JP2011027593A - Method for calculating friction characteristic between fluid material and channel wall surface, and measuring device used therefor - Google Patents

Method for calculating friction characteristic between fluid material and channel wall surface, and measuring device used therefor Download PDF

Info

Publication number
JP2011027593A
JP2011027593A JP2009174571A JP2009174571A JP2011027593A JP 2011027593 A JP2011027593 A JP 2011027593A JP 2009174571 A JP2009174571 A JP 2009174571A JP 2009174571 A JP2009174571 A JP 2009174571A JP 2011027593 A JP2011027593 A JP 2011027593A
Authority
JP
Japan
Prior art keywords
flow path
wall surface
rubber
flowable material
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009174571A
Other languages
Japanese (ja)
Other versions
JP5281510B2 (en
Inventor
Masaya Tsunoda
昌也 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2009174571A priority Critical patent/JP5281510B2/en
Publication of JP2011027593A publication Critical patent/JP2011027593A/en
Application granted granted Critical
Publication of JP5281510B2 publication Critical patent/JP5281510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for calculating friction characteristics between unvulcanized rubber and a wall surface of a rubber channel, and also to provide a measuring device used therefor. <P>SOLUTION: This method for calculating friction characteristic between unvulcanized rubber and the wall surface of the rubber channel through which the unvulcanized rubber flows, includes processes of: supplying unvulcanized rubber extruded by a rubber extruder into the rubber channel having the same inner diameter and extending in the axial direction with an analysis object length determined beforehand, and measuring a pressure P0 on the channel wall surface on the upstream side in an analysis object section and a pressure P1 on the channel wall surface on the downstream side in the analysis object section; calculating a wall surface shearing stress in the analysis object section from a pressure difference (P0-P1); and calculating slip speed on the wall surface of the rubber channel by using the wall surface shearing stress, a flow rate per unit time of the unvulcanized rubber, and viscosity characteristics of the unvulcanized rubber. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流動性材料と流路の壁面との摩擦特性を計算する方法及びそれに用いられる測定装置に関する。   The present invention relates to a method for calculating a friction characteristic between a flowable material and a wall surface of a flow path, and a measuring device used therefor.

空気入りタイヤのようなゴム製品を製造する場合、ゴム材料を混練して可塑化し、それを押出機で所定形状に押し出し成形することが行われる。混練機や押出機の中では、可塑化された未加硫ゴムは、例えばゴムが流れる流路の壁面と接触して摩擦力を受ける。この摩擦力は、前記壁面近傍でのゴムのせん断速度やせん断応力に大きな影響を与える。このため、可塑化された流動状態のゴムと前記壁面との摩擦特性を調べることは、ゴム流れの改善による生産性の向上を図る上で非常に重要となる。これは、可塑化されて射出される樹脂材料についても同様である。   When manufacturing a rubber product such as a pneumatic tire, a rubber material is kneaded and plasticized, and then extruded into a predetermined shape by an extruder. In the kneader and the extruder, the plasticized unvulcanized rubber is subjected to frictional force, for example, in contact with the wall surface of the flow path through which the rubber flows. This frictional force has a great influence on the shear rate and shear stress of rubber near the wall surface. For this reason, it is very important to examine the friction characteristics between the plasticized rubber in a fluidized state and the wall surface in order to improve productivity by improving the rubber flow. The same applies to resin materials that are plasticized and injected.

従来、このような可塑化された未加硫ゴムないし樹脂といった流動性材料の摩擦特性を調べる技術として、下記非特許文献1及び2が提案されている。   Conventionally, the following Non-Patent Documents 1 and 2 have been proposed as techniques for examining the friction characteristics of such fluidized materials such as plasticized unvulcanized rubber or resin.

MELVIN MOONEY著、「EXPLICIT FORMULAS FOR SLIP AND FLUIDITY」Journal of Rheology April 1931MELVIN MOONEY, "EXPLICIT FORMULAS FOR SLIP AND FLUIDITY" Journal of Rheology April 1931 加納好昭著「溶融樹脂の管内流動における壁面スリップ −固体界面の影響−」 日本レオロジー学会誌 Vol.25 1997Yoshiaki Kano "Wall slip in molten resin flow in pipes -Effect of solid interface-" Journal of the Japan Society of Rheology Vol.25 1997

前記非特許文献1では、流動性材料が円形断面を有する流路(キャピラリー)を通過したときの、流量と圧力損失から、流路の壁面でのせん断応力とスリップ速度とを求める方法が記載されている。具体的には、非特許文献1では下記式(3)が提案されている。

Figure 2011027593
ここで、上記式の符号は次の通りである。
E:単位時間あたりの流動性材料の流量
a:流路の半径
s:壁面でのせん断応力
β:スリップ係数 Non-Patent Document 1 describes a method for obtaining a shear stress and a slip speed on a wall surface of a flow path from a flow rate and a pressure loss when the flowable material passes through the flow path (capillary) having a circular cross section. ing. Specifically, Non-Patent Document 1 proposes the following formula (3).
Figure 2011027593
Here, the symbols in the above equation are as follows.
E: Flow rate of flowable material per unit time a: Radius of flow path s: Shear stress on the wall β: Slip coefficient

前記非特許文献1では、流路たるキャピラリーの半径aを変えても、壁面でのせん断応力sは変化しないという仮定に基づいている。そうすると、単位時間あたりの流動性材料の流量Eの変化は、全て壁面でのスリップ(滑り)に起因するということになる。この仮定の下で((E/πa3)/(1/a))を縦軸に、(1/a)を横軸にそれぞれとったグラフを描き、その傾きを求めれば、流動性材料の壁面でのスリップ速度を評価できることになる。   The non-patent document 1 is based on the assumption that the shear stress s on the wall surface does not change even when the radius a of the capillary serving as the flow path is changed. Then, all the changes in the flow rate E of the flowable material per unit time are caused by slippage on the wall surface. Under this assumption, a graph with ((E / πa3) / (1 / a)) on the vertical axis and (1 / a) on the horizontal axis is drawn, and the slope is obtained. The slip speed at can be evaluated.

しかしながら、上述のようなグラフを描いても、必ずしも直線が得られるとは限らない。特に、未加硫ゴムのような非ニュートン流体の場合、非特許文献1の方法では予測精度が悪いという問題があった。   However, even if the graph as described above is drawn, a straight line is not always obtained. In particular, in the case of a non-Newtonian fluid such as unvulcanized rubber, the method of Non-Patent Document 1 has a problem of poor prediction accuracy.

また、非特許文献2のものでは、トレーサーを混ぜた溶融樹脂を押出機により押出し、管路の中央に設けたスリットから可視光を照射し、内部を流れる溶融樹脂により散乱された光を側壁に設けた観察窓を通してCCDカメラにより撮影し、樹脂流動解析によって得られる速度分布と一致するスリップ速度を逆同定する方法が記載されている。   Moreover, in the thing of a nonpatent literature 2, the molten resin which mixed the tracer is extruded with an extruder, visible light is irradiated from the slit provided in the center of a pipe line, and the light scattered by the molten resin which flows inside is made into a side wall. A method is described in which a slip speed corresponding to a speed distribution obtained by resin flow analysis is reversely identified by photographing with a CCD camera through an observation window provided.

しかしながら、非特許文献2の方法は、流動性材料が透明な樹脂でないと、トレーサー樹脂から流速分布を求める事ができない。したがって、カーボンブラック等が配合されるような非透明のタイヤ用配合の未加硫ゴムの場合、この方法を採用することができず、汎用性に劣るという問題がある。   However, in the method of Non-Patent Document 2, the flow velocity distribution cannot be obtained from the tracer resin unless the fluid material is a transparent resin. Therefore, in the case of an unvulcanized rubber compounded for a non-transparent tire in which carbon black or the like is compounded, there is a problem that this method cannot be adopted and the versatility is inferior.

本発明は、以上のような実情に鑑み案出なされたもので、流動性材料と流路の壁面との摩擦特性を、精度良くかつ簡単に調べることが可能な方法及びそれに用いられる測定装置を提供することを目的としている。   The present invention has been devised in view of the above circumstances, and provides a method capable of accurately and easily examining the friction characteristics between a flowable material and a wall surface of a flow path and a measuring apparatus used therefor. It is intended to provide.

