JPH08318430A - Method and device for electrical discharge machining - Google Patents

Method and device for electrical discharge machining

Info

Publication number
JPH08318430A
JPH08318430A JP12137695A JP12137695A JPH08318430A JP H08318430 A JPH08318430 A JP H08318430A JP 12137695 A JP12137695 A JP 12137695A JP 12137695 A JP12137695 A JP 12137695A JP H08318430 A JPH08318430 A JP H08318430A
Authority
JP
Japan
Prior art keywords
electrode
discharge
electric discharge
machining
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12137695A
Other languages
Japanese (ja)
Inventor
Kiyohiko Tateyama
清彦 館山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP12137695A priority Critical patent/JPH08318430A/en
Publication of JPH08318430A publication Critical patent/JPH08318430A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE: To provide an electrical discharge machining method by which proper drive condition of an electrode is determined easily even if materials of the electrode and an object to be machined and machining condition such as electrical condition for electrical discharge are changed and stable machining is possible. CONSTITUTION: An electrical signal detection means 4 detects electrical signals for electrical discharge between an electrode 1 and an object to be machined 2, a drive condition operating means 5 finds drive condition in a drive means 6 based on electrical signals detected by the electrical signal detection means 4, and the drive and control of the drive means 6 are performed by the drive condition which is obtained so that the electrode 1 and the object to be machined 2 are positioned for electrical discharge machining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電極と被加工物を位置
決めし、金型、金属、導電性セラミック等からなる部品
を加工する放電加工方法及び放電加工装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining method and an electric discharge machining apparatus for positioning an electrode and a workpiece and machining a part made of a mold, metal, conductive ceramic or the like.

【0002】[0002]

【従来の技術】一般に、放電加工において安定した加工
を行うためには、電極と被加工物(ワーク)との極間を
放電が安定して生じる微小間隙に保つ必要がある。この
ような極間を微小間隙に保ち放電加工を行う方法の従来
技術として、特開平2−190218号公報に記載され
た放電加工機のサーボ制御方法がある。
2. Description of the Related Art In general, in order to perform stable machining in electric discharge machining, it is necessary to maintain a minute gap between the electrode and a workpiece (work) in which electric discharge is stably generated. As a conventional technique for a method of performing electric discharge machining while maintaining a small gap between the electrodes, there is a servo control method for an electric discharge machine disclosed in Japanese Patent Laid-Open No. 190218/1990.

【0003】図8を参照して従来の放電加工機のサーボ
制御方法について概説する。即ち、このサーボ制御方法
は、予め指定された基準電圧Vrefと極間検出部10
1により検出される電極102と被加工物103との間
の実際の極間電圧との差電圧に基づき速度設定部104
により軸移動速度を求め、その軸移動速度から、目的位
置決定部105により、軸移動量を求め、位置制御部1
06に出力すると共に、前記軸移動量の出力分解能を下
回る微小軸移動速度成分を軸移動量出力段階とは別のフ
ィードバックループである調節器107を介して出力
し、モータ108により電極102を駆動することによ
り、電極102と被加工物103との間の極間電圧が一
定に保持されるように放電加工機をサーボ制御し加工す
るようにしたものであり、電圧差により位置追従し、安
定放電加工を行うものである。
A conventional servo control method for an electric discharge machine will be outlined with reference to FIG. That is, this servo control method uses the reference voltage Vref specified in advance and the gap detection unit 10.
The speed setting unit 104 based on the voltage difference between the actual voltage between the electrodes 102 and the workpiece 103 detected by
The target position determination unit 105 determines the axial movement amount from the axial movement speed by the position control unit 1
06, and outputs a minute axis movement speed component that is lower than the output resolution of the axis movement amount through a controller 107 that is a feedback loop different from the axis movement amount output stage, and drives the electrode 102 by the motor 108. By doing so, the electric discharge machine is servo-controlled to perform machining so that the voltage between the electrodes 102 and the workpiece 103 is kept constant, and the position is tracked by the voltage difference and stable. Electric discharge machining is performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来の放電加工機のサーボ制御方法による放電加工方法
の場合には、電極102と被加工物103との極間の微
小間隙を保持する方法が予め設定した基準電圧Vref
との電圧差に依存している。
However, in the case of the above-described conventional electric discharge machining method using the servo control method of the electric discharge machine, there is a method of maintaining a minute gap between the electrode 102 and the workpiece 103. Preset reference voltage Vref
It depends on the voltage difference between and.

【0005】基準電圧Vrefとなる電圧は、電極10
2及び被加工物103の材質、放電の電気的条件等によ
り一定の値ではなく、加工条件に応じて変更する必要が
あるが従来のサーボ制御方法はその手段を有していな
い。また、極間の電圧は、加工の進行による極間距離の
変動、放電の発生による変動、加工屑等の介在物による
変動と、いくつもの変動要因があり、これらを一定とす
るサーボ制御では、電極102と被加工物103との短
絡等の虞がある等の問題を有している。
The voltage which becomes the reference voltage Vref is determined by the electrode 10
2 and the material of the workpiece 103, the electrical conditions of discharge, and the like, the values are not constant but need to be changed according to the processing conditions, but the conventional servo control method does not have such means. Further, the voltage between the poles has a number of fluctuation factors, such as fluctuations in the distance between the poles due to the progress of machining, fluctuations due to the occurrence of electric discharge, fluctuations due to inclusions such as machining scraps, etc. There is a problem that the electrode 102 and the workpiece 103 may be short-circuited.

