, the rotor unit 13 is locked, and it is difficult to ensure reliability.

【0005】本発明は、上記課題を解決するもので、動
圧発生溝14,15のオイル不足を少なくし円滑な運転
が可能で高信頼性、長寿命の電動機を提供することを目
的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a motor having high reliability and a long life, which is capable of smooth operation by reducing oil shortage in the dynamic pressure generating grooves 14, 15. .

【0006】[0006]

【課題を解決するための手段】本発明の電動機は上記目
的を達成するために、請求項1記載に係る発明は軸とス
リーブを備え、前記軸の外周面又はスリーブの内周面に
動圧発生溝を形成し、前記動圧発生溝にオイルを保持す
る動圧型流体軸受を用いた電動機であって、前記動圧発
生溝の近傍に動圧発生溝に保持しているオイルと特性が
同一のオイルを含浸させた多孔質体を配置したものであ
る。
In order to achieve the above object, an electric motor of the present invention comprises a shaft and a sleeve, and a dynamic pressure is applied to an outer peripheral surface of the shaft or an inner peripheral surface of the sleeve. An electric motor using a dynamic pressure type hydrodynamic bearing that forms a generation groove and holds oil in the dynamic pressure generation groove, and has the same characteristics as the oil held in the dynamic pressure generation groove near the dynamic pressure generation groove. The porous body impregnated with the oil is arranged.

【0007】また、請求項2記載に係る発明は、多孔質
体は、軸と隙間を保ってスリーブに固定したリングとし
たものである。
In the invention according to claim 2, the porous body is a ring fixed to the sleeve with a gap maintained between the porous body and the shaft.

【0008】また、請求項3記載に係る発明は、スリー
ブに固定されているリングと軸との隙間は、動圧発生溝
の部分のスリーブと軸の隙間より大寸法もしくは同寸法
としたものである。
Further, in the invention according to claim 3, the gap between the ring fixed to the sleeve and the shaft is larger than or equal to the gap between the sleeve and the shaft in the dynamic pressure generating groove portion. is there.

【0009】また、請求項4記載に係る発明は、多孔質
体は、軸に固定されているリングとしたものである。
In the invention according to claim 4, the porous body is a ring fixed to the shaft.

【0010】また、請求項5記載に係る発明は、軸とス
リーブを備え、前記スリーブは複数で構成され、前記複
数のスリーブには各々動圧発生溝が形成されており、前
記動圧発生溝にオイルを保持する動圧型流体軸受を用い
た電動機であって、前記複数のスリーブの間に前記動圧
発生溝に保持しているオイルと特性が同一のオイルを含
浸させた多孔質体を配置し、また前記複数のスリーブを
同軸上に配置したものである。
According to a fifth aspect of the present invention, a shaft and a sleeve are provided, the sleeve is composed of a plurality of sleeves, and a dynamic pressure generating groove is formed in each of the plurality of sleeves. An electric motor using a dynamic pressure type fluid bearing for holding oil, wherein a porous body impregnated with oil having the same characteristics as the oil held in the dynamic pressure generating groove is arranged between the plurality of sleeves. In addition, the plurality of sleeves are coaxially arranged.

【0011】また、請求項6記載に係る発明は、多孔質
体を複数のスリーブの間と外周面を覆うように配置した
ものである。
In the invention according to claim 6, the porous body is arranged so as to cover between the plurality of sleeves and the outer peripheral surface.

【0012】また、請求項7記載に係る発明は、複数の
スリーブ端よりも、前記複数のスリーブの外周面を覆っ
ている多孔質体を軸方向に出したものである。
In the invention according to claim 7, the porous body covering the outer peripheral surfaces of the plurality of sleeves is extended in the axial direction rather than the ends of the plurality of sleeves.

【0013】また、請求項8記載に係る発明は、複数の
スリーブの間又は外側の多孔質体の少なくとも一方の内
周面の全部もしくは一部にも動圧発生溝を形成したもの
である。
The invention according to claim 8 is one in which a dynamic pressure generating groove is formed on all or part of the inner peripheral surface of at least one of the porous bodies between the plurality of sleeves or on the outer side.

【0014】また、請求項9記載に係る発明は、軸とス
リーブを備え、前記軸の外周面又はスリーブの内周面の
いずれか一方に動圧発生溝を形成し、前記動圧発生溝に
オイルを保持する動圧型流体軸受を用いた電動機であっ
て、前記スリーブ両端もしくは片端の内周面に径を大き
くした部分を設け、スリーブ両端もしくは片端の内周面
の径を大きくした部分に前記軸に固定されたリングを配
置したものである。
The invention according to claim 9 comprises a shaft and a sleeve, wherein a dynamic pressure generating groove is formed on either the outer peripheral surface of the shaft or the inner peripheral surface of the sleeve, and the dynamic pressure generating groove is formed in the dynamic pressure generating groove. An electric motor using a hydrodynamic bearing for holding oil, wherein a portion having a large diameter is provided on the inner peripheral surface of both ends or one end of the sleeve, and the portion having a large diameter of the inner peripheral surface of both ends of the sleeve or one end is provided. It is a ring fixed to the shaft.

【0015】[0015]

【作用】本発明の電動機は前記の構成により、十分な量
のオイルを保持した多孔質体からオイルがにじみ出し動
圧発生溝へオイルを供給するため、動圧発生溝のオイル
不足を抑えることが出来る。
With the above structure, the electric motor of the present invention suppresses oil shortage in the dynamic pressure generation groove because the oil exudes from the porous body holding a sufficient amount of oil and supplies the oil to the dynamic pressure generation groove. Can be done.

