JPH08313549A - Method for measuring flow velocity distribution of molten resin in pipe - Google Patents

Method for measuring flow velocity distribution of molten resin in pipe

Info

Publication number
JPH08313549A
JPH08313549A JP11872095A JP11872095A JPH08313549A JP H08313549 A JPH08313549 A JP H08313549A JP 11872095 A JP11872095 A JP 11872095A JP 11872095 A JP11872095 A JP 11872095A JP H08313549 A JPH08313549 A JP H08313549A
Authority
JP
Japan
Prior art keywords
resin
flow
pipe
molten resin
velocity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11872095A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kano
好昭 加納
Takaaki Shibata
貴章 柴田
Takafumi Nishimura
隆文 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP11872095A priority Critical patent/JPH08313549A/en
Publication of JPH08313549A publication Critical patent/JPH08313549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE: To accurately observe the flowing state of a molten resin in the flow passage of the resin and, at the same time, to find a suitable combination of molding conditions of the resin for changing the color of the resin or changing the resin to another resin from the data on the flow velocity distribution of the molten resin in the flow passage. CONSTITUTION: A molten resin R containing tracer particles T is forcibly made to flow through a horizontal pipeline 2. The flow of the resin R is irradiated with slit-like light 10a from the direction perpendicular to the flow and a suitable combination of molding conditions of the resin R is found by analyzing the moving speed and flow velocity distribution of the resin R from the behaviors of the particles T in pictures taken by a video camera 20 from an observing section 4 from the direction perpendicular to the flowing direction of the resin R.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融樹脂の管内流動速
度分布計測方法に係り、特に樹脂通路内の溶融樹脂の流
動状態を正確に把握することのできる溶融樹脂の管内流
動速度分布計測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a flow velocity distribution of a molten resin in a pipe, and more particularly to a method for measuring a flow velocity distribution of a molten resin in a pipe capable of accurately grasping a flow state of the molten resin in a resin passage. It is about.

【0002】[0002]

【従来の技術】従来、ブロー成形機や射出成形機など溶
融樹脂を成形材料とする成形機にとって樹脂の色替性や
樹脂替性能は重要な問題である。これらの性能が低下す
る場合には、成形に要する成形材料を大量に消費した
り、あるいは無駄な労働時間を空費することにより生産
性を著しく阻害するとともに製品品質の低下をも招来す
る結果を招くこととなり、マシンコーザからこれら色替
性に関する改善要求が強く望まれていた。従来、一般的
に行なわれている色替・樹脂替の方法は、新しい樹脂材
料で成形機の樹脂通路に残留する溶融樹脂をパージ(追
い払う)するというものであるが、一般にブロー成形機
は射出成形機と比較して、樹脂通路中に樹脂を機械的に
掻き取る部分が少ないためこの性能が著しく劣っている
のが現状である。特に、大型ブロー成形機はこの作業に
「気の遠くなる量の樹脂」を浪費するのが当り前とされ
ていた。しがたって、これまで成形機業界では、大型ブ
ロー成形機のダイス樹脂通路形状の最適化や樹脂抜き
孔、ダイス分解機構など色替・樹脂替性能向上のための
方策に対する検討が実施され、実機に適用した大幅な色
替樹脂量、色替時間の削減を実現する試みがなされてき
たが、これらの問題の解明には樹脂通路内の溶融樹脂の
流動状態の正確な把握や色替・樹脂替条件の適正化が不
十分であった。
2. Description of the Related Art Conventionally, resin color changeability and resin change performance have been important problems for molding machines such as blow molding machines and injection molding machines which use molten resin as a molding material. If these performances are reduced, a large amount of molding material required for molding may be consumed, or wasteful working time may be wasted to significantly impair productivity and reduce product quality. As a result, there has been a strong demand from machine cousers for improvement requests regarding these color changeability. Conventionally, the generally used color change / resin change method is to purge (remove) the molten resin remaining in the resin passage of the molding machine with a new resin material. As compared with the molding machine, the present condition is that the performance is remarkably inferior because there is less mechanical scraping of the resin in the resin passage. In particular, it has been common for large-scale blow molding machines to waste "a daunting amount of resin" in this work. Therefore, in the molding machine industry, measures to optimize the die resin passage shape of large blow molding machines, resin removal holes, die disassembling mechanism, etc. to improve the color change / resin change performance have been studied, and Attempts have been made to realize a large amount of color change resin and a reduction in color change time applied to the above, but in order to clarify these problems, it is necessary to accurately grasp the flow state of the molten resin in the resin passage and to confirm the color change / resin. The replacement conditions were not properly optimized.