本発明のうち請求項1記載の発明は、可塑化されたゴム又は樹脂を含む流動性材料と、該流動性材料が流れる流路の壁面との摩擦特性を計算する方法であって、前記流動性材料を、同一内径かつ予め定めた解析対象区間で軸方向にのびる前記流路に連続して供給する工程と、前記流路の解析対象区間の上流側の壁面の圧力P0と、前記流路の解析対象区間の下流側の壁面の圧力P1とを測定する工程と、前記圧力の差(P0−P1)から下記式(1)によって解析対象区間の流路の壁面でのせん断応力τwを計算する工程と、該せん断応力と、前記流動性材料の単位時間当たりの流量と、前記流動性材料の粘度特性とを用いて下記式(2)で前記流路の壁面でのスリップ速度を計算する工程とを含むことを特徴とする。

Figure 2011027593
The invention according to claim 1 of the present invention is a method for calculating a friction characteristic between a flowable material containing a plasticized rubber or resin and a wall surface of a flow path through which the flowable material flows. A step of continuously supplying a functional material to the flow path extending in the axial direction with the same inner diameter and in a predetermined analysis target section, a pressure P0 on the upstream wall surface of the analysis target section of the flow path, and the flow path The shear stress τw at the wall surface of the flow path in the analysis target section is calculated from the step of measuring the pressure P1 on the downstream wall surface of the analysis target section and the following equation (1) from the pressure difference (P0−P1). The slip velocity at the wall surface of the flow path is calculated by the following equation (2) using the step of performing the shear stress, the flow rate per unit time of the flowable material, and the viscosity characteristic of the flowable material. And a process.
Figure 2011027593

また請求項2記載の発明は、前記流動性材料の粘度特性を、該流動性材料の粘度を、粘度計を用いて測定する工程と、前記測定された粘度を、流動性材料の解析対象区間での流動性材料の温度に、時間−温度換算則を用いて換算する工程とを含んで計算する請求項1記載の流動性材料と流路の壁面との摩擦特性を計算する方法である。   Further, the invention according to claim 2 is a step of measuring the viscosity characteristic of the flowable material, the viscosity of the flowable material using a viscometer, and the measured viscosity of the flowable material in the analysis target section. The method of calculating the friction characteristic between the flowable material and the wall surface of the flow path according to claim 1, wherein the calculation is performed including a step of converting the temperature of the flowable material at a time using a time-temperature conversion rule.

また請求項3記載の発明は、請求項1又は2に記載された流動性材料と流路の壁面との摩擦特性を計算する方法に用いられる測定装置であって、前記流動性材料を押し出す押出機の吐出側の端部に装着される外筒部と、該外筒部に着脱自在に内挿された内筒部とを含み、前記内筒部は、同一径で軸方向にのびかつ前記押出機から押し出された流動性材料が供給される流路を具え、かつ、前記流路の表面は、前記流動性材料との摩擦特性を測定する解析対象物で形成されるとともに、前記流路の解析対象区間の温度を測定する温度検出手段と、該解析対象区間の圧力を検出する圧力検出手段とを具えることを特徴とする測定装置である。   The invention described in claim 3 is a measuring device used in the method for calculating the friction characteristics between the flowable material described in claim 1 or 2 and the wall surface of the flow path, and is an extrusion method for extruding the flowable material. An outer cylinder part mounted on the discharge side end of the machine, and an inner cylinder part detachably inserted in the outer cylinder part, the inner cylinder part extending in the axial direction with the same diameter and A flow path to which the flowable material extruded from the extruder is supplied, and the surface of the flow path is formed of an analysis object for measuring friction characteristics with the flowable material, and the flow path A temperature detection means for measuring the temperature of the analysis target section, and a pressure detection means for detecting the pressure of the analysis target section.

また請求項4記載の発明は、前記外筒部には、前記内筒部の温度を調節するための流体が流れる調温流路が形成される請求項3記載の測定装置である。   The invention according to claim 4 is the measuring apparatus according to claim 3, wherein the outer cylinder part is formed with a temperature control channel through which a fluid for adjusting the temperature of the inner cylinder part flows.

また請求項5記載の発明は、前記外筒部は、軸方向にのびるとともに前記内筒部が挿入される外筒本体と、該外筒本体の押出機側に着脱自在に固着されかつ前記押出機の前記端部に固着されることにより前記押出機から押し出されたを前記内筒部の流路に導入する継ぎ流路を有する接続金具と、前記外筒本体の押出機と反対側の端部である先端側に着脱自在に固着されかつ前記流路を流れる流動性材料を吐出する吐出口を有する蓋部材とを含み、前記内筒部は、前記接続金具及び蓋部材の間で軸方向に押圧されて同心に突き合わされた2つの筒片からなる請求項3又は4記載の測定装置である。   According to a fifth aspect of the present invention, the outer cylinder portion extends in the axial direction and is detachably fixed to the outer cylinder main body into which the inner cylinder portion is inserted and the extruder side of the outer cylinder main body, and the extrusion A connection fitting having a joint flow path for introducing the extruded portion from the extruder by being fixed to the end portion of the machine into the flow path of the inner cylinder portion, and an end of the outer cylinder body opposite to the extruder And a lid member having a discharge port for discharging the flowable material flowing through the flow path, which is detachably fixed to the distal end side, and the inner cylinder portion is axially disposed between the connection fitting and the lid member. The measuring apparatus according to claim 3 or 4, comprising two cylindrical pieces pressed concentrically to each other.

また請求項6記載の発明は、前記各筒片は、前記突き合わされた端面と反対側の端面に、各筒片を前記外筒本体から互いに離間する向きに引き出すための治具を螺着するためのネジ孔を有する請求項5記載の測定装置である。   According to a sixth aspect of the present invention, each of the cylindrical pieces is screwed with a jig for pulling the cylindrical pieces away from the outer cylinder main body on the end surface opposite to the abutted end surface. The measuring device according to claim 5, further comprising a screw hole.

請求項1に係る方法の発明では、流動性材料と、該流動性材料が流れる流路の壁面との摩擦特性、より具体的には流路の壁面でのスリップ速度を正確に計算できる。従って、複数種類の材料についてスリップ速度を調べ、該スリップ速度が大きい材料を特定して流路に用いることにより、例えば流動性材料の混練、押出しといった工程の生産性を向上させることが可能になる。また、ポリマーに配合されるフィラー(例えばシリカやカーボン)の分散性を向上しうるゴム流路の開発にも役立つ。さらに、本発明によれば、流動性材料の色彩に関わらず、測定することが可能になる。   In the invention of the method according to claim 1, it is possible to accurately calculate the friction characteristics between the flowable material and the wall surface of the flow path through which the flowable material flows, more specifically, the slip speed at the wall surface of the flow path. Therefore, it is possible to improve the productivity of processes such as kneading and extruding fluid materials, for example, by investigating the slip speed for a plurality of types of materials and identifying a material having a high slip speed for use in the flow path. . It is also useful for the development of rubber flow paths that can improve the dispersibility of fillers (for example, silica and carbon) blended in the polymer. Furthermore, according to the present invention, measurement is possible regardless of the color of the flowable material.

また、請求項3に係る測定装置では、流動性材料を押し出す押出機の吐出側の端部に装着される外筒部と、該外筒部に着脱自在に挿入された内筒部とを含み、この内筒部は、前記押出機から押し出された流動性材料が流れる同一径で軸方向にのびる流路を具え、かつ、前記流路の表面は、前記流動性材料との摩擦特性を測定する解析対象物で形成される。しかも、この測定装置では、前記流路の解析対象区間の温度を測定する温度検出手段と、該解析対象区間の圧力を検出する圧力検出手段とを具える。従って、押出機側に何らの加工を必要とすることなく、内筒部の流路の壁面と流動性材料とのスリップ速度を計算するのに必要なデータを取得できる。従って、予め種々の材料及び/又は表面加工された内筒部を準備して、これらを交換することにより、簡単に様々な材料の摩擦特性を測定することができる。   Further, the measuring device according to claim 3 includes an outer cylinder portion attached to an end portion on the discharge side of the extruder for extruding the fluid material, and an inner cylinder portion detachably inserted into the outer cylinder portion. The inner cylinder portion has a channel extending in the axial direction with the same diameter through which the fluid material extruded from the extruder flows, and the surface of the channel measures a friction characteristic with the fluid material. It is formed with the analysis object. In addition, this measuring apparatus includes temperature detecting means for measuring the temperature of the analysis target section of the flow path, and pressure detection means for detecting the pressure of the analysis target section. Therefore, the data necessary for calculating the slip speed between the wall surface of the flow path of the inner cylinder part and the flowable material can be acquired without requiring any processing on the extruder side. Accordingly, by preparing various materials and / or surface-treated inner cylinder portions in advance and exchanging them, the friction characteristics of various materials can be easily measured.