【0016】[0016]

【実施例】【Example】

(実施例1)以下、本発明の実施例1について図1、図
2、図8を参照しながら説明する。図1は本発明の実施
例1の電動機の断面図、図2は同電動機のラジアル軸受
部の断面図である。なお、図1、図2及び後述する図
3、図4、図5、図6において従来構成と同一あるいは
同一機能のものは同一符号を付す。図1、図8におい
て、ステータ1にはコイル2、及び隈取コイル3a,3
b、フレーム4,5が取り付けられ、さらにフレーム5
には樹脂等で作られたスラスター6が固定され、フレー
ム4にはスリーブ7が固定され、ステータユニット8を
構成している。また、回転軸9には珪素鋼板およびアル
ミニウムで作られたロータ10が固定され、回転軸先端
には負荷が接続されており、ロータ10とスリーブ7の
間には弾性を有する樹脂等(例えば、PESやPBT
等)で作られたオイルもれ防止リング20、スリーブ7
の負荷側にはオイルもれ防止リング21が配置され、ロ
ータユニット13を構成し、軸受を介して回転自在に取
り付けられている。
(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1, 2 and 8. 1 is a sectional view of an electric motor according to a first embodiment of the present invention, and FIG. 2 is a sectional view of a radial bearing portion of the electric motor. In FIGS. 1 and 2 and later-described FIGS. 3, 4, 5, and 6, components having the same or the same functions as those of the conventional configuration are designated by the same reference numerals. 1 and 8, the stator 1 has a coil 2, and the decoupling coils 3a and 3a.
b, frames 4 and 5 are attached, and further frame 5
A thruster 6 made of resin or the like is fixed to the, and a sleeve 7 is fixed to the frame 4 to form a stator unit 8. A rotor 10 made of a silicon steel plate and aluminum is fixed to the rotary shaft 9, a load is connected to the tip of the rotary shaft, and an elastic resin or the like is provided between the rotor 10 and the sleeve 7 (for example, PES and PBT
Oil leakage prevention ring 20, sleeve 7 made of
An oil leakage prevention ring 21 is disposed on the load side of the rotor, constitutes a rotor unit 13, and is rotatably attached via a bearing.

【0017】次に、軸受について図2を用いて説明する
と、スリーブ内周面の負荷側及びロータ側の2箇所には
ボール転造等により、動圧発生溝14,15が形成され
ている。この動圧発生溝14,15には潤滑油としてオ
イル16が注油され、回転軸9と数μmの隙間を保ちラ
ジアル軸受17,18を構成している。また、動圧発生
溝14,15の間にはオイルだまりを設け動圧発生溝1
4,15に保持したオイル16の余剰分を保持してい
る。また、回転軸9の反負荷側端面は球面に仕上げられ
ておりスラスター6と接触しスラスト軸受19を構成す
る(図1)。尚、スリーブ材料としては銅合金等が通常
使われる。回転軸材料はS45CやSUS303,SU
S420J2等が用途によって使い分けられるが、特に
使用温度範囲が広い場合、スリーブ材料と線膨張係数の
近い材料が好ましく、例えば、スリーブ材料を銅合金と
した時、回転軸材料はSUS303等を使用することが
好ましい。オイル16はジエステル、ポリオールエステ
ル、a−オレフィン、ふっ素樹脂オイル、鉱油等を用
い、条件によっては若干の添加剤を加えたものを用い
る。
Next, the bearing will be described with reference to FIG. 2. Dynamic pressure generating grooves 14 and 15 are formed on the inner peripheral surface of the sleeve at two positions on the load side and the rotor side by ball rolling or the like. The dynamic pressure generating grooves 14 and 15 are filled with oil 16 as lubricating oil to form radial bearings 17 and 18 while maintaining a gap of several μm with the rotary shaft 9. Further, an oil pool is provided between the dynamic pressure generating grooves 14 and 15, and the dynamic pressure generating groove 1 is provided.
The surplus of the oil 16 held in Nos. 4 and 15 is held. The end face of the rotating shaft 9 on the side opposite to the load side is finished into a spherical surface and comes into contact with the thruster 6 to form a thrust bearing 19 (FIG. 1). A copper alloy or the like is usually used as the sleeve material. The material of the rotating shaft is S45C, SUS303, SU
S420J2 and the like can be used properly according to the application, but especially when the operating temperature range is wide, a material having a linear expansion coefficient close to that of the sleeve material is preferable. For example, when the sleeve material is a copper alloy, use SUS303 or the like as the rotating shaft material. Is preferred. As the oil 16, diester, polyol ester, a-olefin, fluororesin oil, mineral oil, or the like is used, and some additives are added depending on the conditions.

【0018】また、スリーブ両端に多孔質体のリングと
しての焼結メタル22,23が固定され、この焼結メタ
ル22,23には動圧発生溝14,15に注油したオイ
ルと同一のオイル16が含浸され、軸受ユニット24を
構成している。
Further, sintered metals 22 and 23 as rings of a porous body are fixed to both ends of the sleeve, and the same oil 16 as the oil injected into the dynamic pressure generating grooves 14 and 15 is fixed to the sintered metals 22 and 23. Are impregnated to form the bearing unit 24.