【0003】[0003]

【発明が解決しようとする課題】樹脂通路内の溶融樹脂
の流動状態を観測するには、取り扱いの簡単な常温のシ
リコンオイルを粘度をできるだけ溶融樹脂の粘度に近づ
けてからトレーサを混ぜて管路内を流し、可視化テスト
を行なう試みがなされていたが、この方法ではたとえ近
接した粘度であってもシリコンオイルは溶融樹脂と流動
状況が異なり溶融樹脂の流動状態の正確な把握が不十分
であり、さらに一番流動状態に影響を及ぼすと考えられ
るファクタである温度の違いが全く考慮されておらず、
信頼性が低いという難点があった。一方、CAE手法を
用いて溶融樹脂の管路内流動を解析する方法も採用され
てはいるが、CAE手法には管壁での滑り速度などの実
験結果より定まる情報のインプット項目もあり、正確に
実情に合う解析を行なうためには、実験結果との照合が
不可欠であるのでCAE手法だけの解析結果のみでは実
験の流動状況を正確に把握することができなかった。
In order to observe the flow state of the molten resin in the resin passage, the viscosity of the silicone oil at room temperature, which is easy to handle, is brought as close as possible to the viscosity of the molten resin, and then the tracer is mixed to form a conduit. Attempts were made to flow through the inside and conduct a visualization test, but with this method, the silicone oil has a different flow state from the molten resin even if the viscosities are close, and it is not possible to accurately grasp the flow state of the molten resin. , Furthermore, the difference in temperature, which is the factor that is most likely to affect the flow state, is not considered at all,
There was a drawback that the reliability was low. On the other hand, although the method of analyzing the flow of the molten resin in the pipeline using the CAE method has been adopted, the CAE method also has input items of information determined by the experimental results such as the sliding speed on the pipe wall, which is accurate. In order to perform an analysis suitable for the actual situation, it is indispensable to collate it with the experimental result, so that the flow condition of the experiment could not be accurately grasped only by the analytical result of the CAE method alone.

【0004】[0004]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明においては、トレーサ粒子を混入した溶融
樹脂の流動体を水平な管路内に流し、該管路の任意箇所
に該管路内流動体の流れ方向に直交して入射する石英ガ
ラス製の入光部と該入光部に直交しかつ該管路内流動体
の流れ方向に直交する石英ガラス製の観察部を配設する
とともに、該管路の外部よりスリット状照射光を該入光
部を介して該管路内に照射し、該管路の横幅方向に変化
する流れ方向に沿った任意の縦断面毎に前記観察部を通
じて撮像し、該撮像された画面内のトレーサ粒子の挙動
からデジタイザなどの解析手段を介して各トレーサ粒子
の移動速度を該管路の高さ方向に少なくとも10分割以
上に区画した領域毎に解析して求めることとした。ま
た、第2の発明では、第1の発明におけるトレーサ粒子
をポリエステル製としたものである。
In order to solve the above-mentioned problems, in the present invention, a fluid of molten resin mixed with tracer particles is made to flow in a horizontal pipe line, and the fluid is made to flow at an arbitrary position of the pipe line. Arranged is a quartz glass light-incident part which is incident perpendicularly to the flow direction of the fluid in the pipe line, and a quartz glass observation part which is orthogonal to the light incidence part and orthogonal to the flow direction of the fluid in the pipe line. A slit-shaped irradiation light is radiated from the outside of the conduit into the conduit through the light entrance portion, and the slit-shaped irradiation light is provided at every arbitrary longitudinal section along the flow direction that changes in the lateral width direction of the conduit. An area in which the moving speed of each tracer particle is divided into at least 10 divisions in the height direction of the pipeline from the behavior of the tracer particle in the imaged screen through an analyzing means such as a digitizer, by imaging through the observation unit. It was decided to analyze and calculate for each. Further, in the second invention, the tracer particles in the first invention are made of polyester.

【0005】[0005]

【作用】本発明においては、トレーサ粒子を混ぜた溶融
樹脂を水平な管路内に流してこれに直交する方向からス
リット状照射光を入射し、流れ方向と入射光方向とにと
もに直交する観察部より撮映した映像中のトレーサ粒子
の挙動をデジタイザなどの解析手段を介して解析し、ト
レーサ粒子の移動距離と移動時間とからその移動速度を
求める。また、上下方向に10分割以上に区画した領域
毎に解析することによって溶融樹脂の移動速度の上下方
向における分布を観測し、色替・樹脂替を速やかに実施
できる条件や溶融樹脂が滞留しにくい条件などを観察
し、求めることができる。
In the present invention, the molten resin mixed with the tracer particles is caused to flow in a horizontal pipe line, and the slit-like irradiation light is made to enter from a direction orthogonal to this, and the observation is made to be orthogonal to both the flow direction and the incident light direction. The behavior of the tracer particles in the image captured from the section is analyzed through an analyzing means such as a digitizer, and the moving speed and the moving time of the tracer particles are obtained. In addition, the vertical distribution of the moving speed of the molten resin is observed by analyzing each of the regions divided into 10 or more parts in the vertical direction, and the condition that the color change / resin change can be performed quickly and the molten resin is less likely to stay Conditions can be observed and determined.