【0006】本発明は、上記事情に鑑みてなされたもの
であり、電極および被加工物の材質、放電の電気的条件
等の加工条件を変更した場合にも容易に適正な電極の駆
動条件を決定し、また、安定した加工が可能である放電
加工方法及び放電加工装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and it is possible to easily set appropriate electrode driving conditions even when the processing conditions such as the material of the electrode and the workpiece and the electrical conditions of the discharge are changed. It is an object of the present invention to provide an electric discharge machining method and an electric discharge machining apparatus that can determine and perform stable machining.

【0007】[0007]

【課題を解決するための手段】請求項1記載の放電加工
方法は、電極と被加工物とを放電ギャップ内の微小間隙
に位置決め固定し、電極から被加工物に放電を行い、こ
の時の放電の電気的信号及び加工形状を基礎データとし
て電極と被加工物との位置決めの駆動条件を求め、この
駆動条件により位置決めを行いつつ被加工物の放電加工
を行うことを特徴とするものである。
According to a first aspect of the present invention, there is provided an electric discharge machining method, wherein an electrode and a workpiece are positioned and fixed in a minute gap within an electric discharge gap, and an electric discharge is generated from the electrode to the workpiece. It is characterized in that the driving condition for positioning the electrode and the workpiece is obtained using the electrical signal of the discharge and the machining shape as basic data, and the electrical discharge machining of the workpiece is performed while performing the positioning under this driving condition. .

【0008】請求項2記載の放電加工方法は、請求項1
記載の放電加工方法における前記放電の電気的信号が、
極間電圧、極間電流又は放電頻度であり、それぞれ単一
若しくは複数の電気的信号から放電加工の進行を判断し
て放電加工の進行を示す値の範囲を定め、電極と被加工
物との位置決め箇所で、電気的信号が前記値の範囲外と
なる場合に、電極と被加工物とが微小間隙を保ち放電を
生じる位置に次の位置決めを行うことを特徴とするもの
である。
The electric discharge machining method according to claim 2 is the method according to claim 1.
The electrical signal of the electrical discharge in the electrical discharge machining method described,
It is the voltage between electrodes, the current between electrodes, or the frequency of discharge, and determines the range of values that indicate the progress of electrical discharge machining by judging the progress of electrical discharge machining from single or multiple electrical signals, respectively. When the electric signal is out of the range of the above value at the positioning portion, the next positioning is performed at a position where a discharge is generated while maintaining a minute gap between the electrode and the workpiece.

【0009】請求項3記載の放電加工装置は、加工工具
となる電極と、前記電極と被加工物とを絶縁する加工液
と、前記電極と被加工物との間に放電電力を供給する電
源と、前記電極と前記被加工物を位置決めする駆動手段
とを備えた放電加工装置において、前記電極と被加工物
との間に放電の電気的信号を検出する電気的信号検出手
段と、この電気的信号検出手段により検出した電気的信
号を基に前記駆動手段における駆動条件を求める駆動条
件演算手段と、この駆動条件演算手段により求めた駆動
条件により前記駆動手段の駆動制御を行う制御手段とを
備えたことを特徴とするものである。
According to a third aspect of the present invention, there is provided an electric discharge machining apparatus in which an electrode serving as a machining tool, a machining liquid which insulates the electrode from the workpiece, and a power supply which supplies electric discharge power between the electrode and the workpiece. An electric signal detecting means for detecting an electric signal of electric discharge between the electrode and the workpiece, in an electric discharge machine comprising the electrode and a driving means for positioning the workpiece. A drive condition calculating means for obtaining a drive condition in the drive means based on an electrical signal detected by the dynamic signal detecting means, and a control means for controlling the drive of the drive means according to the drive condition obtained by the drive condition calculating means. It is characterized by having.

【0010】[0010]

【作用】請求項1記載の発明の作用を図1を用いて説明
する。図1は、本発明方法に用いる放電加工装置の構成
を示すものであり、電極1と被加工物2が放電電源3に
接続されこれらに放電電圧が印加可能となっている。
The operation of the present invention will be described with reference to FIG. FIG. 1 shows the configuration of an electric discharge machine used in the method of the present invention, in which an electrode 1 and a workpiece 2 are connected to a discharge power source 3 so that a discharge voltage can be applied to them.

【0011】また、電極1と被加工物2との間の極間電
圧等の極間の電気的信号が、電気的信号検出手段4によ
り検出される。検出された電気的信号は、駆動条件演算
手段5に入力されここで演算処理される。駆動条件演算
手段5は、演算処理結果より、駆動手段6に駆動指令を
出力し、電極1と被加工物2とを位置決めするようにな
っている。また、前記電極1と被加工物2とは、絶縁性
を有する加工液7に浸されている。
Further, an electric signal between the electrodes such as an inter-electrode voltage between the electrode 1 and the workpiece 2 is detected by the electric signal detecting means 4. The detected electrical signal is input to the driving condition calculation means 5 and is calculated here. The drive condition calculation means 5 outputs a drive command to the drive means 6 based on the calculation processing result, and positions the electrode 1 and the workpiece 2. Further, the electrode 1 and the work piece 2 are immersed in a working liquid 7 having an insulating property.

【0012】本発明によると、先ず、電極1と被加工物
2とは放電が生じる微小間隙に位置決めされる。この状
態で放電電源3から放電電圧が印加されると、極間で放
電が生じ、加工が行われる。放電を繰り返すことによ
り、その位置決め箇所における加工が進行し、極間距離
Lが増大する。極間距離Lが増大すると、放電は生じに
くくなり、最終的にその位置決め箇所で極間距離Lは放
電ギャップhに漸化する。
According to the present invention, first, the electrode 1 and the work piece 2 are positioned in a minute gap where an electric discharge occurs. When a discharge voltage is applied from the discharge power source 3 in this state, a discharge is generated between the electrodes, and machining is performed. By repeating the electric discharge, the machining at the positioning portion progresses, and the inter-electrode distance L increases. When the inter-electrode distance L increases, discharge becomes less likely to occur, and finally the inter-electrode distance L gradually recedes into the discharge gap h at the positioning position.

【0013】ここで、放電ギャップhは、放電が生じる
最大極間距離を意味する。このとき、極間から得られる
電気的信号も、極間距離Lの変化に応じて変化する。即
ち、極間から得られる電気的信号の変化により、その位
置決め箇所における放電加工の進行状況の基礎データが
得られる。
Here, the discharge gap h means the maximum inter-electrode distance at which discharge occurs. At this time, the electrical signal obtained from the gap between the electrodes also changes according to the change in the distance L between the electrodes. That is, the basic data of the progress of the electric discharge machining at the positioning location can be obtained by the change of the electric signal obtained from the gap.

【0014】そこで、予め電極1と被加工物2とを放電
が生じる微小間隙に位置決めし、この時の電気的信号の
プロファイル、及び、放電ギャップhを測定し、基礎デ
ータとする。そして、実際の加工においては、先ず、電
極1と被加工物2とを放電ギャップh以下の微小間隙に
位置決めし、その箇所での放電加工を行う。次に、極間
の電気的信号と基礎データとする電気的信号のプロファ
イルとの比較を行い、その箇所での放電加工が十分なさ
れたと判断された場合に、駆動条件演算手段5から駆動
手段6に駆動指令を出力し、後続の位置決めを行う。
Therefore, the electrode 1 and the workpiece 2 are preliminarily positioned in a minute gap in which discharge occurs, and the profile of the electric signal and the discharge gap h at this time are measured and used as basic data. Then, in actual machining, first, the electrode 1 and the workpiece 2 are positioned in a minute gap equal to or smaller than the discharge gap h, and the electric discharge machining is performed at that position. Next, the electrical signal between the poles is compared with the profile of the electrical signal serving as the basic data, and when it is determined that the electric discharge machining at that location is sufficient, the driving condition calculating means 5 to the driving means 6 The drive command is output to and the subsequent positioning is performed.

【0015】この際の駆動手段6による駆動量は、放電
ギャップh以下の値であり、電極1と被加工物2とは間
欠的な駆動により常に放電が生じる適正な微小間隙に位
置決めされることになり、安定した放電加工が実現可能
である。
At this time, the driving amount by the driving means 6 is a value equal to or less than the discharge gap h, and the electrode 1 and the workpiece 2 are positioned in an appropriate minute gap where discharge is always generated by intermittent driving. Therefore, stable electric discharge machining can be realized.

【0016】また、加工に必要な基礎データは容易に得
られるものであり、電極1及び被加工物2の材質、放電
の電気的条件等の加工条件を変更した場合にも容易に適
正な電極の駆動条件を決定し対応できるものである。
Further, the basic data necessary for machining can be easily obtained, and even when the machining conditions such as the material of the electrode 1 and the workpiece 2 and the electrical conditions of electric discharge are changed, the appropriate electrode can be easily obtained. It is possible to determine the driving condition of the above and cope with it.

【0017】次に、本発明の請求項2における作用を説
明する。即ち、電気的信号検出手段4により検出される
放電の電気的信号が、極間電圧、極間電流又は放電頻度
であり、それぞれ単一、若しくは、複数の電気的信号か
ら放電加工の進行を判断し、駆動指令を出力する。この
加工の進行の判断は、予め測定する極間電圧プロファイ
ルから決定する設定値、若しくは、やはり予め測定され
た放電頻度プロファイルから決定する設定値等との比較
によりなされる。これらの設定値は、定数または範囲を
有する値であり、検出される電気的信号が、この設定値
と対比し、一致すると判断されると駆動指令が出力され
ることになる。また、極間電圧、極間電流、放電頻度等
の複数の電気的信号から放電の状態を判断することで短
絡等の検出も容易に行うことができる。
Next, the operation of claim 2 of the present invention will be described. That is, the electric signal of the electric discharge detected by the electric signal detecting means 4 is the inter-electrode voltage, the inter-electrode current or the discharge frequency, and the progress of the electric discharge machining is judged from the single or plural electric signals, respectively. Then, the drive command is output. The determination of the progress of machining is made by comparison with a set value determined from a previously measured inter-electrode voltage profile or a set value determined from a previously measured discharge frequency profile. These set values are values having constants or ranges, and the detected electric signal is compared with this set value, and if it is determined that they match, a drive command is output. Further, a short circuit or the like can be easily detected by determining the state of discharge from a plurality of electric signals such as the voltage between electrodes, the current between electrodes, and the frequency of discharge.

【0018】次に、本発明の請求項3における作用を説
明する。請求項3記載の発明に係る放電加工装置によれ
ば、電気的信号検出手段が前記電極と被加工物との間に
放電の電気的信号を検出し、駆動条件演算手段が電気的
信号検出手段により検出した電気的信号を基に前記駆動
手段における駆動条件を求め、制御手段により駆動条件
演算手段により求めた駆動条件により前記駆動手段の駆
動制御を行うようにしたものであるから、上述した作用
を発揮する請求項1、2記載の放電加工方法を容易に実
現できる。
Next, the operation of claim 3 of the present invention will be described. According to the electric discharge machining apparatus of the third aspect of the present invention, the electric signal detecting means detects the electric signal of the electric discharge between the electrode and the workpiece, and the driving condition calculating means means the electric signal detecting means. The drive condition of the drive means is obtained based on the electrical signal detected by the control means, and the drive control of the drive means is performed according to the drive condition obtained by the drive condition calculation means by the control means. It is possible to easily realize the electric discharge machining method according to the first and second aspects.

【0019】[0019]

【実施例】以下に、本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.

【0020】[第1実施例]図2、図3を用いて本発明
の第1実施例を説明する。図2は、本発明の第1実施例
における放電加工装置の構成を示すブロック図であり、
図3は、放電開始電圧vと極間距離Lとの関係を示す図
であり、図4は、放電開始電圧vと放電時間tとの関係
を示す図である。
[First Embodiment] A first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a block diagram showing the configuration of the electric discharge machine in the first embodiment of the present invention,
FIG. 3 is a diagram showing the relationship between the discharge starting voltage v and the inter-electrode distance L, and FIG. 4 is a diagram showing the relationship between the discharge starting voltage v and the discharge time t.

【0021】(構成)本実施例の放電加工装置の電極1
と被加工物2とは、放電電源3に接続され、放電電圧が
印加可能となっている。また、電極1と被加工物2と
は、放電電圧検出手段11と接続されている。放電電圧
検出手段11は、駆動条件演算手段5と接続され、駆動
条件演算手段5は、制御手段12と接続されている。
(Structure) Electrode 1 of the electric discharge machine of this embodiment
The workpiece 2 and the workpiece 2 are connected to a discharge power source 3 so that a discharge voltage can be applied. Further, the electrode 1 and the workpiece 2 are connected to the discharge voltage detecting means 11. The discharge voltage detection means 11 is connected to the drive condition calculation means 5, and the drive condition calculation means 5 is connected to the control means 12.

【0022】制御手段12は、Z軸モータ13及びX−
Y軸モータ14と接続されており、Z軸モータ13は、
制御手段12の指令により電極1をZ軸方向に駆動し、
X−Y軸モータ14は、加工液7に浸されて被加工物2
が設置されている加工槽10をX−Y軸方向に駆動する
ようになっている。本実施例においては、電気的信号検
出手段は、放電電圧検出手段11により構成され、駆動
手段は、Z軸モータ13及びX−Y軸モータ14により
構成されている。
The control means 12 has a Z-axis motor 13 and an X-.
It is connected to the Y-axis motor 14, and the Z-axis motor 13
The electrode 1 is driven in the Z-axis direction by a command from the control means 12,
The XY axis motor 14 is dipped in the machining fluid 7 to be processed 2
The processing tank 10 in which is installed is driven in the X-Y axis direction. In this embodiment, the electric signal detecting means is composed of the discharge voltage detecting means 11, and the driving means is composed of the Z axis motor 13 and the XY axis motor 14.

【0023】(作用)先ず、電極1と被加工物2とを放
電を生じる微小間隙に位置決めし、その場で放電加工を
行うことにより基礎データを得る。微小間隙の位置決め
は、電極1と被加工物2とを電圧を印加した状態で近付
け電気的に接触させることで行う。基礎データは、放電
電圧検出手段11による放電電圧のモニタリングデータ
と、別途測定する加工深さデータとで構成される。この
ときの加工深さが放電ギャップhとなる。
(Operation) First, basic data is obtained by positioning the electrode 1 and the work piece 2 in a minute gap in which electric discharge is generated and performing electric discharge machining on the spot. The positioning of the minute gap is performed by bringing the electrode 1 and the workpiece 2 close to each other in a state where a voltage is applied and electrically contacting them. The basic data is composed of discharge voltage monitoring data by the discharge voltage detecting means 11 and machining depth data separately measured. The machining depth at this time becomes the discharge gap h.

【0024】放電開始電圧vは、図3に示すように極間
距離Lが増大するに伴い増大し、放電開始電圧vが設定
印加電圧vmaxとなるところで極間距離Lは放電ギャ
ップhとなる。また、放電開始電圧vと時間tとの関係
は、図4に示すように時間tの経過とともに放電開始電
圧vが増大し、設定印加電圧vmaxに漸化する。これ
により、放電開始電圧vが漸化し始める電圧を駆動条件
電圧vsとする。本実施例では、駆動条件電圧vsは、
設定印加電圧vmaxの80%の値、駆動量Δzは、放
電ギャップhの50%の値とする。
As shown in FIG. 3, the discharge starting voltage v increases as the distance L between the electrodes increases, and the distance L between the electrodes becomes the discharge gap h when the discharge starting voltage v reaches the set applied voltage vmax. Further, as shown in FIG. 4, the relationship between the discharge start voltage v and the time t is such that the discharge start voltage v increases as the time t elapses and gradually becomes the set applied voltage vmax. As a result, the voltage at which the discharge start voltage v starts to recede is set as the drive condition voltage vs. In this embodiment, the driving condition voltage vs is
The value 80% of the set applied voltage vmax and the drive amount Δz are 50% of the discharge gap h.

【0025】このような条件により、実際の放電加工を
行う。即ち、電極1と被加工物2とを電気的に接触させ
ることで加工の開始高さを決定し、その箇所で放電加工
を行う。加工中、放電電圧検出手段11により放電開始
電圧vがモニタリングされ、駆動条件演算手段5は、放
電開始電圧vが駆動条件電圧vsを越えたときに、制御
手段12に駆動指令を出力する。制御手段12は、加工
形状に応じてZ軸モータ13又はX−Y軸モータ14に
指令を出力し、駆動量Δzの駆動を行い、後続の位置決
めをする。これにより、任意の加工形状の放電加工を行
う。
Under these conditions, actual electric discharge machining is performed. That is, the starting height of machining is determined by electrically contacting the electrode 1 and the workpiece 2, and electric discharge machining is performed at that location. During machining, the discharge voltage detection means 11 monitors the discharge start voltage v, and the drive condition calculation means 5 outputs a drive command to the control means 12 when the discharge start voltage v exceeds the drive condition voltage vs. The control means 12 outputs a command to the Z-axis motor 13 or the XY-axis motor 14 according to the machining shape, drives the drive amount Δz, and performs subsequent positioning. As a result, electric discharge machining of an arbitrary machining shape is performed.

【0026】このとき、各位置決め箇所での放電加工
は、放電ギャップhに近い値まで進行し、駆動量Δzは
放電ギャップh以下の値であるため、安定して放電加工
を行うことが可能である。また、電極1及び被加工物2
の材質、放電の電気的条件等の加工条件を変更する場合
にも適正な駆動条件を容易に決定し対応することが可能
である。
At this time, the electric discharge machining at each positioning portion progresses to a value close to the electric discharge gap h, and the driving amount Δz is a value equal to or less than the electric discharge gap h, so that the electric discharge machining can be stably performed. is there. Also, the electrode 1 and the workpiece 2
Even when the processing conditions such as the material and the electrical conditions of the discharge are changed, it is possible to easily determine the appropriate driving conditions and deal with them.

【0027】(効果)本実施例によれば、特に構成が簡
単であり、適切な電極1及び被加工物2の駆動条件が容
易に得られ、任意の加工形状の放電加工を実現できる。
(Effect) According to this embodiment, the structure is particularly simple, suitable driving conditions for the electrode 1 and the workpiece 2 can be easily obtained, and electric discharge machining of an arbitrary machining shape can be realized.

【0028】[第2実施例]本発明の第2実施例を図
5、図6を参照して説明する。図5は、本発明の第2実
施例における放電加工装置のブロック図であり、図6
は、第2実施例における放電頻度fと放電時間tとの関
係を示す図である。尚、図5に示す第2実施例における
放電加工装置において、図2に示す第1実施例の放電加
工装置と同一の機能を有するものには同一の符号を付し
て示す。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a block diagram of an electric discharge machine according to the second embodiment of the present invention.
FIG. 8 is a diagram showing a relationship between a discharge frequency f and a discharge time t in the second embodiment. In the electric discharge machine according to the second embodiment shown in FIG. 5, those having the same functions as those of the electric discharge machine according to the first embodiment shown in FIG. 2 are designated by the same reference numerals.

【0029】(構成)本実施例においては、電気的信号
検出手段を、放電電流検出手段21及び放電頻度計測手
段22により構成している。放電電流検出手段21は、
放電電流値を検出し、放電頻度計測手段22に検出信号
を出力する。放電頻度計測手段22は、放電電流値か
ら、放電回数をカウントし、放電頻度fを計測して駆動
条件演算手段5に送出するようになっている。
(Structure) In this embodiment, the electric signal detecting means is composed of the discharge current detecting means 21 and the discharge frequency measuring means 22. The discharge current detection means 21 is
The discharge current value is detected and a detection signal is output to the discharge frequency measuring means 22. The discharge frequency measuring means 22 counts the number of discharges from the discharge current value, measures the discharge frequency f, and sends it to the drive condition calculating means 5.

【0030】(作用)本実施例においては、放電状態の
モニタリングは、放電電流検出手段21を介して、放電
頻度計測手段22により行う。放電頻度fと放電時間t
との関係は、図6に示すように、位置決め箇所で放電が
開始されると増大し、放電加工が進行すると減少する傾
向にあり、最終的に放電ギャップhが形成される時に
は、ほとんど放電は発生しない。本実施例においては、
駆動条件頻度fsを最大放電頻度fmaxの10%と
し、放電頻度fが駆動条件頻度fs以下となった時点で
駆動指令を出力するようにする。また、このときの駆動
量Δzを既述した放電ギャップhの50%の値とする。
(Operation) In this embodiment, the discharge state is monitored by the discharge frequency measuring means 22 via the discharge current detecting means 21. Discharge frequency f and discharge time t
As shown in FIG. 6, the relationship with and tends to increase when electric discharge starts at the positioning portion and decrease as electric discharge machining progresses, and when the electric discharge gap h is finally formed, almost no electric discharge occurs. Does not occur. In this embodiment,
The drive condition frequency fs is set to 10% of the maximum discharge frequency fmax, and the drive command is output when the discharge frequency f becomes equal to or lower than the drive condition frequency fs. Further, the drive amount Δz at this time is set to a value of 50% of the discharge gap h described above.

【0031】(効果)本実施例によれば、放電回数を数
えることで駆動条件を設定するため、特に放電電極3が
RC回路等を含み、放電開始電圧vが不安定な場合であ
っても、安定して放電加工を実行することが可能であ
る。
(Effect) According to the present embodiment, the driving condition is set by counting the number of discharges. Therefore, even when the discharge electrode 3 includes an RC circuit or the like and the discharge start voltage v is unstable. It is possible to stably perform electric discharge machining.

【0032】[第3実施例]本発明の第3実施例を図7
を参照して説明する。図7は、本発明の第3実施例にお
ける放電加工装置のブロック図であり、図7に示す第3
実施例における放電加工装置において、図2に示す第1
実施例の放電加工装置と同一の機能を有するものには同
一の符号を付して示す。
[Third Embodiment] FIG. 7 shows a third embodiment of the present invention.
Will be described with reference to. FIG. 7 is a block diagram of an electric discharge machine according to the third embodiment of the present invention.
In the electric discharge machine according to the embodiment, the first device shown in FIG.
Those having the same functions as those of the electric discharge machining apparatus of the embodiment are designated by the same reference numerals.

【0033】(構成)本実施例では、被加工物2の加工
形状が任意の三次元形状を有しており、電極1を走査す
ることにより、その三次元形状を形成する。このため、
本実施例における電気的信号検出手段は、放電電流検出
手段21及び放電頻度計測手段22により構成してい
る。また、駆動条件演算手段5には、Z軸モータ制御手
段31及びX−Y軸モータ制御手段部32を接続してお
り、さらに、X−Y軸モータ制御手段32には、形状デ
ータバッファ(メモリ)33を接続している。
(Structure) In this embodiment, the processed shape of the work piece 2 has an arbitrary three-dimensional shape, and the three-dimensional shape is formed by scanning the electrode 1. For this reason,
The electrical signal detecting means in this embodiment is composed of a discharge current detecting means 21 and a discharge frequency measuring means 22. Further, a Z-axis motor control means 31 and an XY-axis motor control means section 32 are connected to the drive condition calculation means 5, and the XY-axis motor control means 32 further includes a shape data buffer (memory). ) 33 is connected.

【0034】(作用)本実施例では、Z方向に電極1を
間欠的に送りながら、X−Y断面毎に加工を行う。形状
データバッファ33には、予め加工形状のZ方向の電極
1の送り量zに対応したX−Y断面の形状データD
(z)が格納されている。X−Y軸モータ制御手段32
は、形状データD(z)に基づきX−Y軸モータ14を
駆動する。
(Operation) In this embodiment, the electrode 1 is intermittently fed in the Z direction, and the machining is performed for each XY section. The shape data buffer 33 stores in advance the shape data D of the XY section corresponding to the feed amount z of the electrode 1 in the Z direction of the processed shape.
(Z) is stored. XY axis motor control means 32
Drives the XY axis motor 14 based on the shape data D (z).

【0035】前記X−Y軸モータ14の駆動動作中、放
電電流検出手段21を介して放電頻度計測手段22によ
り放電頻度fがモニタリングされる。駆動条件演算手段
5により求めた放電頻度fが駆動条件頻度fs以下と判
断されたときに、Z軸モータ13に対して駆動指令が出
力され、駆動量Δzによる駆動が行われる。
During the driving operation of the X-Y axis motor 14, the discharge frequency measuring means 22 monitors the discharge frequency f via the discharge current detecting means 21. When it is determined that the discharge frequency f obtained by the drive condition calculation means 5 is equal to or lower than the drive condition frequency fs, a drive command is output to the Z-axis motor 13 and the drive amount Δz is performed.

【0036】この時の駆動量Δzは、加工前の基礎デー
タから、放電ギャップh以下に設定した値である。ま
た、このとき、X−Y軸モータ制御手段32にも指令が
出力され、X−Y軸モータ制御手段32は、形状データ
バッファ33から、形状データD(z+Δz)を読み出
し、この形状データD(z+Δz)に従いX−Y軸モー
タ14の駆動を行う。このような動作を順次繰り返し任
意の三次元形状を形成して放電加工を実行する。
The drive amount Δz at this time is a value set to be equal to or less than the discharge gap h from the basic data before processing. At this time, a command is also output to the XY axis motor control means 32, and the XY axis motor control means 32 reads out the shape data D (z + Δz) from the shape data buffer 33, and the shape data D ( The XY axis motor 14 is driven according to z + Δz). Such an operation is sequentially repeated to form an arbitrary three-dimensional shape and perform electric discharge machining.

【0037】(効果)本実施例においては、Z軸モータ
13の一度の動作の駆動量Δzを一定値とし、X−Y断
面の形状データD(z)に従ったX−Y軸モータ14の
駆動中に極間距離が放電ギャップhに漸化した時点で駆
動が行われる。この後、電極1の送り量z+Δzに対応
する形状データD(z+Δz)に従いX−Y軸モータ1
4が動作し放電加工が実行される。このため、電極1の
走査中、安定した加工状態を保つことが可能であり、こ
のとき、例えば、パイプ形状、円柱形状、角柱形状等の
単純な形状の電極1により、任意の三次元形状の形成が
容易に実現できる。
(Effect) In this embodiment, the drive amount Δz for one operation of the Z-axis motor 13 is set to a constant value, and the XY-axis motor 14 according to the shape data D (z) of the XY section is used. The driving is performed when the distance between the electrodes is gradually reduced to the discharge gap h during the driving. After that, the XY axis motor 1 is driven according to the shape data D (z + Δz) corresponding to the feed amount z + Δz of the electrode 1.
4 operates and electric discharge machining is executed. Therefore, it is possible to maintain a stable processing state during scanning of the electrode 1. At this time, the electrode 1 having a simple shape such as a pipe shape, a cylindrical shape, or a prismatic shape can be used to obtain an arbitrary three-dimensional shape. It can be easily formed.

【0038】[0038]

【発明の効果】本発明によれば、電極及び被加工物の材
質、放電の電気的条件等の加工条件を変更した場合にも
容易に適正な電極の駆動条件を決定し、安定した放電加
工が可能な放電加工方法を提供することができる。
According to the present invention, even when the machining conditions such as the material of the electrode and the work piece and the electrical conditions of the discharge are changed, the proper driving condition of the electrode can be easily determined and stable electric discharge machining can be performed. It is possible to provide an electric discharge machining method capable of

【0039】また、本発明によれば、上述した効果を奏
する放電加工方法を実現できる放電加工装置を提供する
ことができる。
Further, according to the present invention, it is possible to provide an electric discharge machining apparatus which can realize the electric discharge machining method which achieves the above-mentioned effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放電加工装置による放電加工方法を示
すブロック図である。
FIG. 1 is a block diagram showing an electric discharge machining method by an electric discharge machine of the present invention.

【図2】本発明の第1実施例における放電加工装置の構
成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of an electric discharge machine according to the first embodiment of the present invention.

【図3】放電開始電圧と極間距離との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a discharge starting voltage and a distance between electrodes.

【図4】放電開始電圧と放電時間との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a discharge start voltage and a discharge time.

【図5】本発明の第2実施例における放電加工装置の構
成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of an electric discharge machine according to a second embodiment of the present invention.

【図6】放電頻度と放電時間との関係を示す図である。FIG. 6 is a diagram showing a relationship between discharge frequency and discharge time.

【図7】本発明の第3実施例における放電加工装置の構
成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of an electric discharge machine according to a third embodiment of the present invention.

【図8】従来の放電加工機の構成を示すブロック図であ
る。
FIG. 8 is a block diagram showing a configuration of a conventional electric discharge machine.

【符号の説明】[Explanation of symbols]

1 電極 2 被加工物 3 放電電源 4 電気的信号検出手段 5 駆動条件演算手段 6 駆動手段 7 加工液 10 加工槽 12 制御手段 13 Z軸モータ 14 X−Y軸モータ 21 放電電流検出手段 22 放電頻度計測手段 DESCRIPTION OF SYMBOLS 1 Electrode 2 Workpiece 3 Discharge power source 4 Electric signal detection means 5 Driving condition calculation means 6 Driving means 7 Working fluid 10 Processing tank 12 Control means 13 Z-axis motor 14 X-Y-axis motor 21 Discharge current detection means 22 Discharge frequency Measuring means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極と被加工物とを放電ギャップ内の微
小間隙に位置決め固定し、 電極から被加工物に放電を行い、 この時の放電の電気的信号及び加工形状を基礎データと
して電極と被加工物との位置決めの駆動条件を求め、 この駆動条件により位置決めを行いつつ被加工物の放電
加工を行う、 ことを特徴とする放電加工方法。
1. An electrode and a work piece are positioned and fixed in a minute gap within a discharge gap, and an electric discharge is generated from the electrode to the work piece. An electric discharge machining method, characterized in that a driving condition for positioning with respect to a work piece is obtained, and electric discharge machining of the work piece is performed while performing positioning under this driving condition.
【請求項2】 前記放電の電気的信号が、極間電圧、極
間電流又は放電頻度であり、 それぞれ単一若しくは複数の電気的信号から放電加工の
進行を判断して放電加工の進行を示す値の範囲を定め、 電極と被加工物との位置決め箇所で、電気的信号が前記
値の範囲外となる場合に、電極と被加工物とが微小間隙
を保ち放電を生じる位置に次の位置決めを行う、ことを
特徴とする請求項1記載の放電加工方法。
2. The electric signal of the electric discharge is a voltage between electrodes, a current between electrodes, or a discharge frequency, and indicates the progress of electric discharge machining by judging the progress of electric discharge machining from a single or a plurality of electric signals, respectively. When the electrical signal is outside the range of the above value at the position where the electrode and the work piece are positioned by setting the range of values, the next positioning is performed at the position where the electrode and the work piece maintain a minute gap and generate a discharge. The electric discharge machining method according to claim 1, wherein
【請求項3】 加工工具となる電極と、前記電極と被加
工物とを絶縁する加工液と、前記電極と被加工物との間
に放電電力を供給する電源と、前記電極と前記被加工物
を位置決めする駆動手段とを備えた放電加工装置におい
て、 前記電極と被加工物との間に放電の電気的信号を検出す
る電気的信号検出手段と、 この電気的信号検出手段により検出した電気的信号を基
に前記駆動手段における駆動条件を求める駆動条件演算
手段と、 この駆動条件演算手段により求めた駆動条件により前記
駆動手段の駆動制御を行う制御手段と、 を備えたことを特徴とする放電加工装置。
3. An electrode serving as a machining tool, a machining liquid that insulates the electrode from the workpiece, a power supply that supplies discharge power between the electrode and the workpiece, the electrode and the workpiece. In an electric discharge machine including a driving means for positioning an object, an electric signal detecting means for detecting an electric signal of electric discharge between the electrode and the workpiece, and an electric signal detected by the electric signal detecting means. Drive condition calculation means for obtaining a drive condition in the drive means based on a dynamic signal, and control means for controlling the drive of the drive means in accordance with the drive condition obtained by the drive condition calculation means. Electric discharge machine.
JP12137695A 1995-05-19 1995-05-19 Method and device for electrical discharge machining Withdrawn JPH08318430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12137695A JPH08318430A (en) 1995-05-19 1995-05-19 Method and device for electrical discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12137695A JPH08318430A (en) 1995-05-19 1995-05-19 Method and device for electrical discharge machining

Publications (1)

Publication Number Publication Date
JPH08318430A true JPH08318430A (en) 1996-12-03

Family

ID=14809704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12137695A Withdrawn JPH08318430A (en) 1995-05-19 1995-05-19 Method and device for electrical discharge machining

Country Status (1)

Country Link
JP (1) JPH08318430A (en)

Similar Documents

Publication Publication Date Title
EP2272613A2 (en) Wire-cut electric discharge machine with function to suppress local production of streaks during finish machining
JP3842279B2 (en) Wire electric discharge machine
US4484051A (en) Breakthrough detection means for electric discharge machining apparatus
JP4569973B2 (en) Electric discharge machining apparatus and method, and method for determining occurrence of electric discharge
US4366360A (en) Method of and apparatus for determining relative position of a tool member to a workpiece in a machine tool
WO2011145217A1 (en) Wire electric discharge machining device
US6600125B1 (en) Process parameter optimization in electrical discharge machining
EP0134679A1 (en) An electroerosive machining method and apparatus
JPH08318430A (en) Method and device for electrical discharge machining
US7113884B1 (en) Positioning apparatus for an electrical discharge machine and a method therefor
JPH10296538A (en) Electrical discharge machining device
US5369239A (en) Method and apparatus for sink-type electrical discharge machining with control of pyrographite buildup
JP4348506B2 (en) Electric discharge machining method and apparatus
JPS61131824A (en) Numerical control device
JP2578999B2 (en) Electric discharge machine
SU1301594A1 (en) Method of extremum control of electro-erosion process
JP3007229B2 (en) Control method of electric discharge machine
JPH0138615B2 (en)
JPH10309630A (en) Electric discharge machining control method and its device
JP3335741B2 (en) Small hole electric discharge machine
JPH05116031A (en) Electric discharge machining device
JP2596624B2 (en) Electric discharge machining method using powder mixed machining fluid
JPH0138614B2 (en)
JPS63312020A (en) Electrical discharge machining device
JP3807189B2 (en) Additional processing method and apparatus by electric discharge

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806