【0019】上記構成において動作を説明すると、オイ
ル16は蒸発や、回転による飛散や、2箇所の動圧発生
溝14,15のポンピング力の差等による流れ出し等が
起こり、オイル16が流出しようとするが、スリーブ両
端に設置されたオイル16を含浸した焼結メタル22,
23が、回転軸9の回転偏芯により内周面へオイル16
がにじみ出し、又動圧発生溝14,15のポンピング
力、回転軸9と動圧発生溝14,15との小さな隙間R
による毛細管現象でオイル16が動圧発生溝14,15
に引き込まれ、焼結メタル22,23から動圧発生溝1
4,15へオイル16が供給され、動圧発生溝14,1
5のオイル不足を抑え、さらに、動圧発生溝14,15
から流出したオイル16を焼結メタル22,23が保持
する働きによって、オイルの流出を減少させることで、
電動機の高信頼性、長寿命化に効果がある。
The operation of the above structure will be described. The oil 16 evaporates, scatters due to rotation, and flows out due to a difference in pumping force between the dynamic pressure generating grooves 14 and 15 at two places, so that the oil 16 tends to flow out. However, the sintered metal 22 impregnated with the oil 16 installed on both ends of the sleeve,
23 causes oil 16 to move to the inner peripheral surface due to the eccentric rotation of the rotary shaft 9.
Bleeding out, pumping force of the dynamic pressure generating grooves 14 and 15, and a small gap R between the rotary shaft 9 and the dynamic pressure generating grooves 14 and 15.
Oil 16 causes dynamic pressure generation grooves 14 and 15 due to capillary phenomenon caused by
To the dynamic pressure generating groove 1 from the sintered metal 22 and 23.
The oil 16 is supplied to the hydraulic pressure generating grooves 14 and 1
The oil shortage of 5 is suppressed, and the dynamic pressure generating grooves 14, 15
Since the sintered metal 22, 23 holds the oil 16 that has flowed out of the
Effective for high reliability and long life of electric motors.

【0020】また、焼結メタル22,23と回転軸9の
隙間r1は、動圧発生溝14,15と回転軸9の隙間R
と同じかまたは大きくしている。これは、動圧発生溝部
14,15に発生した圧力で回転軸9が軸受ユニット2
4と非接触で回転するが、焼結メタル22,23と回転
軸9の隙間r1を動圧発生溝14,15と回転軸9の隙
間Rより小さくすれば、焼結メタル22,23と回転軸
9が軸受ユニット24と接触回転し、非接触回転するが
故の低振動、低騒音、低軸受摩擦トルク、耐摩耗性等の
特性の低下につながる。よって、焼結メタル22,23
と回転軸9の隙間r1は、動圧発生溝14,15と回転
軸9の隙間Rと同じか又は大きくしていることで、回転
軸9が軸受ユニット24と非接触回転をし、低振動、低
騒音、低軸受摩擦トルク、耐摩耗性等の特性を保ち効果
がある。
The clearance r1 between the sintered metals 22 and 23 and the rotary shaft 9 is the clearance R between the dynamic pressure generating grooves 14 and 15 and the rotary shaft 9.
Same as or larger than. This is because the rotary shaft 9 is rotated by the pressure generated in the dynamic pressure generating groove portions 14 and 15 and the bearing unit 2
4 does not rotate, but if the gap r1 between the sintered metals 22 and 23 and the rotary shaft 9 is made smaller than the gap R between the dynamic pressure generating grooves 14 and 15 and the rotary shaft 9, the sintered metal 22 and 23 will rotate. Since the shaft 9 rotates in contact with the bearing unit 24 and rotates in non-contact, characteristics such as low vibration, low noise, low bearing friction torque, and wear resistance are deteriorated. Therefore, the sintered metal 22, 23
The gap r1 between the rotary shaft 9 and the rotary shaft 9 is equal to or larger than the gap R between the dynamic pressure generating grooves 14 and 15 and the rotary shaft 9, so that the rotary shaft 9 rotates in a non-contact manner with the bearing unit 24, resulting in low vibration. It is effective in maintaining characteristics such as low noise, low bearing friction torque, and wear resistance.

【0021】さらに、スリーブ7の焼結メタル22,2
3が固定された外側は、回転軸9に固定されたオイルも
れ防止リング20,21がスリーブ7に覆われるよう
に、オイルもれ防止リング20,21の外径よりも若干
スリーブ7の内径を大きくしているので、オイル16が
回転軸9を伝わって流出するのをオイルもれ防止リング
20,21が防止し、回転によってオイル16がスリー
ブ内に飛ばされ、スリーブ7に固定された焼結メタル2
2,23によってオイル16が保持される。特に冷蔵庫
庫内空気循環用モータ等、食品の近くで使用するような
場合、回転軸9を伝わってオイル16が周囲に飛散する
ことは禁物であるため、オイルもれ防止リング20,2
1によって、周囲へのオイル16の飛散を抑え、また、
周囲から埃等のスリーブ内への混入防止も行うという効
果がある。
Further, the sintered metal 22, 2 of the sleeve 7
The outer side where 3 is fixed is slightly larger than the outer diameter of the oil leakage prevention rings 20 and 21 so that the oil leakage prevention rings 20 and 21 fixed to the rotating shaft 9 are covered by the sleeve 7. Since the oil leakage prevention rings 20 and 21 prevent the oil 16 from flowing out along the rotating shaft 9, the oil 16 is blown into the sleeve by the rotation and is fixed to the sleeve 7. Metal 2
The oil 16 is held by 2, 23. Especially when used near food such as a motor for circulating air in a refrigerator, it is forbidden that the oil 16 is scattered around the rotating shaft 9 and therefore the oil leakage prevention rings 20, 2 are prevented.
1 prevents the oil 16 from scattering to the surroundings, and
This is effective in preventing dust from entering the sleeve from the surroundings.