【0006】[0006]

【実施例】以下図面に基づいて本発明の実施例の詳細に
ついて説明する。図1〜図12は本発明の実施例に係
り、図1は可視化実験装置の全体構成図、図2は解析モ
デルの斜視図、図3は樹脂の流動曲線(剪断速度と粘度
の関係)の実験値と予測値の比較を示すデータ比較図、
図4は流速分布の実測値と解析値から平均二乗誤差を算
出する方法を説明する説明図、図5はスリップ速度と平
均二乗誤差との相関を示すグラフ、図6〜図10は実測
の速度分布と解析速度分布との比較を示すデータ比較
図、図11は各テスト毎のスリップ速度データ図、図1
2は各テスト毎の管内平均速度に対するスリップ速度の
比率のデータ図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 12 relate to an embodiment of the present invention, FIG. 1 is an overall configuration diagram of a visualization experimental apparatus, FIG. 2 is a perspective view of an analytical model, and FIG. 3 is a flow curve of resin (relationship between shear rate and viscosity). Data comparison diagram showing the comparison between the experimental value and the predicted value,
FIG. 4 is an explanatory diagram for explaining a method of calculating the mean square error from the actual measurement value and the analysis value of the flow velocity distribution, FIG. 5 is a graph showing the correlation between the slip speed and the mean square error, and FIGS. 6 to 10 are the measured speeds. Data comparison diagram showing the comparison between the distribution and the analysis velocity distribution, FIG. 11 is a slip velocity data diagram for each test, FIG.
2 is a data diagram of the ratio of the slip speed to the in-tube average speed for each test.

【0007】可視化実験装置100は、内部にスクリュ
1aを回転自在に内蔵した押出機1と押出機1の出口に
連結された水平な直方体形状の管路2と照射光10aを
照射する水銀ランプ10とビデオカメラ20、デジタイ
ザ30ならびにパソコン40とから構成される。管路2
は炭素鋼製の矩形断面管路であり、横幅50mm、高さ
10mm、長さ1500mmの寸法で形成され、管路2
の略中央部上面(入口から1000mmの位置)に開口
を設けて石英ガラスを嵌め込み、管路2の長手方向(樹
脂流れ方向)に長さが20mm、幅2mmのスリット状
照射光を水銀ランプ10より照射できるようにするとと
もに、入光部3の側面部に矩形状の開口を設けて石英ガ
ラスを嵌め込んだ観測部4を配設し、溶融樹脂R中に混
ぜられたトレーサ粒子Tの挙動を観測できるように構成
される。観察部4の背後にはビデオカメラ20が配設さ
れ、撮影された映像をデジタイザ30ならびにパソコン
40を介して解析して、トレーサ粒子Tの挙動(移動距
離、移動時間および移動速度)を算出表示する。管路2
の内面は最大表面粗さが0.4μm程度の平滑な平面と
する。図1に示した寸法(mm)は管路2の内法寸法で
ある。
The visualization experimental apparatus 100 includes an extruder 1 having a screw 1a rotatably incorporated therein, a horizontal rectangular pipe 2 connected to the outlet of the extruder 1 and a mercury lamp 10 for irradiating irradiation light 10a. And a video camera 20, a digitizer 30, and a personal computer 40. Pipeline 2
Is a rectangular section pipe made of carbon steel, and has a width of 50 mm, a height of 10 mm and a length of 1500 mm.
An opening is provided in the upper surface of the substantially central portion (at a position of 1000 mm from the entrance) and quartz glass is fitted therein, and slit-shaped irradiation light having a length of 20 mm and a width of 2 mm is longitudinally formed in the conduit 2 (resin flow direction). Behavior of the tracer particles T mixed in the molten resin R is made possible by providing a observing portion 4 in which a rectangular opening is provided in the side surface portion of the light incident portion 3 and quartz glass is fitted, while allowing more irradiation. It is configured to be able to observe. A video camera 20 is arranged behind the observation unit 4, and the captured image is analyzed via the digitizer 30 and the personal computer 40 to calculate and display the behavior (moving distance, moving time and moving speed) of the tracer particles T. To do. Pipeline 2
The inner surface of is a smooth flat surface having a maximum surface roughness of about 0.4 μm. The dimension (mm) shown in FIG. 1 is the inner dimension of the conduit 2.

【0008】可視化実験に使用する溶融樹脂Rは、溶融
時に透明に近いものが望ましく、例えば、高密度ポリエ
チレン(HDPE)、ポリプロピレン(PP)、ポリカ
ーボネイト(PC)のいずれかを採用し、溶融樹脂Rに
混入するトレーサ粒子は高温で溶けることのほとんどな
い樹脂が望ましく、例えば、ポリエステル製の0.2m
m径程度の粒子が好適である。
It is desirable that the molten resin R used in the visualization experiment be nearly transparent when melted. For example, any one of high density polyethylene (HDPE), polypropylene (PP) and polycarbonate (PC) is used to obtain the molten resin R. It is desirable that the tracer particles mixed in the resin be a resin that hardly melts at high temperature.
Particles having a diameter of about m are suitable.

【0009】実験方法は、トレーサ粒子Tを混ぜた溶融
樹脂Rを押出機1のスクリュ1aの回転駆動により押圧
して管路2内に流し、入光部3へスリット状照射光10
aを照射し、スリット状照射光10aを管路2の横幅方
向に移動して流れ方向に沿った任意の縦断面毎に観察部
4を通じてビデオカメラ20で撮像する。このようにし
て撮影された映像をデジタイザ30ならびにパソコン4
0で解析してトレーサ粒子Tの挙動から移動速度を求
め、管路2の高さ(10mm高さ)方向を少なくとも1
0分割以上に区画した領域毎に解析して速度分布をも知
ることができる。
In the experimental method, the molten resin R mixed with the tracer particles T is pressed by the rotational driving of the screw 1a of the extruder 1 to flow into the pipe line 2, and the slit-shaped irradiation light 10 is incident on the light incident part 3.
a, and the slit-shaped irradiation light 10a is moved in the lateral width direction of the conduit 2 and is imaged by the video camera 20 through the observation unit 4 for each arbitrary longitudinal section along the flow direction. The video image thus taken is digitized by the digitizer 30 and the personal computer 4.
The moving speed is calculated from the behavior of the tracer particles T by analyzing 0, and the height (10 mm height) direction of the conduit 2 is at least 1
The velocity distribution can also be known by analyzing each region divided into 0 or more.

【0010】高密度ポリエチレン(HDPE)を溶融樹
脂Rとして採用した可視化実験を行なった際の実験条件
を表1に示す。表1に示すように、可視化実験では、管
路温度、樹脂温度、押出圧力、押出速度の諸条件を変え
て行なった。サンプリングは流路厚さ全域に亘って行な
い、流路厚さ(高さ)10mmを24ブロックに分割
し、各ブロック領域内における局所平均流速を算出し
た。局所平均流速は50個以上の粒子流速データをもと
に求めた。
Table 1 shows the experimental conditions when a visualization experiment was performed using high density polyethylene (HDPE) as the molten resin R. As shown in Table 1, in the visualization experiment, various conditions such as pipe temperature, resin temperature, extrusion pressure, and extrusion speed were changed. Sampling was performed over the entire flow channel thickness, the flow channel thickness (height) of 10 mm was divided into 24 blocks, and the local average flow velocity in each block region was calculated. The local average flow velocity was calculated based on the flow velocity data of 50 or more particles.

【0011】一方、可視化実験結果との整合性を検証す
るため、CAE手法に流動解析を実施した。CAE解析
手法は、流動解析ソフト「POLYFLOW」を使用
し、純粘性流体の非等温定常流として解析を行ない、樹
脂の内部発熱(剪断発熱)を考慮した。図2は解析モデ
ルを示したもので、流れの幅中央断面の2分の1モデル
(下半分)の2次元モデルとした。また、流動解析に使
用した樹脂の流動曲線(剪断速度、樹脂温度と粘度の関
係)の1例として、HDPEの流動曲線の実測値と予測
値を比較したものが図3に示され、広い剪断速度範囲に
亘って良好な一致を示していることがわかる。なお、予
測値はあるモデル式をベースとした方程式を流動解析ソ
フトにインプットして求められる。
On the other hand, in order to verify the consistency with the results of the visualization experiment, flow analysis was carried out by the CAE method. As the CAE analysis method, flow analysis software “POLYFLOW” was used, and analysis was performed as a non-isothermal steady flow of pure viscous fluid, and internal heat generation (shear heat generation) of the resin was considered. FIG. 2 shows an analytical model, which is a two-dimensional model of a half model (lower half) of the center cross section of the flow width. In addition, as an example of the flow curve of resin (shear rate, relationship between resin temperature and viscosity) used in the flow analysis, a comparison of the actual measurement value and the predicted value of the flow curve of HDPE is shown in FIG. It can be seen that there is good agreement over the speed range. The predicted value is obtained by inputting an equation based on a certain model equation into the flow analysis software.

【0012】以上のようにして得られた可視化実験結果
ならびに流動解析結果から次の諸点が明らかとなった。
なお、実測速度分布は図6〜図10の図面中に黒丸で表
示し、流動解析結果は曲線(実曲線または点線曲線)で
表示した。 管路、溶融樹脂の温度による影響 管路温度が樹脂温度より高く設定されている場合(C,
D)の溶融樹脂速度分布形状は管壁(短辺側の壁)側へ
と膨らんでおり、逆に管路温度が樹脂温度より低く設定
されている場合(B,E)の速度分布形状は管路の中心
側へと縮む傾向が見られる。この現象は管路壁と溶融樹
脂との温度差により伝熱が生じ、管内の溶融樹脂の見か
け粘度が変化したためと考えられる。 溶融樹脂の押出速度の影響 スクリュ回転数(押出速度)を上げると管内の平均速度
が速くなり、速度分布に少しばらつきが生じるが、管壁
面でのスリップが確認できる。また、管路温度あるいは
樹脂温度を上げても押出速度の上昇と相まってスリップ
が認められる。 溶融樹脂の圧力による影響 管路出口のシャッタ開度を小さくすることにより圧力を
上げたが押出量も低下するため、可視化実験から直接に
圧力の影響を観察することはできなかった。 スリップ現象の把握 本可視化実験では管路壁付近のトレーサ粒子Tは滑って
いる粒子、転がっている粒子もあれば、静止している粒
子もあり、その速度のばらつきが大きいためスリップ速
度を壁の極く近傍の実験データのみからでは定量的に求
められなかった。 図6〜図10に示す実測速度分布とノンスリップ解析
結果とを比較すると、管路中央や管路壁面付近でよくフ
ィットしていないことが認められる。したがって、スリ
ップを考慮した解析結果が実測結果を予測する上で不可
欠であることがわかる。
The following points were clarified from the visualization experiment results and the flow analysis results obtained as described above.
The measured velocity distribution is shown as a black circle in the drawings of FIGS. 6 to 10, and the flow analysis result is shown as a curve (real curve or dotted curve). Effect of temperature of pipe and molten resin When pipe temperature is set higher than resin temperature (C,
The molten resin velocity distribution shape of D) swells toward the pipe wall (short side wall) side, and conversely when the pipeline temperature is set lower than the resin temperature (B, E), the velocity distribution shape is There is a tendency to contract toward the center of the pipeline. This phenomenon is considered to be due to heat transfer caused by the temperature difference between the pipe wall and the molten resin, and the apparent viscosity of the molten resin in the pipe changed. Effect of Extrusion Speed of Molten Resin Increasing the screw rotation speed (extrusion speed) increases the average speed in the pipe, causing a slight variation in the velocity distribution, but slips on the pipe wall surface can be confirmed. Further, even if the pipe temperature or the resin temperature is increased, the slip is recognized together with the increase of the extrusion speed. Effect of the pressure of the molten resin The pressure was increased by reducing the shutter opening at the outlet of the conduit, but the extrusion rate also decreased, so it was not possible to directly observe the effect of the pressure from the visualization experiment. Grasp of slip phenomenon In this visualization experiment, tracer particles T in the vicinity of the wall of the pipeline include slipping particles, rolling particles, and stationary particles. The slip speed of the tracer particles T is large because the dispersion of the speed is large. It could not be obtained quantitatively only from the experimental data in the very vicinity. Comparing the measured velocity distributions shown in FIGS. 6 to 10 with the results of the non-slip analysis, it is found that the pipes do not fit well in the center of the pipe or near the wall of the pipe. Therefore, it is understood that the analysis result considering slip is indispensable for predicting the actual measurement result.

【0013】以上のことから、流動解析においてスリッ
プ速度を考慮することとし、スリップ速度の算出方法を
以下のように決定した。上記速度分布の実測値とノンス
リップとしたときの解析値の重ね合わせ結果から溶融樹
脂の温度、流速、管路温度などの条件によってはスリッ
プが生じていると思われるが、スリップ速度を管壁近く
のトレーサの挙動だけで評価するのは困難であった。そ
こで、実験結果と解析結果から得られた速度分布の形状
全体を比較する事でスリップ速度を求めることにした。
この比較は実験結果のうち、挙動の分かりづらい管壁側
近の1ブロックを除いた残りの11ブロックで表わされ
る速度分布と、任意のスリップ速度VS を考慮した解析
結果より得られる速度分布を重ね合わせることで行なっ
た。POLYFLOW解析で解析時入力する任意のスリ
ップ速度VS は、図4に示されるこれら2つの速度分布
の平均二乗誤差Eが最小となるときのスリップ速度とし
た。この結果を図5に示す。平均二乗誤差Eは次式にし
たがって求められる。ここで、Vexは移動速度の実測
値、Vcal は移動速度の解析値を示す。
From the above, the slip speed was taken into consideration in the flow analysis, and the slip speed calculation method was determined as follows. From the result of superposition of the measured value of the above velocity distribution and the analysis value when non-slip, it seems that slip occurs due to the conditions such as the temperature of the molten resin, the flow velocity, and the pipe temperature. It was difficult to evaluate only the behavior of the tracer. Therefore, we decided to find the slip speed by comparing the entire shape of the speed distribution obtained from the experimental and analytical results.
In this comparison, among the experimental results, the velocity distribution represented by the remaining 11 blocks excluding the one block near the pipe wall whose behavior is difficult to understand and the velocity distribution obtained from the analysis result considering the arbitrary slip velocity V S are superposed. It was done by combining. The arbitrary slip speed V S input at the time of analysis by the POLYFLOW analysis is the slip speed at which the mean square error E of these two speed distributions shown in FIG. 4 is minimized. The result is shown in FIG. The mean square error E is obtained according to the following equation. Here, V ex indicates an actual measurement value of the moving speed, and V cal indicates an analytical value of the moving speed.

【0014】[0014]

【数1】 [Equation 1]

【0015】次に、スリップ速度VS を考慮した解析値
と実測値との比較を行なうと、図6〜図10に示すよう
に、両者はかなり一致した結果となることがわかる。さ
らに、図11〜図12では、算定したスリップ速度VS
を各テストNO.A、B、C、……、J毎に比較してみ
ると、溶融樹脂RがHDPEでは、スリップ速度VS
押出速度の増大とともに、また管路温度の増加、樹脂温
度の増加ともに大きくなっていることがわかる。一方、
溶融樹脂RがPPやPCとしたときには、管路温度を上
げてもスリップ速度は小さいが、樹脂速度を上げたり押
出速度を上げるとHDPEよりも逆にスリップ速度VS
が大きくなることがわかり、樹脂材料の特性を十分把握
したうえで色替・樹脂替を行なう必要があることがわか
った。スリップ速度VS は大きいほど色替・樹脂替が円
滑に進行し、また、スリップ速度VS を管内平均速度V
m で除算したスリップ率RS が大きいほど、樹脂の管内
滞留が少なく色替や樹脂替が短時間に行なわれる。図1
2のデータではテストNO.C、E、G、Hの成形条件
でスリップ率RS が高くなっている。
Next, when the analyzed value and the measured value in consideration of the slip speed V S are compared, it is found that the results are in good agreement as shown in FIGS. 6 to 10. Further, in FIGS. 11 to 12, the calculated slip speed V S
Each test NO. Comparing each of A, B, C, ..., J, when the molten resin R is HDPE, the slip speed V S increases with the increase of the extrusion speed, the increase of the pipe temperature, and the increase of the resin temperature. You can see that on the other hand,
When the molten resin R is PP or PC, the slip speed is small even if the pipe temperature is increased. However, when the resin speed or the extrusion speed is increased, the slip speed V S is higher than that of HDPE.
It was found that the value of the resin becomes large, and that it is necessary to change the color and the resin after fully understanding the characteristics of the resin material. The larger the slip speed V S, the smoother the color change / resin change, and the slip speed V S becomes the average speed V in the pipe.
The larger the slip ratio R S divided by m , the less the resin is retained in the pipe, and the color change or resin change is performed in a shorter time. FIG.
No. 2 test data. The slip ratio R S is high under the molding conditions of C, E, G, and H.

【0016】以上、述べた可視化実験結果や流動解析結
果との比較を通じて得られた知見をまとめると以下のと
おりとなる。 溶融樹脂の流動特性を知るため、トレーサ粒子を溶融
樹脂に混ぜてスリット状照射光を当て、これをビデオカ
メラで撮影して画像処理することにより溶融樹脂の移動
速度や流速分布を知ることができる。 可視化実験では管路壁のごく近傍の測定が難しく、ス
リップ速度を定量的に求められなかったが、数値解析の
結果を併用することによってスリップ速度が決定でき
た。 最大表面粗さが0.4μmの0.4s管路で流体をH
DPEとした実験では、スリップ速度は押出速度の増大
とともに、また管路壁温度の増大、樹脂温度の増大とと
もに大きくなった。また管路内圧力を増加するとスリッ
プ速度は減少した。 最大表面粗さが0.4μmの0.4s管路で流体をP
P、PCとした実験では、樹脂温度を上げるか押出速度
を上げるとHDPEよりもスリップ速度が大きくなっ
た。
The following is a summary of the findings obtained through comparison with the visualization experiment results and flow analysis results described above. In order to know the flow characteristics of the molten resin, tracer particles are mixed with the molten resin and irradiated with slit-shaped irradiation light, and the moving speed and flow velocity distribution of the molten resin can be known by shooting this with a video camera and processing the image. . In the visualization experiment, it was difficult to measure the vicinity of the pipe wall, and the slip speed could not be obtained quantitatively, but the slip speed could be determined by using the results of numerical analysis together. The fluid is made to flow in a 0.4s pipe with a maximum surface roughness of 0.4μm.
In the DPE experiment, the slip speed increased with the increase of the extrusion speed, the increase of the pipe wall temperature, and the increase of the resin temperature. The slip velocity decreased when the pressure in the pipeline increased. P is used for fluid flow in 0.4s pipeline with maximum surface roughness of 0.4μm.
In the experiments using P and PC, the slip speed became higher than that of HDPE when the resin temperature was raised or the extrusion speed was raised.

【0017】以上の知見とともに、実操業で成形する溶
融樹脂の種類に対応した種々の成形条件(管路温度、樹
脂温度、押出圧力、押出速度)の組み合わせの中から、
あらかじめ本発明における管内流動速度分布を得るため
の可視化実験を行なって、色替・樹脂替に好適な流速分
布を示す成形条件の組み合わせを探索することによっ
て、色替・樹脂替を短時間に済ませ、あるいは管路壁に
溶融樹脂の滞留しにくい条件を求め、実操業に反映させ
ることができる。
In addition to the above knowledge, from the combination of various molding conditions (pipe temperature, resin temperature, extrusion pressure, extrusion speed) corresponding to the type of molten resin molded in actual operation,
By conducting a visualization experiment to obtain the flow velocity distribution in the pipe in the present invention in advance and searching for a combination of molding conditions that shows a flow velocity distribution suitable for color change / resin change, color change / resin change can be completed in a short time. Alternatively, it is possible to obtain a condition in which the molten resin is unlikely to stay on the pipeline wall and reflect it in the actual operation.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば、溶
融樹脂の管内流動状態を簡便容易に知ることができると
ともに、管内流速分布に関するデータの中から色替・樹
脂替に好適で、管路内滞留の起こりにくい成形条件の組
み合わせを正確に把握できるため、実操業における運転
操作性と生産性が向上する。また、第2の発明では、ト
レーサ粒子の観察が一層明確に把握することができる。
As described above, according to the present invention, it is possible to easily and easily know the flow state of the molten resin in the pipe, and it is suitable for the color change / resin change from the data on the flow velocity distribution in the pipe. Since it is possible to accurately grasp the combination of molding conditions in which retention in the pipeline is unlikely to occur, operational operability and productivity in actual operation are improved. Further, in the second invention, the observation of tracer particles can be more clearly understood.

【0019】[0019]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す可視化実験装置の全体構
成図である。
FIG. 1 is an overall configuration diagram of a visualization experiment device showing an embodiment of the present invention.

【図2】本発明に係るCAE流動解析の解析モデルの斜
視図である。
FIG. 2 is a perspective view of an analysis model of CAE flow analysis according to the present invention.

【図3】本発明の実施例に係る樹脂の流動曲線(剪断速
度と粘度の関係)の実験値と予測値の比較を示すデータ
比較図である。
FIG. 3 is a data comparison diagram showing a comparison between an experimental value and a predicted value of a flow curve (relationship between shear rate and viscosity) of a resin according to an example of the present invention.

【図4】本発明の実施例に係る流速分布の実測値と解析
値から平均二乗誤差を算定する方法を説明する説明図で
ある。
FIG. 4 is an explanatory diagram illustrating a method of calculating a mean square error from an actual measurement value and an analysis value of a flow velocity distribution according to the embodiment of the present invention.

【図5】本発明の実施例に係るスリップ速度と平均二乗
誤差との相関を示すグラフである。
FIG. 5 is a graph showing a correlation between a slip speed and a mean square error according to an embodiment of the present invention.

【図6】本発明の実施例に係る実測流速分布と解析流速
分布との比較を示すデータ比較図である。
FIG. 6 is a data comparison diagram showing a comparison between an actually measured flow velocity distribution and an analysis flow velocity distribution according to an example of the present invention.

【図7】本発明の実施例に係る実測流速分布と解析流速
分布との比較を示すデータ比較図である。
FIG. 7 is a data comparison diagram showing a comparison between an actually measured flow velocity distribution and an analysis flow velocity distribution according to an example of the present invention.

【図8】本発明の実施例に係る実測流速分布と解析流速
分布との比較を示すデータ比較図である。
FIG. 8 is a data comparison diagram showing a comparison between an actually measured flow velocity distribution and an analysis flow velocity distribution according to an example of the present invention.

【図9】本発明の実施例に係る実測流速分布と解析流速
分布との比較を示すデータ比較図である。
FIG. 9 is a data comparison diagram showing a comparison between an actually measured flow velocity distribution and an analysis flow velocity distribution according to an example of the present invention.

【図10】本発明の実施例に係る実測流速分布と解析流
速分布との比較を示すデータ比較図である。
FIG. 10 is a data comparison diagram showing a comparison between an actually measured flow velocity distribution and an analysis flow velocity distribution according to an example of the present invention.

【図11】本発明の実施例に係る各テスト毎のスリップ
速度データ図である。
FIG. 11 is a slip speed data diagram for each test according to the embodiment of the present invention.

【図12】本発明の実施例に係る各テスト毎のスリップ
率(管内平均流速に対するスリップ速度の比)データ図
である。
FIG. 12 is a data diagram of a slip ratio (ratio of slip speed to in-pipe average flow velocity) for each test according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 押出機 1a スクリュ 2 管路 3 入光部 4 観察部 10 水銀ランプ 10a 照射光 20 ビデオカメラ 30 デジタイザ 40 パソコン 100 可視化実験装置 200 解析モデル R 溶融樹脂 T トレーサ粒子 V 流速(移動速度) VS スリップ速度(スリップ流速) Vm 管内平均流速 Vex 移動速度(実測値) Vcal 移動速度(解析値) E 平均二乗誤差 a 中心からの距離(高さ) RS スリップ率 A、B、C、……、J テストNo. η 粘度1 Extruder 1a Screw 2 Pipeline 3 Light-incident part 4 Observation part 10 Mercury lamp 10a Irradiation light 20 Video camera 30 Digitizer 40 Personal computer 100 Visualization experiment device 200 Analysis model R Molten resin T Tracer particle V Flow velocity (moving speed) V S Slip Velocity (slip velocity) V m Average velocity in pipe V ex Moving velocity (measured value) V cal Moving velocity (analysis value) E Mean square error a Distance from center (height) R S Slip rate A, B, C, ... …, J Test No. η viscosity

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トレーサ粒子を混入した溶融樹脂の流動
体を水平な管路内に流し、該管路の任意箇所に該管路内
流動体の流れ方向に直交して入射する石英ガラス製の入
光部と該入光部に直交しかつ該管路内流動体の流れ方向
に直交する石英ガラス製の観察部を配設するとともに、
該管路の外部よりスリット状照射光を該入光部を介して
該管路内に照射し、該管路の横幅方向に変化する流れ方
向に沿った任意の縦断面毎に前記観察部を通じて撮像
し、該撮像された画面内のトレーサ粒子の挙動からデジ
タイザなどの解析手段を介して各トレーサ粒子の移動速
度を該管路の高さ方向に少なくとも10分割以上に区画
した領域毎に解析して求めることを特徴とする溶融樹脂
の管内流動速度分布計測方法。
1. A fused silica resin mixture containing tracer particles is made to flow in a horizontal pipe, and is made of quartz glass which is incident on an arbitrary portion of the pipe in a direction orthogonal to the flow direction of the fluid in the pipe. While arranging a light entering part and an observing part made of quartz glass that is orthogonal to the light entering part and is orthogonal to the flow direction of the fluid in the conduit,
Slit-shaped irradiation light is radiated from the outside of the conduit into the conduit through the light entrance portion, and through the observing unit for every vertical cross section along the flow direction that changes in the lateral width direction of the conduit. An image is taken, and the moving speed of each tracer particle is analyzed from the behavior of the tracer particle in the imaged screen through an analyzing means such as a digitizer for each region divided into at least 10 divisions in the height direction of the pipeline. A method for measuring the flow velocity distribution of a molten resin in a pipe, which is characterized by:
【請求項2】 トレーサ粒子をポリエステル製とする請
求項1記載の溶融樹脂の管内流動速度分布計測方法。
2. The method for measuring a flow velocity distribution in a pipe of a molten resin according to claim 1, wherein the tracer particles are made of polyester.
JP11872095A 1995-05-17 1995-05-17 Method for measuring flow velocity distribution of molten resin in pipe Pending JPH08313549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11872095A JPH08313549A (en) 1995-05-17 1995-05-17 Method for measuring flow velocity distribution of molten resin in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11872095A JPH08313549A (en) 1995-05-17 1995-05-17 Method for measuring flow velocity distribution of molten resin in pipe

Publications (1)

Publication Number Publication Date
JPH08313549A true JPH08313549A (en) 1996-11-29

Family

ID=14743423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11872095A Pending JPH08313549A (en) 1995-05-17 1995-05-17 Method for measuring flow velocity distribution of molten resin in pipe

Country Status (1)

Country Link
JP (1) JPH08313549A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027593A (en) * 2009-07-27 2011-02-10 Sumitomo Rubber Ind Ltd Method for calculating friction characteristic between fluid material and channel wall surface, and measuring device used therefor
WO2011099433A1 (en) * 2010-02-12 2011-08-18 日本碍子株式会社 Method of fluid observation and fluid for observing flow
CN107907709A (en) * 2017-10-19 2018-04-13 北京金风科创风电设备有限公司 Resin flow velocity measurement system and method
CN117740791A (en) * 2024-02-20 2024-03-22 中国石油大学(华东) Evaluation method for testing melting degree of temperature-sensitive resin in high-temperature high-pressure water phase

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027593A (en) * 2009-07-27 2011-02-10 Sumitomo Rubber Ind Ltd Method for calculating friction characteristic between fluid material and channel wall surface, and measuring device used therefor
WO2011099433A1 (en) * 2010-02-12 2011-08-18 日本碍子株式会社 Method of fluid observation and fluid for observing flow
JP2011164021A (en) * 2010-02-12 2011-08-25 Ngk Insulators Ltd Fluid observation method and fluid for flow observation
US8692982B2 (en) 2010-02-12 2014-04-08 Ngk Insulators, Ltd. Method for observing fluid and fluid flow observation
CN107907709A (en) * 2017-10-19 2018-04-13 北京金风科创风电设备有限公司 Resin flow velocity measurement system and method
CN117740791A (en) * 2024-02-20 2024-03-22 中国石油大学(华东) Evaluation method for testing melting degree of temperature-sensitive resin in high-temperature high-pressure water phase
CN117740791B (en) * 2024-02-20 2024-06-07 中国石油大学(华东) Evaluation method for testing melting degree of temperature-sensitive resin in high-temperature high-pressure water phase

Similar Documents

Publication Publication Date Title
Peng et al. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing
Carneiro et al. On-line monitoring of the residence time distribution along a kneading block of a twin-screw extruder
US5721433A (en) Apparatus and method for analyzing particle images including measuring at a plurality of capturing magnifications
Awel et al. Visualizing aerosol-particle injection for diffractive-imaging experiments
JPH08313549A (en) Method for measuring flow velocity distribution of molten resin in pipe
Sornberger et al. Experimental study of the sharkskin defect in linear low density polyethylene
Zhang et al. Assessing local residence time distributions in screw extruders through a new in‐line measurement instrument
CN104931388B (en) It is a kind of to integrate scattering, micro- rheology original position Online Transaction Processing
Lee et al. The significance of slip in matching polyethylene processing data with numerical simulation
Martyn et al. Stress measurements for contraction flows of viscoelastic polymer melts
Lam et al. Interfacial slip between polymer melts studied by confocal microscopy and rheological measurements
Murty et al. Experimental characterization of the alignment of short fibers during flow
JP5066612B2 (en) Method and apparatus for optimizing separation techniques for a given sample system using asymmetric field flow fractionation
CN204536154U (en) A kind ofly collecting and distributingly to penetrate, the micro-stream in one becomes original position Online Transaction Processing
Zhu et al. Exploring shear yielding and strain localization at the die entry during extrusion of entangled melts
Lyu et al. Exchange flows in axially rotating pipes
Colon et al. Characterization of die-swell in thermoplastic material extrusion
Ess et al. Characterisation of distributive mixing in thermoplastics compositions
CN1806171B (en) Apparatus for measuring blood cell deformability
Srivastava et al. Bubble Characterization in a Continuous Casting Mold: Comparison and Identification of Image Processing Techniques
Ananda et al. Kinematics and statistics of dense, slow granular flow through vertical channels
JP4228709B2 (en) Stirring performance evaluation index calculation method and stirring performance evaluation index calculation program
Schuler Investigation of the flow between rotating disks in an enclosure
Stephan et al. Real time detection of particulate heterogeneities in polymer extrusion processes using microphotometric measuring method
Yoshida et al. Particle size measurement of reference particle candidates and uncertainty region of count and mass based cumulative distribution