流動性材料が流れる流路の断面図である。It is sectional drawing of the flow path through which a fluid material flows. 未加硫ゴムの粘度を測定する一例を示す側面図である。It is a side view which shows an example which measures the viscosity of an unvulcanized rubber. 未加硫ゴムのせん断速度とせん断粘度との関係を示すグラフである。It is a graph which shows the relationship between the shear rate of unvulcanized rubber, and shear viscosity. 本発明の方法を実施するための測定装置の断面図である。It is sectional drawing of the measuring apparatus for enforcing the method of this invention. 図1を分解して示す断面図である。It is sectional drawing which decomposes | disassembles and shows FIG. 本発明の測定装置を用いて得られた結果を示す。The result obtained using the measuring apparatus of this invention is shown. 本発明の測定装置を用いて得られた結果を示す。The result obtained using the measuring apparatus of this invention is shown.

以下、本発明の実施の一形態について、流動性材料として可塑化された未加硫ゴムと、それが流れるゴム流路の壁面との摩擦特性を計算する方法について説明する。   Hereinafter, an embodiment of the present invention will be described with respect to a method for calculating the friction characteristics between unvulcanized rubber plasticized as a fluid material and the wall surface of the rubber flow path through which it flows.

先ず、図1に示されるように、キャピラリーC内をスリップがない状態で流れる未加硫ゴムUについて、任意の半径位置rでの速度の理論解が知られている。例えば、「Transport Phenomena second edition, R. Byron Bird p242-243」には、下記理論解が記載されている。

Figure 2011027593
ただし、符号は、次の通りである。
vz:流れ方向の未加硫ゴムの速度
P0:キャピラリーの入口圧力
PL:キャピラリーの出口圧力
m及びn:未加硫ゴムのせん断速度とせん断粘度の関係からPower Lawによって近似したときに決まる係数
r:未加硫ゴムの半径方向の位置
R:キャピラリーの半径
L:キャピラリーの軸方向(z方向)の長さ First, as shown in FIG. 1, a theoretical solution of speed at an arbitrary radial position r is known for an unvulcanized rubber U that flows in a capillary C without slipping. For example, the following theoretical solution is described in “Transport Phenomena second edition, R. Byron Bird p242-243”.
Figure 2011027593
However, the symbols are as follows.
vz: velocity of unvulcanized rubber in the flow direction P0: capillary inlet pressure PL: capillary outlet pressure m and n: coefficient determined when approximated by Power Law from the relationship between shear rate and shear viscosity of unvulcanized rubber r : Radial position of unvulcanized rubber R: radius of capillary L: length of capillary in the axial direction (z direction)

発明者らは、上記式に、未加硫ゴムUの壁面Cwでの滑りを考慮した。即ち、未加硫ゴムは、キャピラリーCのゴム流路の壁面Cwで速度vslipのスリップ(滑り)生していると仮定すれば、下記式(5)が成り立つことを知見した。

Figure 2011027593
The inventors considered slippage on the wall surface Cw of the unvulcanized rubber U in the above formula. That is, it has been found that if the unvulcanized rubber is slipped at the speed vslip on the wall surface Cw of the rubber flow path of the capillary C, the following equation (5) is established.
Figure 2011027593

また、上記式(5)を断面内で積分すると、下式(6)が得られる。   Further, when the above formula (5) is integrated in the cross section, the following formula (6) is obtained.

Figure 2011027593
ここで、ρは未加硫ゴムの比重である。
Figure 2011027593
Here, ρ is the specific gravity of the unvulcanized rubber.

そして上記式(6)を、vslipを求める形式に整理すると、下式(7)が得られる。   When the above equation (6) is rearranged into a format for obtaining vslip, the following equation (7) is obtained.

Figure 2011027593
Figure 2011027593

なお、式(7)は、未加硫ゴムUの壁面Cwでのせん断応力s=(P0−PL)R/2Lとおくと式(8)で表すことができる。   The equation (7) can be expressed by the equation (8) when the shear stress s = (P0−PL) R / 2L at the wall surface Cw of the unvulcanized rubber U is set.

Figure 2011027593
Figure 2011027593

従って、本発明の方法によれば、もはや非特許文献1のMoonyのように、βをグラフを用いて導き出す必要は無く、理論式によって、未加硫ゴムの比重ρ、粘度のパラメータm及びn、キャピラリーCの半径R、キャピラリーCの解析対象区間の入口圧力P0、出口圧力PL並びに単位時間当たりに流れる未加硫ゴムUの流量qが分かれば、当該キャピラリーCに対する未加硫ゴムUのスリップ速度を簡単に計算することができる。   Therefore, according to the method of the present invention, it is no longer necessary to derive β using a graph as in the case of Moony in Non-Patent Document 1, and the specific gravity ρ of the unvulcanized rubber, the viscosity parameters m and n are determined according to the theoretical formula. If the radius R of the capillary C, the inlet pressure P0, the outlet pressure PL of the analysis target section of the capillary C, and the flow rate q of the unvulcanized rubber U flowing per unit time are known, the slip of the unvulcanized rubber U with respect to the capillary C The speed can be calculated easily.

よって、本発明によれば、種々の条件でスリップ速度を計算して該スリップ速度の大きい材料を特定し、かつ、それをゴム押出機のゴム流路や混練機の壁面に用いることにより、押出し時等の抵抗を減じ、生産性の向上に役立てることができる。また、これとは逆に、
ゴムポリマーに配合されるフィラー(例えばシリカやカーボン)の分散性を向上しうるゴム流路の開発にも役立つ。即ち、フィラーを分散させる為には、フィラーにせん断力を作用させる必要があり、このためには上記スリップ速度の小さい材料を選択するのが効果的である。
Therefore, according to the present invention, the slip speed is calculated under various conditions to identify a material having a high slip speed, and it is used for the rubber flow path of the rubber extruder and the wall surface of the kneader. It can reduce resistance such as time and help improve productivity. On the other hand,
It is also useful for the development of rubber flow paths that can improve the dispersibility of fillers (for example, silica and carbon) blended with rubber polymers. That is, in order to disperse the filler, it is necessary to apply a shearing force to the filler. For this purpose, it is effective to select a material having a low slip speed.

前記理論式に必要なキャピラリーCの解析対象区間の入口圧力P0、出口圧力PL及び単位時間当たりに流れる未加硫ゴムUの流量qについては、図1に示したように、キャピラリーCに、例えば押出機を用いて未加硫ゴムUを定常状態で連続供給して各種測定を行うことにより容易に得ることができる。また、未加硫ゴムの比重ρについては公知の測定方法にて得るることができる。   As shown in FIG. 1, for example, the inlet pressure P0, the outlet pressure PL and the flow rate q of the unvulcanized rubber U flowing per unit time in the analysis target section of the capillary C necessary for the theoretical formula are as follows. It can be easily obtained by continuously supplying unvulcanized rubber U in a steady state and performing various measurements using an extruder. The specific gravity ρ of the unvulcanized rubber can be obtained by a known measuring method.

さらに、未加硫ゴムUの粘度のパラメータm及びnについては、別途、粘度計を使用し、該未加硫ゴムのせん断速度とせん断粘度との関係を求め、それらにpower law(カーブフィット)を適用してを同定することができる。   Further, for the parameters m and n of the viscosity of the unvulcanized rubber U, a viscometer is used separately to determine the relationship between the shear rate and the shear viscosity of the unvulcanized rubber, and power law (curve fit) Can be identified.

未加硫ゴムのせん断速度及び未加硫ゴムのせん断粘度については、例えば、キャピラリー型又はせん断型レオメータの粘度計を用いて測定することができる。   The shear rate of the unvulcanized rubber and the shear viscosity of the unvulcanized rubber can be measured, for example, using a capillary type or shear type rheometer viscometer.

キャピラリー型の粘度計では、一般に、キャピラリーを流れる未加硫ゴムの入口−出口間の圧力損失が、圧力センサー又はロードセルを用いて測定される。そして、下記の式(9)を適用して未加硫ゴムのせん断粘度が計算される。なお、せん断速度は先に示した式(8)により計算できる。

Figure 2011027593
ここで、符号は次の通りである。
ΔP:圧力損失(P0−PL)
r: キャピラリーの半径
Q:未加硫ゴムの流量
L:キャピラリーの軸方向の長さ
なお、この種の測定装置としては、例えば東洋精機社製の「キャピログラフ1D」等を用いることができる。 In a capillary type viscometer, generally, a pressure loss between an inlet and an outlet of unvulcanized rubber flowing through a capillary is measured using a pressure sensor or a load cell. Then, the following equation (9) is applied to calculate the shear viscosity of the unvulcanized rubber. The shear rate can be calculated by the equation (8) shown above.
Figure 2011027593
Here, the symbols are as follows.
ΔP: Pressure loss (P0-PL)
r: Capillary radius Q: Flow rate of unvulcanized rubber L: Length in the axial direction of the capillary As this type of measuring device, for example, “Capillograph 1D” manufactured by Toyo Seiki Co., Ltd. can be used.

また、せん断型レオメータの粘度計の場合、図2に示されるように、粘度を測定したい未加硫ゴムUのサンプルkを2枚の円盤j、jの間に挟み、かつ、微小振動させることによってその粘弾性特性が計測される。そして、下記式(10)によってせん断粘度に換算できる。

Figure 2011027593
ここで、符号は次の通りである。
η*(ω):せん断粘度
ω:角周波数
G':動的弾性率
G":損失弾性率
γ:せん断速度 In the case of a shear rheometer viscometer, as shown in FIG. 2, a sample k of unvulcanized rubber U whose viscosity is to be measured is sandwiched between two disks j and j and minutely vibrated. To measure its viscoelastic properties. And it can convert into a shear viscosity by following formula (10).
Figure 2011027593
Here, the symbols are as follows.
η * (ω): Shear viscosity ω: Angular frequency G ′: Dynamic elastic modulus G ″: Loss elastic modulus γ: Shear rate

なお、この種の測定装置としては、例えばTAインスツルメント社製の「ARES」を挙げることができ、その測定条件の一例は次の通りである。
ひずみ:0.5%
縦荷重:0
周波数:0.1〜100(rad/s)
測定温度:130℃、100℃、80℃、60℃又は40℃
In addition, as this kind of measuring apparatus, for example, “ARES” manufactured by TA Instruments Inc. can be cited, and an example of the measuring conditions is as follows.
Strain: 0.5%
Longitudinal load: 0
Frequency: 0.1 to 100 (rad / s)
Measurement temperature: 130 ° C, 100 ° C, 80 ° C, 60 ° C or 40 ° C

図3には、上記ARESを使用して得られた未加硫ゴムUのせん断速度とせん断粘度との関係を示し、両者の間にはこのような比例関係が見られる。そして、このようにして得られたせん断速度とせん断粘度との直線関係から、式(11)を用いてカーブフィッティングプログラム等で近似することにより、前記パラメータm及びnを定めることができる。

Figure 2011027593
FIG. 3 shows the relationship between the shear rate and the shear viscosity of the unvulcanized rubber U obtained by using the above ARES, and such a proportional relationship is observed between the two. The parameters m and n can be determined from the linear relationship between the shear rate and the shear viscosity thus obtained by approximating with a curve fitting program or the like using equation (11).
Figure 2011027593

また、未加硫ゴムUの粘度特性m、n等は温度に依存するため、上記理論式(7)に代入される各パラメータは、同一の温度条件での値である必要がある。従って、キャピラリーを用いて測定された前記圧力P0、PL及び未加硫ゴムUの流量qの温度条件と、前記パラメータm及びnを測定したときの温度条件とが異なる場合には、前記パラメータm及びnを、キャピラリーを流れる未加硫ゴムの温度条件に、公知の時間−温度換算則を用いて換算し、その換算された値を用いれば良い。   In addition, since the viscosity characteristics m, n, etc. of the unvulcanized rubber U depend on the temperature, each parameter assigned to the theoretical formula (7) needs to be a value under the same temperature condition. Accordingly, when the temperature conditions of the pressures P0 and PL and the flow rate q of the unvulcanized rubber U measured using a capillary are different from the temperature conditions when the parameters m and n are measured, the parameter m And n are converted to the temperature condition of the unvulcanized rubber flowing through the capillary using a known time-temperature conversion rule, and the converted value may be used.

次に、未加硫ゴムのスリップ速度を計算するに際して、必要なパラメータを効率良く測定しうる測定装置の実施形態について述べる。   Next, an embodiment of a measuring apparatus capable of efficiently measuring necessary parameters when calculating the slip speed of unvulcanized rubber will be described.

図4には、測定装置1の断面図を示し、該測定装置1は、外筒部2と、該外筒部2に着脱自在に内挿されかつ内部にゴム流路iを形成する内筒部3とを含んで構成される。また、本実施形態の測定装置1は、未加硫ゴムUを押し出す押出機Mの吐出側の端部eに装着されている。   FIG. 4 shows a cross-sectional view of the measuring apparatus 1, which includes an outer cylinder part 2 and an inner cylinder that is detachably inserted into the outer cylinder part 2 and forms a rubber flow path i therein. Part 3. Moreover, the measuring apparatus 1 of this embodiment is attached to the end e on the discharge side of the extruder M that extrudes the unvulcanized rubber U.

前記外筒部2は、未加硫ゴムUの押出し方向に沿って軸方向にのびるとともに内筒部3が挿入された外筒本体4と、該外筒本体4の押出機側に着脱自在に固着された接続金具5と、外筒本体4の押出機Mと反対側の端部である先端側に着脱自在に固着された蓋部材6とを含んで構成されている。   The outer cylinder portion 2 extends in the axial direction along the extrusion direction of the unvulcanized rubber U and is detachably attached to the outer cylinder body 4 into which the inner cylinder portion 3 is inserted and the extruder side of the outer cylinder body 4. The connection fitting 5 is fixed, and the lid member 6 is detachably fixed to the distal end side of the outer cylinder body 4 on the side opposite to the extruder M.

前記外筒本体4は、軸方向に所定の長さでのびる円筒状の基部4aと、その先端側に形成された前フランジ部4bと、後端側に形成された後フランジ部4cとを一体に含んでいる。   The outer cylinder main body 4 includes a cylindrical base portion 4a extending in a predetermined length in the axial direction, a front flange portion 4b formed on the front end side, and a rear flange portion 4c formed on the rear end side. Is included.

前記基部4aには、内筒部3が挿入される内孔7が連続して形成されている。また、本実施形態では、基部4aに温度検出手段8と、圧力検出手段9とが固着されている。温度検出手段8及び圧力検出手段9は、それぞれ基部4aの半径方向にのびる取付孔10、11にそれぞれ装着されている。   In the base portion 4a, an inner hole 7 into which the inner cylinder portion 3 is inserted is continuously formed. In the present embodiment, the temperature detecting means 8 and the pressure detecting means 9 are fixed to the base portion 4a. The temperature detecting means 8 and the pressure detecting means 9 are respectively mounted in mounting holes 10 and 11 extending in the radial direction of the base portion 4a.

前記温度検出手段8は、公知の温度センサーを用いることができ、例えば熱電対等が好適である。なお、温度検出手段8の検知信号は、図示しない制御装置へと入力される。本実施形態では、解析対象区間A内で等間隔で3つの温度検出手段8が並べて設けられている。なお、温度検出手段8の検知端8aは、内筒部3に設けた透孔21を通ってゴム流路i内に配置されている。より具体的には、検知端8aが内筒部3のゴム流路iの壁面ieと整一してその一部を構成するように配置されている。   As the temperature detection means 8, a known temperature sensor can be used, and for example, a thermocouple or the like is suitable. The detection signal of the temperature detection means 8 is input to a control device (not shown). In the present embodiment, three temperature detection means 8 are arranged side by side at equal intervals in the analysis target section A. Note that the detection end 8 a of the temperature detection means 8 is disposed in the rubber flow path i through the through hole 21 provided in the inner cylinder portion 3. More specifically, the detection end 8a is arranged so as to be aligned with the wall surface ie of the rubber flow path i of the inner cylinder portion 3 to constitute a part thereof.

また、前記圧力検出手段9は、公知の圧力センサーを用いることができる。本実施形態では、解析対象区間Aの最上流部及び最下流部にそれぞれ各一つの圧力検出手段9i、9oを含んでいる。これらの検知信号も制御装置へと入力される。なお、温度検出手段8と同様、圧力検出手段9の検知端9aも、内筒部3に設けた透孔22を通ってゴム流路iの壁面ieと整一して配置されている。これにより、圧力検出手段9は、ゴム流路iの解析対象区間Aの上流側の圧力P0と、下流側の圧力PLとを測定することができる。   The pressure detection means 9 can be a known pressure sensor. In the present embodiment, each of the pressure detection means 9i and 9o is included in the most upstream part and the most downstream part of the analysis target section A, respectively. These detection signals are also input to the control device. Similar to the temperature detection means 8, the detection end 9 a of the pressure detection means 9 is also arranged in alignment with the wall surface ie of the rubber flow path i through the through hole 22 provided in the inner cylinder portion 3. Thereby, the pressure detection means 9 can measure the pressure P0 on the upstream side of the analysis target section A of the rubber flow path i and the pressure PL on the downstream side.

さらに、本実施形態において、外筒部2の基部4aには、内筒部3の温度を調節するための流体が流れる調温流路14が形成されている。本実施形態の調温流路14は、基部4aの円周方向に沿って環状にのびている。そして、この調温流路14には、水、湯又はオイル等の流体が流出入する入口及び出口(図示省略)が設けられ、内部に流体が循環する。また、調温流路14は、基部4aの軸方向に距離を隔てて合計3本形成されている。   Furthermore, in the present embodiment, a temperature adjusting flow path 14 through which a fluid for adjusting the temperature of the inner cylinder portion 3 flows is formed in the base portion 4a of the outer cylinder portion 2. The temperature control channel 14 of the present embodiment extends in an annular shape along the circumferential direction of the base portion 4a. The temperature control channel 14 is provided with an inlet and an outlet (not shown) through which a fluid such as water, hot water or oil flows in and out, and the fluid circulates inside. A total of three temperature control channels 14 are formed at a distance in the axial direction of the base portion 4a.

本実施形態では、温度検出手段8にて測定された温度に基づき、図示しないポンプを駆動し、各調温流路14に個別に、冷媒又は熱媒となる流体を出入りさせることができる。これにより、流体は、基部4aを介して内筒部3と熱交換を行い、内筒部3の温度を、その軸方向長さに亘って(より好ましくは少なくとも解析対象区間Aに亘って)所望の温度かつ一定に保つことができる。   In the present embodiment, a pump (not shown) is driven based on the temperature measured by the temperature detection means 8, and a refrigerant or a fluid serving as a heat medium can be made to go into and out of each temperature control channel 14 individually. Thereby, the fluid exchanges heat with the inner cylinder part 3 via the base part 4a, and the temperature of the inner cylinder part 3 extends over its axial length (more preferably over at least the analysis target section A). The desired temperature can be kept constant.

前記接続金具5は、例えば、略円盤状をなし、本実施形態では、外筒部2の後フランジ部4cにボルト12で一体に固着される。また、接続金具5は、押出機Mの吐出口Mo側のフランジMfにボルト15で固着される。これにより、測定装置1が押出機Mに片持ち状に装着できる。   The connection fitting 5 has, for example, a substantially disk shape, and in this embodiment, is integrally fixed to the rear flange portion 4c of the outer cylinder portion 2 with a bolt 12. Further, the connection fitting 5 is fixed to the flange Mf on the discharge port Mo side of the extruder M with a bolt 15. Thereby, the measuring apparatus 1 can be attached to the extruder M in a cantilever manner.

また、接続金具5の中央には、テーパ状の継ぎ流路13が形成されている。該継ぎ流路13は、押出機Mの吐出口Moと、内筒部3のゴム流入口3iとの間を繋ぐようにのびている。これにより、押出機Mから押し出された未加硫ゴムUは、円滑に内筒部3のゴム流路iへと送給される。さらに、本実施形態の接続金具5には、前記内筒部3の後端側の端面と当接する第1の押圧面5aが形成されている。   Further, a tapered joint channel 13 is formed at the center of the connection fitting 5. The joint channel 13 extends so as to connect between the discharge port Mo of the extruder M and the rubber inlet 3 i of the inner cylinder portion 3. Thereby, the unvulcanized rubber U extruded from the extruder M is smoothly fed to the rubber flow path i of the inner cylinder part 3. Further, the connection fitting 5 of the present embodiment is formed with a first pressing surface 5a that comes into contact with the end surface on the rear end side of the inner cylinder portion 3.

前記蓋部材6は、例えば、略円盤状をなし、外筒部2の前フランジ部4bにボルト17で固着されている。また、蓋部材6には、前記内筒部3のゴム流路iの吐出口と同径をなすゴム吐出口6oが形成されている。さらに、蓋部材6の前記ゴム吐出口6oの周りには、内筒部3の先端側の端面と当接する第2の押圧面6aが形成されている。   The lid member 6 has a substantially disk shape, for example, and is fixed to the front flange portion 4b of the outer cylinder portion 2 with bolts 17. Further, the lid member 6 is formed with a rubber discharge port 6o having the same diameter as the discharge port of the rubber flow path i of the inner cylinder portion 3. Further, a second pressing surface 6 a is formed around the rubber discharge port 6 o of the lid member 6 to be in contact with the end surface on the front end side of the inner cylinder portion 3.

前記内筒部3は、例えば、円筒状のパイプ材からなり、内部に押出機Mから押し出された未加硫ゴムUが流れるゴム流路iが形成される。該ゴム流路iは、同一径で軸方向にのびる断面円形の内孔によって形成される。   The inner cylinder portion 3 is made of, for example, a cylindrical pipe material, and a rubber flow path i through which the unvulcanized rubber U extruded from the extruder M flows is formed. The rubber flow path i is formed by an inner hole having the same diameter and a circular cross section extending in the axial direction.

また、ゴム流路iの表面(即ち壁面ie)は、未加硫ゴムUとの摩擦特性を測定する解析対象物で形成される。例えば、この内筒部3の少なくとも前記壁面ieを、解析しようとする解析対象材料(金属材料)及び/又は表面粗さ(塗膜やコーティング等の表面処理の有無)で形成する。なお、種々の解析を行う場合には、前記壁面ieの材料及び/又は表面粗さを異ならせた複数種類の内筒部3を予め準備し、これらを順次交換することにより、それぞれの摩擦特性を測定することができる。   Further, the surface of the rubber flow path i (that is, the wall surface ie) is formed of an analysis object that measures friction characteristics with the unvulcanized rubber U. For example, at least the wall surface ie of the inner cylinder portion 3 is formed of the material to be analyzed (metal material) and / or the surface roughness (whether or not there is a surface treatment such as a coating film or coating). In the case of performing various analyses, a plurality of types of inner cylinder portions 3 with different materials and / or surface roughnesses of the wall surface ie are prepared in advance, and these are sequentially exchanged to obtain respective friction characteristics. Can be measured.

また、本実施形態の内筒部3は、同心かつ軸方向に突き合わされることによって1本の連続した前記ゴム流路iを形成しうる2つの筒片3A、3Bから構成されている。これらの筒片3A、3Bは、接続金具5及び蓋部材6を外筒本体4に固着することにより、軸方向で互いに押圧され、突き合わせ面での隙間などを実質的に無くすことなく連続することができる。   Moreover, the inner cylinder part 3 of this embodiment is comprised from two cylinder piece 3A, 3B which can form the one said continuous rubber flow path i by confronting concentric and an axial direction. These cylinder pieces 3A and 3B are pressed against each other in the axial direction by fixing the connection fitting 5 and the lid member 6 to the outer cylinder main body 4, and are continuous without substantially eliminating gaps at the butted surfaces. Can do.

さらに、各筒片3A、3Bには、位置合わせにより、外筒本体4に設けられた取付孔10及び11に連通する前述の透孔21、22が形成されている。これにより、温度検出手段8及び圧力検出手段9は、それぞれ外筒部2及び内筒部3を貫通してゴム流路i内に検知部を臨ませることができる。   Furthermore, the above-described through holes 21 and 22 communicating with the mounting holes 10 and 11 provided in the outer cylinder main body 4 are formed in the respective cylinder pieces 3A and 3B by alignment. Thereby, the temperature detection means 8 and the pressure detection means 9 can penetrate the outer cylinder part 2 and the inner cylinder part 3, respectively, and can face a detection part in the rubber flow path i.

本実施形態において、外筒部2と内筒部3との円周方向の相対位置を能率良く位置決めし、取付孔10及び11に透孔21、22を能率良く揃えるために、筒片3A、3Bには、その端部には、軸方向にのびるキー23が一体形成される。他方、外筒部2には、前記キー23と嵌合する凹部24が形成されている。これにより、キー23と凹部24とを合わせて挿入することにより、調整作業などを要することなく、取付孔10及び11に透孔21、22を揃えることができる。従って、内筒部3の交換作業時の位置合わせ挿入が能率化できる。   In the present embodiment, in order to efficiently position the relative positions in the circumferential direction of the outer cylinder portion 2 and the inner cylinder portion 3 and to efficiently align the through holes 21 and 22 in the mounting holes 10 and 11, the cylinder pieces 3A, A key 23 extending in the axial direction is integrally formed at the end of 3B. On the other hand, the outer cylinder portion 2 is formed with a recess 24 that fits with the key 23. Accordingly, by inserting the key 23 and the recess 24 together, the through holes 21 and 22 can be aligned with the mounting holes 10 and 11 without requiring an adjustment operation or the like. Therefore, it is possible to increase the efficiency of the insertion of the alignment when the inner cylinder part 3 is replaced.

さらに、本実施形態においては、各筒片3A、3Bには、互いに突き合わされた端面と反対側の端面(即ち、内筒部3の両外端面)に、露出する状態でネジ孔29が設けられている。該ネジ孔29は、本実施形態では、肉厚を膨出させた前記キー23に穿設されている。このようなネジ孔29には、各筒片3A、3Bを外筒本体4から互いに離間する向きに引き出すための治具(図5に示す)を螺着することができ、内筒部3の交換作業をさらにう能率化しうる。   Furthermore, in the present embodiment, each cylindrical piece 3A, 3B is provided with a screw hole 29 in an exposed state on the end surface opposite to the end surface that is abutted with each other (that is, both outer end surfaces of the inner cylindrical portion 3). It has been. In the present embodiment, the screw hole 29 is formed in the key 23 having a thickened wall. In such a screw hole 29, a jig (shown in FIG. 5) for pulling the cylindrical pieces 3A, 3B away from the outer cylinder body 4 can be screwed. The exchange work can be made more efficient.

以上のように構成された本実施形態の測定装置1では、図4の状態に組み立てられた後、押出機Mに装着される。次に、押出機Mのスクリュー軸を回転させることにより、未加硫ゴムUが、継ぎ流路13を経て内筒部3のゴム流路iへと連続供給される。なお、内筒部3を流れた未加硫ゴムは、最終的にはゴム吐出口6oから外部に吐出される。   In the measuring apparatus 1 according to the present embodiment configured as described above, after being assembled in the state of FIG. Next, by rotating the screw shaft of the extruder M, the unvulcanized rubber U is continuously supplied to the rubber flow path i of the inner cylinder portion 3 through the joint flow path 13. The unvulcanized rubber that has flowed through the inner cylinder portion 3 is finally discharged to the outside from the rubber discharge port 6o.

なお、各種の測定は、未加硫ゴムUの流れが安定した後に開始されるのが良い。そして、温度検出手段8によって、解析対象区間Aのゴム流路iの壁面位置での未加硫ゴムの温度が検出される。   Various measurements are preferably started after the flow of the unvulcanized rubber U is stabilized. Then, the temperature of the unvulcanized rubber at the wall surface position of the rubber flow path i in the analysis target section A is detected by the temperature detection means 8.

この測定では、予め定めた一定の解析温度で行われるのが望ましい。本実施形態では、温度検出手段8によって測定された温度が、上記解析温度よりも高くなると、制御装置は、図示しないポンプを駆動し、前記調温流路節14に冷媒を供給する。これにより、外筒部2を介して内筒部3を冷却制御できる。他方、温度検出手段8によって測定された温度が、解析温度よりも低い場合、制御装置は、ポンプを駆動して調温流路14に熱媒を供給する。これにより、外筒部2を介して内筒部3を加温制御できる。このように、本実施形態の測定装置1では、内筒部3を解析温度に保つことができる。   This measurement is desirably performed at a predetermined constant analysis temperature. In the present embodiment, when the temperature measured by the temperature detecting means 8 becomes higher than the analysis temperature, the control device drives a pump (not shown) and supplies the refrigerant to the temperature adjusting channel node 14. Thereby, cooling control of the inner cylinder part 3 can be carried out via the outer cylinder part 2. FIG. On the other hand, when the temperature measured by the temperature detection means 8 is lower than the analysis temperature, the control device drives the pump to supply the heating medium to the temperature control channel 14. Thereby, heating control of the inner cylinder part 3 can be carried out via the outer cylinder part 2. FIG. Thus, in the measuring apparatus 1 of this embodiment, the inner cylinder part 3 can be kept at analysis temperature.

また、圧力検出手段9i、9oによって、解析対象区間Aの未加硫ゴムUの入口圧力P0及び出口圧力PLをそれぞれ検知できる。   Further, the pressure detection means 9i and 9o can detect the inlet pressure P0 and the outlet pressure PL of the unvulcanized rubber U in the analysis target section A, respectively.

また、異なる材料及び/又は表面粗さのゴム流路を具えた内筒部3で測定を行いたい場合、図5に示されるように、先ず、接続金具5及び蓋部材6が、外筒本体4から取り外される。同様に、温度検出手段8及び圧力検出手段9が外筒部2から抜き取られる。しかる後、内筒部3の各筒片3A、3Bに設けられたネジ孔29に治具J(この例では引き抜き用のグリップとボルトとが示される)を螺着し、該治具Jを両外側に引き抜くことによって、外筒部2から各筒片3A及び3Bを抜き取ることができる。このような分割タイプの内筒部3は、引き抜き長さを小として、交換作業性を能率化しうる。   Further, when it is desired to perform measurement with the inner cylinder portion 3 having rubber flow paths of different materials and / or surface roughness, first, as shown in FIG. 5, the connection fitting 5 and the lid member 6 are the outer cylinder main body. 4 is removed. Similarly, the temperature detection means 8 and the pressure detection means 9 are extracted from the outer cylinder portion 2. Thereafter, a jig J (in this example, a pulling grip and a bolt are shown) is screwed into the screw holes 29 provided in each of the cylinder pieces 3A and 3B of the inner cylinder portion 3, and the jig J is The cylindrical pieces 3A and 3B can be extracted from the outer cylindrical portion 2 by pulling out both sides. Such a split-type inner cylinder part 3 can make the replacement workability efficient by reducing the pull-out length.

そして、予め準備された別の内筒部3の各筒片3A、3Bが、外筒部2に挿入され、接続金具5及び蓋部材6が外筒本体4に固着される。これにより、内筒部3が形成される。しかる後、温度検出手段8及び圧力検出手段9が外筒本体4から装着される。   Then, each of the cylinder pieces 3 </ b> A and 3 </ b> B of another inner cylinder part 3 prepared in advance is inserted into the outer cylinder part 2, and the connection fitting 5 and the lid member 6 are fixed to the outer cylinder body 4. Thereby, the inner cylinder part 3 is formed. Thereafter, the temperature detecting means 8 and the pressure detecting means 9 are mounted from the outer cylinder main body 4.

図4に示した測定装置を用いて、下記の条件にて未加硫ゴムと2種類の内筒部との摩擦特性の測定を行った。   Using the measuring apparatus shown in FIG. 4, the friction characteristics between the unvulcanized rubber and the two types of inner cylinders were measured under the following conditions.

[内筒部の仕様]
内筒部は、いずれも炭素鋼(S45C)から形成されたパイプ材からなり、一つはゴム流路の壁面にポリテトラフルオロエチレン(PTFE)のコーティングを施したもの、もう一つはゴム流路の壁面にSACM645の窒化鋼をコーティングしたものとした。
[Specifications of inner cylinder]
The inner cylinder part is made of a pipe material made of carbon steel (S45C), one of which is coated with polytetrafluoroethylene (PTFE) on the wall surface of the rubber flow path, and the other is a rubber flow. The road wall was coated with SACM645 nitride steel.

[押出機の流量]
また、押出機のゴムの流量については、定常運転を確認した後、18秒間に押し出されたゴムの重量を測定し、これを秒数で除すことにより単位時間あたりの流量を求めた。なお、ゴムの流れ状態等を安定化させるために、測定は、押出機を最低30秒間初期運転させた後に開始した。
[Extruder flow rate]
Regarding the rubber flow rate of the extruder, after confirming steady operation, the weight of rubber extruded for 18 seconds was measured, and this was divided by the number of seconds to obtain the flow rate per unit time. In order to stabilize the rubber flow state and the like, the measurement was started after the extruder was initially operated for a minimum of 30 seconds.

[ゴム配合]
未加硫ゴムのゴム配合については、内筒部X、Yでともに共通とし、タイヤに用いられる一般的なシリカ配合の黒色のゴム組成物とした。
[Rubber compounding]
About the rubber | gum mixing | blending of unvulcanized rubber, it was set as the common in the inner cylinder parts X and Y, and it was set as the black rubber composition of the general silica mixing | blending used for a tire.

[ゴム温度の測定]
ゴム吐出口直ぐのゴムに熱電対を突き刺して10秒後の温度計の目盛りを読み取ることにより測定された。
[Measurement of rubber temperature]
The measurement was made by inserting a thermocouple into the rubber immediately after the rubber outlet and reading the scale on the thermometer 10 seconds later.

[測定結果]
図6に示されるように、ゴム流路の壁面が低表面自由エネルギーを有するPTFEの内筒部は、SACM645の窒化鋼を窒化したものに比較すると、壁面でのせん断応力は小さく、かつ、スリップ速度が上昇する傾向が見られた。この様に、本発明の方法及び測定装置を使用すれば、各ゴム流路の摩擦特性を数値で定量的に確認、評価することができる。
[Measurement result]
As shown in FIG. 6, the inner wall portion of PTFE, in which the wall surface of the rubber channel has low surface free energy, has less shear stress on the wall surface than that obtained by nitriding SACM645 nitride steel, and slip There was a tendency to increase speed. Thus, if the method and measuring apparatus of the present invention are used, the frictional characteristics of each rubber flow channel can be quantitatively confirmed and evaluated numerically.

次に、上記測定装置のゴム流路の内径を3水準(30mm、37.5mm及び45mm)としてせん断応力が変わるようにし、それぞれの条件でスリップ速度を導出した。壁面温度は60℃に設定した。結果は、図7に示されるように、せん断応力とすべり速度の関係を得ることができた。従って、このような結果から、ゴムの押出し時の温度について、最適なスリップ速度を調べるのに役立つ。   Next, the inner diameter of the rubber flow path of the measuring device was set to three levels (30 mm, 37.5 mm, and 45 mm) so that the shear stress changed, and the slip speed was derived under each condition. The wall surface temperature was set to 60 ° C. As a result, as shown in FIG. 7, it was possible to obtain the relationship between the shear stress and the sliding speed. Therefore, from such a result, it is useful to investigate the optimum slip speed with respect to the temperature at the time of rubber extrusion.

以上のように、本実施例の装置を用いると、流動性材料の流路の壁面の材質、表面粗さ、温度、流動性材料の温度等によって、壁面での摩擦特性がどの様に変化するのかを、簡単に実験でかつ定量的に求めることができる。また本実施形態の測定装置では、内筒部の内径を大きく設定できるため、流路の壁面のメッキや表面加工が容易となり、かつ、金属表面の実温度計測や、圧力損失の計測もしやすいという利点を有する。   As described above, when the apparatus of this embodiment is used, the friction characteristics on the wall surface change depending on the material, surface roughness, temperature, fluid material temperature, etc. of the flowable material flow path. It can be easily determined experimentally and quantitatively. In the measuring device of this embodiment, since the inner diameter of the inner tube portion can be set large, it is easy to plate the wall surface of the flow path and to process the surface, and to easily measure the actual temperature of the metal surface and the pressure loss. Have advantages.

1 測定装置
2 外筒部
3 内筒部
3A、3B 筒片
4 外筒本体
4a 基部
4b 前フランジ部
4c 後フランジ部
5 接続金具
6 蓋部材
6o ゴム吐出口
7 内孔
8 温度検出手段
9 圧力検出手段
14 調温流路
15、17 ボルト
29 ネジ孔
A 解析対象区間
i ゴム流路
ie ゴム流路の壁面
J 治具
M 押出機
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Outer cylinder part 3 Inner cylinder part 3A, 3B Tube piece 4 Outer cylinder main body 4a Base part 4b Front flange part 4c Rear flange part 5 Connection metal fitting 6 Lid member 6o Rubber discharge port 7 Inner hole 8 Temperature detection means 9 Pressure detection Means 14 Temperature control flow path 15, 17 Bolt 29 Screw hole A Analysis target section i Rubber flow path ie Rubber flow path wall J Jig M Extruder

Claims (6)

可塑化されたゴム又は樹脂を含む流動性材料と、該流動性材料が流れる流路の壁面との摩擦特性を計算する方法であって、
前記流動性材料を、同一内径かつ予め定めた解析対象区間で軸方向にのびる前記流路に連続して供給する工程と、
前記流路の解析対象区間の上流側の壁面の圧力P0と、前記流路の解析対象区間の下流側の壁面の圧力P1とを測定する工程と、
前記圧力の差(P0−P1)から下記式(1)によって解析対象区間の流路の壁面でのせん断応力τwを計算する工程と、
該せん断応力と、前記流動性材料の単位時間当たりの流量と、前記流動性材料の粘度特性とを用いて下記式(2)で前記流路の壁面でのスリップ速度を計算する工程とを含むことを特徴とする流動性材料と流路の壁面との摩擦特性を計算する方法。
Figure 2011027593
A method for calculating a friction characteristic between a flowable material containing plasticized rubber or resin and a wall surface of a flow path through which the flowable material flows,
Supplying the flowable material continuously to the flow path extending in the axial direction at the same inner diameter and a predetermined analysis target section;
Measuring the pressure P0 of the upstream wall surface of the analysis target section of the flow path and the pressure P1 of the downstream wall surface of the analysis target section of the flow path;
Calculating the shear stress τw at the wall surface of the flow path in the analysis target section from the pressure difference (P0−P1) by the following formula (1):
Using the shear stress, the flow rate per unit time of the flowable material, and the viscosity characteristic of the flowable material, and calculating the slip speed at the wall surface of the flow path by the following equation (2). A method for calculating a friction characteristic between a flowable material and a wall surface of a flow path.
Figure 2011027593
前記流動性材料の粘度特性を、
該流動性材料の粘度を、粘度計を用いて測定する工程と、
前記測定された粘度を、流動性材料の解析対象区間での流動性材料の温度に、時間−温度換算則を用いて換算する工程とを含んで計算する請求項1記載の流動性材料と流路の壁面との摩擦特性を計算する方法。
Viscosity characteristics of the flowable material
Measuring the viscosity of the flowable material using a viscometer;
The flowable material and flow according to claim 1, wherein the measured viscosity is calculated by converting the temperature of the flowable material in the analysis target section of the flowable material using a time-temperature conversion rule. A method of calculating the friction characteristics with the road wall.
請求項1又は2に記載された流動性材料と流路の壁面との摩擦特性を計算する方法に用いられる測定装置であって、
前記流動性材料を押し出す押出機の吐出側の端部に装着される外筒部と、該外筒部に着脱自在に内挿された内筒部とを含み、
前記内筒部は、同一径で軸方向にのびかつ前記押出機から押し出された流動性材料が供給される流路を具え、かつ、前記流路の表面は、前記流動性材料との摩擦特性を測定する解析対象物で形成されるとともに、
前記流路の解析対象区間の温度を測定する温度検出手段と、該解析対象区間の圧力を検出する圧力検出手段とを具えることを特徴とする測定装置。
A measuring device used in a method for calculating a friction characteristic between a flowable material according to claim 1 or 2 and a wall surface of a flow path,
Including an outer cylinder portion attached to an end portion on the discharge side of the extruder for extruding the fluid material, and an inner cylinder portion detachably inserted in the outer cylinder portion,
The inner cylinder portion has a channel having the same diameter, extending in the axial direction, and supplied with the fluid material extruded from the extruder, and the surface of the channel has friction characteristics with the fluid material. Is formed with an analysis object that measures
A measuring apparatus comprising temperature detecting means for measuring the temperature of the analysis target section of the flow path and pressure detection means for detecting the pressure of the analysis target section.
前記外筒部には、前記内筒部の温度を調節するための流体が流れる調温流路が形成される請求項3記載の測定装置。   The measuring apparatus according to claim 3, wherein a temperature control channel through which a fluid for adjusting the temperature of the inner cylinder part flows is formed in the outer cylinder part. 前記外筒部は、軸方向にのびるとともに前記内筒部が挿入される外筒本体と、
該外筒本体の押出機側に着脱自在に固着されかつ前記押出機の前記端部に固着されることにより前記押出機から押し出されたを前記内筒部の流路に導入する継ぎ流路を有する接続金具と、
前記外筒本体の押出機と反対側の端部である先端側に着脱自在に固着されかつ前記流路を流れる流動性材料を吐出する吐出口を有する蓋部材とを含み、
前記内筒部は、前記接続金具及び蓋部材の間で軸方向に押圧されて同心に突き合わされた2つの筒片からなる請求項3又は4記載の測定装置。
The outer cylinder part extends in the axial direction and the outer cylinder body into which the inner cylinder part is inserted;
A joint flow path that is detachably fixed to the extruder side of the outer cylinder main body and that is extruded from the extruder by being fixed to the end portion of the extruder and is introduced into the flow path of the inner cylinder portion. A connection fitting having
A lid member that is detachably fixed to the distal end side opposite to the extruder of the outer cylinder main body and has a discharge port for discharging the fluid material flowing through the flow path,
5. The measuring device according to claim 3, wherein the inner cylinder portion includes two cylinder pieces that are pressed in the axial direction between the connection fitting and the lid member and concentrically face each other.
前記各筒片は、前記突き合わされた端面と反対側の端面に、各筒片を前記外筒本体から互いに離間する向きに引き出すための治具を螺着するためのネジ孔を有する請求項5記載の測定装置。   The said each cylinder piece has a screw hole for screwing the jig | tool for pulling out each cylinder piece in the direction spaced apart from the said outer cylinder main body to the end surface on the opposite side to the said faced end surface. The measuring device described.
JP2009174571A 2009-07-27 2009-07-27 Method for calculating friction characteristics between flowable material and flow path wall surface and measuring device used therefor Expired - Fee Related JP5281510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174571A JP5281510B2 (en) 2009-07-27 2009-07-27 Method for calculating friction characteristics between flowable material and flow path wall surface and measuring device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174571A JP5281510B2 (en) 2009-07-27 2009-07-27 Method for calculating friction characteristics between flowable material and flow path wall surface and measuring device used therefor

Publications (2)

Publication Number Publication Date
JP2011027593A true JP2011027593A (en) 2011-02-10
JP5281510B2 JP5281510B2 (en) 2013-09-04

Family

ID=43636507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174571A Expired - Fee Related JP5281510B2 (en) 2009-07-27 2009-07-27 Method for calculating friction characteristics between flowable material and flow path wall surface and measuring device used therefor

Country Status (1)

Country Link
JP (1) JP5281510B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674885A1 (en) 2012-06-11 2013-12-18 Sumitomo Rubber Industries, Ltd. Method for simulating high-viscosity fluid
RU2589753C2 (en) * 2014-09-10 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет - учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Inertial viscosity measurement method
RU2789667C1 (en) * 2022-05-05 2023-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Inertia method for measuring the viscosity of non-newtonian fluids

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197917A (en) * 1988-02-02 1989-08-09 Furukawa Electric Co Ltd:The Electric cable producing device
JPH0721859A (en) * 1993-07-06 1995-01-24 Furukawa Electric Co Ltd:The Electric cable manufacturing device
JPH08309792A (en) * 1995-05-17 1996-11-26 Ube Ind Ltd Resin and color replacing method
JPH08313549A (en) * 1995-05-17 1996-11-29 Ube Ind Ltd Method for measuring flow velocity distribution of molten resin in pipe
JP2002122531A (en) * 2000-10-18 2002-04-26 Kanegafuchi Chem Ind Co Ltd Method of estimating dependence on frequency of dynamic storage elastic modulus and dynamic loss elastic modulus for melted resin with foaming agent dissolved therein
JP2003220629A (en) * 2002-01-30 2003-08-05 Nissei Plastics Ind Co Method for observing flow of resin
JP2004317471A (en) * 2003-04-16 2004-11-11 Sanki Sangyo:Kk Sample flash die structure in capillary rheometer
JP2007047130A (en) * 2005-08-12 2007-02-22 Omron Corp Device for measuring frictional characteristic, and tire turned to it
JP2007232717A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Disk flow system and fluidity evaluation method
WO2008148536A1 (en) * 2007-06-05 2008-12-11 Cargill, Incorporated Tribology device for assessing mouthfeel attributes of foods

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197917A (en) * 1988-02-02 1989-08-09 Furukawa Electric Co Ltd:The Electric cable producing device
JPH0721859A (en) * 1993-07-06 1995-01-24 Furukawa Electric Co Ltd:The Electric cable manufacturing device
JPH08309792A (en) * 1995-05-17 1996-11-26 Ube Ind Ltd Resin and color replacing method
JPH08313549A (en) * 1995-05-17 1996-11-29 Ube Ind Ltd Method for measuring flow velocity distribution of molten resin in pipe
JP2002122531A (en) * 2000-10-18 2002-04-26 Kanegafuchi Chem Ind Co Ltd Method of estimating dependence on frequency of dynamic storage elastic modulus and dynamic loss elastic modulus for melted resin with foaming agent dissolved therein
JP2003220629A (en) * 2002-01-30 2003-08-05 Nissei Plastics Ind Co Method for observing flow of resin
JP2004317471A (en) * 2003-04-16 2004-11-11 Sanki Sangyo:Kk Sample flash die structure in capillary rheometer
JP2007047130A (en) * 2005-08-12 2007-02-22 Omron Corp Device for measuring frictional characteristic, and tire turned to it
JP2007232717A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Disk flow system and fluidity evaluation method
WO2008148536A1 (en) * 2007-06-05 2008-12-11 Cargill, Incorporated Tribology device for assessing mouthfeel attributes of foods
WO2008148538A1 (en) * 2007-06-05 2008-12-11 Cargill, Incorporated Methods for assessing mouthfeel attributes of foods using a tribology device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674885A1 (en) 2012-06-11 2013-12-18 Sumitomo Rubber Industries, Ltd. Method for simulating high-viscosity fluid
KR20130138702A (en) 2012-06-11 2013-12-19 스미토모 고무 고교 가부시키가이샤 Method for simulating high-viscosity fluid
US9135380B2 (en) 2012-06-11 2015-09-15 Sumitomo Rubber Industries, Ltd. Method for simulating high-viscosity fluid
RU2589753C2 (en) * 2014-09-10 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный университет - учебно-научно-производственный комплекс" (ФГБОУ ВПО "Госуниверситет-УНПК") Inertial viscosity measurement method
RU2789667C1 (en) * 2022-05-05 2023-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Inertia method for measuring the viscosity of non-newtonian fluids

Also Published As

Publication number Publication date
JP5281510B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
Aho et al. Shear viscosity measurements of polymer melts using injection molding machine with adjustable slit die
Mazzanti et al. In-line rheometry of polypropylene based wood polymer composites
US7689370B2 (en) On-line absolute viscosity measurement system
JP5281510B2 (en) Method for calculating friction characteristics between flowable material and flow path wall surface and measuring device used therefor
Gou et al. Online measurement of rheological properties of polypropylene based on an injection molding machine to simulate the injection-molding process
CA2365621A1 (en) Apparatus and method for measuring the rheological properties of a power law fluid
Covas et al. Rheological measurements along an extruder with an on-line capillary rheometer
Mazzanti et al. In-process measurements of flow characteristics of wood plastic composites
Abeykoon Sensing technologies for process monitoring in polymer extrusion: A comprehensive review on past, present and future aspects
US6164818A (en) Method and apparatus for measuring viscous heating of viscoelastic materials
Paradkar et al. Shear and extensional rheology of hydroxypropyl cellulose melt using capillary rheometry
McAfee et al. Real-time measurement of melt viscosity in single-screw extrusion
Silva et al. A new approach to temperature control in the extrusion process of composite tire products
Sombatsompop et al. Effect of screw rotating speed on polymer melt temperature profiles in twin screw extruder
Kloziński et al. The application of an extrusion slit die in the rheological measurements of polyethylene composites with calcium carbonate using an in‐line rheometer
JP3819318B2 (en) Screw runout measuring method of screw type extruder and screw type extruder
Guan et al. Superimposed effects in high‐shear‐rate capillary rheology of polystyrene melt
den Doelder et al. Pressure oscillations and periodic extrudate distortions of long-chain branched polyolefins
CA2570276A1 (en) Apparatus for monitoring corrosion of extruder components during operation, and processes incorporating such apparatus
Sombatsompop et al. Die geometry effects on the temperature profile measurements of flowing PP melt in a twin-screw extruder
Nelson Capillary rheometry
Szymiczek et al. Influence of temperature on the viscoelastic properties of drawn PE pipes
Trienens et al. Investigation regarding the correlation of the relative influences during the extrusion process of cast films on the resulting melt quality
Kalaidov et al. Viscosity measurement technique for long fiber thermoplastic material
Kleinschmidt et al. Improvement of a method for the correction of wall slip effects within the rheological measurements of filled rubber compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees