JPH0832093A - Manufacture of schottky barrier diode - Google Patents

Manufacture of schottky barrier diode

Info

Publication number
JPH0832093A
JPH0832093A JP16676994A JP16676994A JPH0832093A JP H0832093 A JPH0832093 A JP H0832093A JP 16676994 A JP16676994 A JP 16676994A JP 16676994 A JP16676994 A JP 16676994A JP H0832093 A JPH0832093 A JP H0832093A
Authority
JP
Japan
Prior art keywords
layer
electrode
sbd
metal
schottky barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16676994A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nishina
俊之 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP16676994A priority Critical patent/JPH0832093A/en
Publication of JPH0832093A publication Critical patent/JPH0832093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain an SBD, which does not cause deterioration of its characteristics, by a method wherein after a silicide layer is formed, a metal film, which is not silicified, is removed and after a buffer layer is anew provided, an electrode is formed. CONSTITUTION:A silicide layer 6 is formed under a metal layer 4 and thereafter, the layer 4 left without being silicified is removed using an HF. After a metal layer, which is used as a buffer layer 9, is applied on the layer 6, an electrode 7 is formed which is used as a wire bonding electrode or a bump electrode and consists of a metal film. Thereby, even if a spike is generated from the electrode toward a semiconductor substrate, it can be prevented from being generated that the spike is extended and reaches through up to the interior of the layer 6n because there is no crystal defect in the new buffer layer. Accordingly, an SBD, which does not cause deterioration of its characteristics, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ショットキー・バリヤ
・ダイオードの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a Schottky barrier diode.

【0002】[0002]

【従来の技術】ショットキー・バリヤ・ダイオード(Sc
hottky Barrier Diode;以下SBDという)は、半導体
に所定の金属を接触させたときに、その接触面に形成さ
れるショットキー障壁(バリア)層の整流特性を利用し
たダイオードである。特にSBDは多数キャリア素子な
ので、PN接合ダイオードに比べ逆方向回復時間が短
く、また順方向電圧も低く電力損失が少ないため高周波
整流に適している。
2. Description of the Related Art Schottky barrier diodes (Sc
A hottky barrier diode (hereinafter referred to as SBD) is a diode that utilizes the rectification characteristics of a Schottky barrier layer formed on a contact surface of a semiconductor when a predetermined metal is brought into contact with the semiconductor. In particular, since the SBD is a majority carrier element, the reverse recovery time is shorter than the PN junction diode, the forward voltage is low, and the power loss is small, so that it is suitable for high frequency rectification.

【0003】このような特徴を有するSBDの構造とし
て、金属と半導体との合金層いわゆるシリサイド層と半
導体基板の接触によりショットキーバリヤ層を形成する
ものが知られている。このSBDの従来の製造方法を図
4により説明する。まず、図4(a)に示すように、半
導体基板1に酸化膜2を形成し、後のエッチングにより
開口部3を形成する。次に、図4(b)に示すように、
ショットキーバリヤを形成する金属層4及び金属層4が
大気に触れて酸化するのを防止する金属層5をこの順で
開口部3に被着する。次に、図4(c)に示すように、
酸化防止用金属層5除去後、熱処理することにより金属
層4のシリサイド層6を形成する。最後に、図4(d)
に示すように、金属層4に直接ワイヤボンディング用電
極またはバンプ電極等の電極7を形成する。
As an SBD structure having such characteristics, there is known a structure in which a Schottky barrier layer is formed by contact between an alloy layer of a metal and a semiconductor, a so-called silicide layer, and a semiconductor substrate. A conventional manufacturing method of this SBD will be described with reference to FIG. First, as shown in FIG. 4A, the oxide film 2 is formed on the semiconductor substrate 1, and the opening 3 is formed by subsequent etching. Next, as shown in FIG.
A metal layer 4 that forms a Schottky barrier and a metal layer 5 that prevents the metal layer 4 from oxidizing due to exposure to the atmosphere are deposited in this order on the opening 3. Next, as shown in FIG.
After removing the oxidation preventing metal layer 5, a heat treatment is performed to form the silicide layer 6 of the metal layer 4. Finally, FIG. 4 (d)
As shown in, an electrode 7 such as a wire bonding electrode or a bump electrode is directly formed on the metal layer 4.

【0004】[0004]

【発明が解決しようとする課題】上述の方法で製造され
たSBDでは、シリサイド化していない金属層4を組立
時の熱処理の温度によっては電極7から半導体基板1に
向けて生じるスパイク8に対するバッファ層として利用
している。しかし、シリサイド層6を形成するために熱
処理が施された金属層4では、一部に結晶欠陥を生じる
ためバッファ層としての役割を果たさず、その結果、図
5に示すように、スパイク8がシリサイド層6に内に入
り込み、順方向電圧値がばらついたり、最大逆電流値が
増大したりする等の特性劣化を起こすことがあった。
In the SBD manufactured by the above method, the buffer layer for the spike 8 generated from the electrode 7 toward the semiconductor substrate 1 depending on the temperature of heat treatment during assembly of the unsilicided metal layer 4. Is used as. However, the metal layer 4 that has been heat-treated to form the silicide layer 6 does not serve as a buffer layer because crystal defects partially occur, and as a result, spikes 8 are generated as shown in FIG. In some cases, it may get into the silicide layer 6 and cause characteristic deterioration such as a variation in forward voltage value and an increase in maximum reverse current value.

【0005】本発明の目的は、特性劣化を生じないSB
Dの製造方法を提供することにある。
An object of the present invention is to prevent SB from causing characteristic deterioration.
It is to provide a manufacturing method of D.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成するために次のような構成をとる。すなわち、本発
明のショットキー・バリヤ・ダイオードの製造方法は、
半導体基板の表面に設けた絶縁膜に開口部を形成する工
程と、前記開口部を覆うようにショットキーバリヤを形
成する金属層を被着する工程と、前記半導体基板を熱処
理してシリサイド層を形成した後、金属層を除去する工
程と、前記シリサイド層上にバッファ層と電極をこの順
で形成する工程を具備することを特徴とするものであ
る。
The present invention has the following constitution in order to achieve the above object. That is, the method of manufacturing the Schottky barrier diode of the present invention is
Forming an opening in an insulating film provided on the surface of the semiconductor substrate; depositing a metal layer forming a Schottky barrier so as to cover the opening; heat treating the semiconductor substrate to form a silicide layer. After the formation, the method is characterized by including a step of removing the metal layer and a step of forming a buffer layer and an electrode on the silicide layer in this order.

【0007】[0007]

【作用及び効果】本発明者は、特性劣化を起こさないS
BDの製造方法について種々の実験と検討を加えた結
果、シリサイド層を形成した後、シリサイド化していな
い金属層を除去し、新たにバッファ層を設けてから電極
を形成することにより特性劣化を起こさないSBDを得
られることを見いだした。すなわち、この方法によれ
ば、たとえ電極から半導体基板に向けてスパイクが生じ
ても、新たなバッファ層には結晶欠陥がないので、スパ
イクが延びてシリサイド層内にまで達してしまうのを防
止することができる。
The function and effect of the present inventor are as follows.
As a result of various experiments and studies on the manufacturing method of the BD, after the silicide layer is formed, the metal layer which is not silicidized is removed, a new buffer layer is formed, and then the electrode is formed, which causes characteristic deterioration. I found that I could get a SBD that didn't exist. That is, according to this method, even if a spike occurs from the electrode toward the semiconductor substrate, there is no crystal defect in the new buffer layer, so that the spike is prevented from extending and reaching the inside of the silicide layer. be able to.

【0008】[0008]

【実施例】以下、本発明の実施例を、図1を参照しつつ
説明する。尚、従来と同一部分や相当部分には同一の符
号を付している。まず、図1(a)に示すように、半導
体基板1、例えばSi基板に、熱酸化により酸化膜2を
形成した後、エッチングにより開口部3を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. Incidentally, the same reference numerals are given to the same or corresponding portions as in the conventional case. First, as shown in FIG. 1A, an oxide film 2 is formed on a semiconductor substrate 1, for example, a Si substrate by thermal oxidation, and then an opening 3 is formed by etching.

【0009】次に、図1(b)に示すように、ショット
キーバリヤを形成する金属層4、例えばTiを、開口部
3にスパッタ法や蒸着法で約300〜3000Åの厚さ
に被着する。この金属層4上に従来と同様金属層4が大
気に触れて酸化するのを防止するための金属層5、例え
ばAgをさらに被着する。次に、図1(c)に示すよう
に、酸化防止用の金属層5除去して、半導体基板1を窒
素雰囲気中で約600〜650℃で10〜20分間熱処
理して金属層4のシリサイド層6を形成した後、シリサ
イド化されずに残った金属層4をHFを用いて除去す
る。金属層4は、リン酸・硝酸等のエッチャントまたは
スパッタエッチングを用いて除去してもよい。
Next, as shown in FIG. 1B, a metal layer 4 for forming a Schottky barrier, for example, Ti is deposited on the opening 3 by a sputtering method or a vapor deposition method to a thickness of about 300 to 3000 Å. To do. On this metal layer 4, a metal layer 5, for example, Ag, is further deposited to prevent the metal layer 4 from being exposed to the atmosphere and oxidized as in the conventional case. Next, as shown in FIG. 1C, the metal layer 5 for oxidation prevention is removed, and the semiconductor substrate 1 is heat-treated at about 600 to 650 ° C. for 10 to 20 minutes in a nitrogen atmosphere to silicide the metal layer 4. After forming the layer 6, the metal layer 4 remaining without being silicidized is removed using HF. The metal layer 4 may be removed by using an etchant such as phosphoric acid / nitric acid or sputter etching.

【0010】最後に、図1(d)に示すように、シリサ
イド層6上にバッファ層9となる金属、例えばTi、T
iNを被着した後、ワイヤボンディング電極またはバン
プ電極となる金属、例えばAl、Ag等から成る電極7
を形成する。本実施例では、バッファ層9となる金属と
して、シリサイド層6を形成する際に利用した金属を含
む金属が、シリサイド層6と良好なオーミック接触が得
られるという観点からTiやTiNを使用した。しか
し、シリサイド層6と良好なオーミック接触が得られる
金属であれば、どのような金属をバッファ層として使用
しても良い。
Finally, as shown in FIG. 1D, a metal, such as Ti or T, which will be the buffer layer 9 is formed on the silicide layer 6.
After depositing iN, an electrode 7 made of a metal, such as Al or Ag, which will be a wire bonding electrode or a bump electrode.
To form. In this embodiment, Ti or TiN is used as the metal forming the buffer layer 9 from the viewpoint that the metal containing the metal used when forming the silicide layer 6 can obtain good ohmic contact with the silicide layer 6. However, any metal may be used as the buffer layer as long as it is a metal that can obtain a good ohmic contact with the silicide layer 6.

【0011】本実施例では半導体基板1としてSi基板
について説明したが、GaAs等の化化合物半導体基板
を利用したMESFETやHEMT等のSBD電極とし
ても利用できる。また、シリサイド層6を形成するため
の金属としてTiの他、Moを使用しても良い。さら
に、本発明のSBDをTTL(トランジスタ・トランジ
スタ・ロジック)に利用されるSBDに適用しても良
い。
In this embodiment, the Si substrate has been described as the semiconductor substrate 1, but it can also be used as an SBD electrode such as MESFET or HEMT using a chemical compound semiconductor substrate such as GaAs. In addition to Ti, Mo may be used as a metal for forming the silicide layer 6. Furthermore, the SBD of the present invention may be applied to an SBD used for TTL (transistor transistor logic).

【0012】次に、本発明の方法により製造されたSB
Dと従来の方法により製造されたSBDの特性比較を行
った実験結果について図2、図3を参考に説明する。図
2は、順方向電流(=IF )を1mAを流したときの順
方向電圧(VF )のばらつきを示すグラフで(a)は本
発明のSBDを、(b)は従来のSBDのものを示して
いる。
Next, the SB produced by the method of the present invention
The experimental results of comparing the characteristics of D and the SBD manufactured by the conventional method will be described with reference to FIGS. 2 and 3. 2A and 2B are graphs showing variations in the forward voltage (VF) when a forward current (= IF) is applied at 1 mA, (a) the SBD of the present invention, and (b) the conventional SBD. Shows.

【0013】また、図3は、逆方向電圧(=VR )を4
5Vかけたときの逆方向電流(IR)のばらつきを示す
グラフで(a)は本発明のSBDを、(b)は従来のS
BDのものを示している。本実験から明らかなように本
発明により製造されたSBDは、従来の方法により製造
されたSBDに比較して順方向電圧(VF )のばらつき
が少なく、しかも逆方向電流(IR )の値も低い、特性
の優れたSBDを得ることができる。
Further, FIG. 3 shows that the reverse voltage (= VR) is 4
In the graph showing the variation of the reverse current (IR) when 5 V is applied, (a) is the SBD of the present invention, (b) is the conventional S
A BD is shown. As is clear from this experiment, the SBD manufactured according to the present invention has less variation in the forward voltage (VF) and the reverse current (IR) is lower than that of the SBD manufactured by the conventional method. Thus, an SBD having excellent characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のSBDの製造方法を示す説明図。FIG. 1 is an explanatory view showing a method for manufacturing an SBD of the present invention.

【図2】IF=1mAを流したときのVFのばらつきを示
すグラフ。
FIG. 2 is a graph showing variations in VF when IF = 1 mA is applied.

【図3】VR=45VかけたときのIRのばらつきを示す
グラフ。
FIG. 3 is a graph showing variations in IR when VR = 45V is applied.

【図4】従来のSBDの製造方法を示す説明図。FIG. 4 is an explanatory view showing a conventional SBD manufacturing method.

【図5】従来のSBDを示す概略図。FIG. 5 is a schematic view showing a conventional SBD.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 酸化膜 3 開口部 4 金属層 5 酸化防止金属層 6 シリサイド層 7 電極 8 スパイク 9 バッファ層 1 Semiconductor Substrate 2 Oxide Film 3 Opening 4 Metal Layer 5 Antioxidant Metal Layer 6 Silicide Layer 7 Electrode 8 Spike 9 Buffer Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面に設けた絶縁膜に開口
部を形成する工程と、前記開口部を覆うようにショット
キーバリヤを形成する金属層を被着する工程と、前記半
導体基板を熱処理してシリサイド層を形成した後、金属
層を除去する工程と、前記シリサイド層上にバッファ層
と電極をこの順で形成する工程を具備することを特徴と
するショットキー・バリヤ・ダイオードの製造方法。
1. A step of forming an opening in an insulating film provided on a surface of a semiconductor substrate, a step of depositing a metal layer forming a Schottky barrier so as to cover the opening, and a heat treatment of the semiconductor substrate. Forming a silicide layer, and then removing the metal layer, and forming a buffer layer and an electrode on the silicide layer in this order, a method of manufacturing a Schottky barrier diode. .
【請求項2】 請求項1記載のショットキー・バリヤ・
ダイオードの製造方法においてバッファ層が金属層と同
一の材料を含む金属であることを特徴とするショットキ
ー・バリヤ・ダイオードの製造方法。
2. The Schottky barrier according to claim 1.
A method of manufacturing a Schottky barrier diode, wherein the buffer layer is a metal containing the same material as the metal layer in the method of manufacturing the diode.
JP16676994A 1994-07-19 1994-07-19 Manufacture of schottky barrier diode Pending JPH0832093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16676994A JPH0832093A (en) 1994-07-19 1994-07-19 Manufacture of schottky barrier diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16676994A JPH0832093A (en) 1994-07-19 1994-07-19 Manufacture of schottky barrier diode

Publications (1)

Publication Number Publication Date
JPH0832093A true JPH0832093A (en) 1996-02-02

Family

ID=15837360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16676994A Pending JPH0832093A (en) 1994-07-19 1994-07-19 Manufacture of schottky barrier diode

Country Status (1)

Country Link
JP (1) JPH0832093A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097476A (en) * 2014-05-22 2015-11-25 英飞凌科技股份有限公司 Method for processing a semiconductor device and semiconductor device
CN113257893A (en) * 2021-04-30 2021-08-13 北海惠科半导体科技有限公司 Schottky diode and manufacturing method and chip thereof
CN113314412A (en) * 2021-06-24 2021-08-27 弘大芯源(深圳)半导体有限公司 Method for manufacturing Schottky diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097476A (en) * 2014-05-22 2015-11-25 英飞凌科技股份有限公司 Method for processing a semiconductor device and semiconductor device
US10665687B2 (en) 2014-05-22 2020-05-26 Infineon Technologies Ag Method for processing a semiconductor device and semiconductor device
CN113257893A (en) * 2021-04-30 2021-08-13 北海惠科半导体科技有限公司 Schottky diode and manufacturing method and chip thereof
CN113314412A (en) * 2021-06-24 2021-08-27 弘大芯源(深圳)半导体有限公司 Method for manufacturing Schottky diode

Similar Documents

Publication Publication Date Title
US20110284876A1 (en) Semiconductor device and method of manufacturing the same
JPH10200161A (en) Contact electrode on n-type gallium arsenide semiconductor and fabrication thereof
JPS60201666A (en) Semiconductor device
JPH0786310A (en) Method for forming metal gate electrode having high melting point
JP4048284B2 (en) Laminate for forming ohmic electrode and ohmic electrode
JP4091931B2 (en) SiC semiconductor device and method of manufacturing SiC semiconductor device
JPH0661177A (en) Semiconductor integrated circuit device and manufacture thereof
JP3120756B2 (en) Field effect transistor and method of manufacturing the same
JPH0832093A (en) Manufacture of schottky barrier diode
JPH06252091A (en) Semiconductor device and its manufacture
JPS62113421A (en) Manufacture of semiconductor device
JPS60157268A (en) Schottky barrier diode
JP2002016017A (en) Silicon carbide semiconductor device and method of manufacturing the same
JPH0831767A (en) Manufacture of electrode structure
JPH0515311B2 (en)
JP3959203B2 (en) Manufacturing method of semiconductor device
JP2917872B2 (en) Method for manufacturing semiconductor device
JP2932305B2 (en) Method for manufacturing semiconductor device
JPS59150421A (en) Manufacture of semiconductor device
JP2002261044A (en) Semiconductor device and method of manufacturing the same
JP2884376B2 (en) Method of forming metal oxide resistor
JP3096133B2 (en) Compound semiconductor device
JP3439123B2 (en) Ohmic electrode
JP2022551632A (en) Ohmic alloy contact area sealing layer
JPH04155967A (en) Manufacture of semiconductor device