【0022】(実施例2)本発明の実施例2について図
3を参照しながら説明する。図3は本発明の実施例2の
電動機のラジアル軸受部の断面図である。実施例1で
は、多孔質体のリングとしての焼結メタル22,23を
スリーブ7側に設置したが、図3のように回転軸9に多
孔質体のリングとしての焼結メタル25,26を設ける
と、回転による遠心力でオイル16が焼結メタル25,
26の外周表面ににじみ出し、動圧発生溝14,15の
ポンピング力と回転軸9と動圧発生溝14,15との小
さな隙間による毛細管現象でオイル16が動圧発生溝1
4,15に引き込まれ、動圧発生溝14,15へオイル
16が供給され、動圧発生溝14,15のオイル不足を
抑える。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a sectional view of a radial bearing portion of an electric motor according to a second embodiment of the present invention. In the first embodiment, the sintered metals 22 and 23 as the rings of the porous body are installed on the sleeve 7 side, but the sintered metals 25 and 26 as the rings of the porous body are attached to the rotating shaft 9 as shown in FIG. When installed, the oil 16 will cause the sintered metal 25,
The oil 16 oozes to the outer peripheral surface of 26, and the oil 16 is generated by the capillarity due to the pumping force of the dynamic pressure generating grooves 14 and 15 and the small gap between the rotary shaft 9 and the dynamic pressure generating grooves 14 and 15.
The oil 16 is drawn into the dynamic pressure generating grooves 14 and 15, and the oil 16 is supplied to the dynamic pressure generating grooves 14 and 15 to suppress the oil shortage in the dynamic pressure generating grooves 14 and 15.

【0023】(実施例3)本発明の実施例3について図
4を参照しながら説明する。図4は本発明の実施例3の
電動機のラジアル軸受部の断面図である。図4におい
て、2個のスリーブ7a,7bが円筒部材27に固定さ
れ、この2個のスリーブ7a,7bは同軸上に配置さ
れ、それぞれ動圧発生溝14,15が形成され、潤滑油
としてオイル16が注油されて、回転軸9と数μmの隙
間を保ちラジアル軸受17,18を構成している。ま
た、2つのスリーブ7a,7bの間には多孔質体の焼結
メタル28が配置されており、この焼結メタル28には
動圧発生溝14,15に注油したオイル16と同一のオ
イルが含浸され、軸受ユニット29を構成している。
尚、焼結メタル28と回転軸9の隙間r2は、動圧発生
溝14,15と回転軸9の隙間Rと同じか大きくしてい
る。
(Embodiment 3) A third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a sectional view of a radial bearing portion of an electric motor according to a third embodiment of the present invention. In FIG. 4, two sleeves 7a and 7b are fixed to a cylindrical member 27, the two sleeves 7a and 7b are coaxially arranged, and dynamic pressure generating grooves 14 and 15 are formed, respectively, and oil is used as a lubricating oil. 16 is lubricated to form radial bearings 17 and 18 while maintaining a gap of several μm with the rotating shaft 9. In addition, a porous sintered metal 28 is arranged between the two sleeves 7a and 7b, and the same oil as the oil 16 injected into the dynamic pressure generating grooves 14 and 15 is placed in this sintered metal 28. It is impregnated to form the bearing unit 29.
The gap r2 between the sintered metal 28 and the rotary shaft 9 is the same as or larger than the gap R between the dynamic pressure generating grooves 14 and 15 and the rotary shaft 9.

【0024】上記構成における動作は実施例1と同様
に、スリーブ7a,7bの間に設置されたオイル16を
含浸した焼結メタル28が、回転軸9の回転偏芯により
内周面へオイル16がにじみ出し、又動圧発生溝14,
15のポンピング力、回転軸9と動圧発生溝14,15
との小さな隙間Rによる毛細管現象でオイル16が動圧
発生溝14,15に引き込まれ、焼結メタル28から動
圧発生溝14,15へオイル16が供給され、動圧発生
溝14,15のオイル不足を抑え、電動機の高信頼性、
長寿命化に効果がある。
As with the first embodiment, the operation in the above-described structure is such that the sintered metal 28 impregnated with the oil 16 placed between the sleeves 7a and 7b moves to the inner peripheral surface of the oil 16 due to the eccentric rotation of the rotary shaft 9. Bleeding out, dynamic pressure generating groove 14,
15 pumping force, rotating shaft 9 and dynamic pressure generating grooves 14, 15
The oil 16 is drawn into the dynamic pressure generating grooves 14 and 15 by the capillary phenomenon due to the small gap R between the oil and the metal 16, and the oil 16 is supplied from the sintered metal 28 to the dynamic pressure generating grooves 14 and 15, Suppressing oil shortage, high reliability of electric motor,
Effective in extending the service life.

【0025】(実施例4)本発明の実施例4について図
5を参照しながら説明する。図5は本発明の実施例4の
電動機のラジアル軸受部の断面図である。実施例3で
は、軸受ユニット29の2個のスリーブ7a,7bの間
に多孔質体として焼結メタル28を配置したが、図5の
ように、2個のスリーブ7a,7bの外周面にも多孔質
体として焼結メタル30で覆ったものである。また、2
個のスリーブ7a,7bの外側端面よりスリーブ外周面
を覆った焼結メタル30が軸方向に突出した軸受ユニッ
ト31の構成になっている。さらに、回転軸9には軸受
ユニット両端近傍にオイルもれ防止リング20,21が
配置されている。
(Fourth Embodiment) A fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a sectional view of a radial bearing portion of an electric motor according to a fourth embodiment of the present invention. In the third embodiment, the sintered metal 28 is arranged as a porous body between the two sleeves 7a, 7b of the bearing unit 29, but as shown in FIG. 5, the sintered metal 28 is also provided on the outer peripheral surfaces of the two sleeves 7a, 7b. The porous body is covered with the sintered metal 30. Also, 2
The sintered metal 30 covering the outer peripheral surfaces of the sleeves 7a and 7b covers the outer peripheral surfaces of the sleeves 7a and 7b to form a bearing unit 31 that projects in the axial direction. Further, oil leakage prevention rings 20 and 21 are arranged on the rotary shaft 9 near both ends of the bearing unit.

【0026】上記構成において動作を説明すると、オイ
ル16は蒸発や、回転による飛散や、2箇所の動圧発生
溝14,15のポンピング力の差等による流れ出し等が
起こり、オイル16が流出しようとするが、2個のスリ
ーブ間に設置されたオイル16を含浸した焼結メタル3
0が、回転軸9の回転偏芯により内周面へオイル16が
にじみ出し、又動圧発生溝14,15のポンピング力と
回転軸9と動圧発生溝14,15との小さな隙間r2に
よる毛細管現象でオイルが動圧発生溝14,15に引き
込まれ、焼結メタル30から動圧発生溝14,15へオ
イル16を供給し、さらに、動圧発生溝14,15から
回転軸9を伝わって流出しようとするオイル16をオイ
ルもれ防止リング20,21の回転により焼結メタル内
に再度保持させ、焼結メタル内と動圧発生溝の間をオイ
ル16が循環する。このオイルの循環により、軸受ユニ
ット31からオイル16が減ることなく常に動圧発生溝
14,15へオイルを供給し、また熱交換が促進され摩
擦熱によるオイルの劣化を抑えることが出来、実施例3
より更に電動機の高信頼性、長寿命化に効果がある。
The operation of the above structure will be described. The oil 16 evaporates, scatters due to rotation, and flows out due to a difference in pumping force between the dynamic pressure generating grooves 14 and 15 at two places, so that the oil 16 tends to flow out. However, the sintered metal 3 impregnated with the oil 16 installed between the two sleeves 3
0 due to the rotational eccentricity of the rotating shaft 9 causes the oil 16 to bleed to the inner peripheral surface, and also due to the pumping force of the dynamic pressure generating grooves 14 and 15 and the small gap r2 between the rotating shaft 9 and the dynamic pressure generating grooves 14 and 15. The oil is drawn into the dynamic pressure generating grooves 14 and 15 by the capillary phenomenon, the oil 16 is supplied from the sintered metal 30 to the dynamic pressure generating grooves 14 and 15, and further transmitted from the dynamic pressure generating grooves 14 and 15 through the rotary shaft 9. The oil 16 that is about to flow out is retained again in the sintered metal by the rotation of the oil leakage prevention rings 20 and 21, and the oil 16 circulates between the sintered metal and the dynamic pressure generating groove. By this oil circulation, the oil is constantly supplied from the bearing unit 31 to the dynamic pressure generating grooves 14 and 15 without being reduced, and heat exchange is promoted to prevent deterioration of the oil due to frictional heat. Three
It is even more effective in improving the reliability and life of the electric motor.

【0027】(実施例5)本発明の実施例5について図
6を参照しながら説明する。図6は本発明の実施例5の
電動機のラジアル軸受部の断面図である。実施例4では
2個のスリーブ7a,7bの間の多孔質体として焼結メ
タル30からオイル16を動圧発生溝14,15へ供給
したが、図6のようにスリーブ7a,7bの外側端付近
にも多孔質体として焼結メタル32,33を配置し、軸
受ユニット34を構成し、回転軸9との隙間r3を動圧
発生溝14,15との隙間Rと同じか又は大きくしたも
のである。このスリーブ7a,7bの外側端付近の焼結
メタル32,33は、2個のスリーブ7a,7b間の焼
結メタル30と別部材とし圧入等で固定することもある
が、一体成形することもある。
(Fifth Embodiment) A fifth embodiment of the present invention will be described with reference to FIG. 6 is a sectional view of a radial bearing portion of an electric motor according to a fifth embodiment of the present invention. In the fourth embodiment, the oil 16 was supplied from the sintered metal 30 to the dynamic pressure generating grooves 14 and 15 as a porous body between the two sleeves 7a and 7b, but as shown in FIG. Sintered metals 32 and 33 are also arranged in the vicinity as porous bodies to form a bearing unit 34, and a gap r3 with the rotating shaft 9 is equal to or larger than a gap R with the dynamic pressure generating grooves 14 and 15. Is. The sintered metal 32, 33 near the outer ends of the sleeves 7a, 7b may be fixed by press-fitting or the like as a separate member from the sintered metal 30 between the two sleeves 7a, 7b, or may be integrally molded. is there.

【0028】上記構成により、スリーブ7a,7bの両
端よりオイル16を供給することが可能となり、実施例
4より更に電動機の高信頼性、長寿命化に効果がある。
With the above structure, the oil 16 can be supplied from both ends of the sleeves 7a and 7b, which is more effective than the fourth embodiment in improving the reliability and life of the electric motor.

【0029】(実施例6)本発明の実施例6について図
7を参照しながら説明する。図7は本発明の実施例6の
電動機のラジアル軸受部の断面図である。実施例5では
単に焼結メタル32,33を配置しているだけである
が、図7のように多孔質体としての焼結メタル35,3
6,37,38の一部にも動圧発生溝14a,14b,
15a,15bを形成し軸受ユニット39を構成したこ
とにより、焼結メタル35,36,37,38と回転軸
9の隙間ににじみ出したオイル16が動圧発生溝14
a,14b,15a,15bに沿って動圧発生溝14,
15の中心に集まろうと働くため、動圧発生溝14,1
5への焼結メタル35,36,37,38からのオイル
16の供給がより積極的に行われ、さらに、焼結メタル
35,36,37,38の一部にも動圧が発生するた
め、焼結メタル35,36,37,38からのオイル1
6のにじみ出し及び焼結メタル35,36,37,38
へのオイル16の流入がより積極的に行われる。このよ
うに、常時オイル16が焼結メタル内と動圧発生溝の間
を循環することにより、実施例5より更に電動機の高信
頼性、長寿命化に効果がある。
(Sixth Embodiment) A sixth embodiment of the present invention will be described with reference to FIG. 7 is a sectional view of a radial bearing portion of an electric motor according to a sixth embodiment of the present invention. In the fifth embodiment, the sintered metals 32 and 33 are simply arranged, but as shown in FIG. 7, the sintered metals 35 and 3 as the porous body are arranged.
6, 37 and 38 also have dynamic pressure generating grooves 14a, 14b,
By forming the bearing units 39 by forming 15a and 15b, the oil 16 oozing into the gaps between the sintered metals 35, 36, 37 and 38 and the rotary shaft 9 is formed into the dynamic pressure generating groove 14.
a, 14b, 15a, 15b along the dynamic pressure generating groove 14,
Since they work to gather in the center of 15, the dynamic pressure generating grooves 14, 1
Since the oil 16 is more positively supplied from the sintered metal 35, 36, 37, 38 to the 5, the dynamic pressure is generated in a part of the sintered metal 35, 36, 37, 38. , Oil from sintered metal 35, 36, 37, 38
Exudation of 6 and sintered metal 35, 36, 37, 38
Inflow of the oil 16 into the oil is performed more positively. Thus, the oil 16 is constantly circulated in the sintered metal and between the dynamic pressure generating grooves, which is more effective than the fifth embodiment in improving the reliability and extending the life of the electric motor.

【0030】なお、電動機構造、電動機形式、軸受構
造、オイル、多孔質体等は各実施例に限定されるもので
はなく、様々な設計変更が可能であることは言うまでも
ない。また、上記実施例において、動圧発生溝はスリー
ブ内周面に形成したが、回転軸に形成してもよく、さら
に、軸が回転するようにしているが、軸受ユニットが回
転し、軸が固定される構成でもよい。
It is needless to say that the electric motor structure, electric motor type, bearing structure, oil, porous body, etc. are not limited to the respective embodiments, and various design changes are possible. Further, in the above-mentioned embodiment, the dynamic pressure generating groove is formed on the inner peripheral surface of the sleeve, but it may be formed on the rotating shaft, and further, the shaft is made to rotate. It may be fixed.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
によれば動圧発生溝の近傍に配置した焼結メタルから動
圧発生溝へオイルが供給され、動圧発生溝のオイル不足
を抑え、さらに焼結メタルと動圧発生溝の間をオイルが
循環することで常時動圧発生溝へオイルを供給し、高信
頼性、長寿命の電動機が得られるという大きな効果を有
するものである。
As is apparent from the above description, according to the present invention, oil is supplied to the dynamic pressure generating groove from the sintered metal arranged in the vicinity of the dynamic pressure generating groove, and the oil shortage in the dynamic pressure generating groove is prevented. Further, the oil circulates between the sintered metal and the dynamic pressure generating groove to constantly supply the oil to the dynamic pressure generating groove, which has a great effect that a highly reliable and long-life motor can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の電動機の断面図FIG. 1 is a sectional view of an electric motor according to a first embodiment of the present invention.

【図2】本発明の実施例1のラジアル軸受部の断面図FIG. 2 is a sectional view of the radial bearing portion according to the first embodiment of the present invention.

【図3】本発明の実施例2のラジアル軸受部の断面図FIG. 3 is a sectional view of a radial bearing portion according to a second embodiment of the present invention.

【図4】本発明の実施例3のラジアル軸受部の断面図FIG. 4 is a sectional view of a radial bearing portion according to a third embodiment of the present invention.

【図5】本発明の実施例4のラジアル軸受部の断面図FIG. 5 is a sectional view of a radial bearing portion according to a fourth embodiment of the present invention.

【図6】本発明の実施例5のラジアル軸受部の断面図FIG. 6 is a sectional view of a radial bearing portion according to a fifth embodiment of the present invention.

【図7】本発明の実施例6のラジアル軸受部の断面図FIG. 7 is a sectional view of a radial bearing portion according to a sixth embodiment of the present invention.

【図8】従来例の電動機の正面図FIG. 8 is a front view of a conventional electric motor.

【図9】従来例の電動機の断面図FIG. 9 is a cross-sectional view of a conventional motor

【図10】従来例のラジアル軸受部の断面図FIG. 10 is a sectional view of a radial bearing portion of a conventional example.

【符号の説明】[Explanation of symbols]

1 ステータ 2 コイル 3a,3b 隈取コイル 4,5 フレーム 6 スラスター 7,7a,7b スリーブ 8 ステータユニット 9 回転軸 10 ロータ 11,12,20,21 オイルもれ防止リング 14,14a,14b,15,15a,15b 動圧発
生溝 16 オイル 19 スラスト軸受 22,23,25,26,28,30,32,33,3
5,36,37,38焼結メタル(多孔質体) 24,29,31,34,39 軸受ユニット
DESCRIPTION OF SYMBOLS 1 stator 2 coil 3a, 3b shading coil 4,5 frame 6 thruster 7, 7a, 7b sleeve 8 stator unit 9 rotating shaft 10 rotor 11, 12, 20, 21 oil leak prevention ring 14, 14a, 14b, 15, 15a , 15b Dynamic pressure generating groove 16 Oil 19 Thrust bearing 22, 23, 25, 26, 28, 30, 32, 33, 3
5,36,37,38 Sintered metal (porous material) 24,29,31,34,39 Bearing unit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 軸とスリーブを備え、前記軸の外周面又
は前記スリーブの内周面に動圧発生溝を形成し、前記動
圧発生溝にオイルを保持する動圧型流体軸受を用いた電
動機であって、前記動圧発生溝の近傍に前記オイルと特
性が同一のオイルを含浸させた多孔質体を配置している
ことを特徴とする電動機。
1. An electric motor comprising a shaft and a sleeve, wherein a dynamic pressure generating groove is formed on an outer peripheral surface of the shaft or an inner peripheral surface of the sleeve, and the dynamic pressure generating groove holds oil in the dynamic pressure generating groove. An electric motor characterized in that a porous body impregnated with oil having the same characteristics as the oil is arranged near the dynamic pressure generation groove.
【請求項2】 多孔質体は、軸と隙間を保ってスリーブ
に固定したリングとしたことを特徴とする請求項1記載
の電動機。
2. The electric motor according to claim 1, wherein the porous body is a ring fixed to the sleeve with a gap maintained between the porous body and the shaft.
【請求項3】 スリーブに固定されているリングと軸と
の隙間は、動圧発生溝部の前記スリーブと前記軸の隙間
より大寸法もしくは同寸法としたことを特徴とする請求
項2記載の電動機。
3. The electric motor according to claim 2, wherein the gap between the ring fixed to the sleeve and the shaft is larger than or equal to the gap between the sleeve and the shaft in the dynamic pressure generating groove portion. .
【請求項4】 多孔質体は、軸に固定したリングとした
ことを特徴とする請求項1記載の電動機。
4. The electric motor according to claim 1, wherein the porous body is a ring fixed to a shaft.
【請求項5】 軸とスリーブを備え、前記スリーブは複
数で構成され、前記複数のスリーブには各々動圧発生溝
が形成されており、前記動圧発生溝にオイルを保持する
動圧型流体軸受を用いた電動機であって、前記複数のス
リーブの間に前記オイルと特性が同一のオイルを含浸さ
せた多孔質体を配置し、また前記複数のスリーブを同軸
上に配置したことを特徴とする電動機。
5. A dynamic pressure type hydrodynamic bearing comprising a shaft and a sleeve, wherein the sleeve is composed of a plurality of sleeves, and a dynamic pressure generating groove is formed in each of the plurality of sleeves, and the dynamic pressure generating groove holds oil. And a porous body impregnated with the oil having the same characteristics as the oil is arranged between the plurality of sleeves, and the plurality of sleeves are arranged coaxially. Electric motor.
【請求項6】 多孔質体を複数のスリーブの間と外周面
を覆うように配置したことを特徴とする請求項5記載の
電動機。
6. The electric motor according to claim 5, wherein the porous body is arranged between the plurality of sleeves and so as to cover the outer peripheral surface.
【請求項7】 複数のスリーブ端よりも、前記複数のス
リーブの外周面を覆っている多孔質体を軸方向に出した
ことを特徴とする請求項6記載の電動機。
7. The electric motor according to claim 6, wherein the porous body covering the outer peripheral surfaces of the plurality of sleeves is extended in the axial direction rather than the ends of the plurality of sleeves.
【請求項8】 複数のスリーブの間又は外側の多孔質体
の少なくとも一方の内周面の全部もしくは一部にも動圧
発生溝を形成したことを特徴とする請求項3,5,6、
または請求項7のいずれかに記載の電動機。
8. A dynamic pressure generating groove is also formed on all or part of the inner peripheral surface of at least one of the porous bodies between the plurality of sleeves or on the outer side of the plurality of sleeves.
Alternatively, the electric motor according to claim 7.
【請求項9】 軸とスリーブを備え、前記軸の外周面又
は前記スリーブの内周面のいずれか一方に動圧発生溝を
形成し、前記動圧発生溝にオイルを保持する動圧型流体
軸受を用いた電動機であって、前記スリーブ両端もしく
は片端の内周面に径を大きくした部分を設け、前記スリ
ーブ両端もしくは片端の内周面の径を大きくした部分に
前記軸に固定されたオイルもれ防止リングを配置したこ
とを特徴とする電動機。
9. A dynamic pressure type fluid bearing comprising a shaft and a sleeve, wherein a dynamic pressure generating groove is formed on either the outer peripheral surface of the shaft or the inner peripheral surface of the sleeve, and oil is retained in the dynamic pressure generating groove. In the electric motor using, the oil having a large diameter is provided on the inner peripheral surface of both ends or one end of the sleeve, and the oil fixed to the shaft is also provided on the part of the inner peripheral surface having both ends of the sleeve or one end having a large diameter. An electric motor that is equipped with an anti-skid ring.
【請求項10】 軸とスリーブを備え、前記軸の外周面
又は前記スリーブの内周面に動圧発生溝を形成し、前記
動圧発生溝にオイルを保持し、前記動圧発生溝の近傍に
前記オイルと特性が同一のオイルを含浸させた多孔質体
を配置している動圧型流体軸受を用いた電動機であっ
て、前記スリーブもしくは前記多孔質体の両端もしくは
片端の内周面に径を大きくした部分を設け、前記スリー
ブもしくは前記多孔質体の両端もしくは片端の内周面の
径を大きくした部分に前記軸に固定されたオイルもれ防
止リングを配置した請求項1または請求項7記載の電動
機。
10. A shaft and a sleeve are provided, and a dynamic pressure generation groove is formed on an outer peripheral surface of the shaft or an inner peripheral surface of the sleeve, and oil is retained in the dynamic pressure generation groove, and the vicinity of the dynamic pressure generation groove is provided. A motor using a hydrodynamic bearing in which a porous body impregnated with oil having the same characteristics as that of the oil is disposed in the sleeve or the inner surface of one end of the porous body or one end of the porous body. The oil leakage prevention ring fixed to the shaft is arranged at a portion where the diameter of the inner peripheral surface at both ends or one end of the sleeve or the porous body is increased, and the oil leakage prevention ring is disposed at the portion where the diameter is increased. The electric motor described.
JP12613095A 1995-05-25 1995-05-25 Electric motor Expired - Fee Related JP3637632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12613095A JP3637632B2 (en) 1995-05-25 1995-05-25 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12613095A JP3637632B2 (en) 1995-05-25 1995-05-25 Electric motor

Publications (2)

Publication Number Publication Date
JPH08322191A true JPH08322191A (en) 1996-12-03
JP3637632B2 JP3637632B2 (en) 2005-04-13

Family

ID=14927415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12613095A Expired - Fee Related JP3637632B2 (en) 1995-05-25 1995-05-25 Electric motor

Country Status (1)

Country Link
JP (1) JP3637632B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004298A1 (en) * 1998-07-17 2000-01-27 Koninklijke Philips Electronics N.V. Dynamic groove bearing comprising a porous lubricant reservoir
JP2005083506A (en) * 2003-09-09 2005-03-31 Canon Inc Air bearing device
KR100516745B1 (en) * 1996-12-25 2006-01-12 엔티엔 가부시키가이샤 Dynamic Pressure Porous Oil Bearings & Bearings
JP2007057048A (en) * 2005-08-25 2007-03-08 Nidec Copal Electronics Corp Fluid dynamic pressure bearing and motor comprising the same
WO2007102359A1 (en) * 2006-03-09 2007-09-13 Ntn Corporation Fluid bearing device
JP2007239920A (en) * 2006-03-09 2007-09-20 Ntn Corp Fluid bearing device
WO2007142062A1 (en) * 2006-06-07 2007-12-13 Ntn Corporation Fluid bearing device and its manufacturing method
JP2009127860A (en) * 2007-11-22 2009-06-11 Taida Electronic Ind Co Ltd Motor, and its bearing structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516745B1 (en) * 1996-12-25 2006-01-12 엔티엔 가부시키가이샤 Dynamic Pressure Porous Oil Bearings & Bearings
WO2000004298A1 (en) * 1998-07-17 2000-01-27 Koninklijke Philips Electronics N.V. Dynamic groove bearing comprising a porous lubricant reservoir
US6196723B1 (en) 1998-07-17 2001-03-06 U.S. Philips Corporation Dynamic groove bearing comprising a porous lubricant reservoir
KR100721389B1 (en) * 1998-07-17 2007-05-23 코닌클리케 필립스 일렉트로닉스 엔.브이. Dynamic groove bearing comprising a porous lubricant reservoir
JP2005083506A (en) * 2003-09-09 2005-03-31 Canon Inc Air bearing device
JP2007057048A (en) * 2005-08-25 2007-03-08 Nidec Copal Electronics Corp Fluid dynamic pressure bearing and motor comprising the same
WO2007102359A1 (en) * 2006-03-09 2007-09-13 Ntn Corporation Fluid bearing device
JP2007239920A (en) * 2006-03-09 2007-09-20 Ntn Corp Fluid bearing device
US8177434B2 (en) 2006-03-09 2012-05-15 Ntn Corporation Fluid dynamic bearing device
KR101347146B1 (en) * 2006-03-09 2014-01-03 엔티엔 가부시키가이샤 Fluid bearing device
WO2007142062A1 (en) * 2006-06-07 2007-12-13 Ntn Corporation Fluid bearing device and its manufacturing method
US8529132B2 (en) 2006-06-07 2013-09-10 Ntn Corporation Fluid dynamic bearing device and method of manufacturing the same
KR101405075B1 (en) * 2006-06-07 2014-06-10 엔티엔 가부시키가이샤 Fluid bearing device and its manufacturing method
JP2009127860A (en) * 2007-11-22 2009-06-11 Taida Electronic Ind Co Ltd Motor, and its bearing structure

Also Published As

Publication number Publication date
JP3637632B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US5969448A (en) Electric spindle motor
JPH0612128B2 (en) Bearing device
US5645355A (en) Bearing unit
US20110081266A1 (en) Fan, bearing and sleeve thereof
JP2003314558A (en) Retainer of radial ball bearing
JP3637632B2 (en) Electric motor
JPH1155897A (en) Hydrodynamic bearing mounted motor
JPS624565B2 (en)
JP2629561B2 (en) Polygon mirror drive motor for laser beam scanning
JPS612915A (en) Rotary device
JP3842499B2 (en) Hydrodynamic bearing unit
JP3617093B2 (en) Electric motor
JPH11311253A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JPH03260415A (en) Dynamic pressure fluid bearing device
JPH07170740A (en) Electric motor
JPH08111962A (en) Motor
JP3575055B2 (en) Bearing part of fan motor
JP3386965B2 (en) Bearing structure of spindle motor
JPS6319622Y2 (en)
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JPH089587A (en) Motor
KR100200598B1 (en) Spindle motor with an improved structure
JP2540977Y2 (en) Rolling bearing
JPH0545246U (en) Rolling bearing device
JP3090123U (en) Oil-impregnated bearing

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees